ASoC: rt5645: Add struct dmi_system_id "Google Ultima" for chrome platform
[deliverable/linux.git] / arch / mips / kernel / traps.c
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7 * Copyright (C) 1995, 1996 Paul M. Antoine
8 * Copyright (C) 1998 Ulf Carlsson
9 * Copyright (C) 1999 Silicon Graphics, Inc.
10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11 * Copyright (C) 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki
12 * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc. All rights reserved.
13 * Copyright (C) 2014, Imagination Technologies Ltd.
14 */
15 #include <linux/bitops.h>
16 #include <linux/bug.h>
17 #include <linux/compiler.h>
18 #include <linux/context_tracking.h>
19 #include <linux/cpu_pm.h>
20 #include <linux/kexec.h>
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/mm.h>
25 #include <linux/sched.h>
26 #include <linux/smp.h>
27 #include <linux/spinlock.h>
28 #include <linux/kallsyms.h>
29 #include <linux/bootmem.h>
30 #include <linux/interrupt.h>
31 #include <linux/ptrace.h>
32 #include <linux/kgdb.h>
33 #include <linux/kdebug.h>
34 #include <linux/kprobes.h>
35 #include <linux/notifier.h>
36 #include <linux/kdb.h>
37 #include <linux/irq.h>
38 #include <linux/perf_event.h>
39
40 #include <asm/bootinfo.h>
41 #include <asm/branch.h>
42 #include <asm/break.h>
43 #include <asm/cop2.h>
44 #include <asm/cpu.h>
45 #include <asm/cpu-type.h>
46 #include <asm/dsp.h>
47 #include <asm/fpu.h>
48 #include <asm/fpu_emulator.h>
49 #include <asm/idle.h>
50 #include <asm/mips-r2-to-r6-emul.h>
51 #include <asm/mipsregs.h>
52 #include <asm/mipsmtregs.h>
53 #include <asm/module.h>
54 #include <asm/msa.h>
55 #include <asm/pgtable.h>
56 #include <asm/ptrace.h>
57 #include <asm/sections.h>
58 #include <asm/tlbdebug.h>
59 #include <asm/traps.h>
60 #include <asm/uaccess.h>
61 #include <asm/watch.h>
62 #include <asm/mmu_context.h>
63 #include <asm/types.h>
64 #include <asm/stacktrace.h>
65 #include <asm/uasm.h>
66
67 extern void check_wait(void);
68 extern asmlinkage void rollback_handle_int(void);
69 extern asmlinkage void handle_int(void);
70 extern u32 handle_tlbl[];
71 extern u32 handle_tlbs[];
72 extern u32 handle_tlbm[];
73 extern asmlinkage void handle_adel(void);
74 extern asmlinkage void handle_ades(void);
75 extern asmlinkage void handle_ibe(void);
76 extern asmlinkage void handle_dbe(void);
77 extern asmlinkage void handle_sys(void);
78 extern asmlinkage void handle_bp(void);
79 extern asmlinkage void handle_ri(void);
80 extern asmlinkage void handle_ri_rdhwr_vivt(void);
81 extern asmlinkage void handle_ri_rdhwr(void);
82 extern asmlinkage void handle_cpu(void);
83 extern asmlinkage void handle_ov(void);
84 extern asmlinkage void handle_tr(void);
85 extern asmlinkage void handle_msa_fpe(void);
86 extern asmlinkage void handle_fpe(void);
87 extern asmlinkage void handle_ftlb(void);
88 extern asmlinkage void handle_msa(void);
89 extern asmlinkage void handle_mdmx(void);
90 extern asmlinkage void handle_watch(void);
91 extern asmlinkage void handle_mt(void);
92 extern asmlinkage void handle_dsp(void);
93 extern asmlinkage void handle_mcheck(void);
94 extern asmlinkage void handle_reserved(void);
95 extern void tlb_do_page_fault_0(void);
96
97 void (*board_be_init)(void);
98 int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
99 void (*board_nmi_handler_setup)(void);
100 void (*board_ejtag_handler_setup)(void);
101 void (*board_bind_eic_interrupt)(int irq, int regset);
102 void (*board_ebase_setup)(void);
103 void(*board_cache_error_setup)(void);
104
105 static void show_raw_backtrace(unsigned long reg29)
106 {
107 unsigned long *sp = (unsigned long *)(reg29 & ~3);
108 unsigned long addr;
109
110 printk("Call Trace:");
111 #ifdef CONFIG_KALLSYMS
112 printk("\n");
113 #endif
114 while (!kstack_end(sp)) {
115 unsigned long __user *p =
116 (unsigned long __user *)(unsigned long)sp++;
117 if (__get_user(addr, p)) {
118 printk(" (Bad stack address)");
119 break;
120 }
121 if (__kernel_text_address(addr))
122 print_ip_sym(addr);
123 }
124 printk("\n");
125 }
126
127 #ifdef CONFIG_KALLSYMS
128 int raw_show_trace;
129 static int __init set_raw_show_trace(char *str)
130 {
131 raw_show_trace = 1;
132 return 1;
133 }
134 __setup("raw_show_trace", set_raw_show_trace);
135 #endif
136
137 static void show_backtrace(struct task_struct *task, const struct pt_regs *regs)
138 {
139 unsigned long sp = regs->regs[29];
140 unsigned long ra = regs->regs[31];
141 unsigned long pc = regs->cp0_epc;
142
143 if (!task)
144 task = current;
145
146 if (raw_show_trace || !__kernel_text_address(pc)) {
147 show_raw_backtrace(sp);
148 return;
149 }
150 printk("Call Trace:\n");
151 do {
152 print_ip_sym(pc);
153 pc = unwind_stack(task, &sp, pc, &ra);
154 } while (pc);
155 printk("\n");
156 }
157
158 /*
159 * This routine abuses get_user()/put_user() to reference pointers
160 * with at least a bit of error checking ...
161 */
162 static void show_stacktrace(struct task_struct *task,
163 const struct pt_regs *regs)
164 {
165 const int field = 2 * sizeof(unsigned long);
166 long stackdata;
167 int i;
168 unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
169
170 printk("Stack :");
171 i = 0;
172 while ((unsigned long) sp & (PAGE_SIZE - 1)) {
173 if (i && ((i % (64 / field)) == 0))
174 printk("\n ");
175 if (i > 39) {
176 printk(" ...");
177 break;
178 }
179
180 if (__get_user(stackdata, sp++)) {
181 printk(" (Bad stack address)");
182 break;
183 }
184
185 printk(" %0*lx", field, stackdata);
186 i++;
187 }
188 printk("\n");
189 show_backtrace(task, regs);
190 }
191
192 void show_stack(struct task_struct *task, unsigned long *sp)
193 {
194 struct pt_regs regs;
195 if (sp) {
196 regs.regs[29] = (unsigned long)sp;
197 regs.regs[31] = 0;
198 regs.cp0_epc = 0;
199 } else {
200 if (task && task != current) {
201 regs.regs[29] = task->thread.reg29;
202 regs.regs[31] = 0;
203 regs.cp0_epc = task->thread.reg31;
204 #ifdef CONFIG_KGDB_KDB
205 } else if (atomic_read(&kgdb_active) != -1 &&
206 kdb_current_regs) {
207 memcpy(&regs, kdb_current_regs, sizeof(regs));
208 #endif /* CONFIG_KGDB_KDB */
209 } else {
210 prepare_frametrace(&regs);
211 }
212 }
213 show_stacktrace(task, &regs);
214 }
215
216 static void show_code(unsigned int __user *pc)
217 {
218 long i;
219 unsigned short __user *pc16 = NULL;
220
221 printk("\nCode:");
222
223 if ((unsigned long)pc & 1)
224 pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
225 for(i = -3 ; i < 6 ; i++) {
226 unsigned int insn;
227 if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
228 printk(" (Bad address in epc)\n");
229 break;
230 }
231 printk("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
232 }
233 }
234
235 static void __show_regs(const struct pt_regs *regs)
236 {
237 const int field = 2 * sizeof(unsigned long);
238 unsigned int cause = regs->cp0_cause;
239 unsigned int exccode;
240 int i;
241
242 show_regs_print_info(KERN_DEFAULT);
243
244 /*
245 * Saved main processor registers
246 */
247 for (i = 0; i < 32; ) {
248 if ((i % 4) == 0)
249 printk("$%2d :", i);
250 if (i == 0)
251 printk(" %0*lx", field, 0UL);
252 else if (i == 26 || i == 27)
253 printk(" %*s", field, "");
254 else
255 printk(" %0*lx", field, regs->regs[i]);
256
257 i++;
258 if ((i % 4) == 0)
259 printk("\n");
260 }
261
262 #ifdef CONFIG_CPU_HAS_SMARTMIPS
263 printk("Acx : %0*lx\n", field, regs->acx);
264 #endif
265 printk("Hi : %0*lx\n", field, regs->hi);
266 printk("Lo : %0*lx\n", field, regs->lo);
267
268 /*
269 * Saved cp0 registers
270 */
271 printk("epc : %0*lx %pS\n", field, regs->cp0_epc,
272 (void *) regs->cp0_epc);
273 printk("ra : %0*lx %pS\n", field, regs->regs[31],
274 (void *) regs->regs[31]);
275
276 printk("Status: %08x ", (uint32_t) regs->cp0_status);
277
278 if (cpu_has_3kex) {
279 if (regs->cp0_status & ST0_KUO)
280 printk("KUo ");
281 if (regs->cp0_status & ST0_IEO)
282 printk("IEo ");
283 if (regs->cp0_status & ST0_KUP)
284 printk("KUp ");
285 if (regs->cp0_status & ST0_IEP)
286 printk("IEp ");
287 if (regs->cp0_status & ST0_KUC)
288 printk("KUc ");
289 if (regs->cp0_status & ST0_IEC)
290 printk("IEc ");
291 } else if (cpu_has_4kex) {
292 if (regs->cp0_status & ST0_KX)
293 printk("KX ");
294 if (regs->cp0_status & ST0_SX)
295 printk("SX ");
296 if (regs->cp0_status & ST0_UX)
297 printk("UX ");
298 switch (regs->cp0_status & ST0_KSU) {
299 case KSU_USER:
300 printk("USER ");
301 break;
302 case KSU_SUPERVISOR:
303 printk("SUPERVISOR ");
304 break;
305 case KSU_KERNEL:
306 printk("KERNEL ");
307 break;
308 default:
309 printk("BAD_MODE ");
310 break;
311 }
312 if (regs->cp0_status & ST0_ERL)
313 printk("ERL ");
314 if (regs->cp0_status & ST0_EXL)
315 printk("EXL ");
316 if (regs->cp0_status & ST0_IE)
317 printk("IE ");
318 }
319 printk("\n");
320
321 exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
322 printk("Cause : %08x (ExcCode %02x)\n", cause, exccode);
323
324 if (1 <= exccode && exccode <= 5)
325 printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
326
327 printk("PrId : %08x (%s)\n", read_c0_prid(),
328 cpu_name_string());
329 }
330
331 /*
332 * FIXME: really the generic show_regs should take a const pointer argument.
333 */
334 void show_regs(struct pt_regs *regs)
335 {
336 __show_regs((struct pt_regs *)regs);
337 }
338
339 void show_registers(struct pt_regs *regs)
340 {
341 const int field = 2 * sizeof(unsigned long);
342 mm_segment_t old_fs = get_fs();
343
344 __show_regs(regs);
345 print_modules();
346 printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
347 current->comm, current->pid, current_thread_info(), current,
348 field, current_thread_info()->tp_value);
349 if (cpu_has_userlocal) {
350 unsigned long tls;
351
352 tls = read_c0_userlocal();
353 if (tls != current_thread_info()->tp_value)
354 printk("*HwTLS: %0*lx\n", field, tls);
355 }
356
357 if (!user_mode(regs))
358 /* Necessary for getting the correct stack content */
359 set_fs(KERNEL_DS);
360 show_stacktrace(current, regs);
361 show_code((unsigned int __user *) regs->cp0_epc);
362 printk("\n");
363 set_fs(old_fs);
364 }
365
366 static int regs_to_trapnr(struct pt_regs *regs)
367 {
368 return (regs->cp0_cause >> 2) & 0x1f;
369 }
370
371 static DEFINE_RAW_SPINLOCK(die_lock);
372
373 void __noreturn die(const char *str, struct pt_regs *regs)
374 {
375 static int die_counter;
376 int sig = SIGSEGV;
377
378 oops_enter();
379
380 if (notify_die(DIE_OOPS, str, regs, 0, regs_to_trapnr(regs),
381 SIGSEGV) == NOTIFY_STOP)
382 sig = 0;
383
384 console_verbose();
385 raw_spin_lock_irq(&die_lock);
386 bust_spinlocks(1);
387
388 printk("%s[#%d]:\n", str, ++die_counter);
389 show_registers(regs);
390 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
391 raw_spin_unlock_irq(&die_lock);
392
393 oops_exit();
394
395 if (in_interrupt())
396 panic("Fatal exception in interrupt");
397
398 if (panic_on_oops) {
399 printk(KERN_EMERG "Fatal exception: panic in 5 seconds");
400 ssleep(5);
401 panic("Fatal exception");
402 }
403
404 if (regs && kexec_should_crash(current))
405 crash_kexec(regs);
406
407 do_exit(sig);
408 }
409
410 extern struct exception_table_entry __start___dbe_table[];
411 extern struct exception_table_entry __stop___dbe_table[];
412
413 __asm__(
414 " .section __dbe_table, \"a\"\n"
415 " .previous \n");
416
417 /* Given an address, look for it in the exception tables. */
418 static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
419 {
420 const struct exception_table_entry *e;
421
422 e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr);
423 if (!e)
424 e = search_module_dbetables(addr);
425 return e;
426 }
427
428 asmlinkage void do_be(struct pt_regs *regs)
429 {
430 const int field = 2 * sizeof(unsigned long);
431 const struct exception_table_entry *fixup = NULL;
432 int data = regs->cp0_cause & 4;
433 int action = MIPS_BE_FATAL;
434 enum ctx_state prev_state;
435
436 prev_state = exception_enter();
437 /* XXX For now. Fixme, this searches the wrong table ... */
438 if (data && !user_mode(regs))
439 fixup = search_dbe_tables(exception_epc(regs));
440
441 if (fixup)
442 action = MIPS_BE_FIXUP;
443
444 if (board_be_handler)
445 action = board_be_handler(regs, fixup != NULL);
446
447 switch (action) {
448 case MIPS_BE_DISCARD:
449 goto out;
450 case MIPS_BE_FIXUP:
451 if (fixup) {
452 regs->cp0_epc = fixup->nextinsn;
453 goto out;
454 }
455 break;
456 default:
457 break;
458 }
459
460 /*
461 * Assume it would be too dangerous to continue ...
462 */
463 printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
464 data ? "Data" : "Instruction",
465 field, regs->cp0_epc, field, regs->regs[31]);
466 if (notify_die(DIE_OOPS, "bus error", regs, 0, regs_to_trapnr(regs),
467 SIGBUS) == NOTIFY_STOP)
468 goto out;
469
470 die_if_kernel("Oops", regs);
471 force_sig(SIGBUS, current);
472
473 out:
474 exception_exit(prev_state);
475 }
476
477 /*
478 * ll/sc, rdhwr, sync emulation
479 */
480
481 #define OPCODE 0xfc000000
482 #define BASE 0x03e00000
483 #define RT 0x001f0000
484 #define OFFSET 0x0000ffff
485 #define LL 0xc0000000
486 #define SC 0xe0000000
487 #define SPEC0 0x00000000
488 #define SPEC3 0x7c000000
489 #define RD 0x0000f800
490 #define FUNC 0x0000003f
491 #define SYNC 0x0000000f
492 #define RDHWR 0x0000003b
493
494 /* microMIPS definitions */
495 #define MM_POOL32A_FUNC 0xfc00ffff
496 #define MM_RDHWR 0x00006b3c
497 #define MM_RS 0x001f0000
498 #define MM_RT 0x03e00000
499
500 /*
501 * The ll_bit is cleared by r*_switch.S
502 */
503
504 unsigned int ll_bit;
505 struct task_struct *ll_task;
506
507 static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
508 {
509 unsigned long value, __user *vaddr;
510 long offset;
511
512 /*
513 * analyse the ll instruction that just caused a ri exception
514 * and put the referenced address to addr.
515 */
516
517 /* sign extend offset */
518 offset = opcode & OFFSET;
519 offset <<= 16;
520 offset >>= 16;
521
522 vaddr = (unsigned long __user *)
523 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
524
525 if ((unsigned long)vaddr & 3)
526 return SIGBUS;
527 if (get_user(value, vaddr))
528 return SIGSEGV;
529
530 preempt_disable();
531
532 if (ll_task == NULL || ll_task == current) {
533 ll_bit = 1;
534 } else {
535 ll_bit = 0;
536 }
537 ll_task = current;
538
539 preempt_enable();
540
541 regs->regs[(opcode & RT) >> 16] = value;
542
543 return 0;
544 }
545
546 static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
547 {
548 unsigned long __user *vaddr;
549 unsigned long reg;
550 long offset;
551
552 /*
553 * analyse the sc instruction that just caused a ri exception
554 * and put the referenced address to addr.
555 */
556
557 /* sign extend offset */
558 offset = opcode & OFFSET;
559 offset <<= 16;
560 offset >>= 16;
561
562 vaddr = (unsigned long __user *)
563 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
564 reg = (opcode & RT) >> 16;
565
566 if ((unsigned long)vaddr & 3)
567 return SIGBUS;
568
569 preempt_disable();
570
571 if (ll_bit == 0 || ll_task != current) {
572 regs->regs[reg] = 0;
573 preempt_enable();
574 return 0;
575 }
576
577 preempt_enable();
578
579 if (put_user(regs->regs[reg], vaddr))
580 return SIGSEGV;
581
582 regs->regs[reg] = 1;
583
584 return 0;
585 }
586
587 /*
588 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both
589 * opcodes are supposed to result in coprocessor unusable exceptions if
590 * executed on ll/sc-less processors. That's the theory. In practice a
591 * few processors such as NEC's VR4100 throw reserved instruction exceptions
592 * instead, so we're doing the emulation thing in both exception handlers.
593 */
594 static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
595 {
596 if ((opcode & OPCODE) == LL) {
597 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
598 1, regs, 0);
599 return simulate_ll(regs, opcode);
600 }
601 if ((opcode & OPCODE) == SC) {
602 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
603 1, regs, 0);
604 return simulate_sc(regs, opcode);
605 }
606
607 return -1; /* Must be something else ... */
608 }
609
610 /*
611 * Simulate trapping 'rdhwr' instructions to provide user accessible
612 * registers not implemented in hardware.
613 */
614 static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt)
615 {
616 struct thread_info *ti = task_thread_info(current);
617
618 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
619 1, regs, 0);
620 switch (rd) {
621 case 0: /* CPU number */
622 regs->regs[rt] = smp_processor_id();
623 return 0;
624 case 1: /* SYNCI length */
625 regs->regs[rt] = min(current_cpu_data.dcache.linesz,
626 current_cpu_data.icache.linesz);
627 return 0;
628 case 2: /* Read count register */
629 regs->regs[rt] = read_c0_count();
630 return 0;
631 case 3: /* Count register resolution */
632 switch (current_cpu_type()) {
633 case CPU_20KC:
634 case CPU_25KF:
635 regs->regs[rt] = 1;
636 break;
637 default:
638 regs->regs[rt] = 2;
639 }
640 return 0;
641 case 29:
642 regs->regs[rt] = ti->tp_value;
643 return 0;
644 default:
645 return -1;
646 }
647 }
648
649 static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode)
650 {
651 if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
652 int rd = (opcode & RD) >> 11;
653 int rt = (opcode & RT) >> 16;
654
655 simulate_rdhwr(regs, rd, rt);
656 return 0;
657 }
658
659 /* Not ours. */
660 return -1;
661 }
662
663 static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned short opcode)
664 {
665 if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) {
666 int rd = (opcode & MM_RS) >> 16;
667 int rt = (opcode & MM_RT) >> 21;
668 simulate_rdhwr(regs, rd, rt);
669 return 0;
670 }
671
672 /* Not ours. */
673 return -1;
674 }
675
676 static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
677 {
678 if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
679 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
680 1, regs, 0);
681 return 0;
682 }
683
684 return -1; /* Must be something else ... */
685 }
686
687 asmlinkage void do_ov(struct pt_regs *regs)
688 {
689 enum ctx_state prev_state;
690 siginfo_t info;
691
692 prev_state = exception_enter();
693 die_if_kernel("Integer overflow", regs);
694
695 info.si_code = FPE_INTOVF;
696 info.si_signo = SIGFPE;
697 info.si_errno = 0;
698 info.si_addr = (void __user *) regs->cp0_epc;
699 force_sig_info(SIGFPE, &info, current);
700 exception_exit(prev_state);
701 }
702
703 int process_fpemu_return(int sig, void __user *fault_addr, unsigned long fcr31)
704 {
705 struct siginfo si = { 0 };
706
707 switch (sig) {
708 case 0:
709 return 0;
710
711 case SIGFPE:
712 si.si_addr = fault_addr;
713 si.si_signo = sig;
714 /*
715 * Inexact can happen together with Overflow or Underflow.
716 * Respect the mask to deliver the correct exception.
717 */
718 fcr31 &= (fcr31 & FPU_CSR_ALL_E) <<
719 (ffs(FPU_CSR_ALL_X) - ffs(FPU_CSR_ALL_E));
720 if (fcr31 & FPU_CSR_INV_X)
721 si.si_code = FPE_FLTINV;
722 else if (fcr31 & FPU_CSR_DIV_X)
723 si.si_code = FPE_FLTDIV;
724 else if (fcr31 & FPU_CSR_OVF_X)
725 si.si_code = FPE_FLTOVF;
726 else if (fcr31 & FPU_CSR_UDF_X)
727 si.si_code = FPE_FLTUND;
728 else if (fcr31 & FPU_CSR_INE_X)
729 si.si_code = FPE_FLTRES;
730 else
731 si.si_code = __SI_FAULT;
732 force_sig_info(sig, &si, current);
733 return 1;
734
735 case SIGBUS:
736 si.si_addr = fault_addr;
737 si.si_signo = sig;
738 si.si_code = BUS_ADRERR;
739 force_sig_info(sig, &si, current);
740 return 1;
741
742 case SIGSEGV:
743 si.si_addr = fault_addr;
744 si.si_signo = sig;
745 down_read(&current->mm->mmap_sem);
746 if (find_vma(current->mm, (unsigned long)fault_addr))
747 si.si_code = SEGV_ACCERR;
748 else
749 si.si_code = SEGV_MAPERR;
750 up_read(&current->mm->mmap_sem);
751 force_sig_info(sig, &si, current);
752 return 1;
753
754 default:
755 force_sig(sig, current);
756 return 1;
757 }
758 }
759
760 static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
761 unsigned long old_epc, unsigned long old_ra)
762 {
763 union mips_instruction inst = { .word = opcode };
764 void __user *fault_addr;
765 unsigned long fcr31;
766 int sig;
767
768 /* If it's obviously not an FP instruction, skip it */
769 switch (inst.i_format.opcode) {
770 case cop1_op:
771 case cop1x_op:
772 case lwc1_op:
773 case ldc1_op:
774 case swc1_op:
775 case sdc1_op:
776 break;
777
778 default:
779 return -1;
780 }
781
782 /*
783 * do_ri skipped over the instruction via compute_return_epc, undo
784 * that for the FPU emulator.
785 */
786 regs->cp0_epc = old_epc;
787 regs->regs[31] = old_ra;
788
789 /* Save the FP context to struct thread_struct */
790 lose_fpu(1);
791
792 /* Run the emulator */
793 sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
794 &fault_addr);
795 fcr31 = current->thread.fpu.fcr31;
796
797 /*
798 * We can't allow the emulated instruction to leave any of
799 * the cause bits set in $fcr31.
800 */
801 current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
802
803 /* Restore the hardware register state */
804 own_fpu(1);
805
806 /* Send a signal if required. */
807 process_fpemu_return(sig, fault_addr, fcr31);
808
809 return 0;
810 }
811
812 /*
813 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
814 */
815 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
816 {
817 enum ctx_state prev_state;
818 void __user *fault_addr;
819 int sig;
820
821 prev_state = exception_enter();
822 if (notify_die(DIE_FP, "FP exception", regs, 0, regs_to_trapnr(regs),
823 SIGFPE) == NOTIFY_STOP)
824 goto out;
825
826 /* Clear FCSR.Cause before enabling interrupts */
827 write_32bit_cp1_register(CP1_STATUS, fcr31 & ~FPU_CSR_ALL_X);
828 local_irq_enable();
829
830 die_if_kernel("FP exception in kernel code", regs);
831
832 if (fcr31 & FPU_CSR_UNI_X) {
833 /*
834 * Unimplemented operation exception. If we've got the full
835 * software emulator on-board, let's use it...
836 *
837 * Force FPU to dump state into task/thread context. We're
838 * moving a lot of data here for what is probably a single
839 * instruction, but the alternative is to pre-decode the FP
840 * register operands before invoking the emulator, which seems
841 * a bit extreme for what should be an infrequent event.
842 */
843 /* Ensure 'resume' not overwrite saved fp context again. */
844 lose_fpu(1);
845
846 /* Run the emulator */
847 sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
848 &fault_addr);
849 fcr31 = current->thread.fpu.fcr31;
850
851 /*
852 * We can't allow the emulated instruction to leave any of
853 * the cause bits set in $fcr31.
854 */
855 current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
856
857 /* Restore the hardware register state */
858 own_fpu(1); /* Using the FPU again. */
859 } else {
860 sig = SIGFPE;
861 fault_addr = (void __user *) regs->cp0_epc;
862 }
863
864 /* Send a signal if required. */
865 process_fpemu_return(sig, fault_addr, fcr31);
866
867 out:
868 exception_exit(prev_state);
869 }
870
871 void do_trap_or_bp(struct pt_regs *regs, unsigned int code,
872 const char *str)
873 {
874 siginfo_t info;
875 char b[40];
876
877 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
878 if (kgdb_ll_trap(DIE_TRAP, str, regs, code, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
879 return;
880 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
881
882 if (notify_die(DIE_TRAP, str, regs, code, regs_to_trapnr(regs),
883 SIGTRAP) == NOTIFY_STOP)
884 return;
885
886 /*
887 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
888 * insns, even for trap and break codes that indicate arithmetic
889 * failures. Weird ...
890 * But should we continue the brokenness??? --macro
891 */
892 switch (code) {
893 case BRK_OVERFLOW:
894 case BRK_DIVZERO:
895 scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
896 die_if_kernel(b, regs);
897 if (code == BRK_DIVZERO)
898 info.si_code = FPE_INTDIV;
899 else
900 info.si_code = FPE_INTOVF;
901 info.si_signo = SIGFPE;
902 info.si_errno = 0;
903 info.si_addr = (void __user *) regs->cp0_epc;
904 force_sig_info(SIGFPE, &info, current);
905 break;
906 case BRK_BUG:
907 die_if_kernel("Kernel bug detected", regs);
908 force_sig(SIGTRAP, current);
909 break;
910 case BRK_MEMU:
911 /*
912 * This breakpoint code is used by the FPU emulator to retake
913 * control of the CPU after executing the instruction from the
914 * delay slot of an emulated branch.
915 *
916 * Terminate if exception was recognized as a delay slot return
917 * otherwise handle as normal.
918 */
919 if (do_dsemulret(regs))
920 return;
921
922 die_if_kernel("Math emu break/trap", regs);
923 force_sig(SIGTRAP, current);
924 break;
925 default:
926 scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
927 die_if_kernel(b, regs);
928 force_sig(SIGTRAP, current);
929 }
930 }
931
932 asmlinkage void do_bp(struct pt_regs *regs)
933 {
934 unsigned long epc = msk_isa16_mode(exception_epc(regs));
935 unsigned int opcode, bcode;
936 enum ctx_state prev_state;
937 mm_segment_t seg;
938
939 seg = get_fs();
940 if (!user_mode(regs))
941 set_fs(KERNEL_DS);
942
943 prev_state = exception_enter();
944 if (get_isa16_mode(regs->cp0_epc)) {
945 u16 instr[2];
946
947 if (__get_user(instr[0], (u16 __user *)epc))
948 goto out_sigsegv;
949
950 if (!cpu_has_mmips) {
951 /* MIPS16e mode */
952 bcode = (instr[0] >> 5) & 0x3f;
953 } else if (mm_insn_16bit(instr[0])) {
954 /* 16-bit microMIPS BREAK */
955 bcode = instr[0] & 0xf;
956 } else {
957 /* 32-bit microMIPS BREAK */
958 if (__get_user(instr[1], (u16 __user *)(epc + 2)))
959 goto out_sigsegv;
960 opcode = (instr[0] << 16) | instr[1];
961 bcode = (opcode >> 6) & ((1 << 20) - 1);
962 }
963 } else {
964 if (__get_user(opcode, (unsigned int __user *)epc))
965 goto out_sigsegv;
966 bcode = (opcode >> 6) & ((1 << 20) - 1);
967 }
968
969 /*
970 * There is the ancient bug in the MIPS assemblers that the break
971 * code starts left to bit 16 instead to bit 6 in the opcode.
972 * Gas is bug-compatible, but not always, grrr...
973 * We handle both cases with a simple heuristics. --macro
974 */
975 if (bcode >= (1 << 10))
976 bcode = ((bcode & ((1 << 10) - 1)) << 10) | (bcode >> 10);
977
978 /*
979 * notify the kprobe handlers, if instruction is likely to
980 * pertain to them.
981 */
982 switch (bcode) {
983 case BRK_KPROBE_BP:
984 if (notify_die(DIE_BREAK, "debug", regs, bcode,
985 regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
986 goto out;
987 else
988 break;
989 case BRK_KPROBE_SSTEPBP:
990 if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode,
991 regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
992 goto out;
993 else
994 break;
995 default:
996 break;
997 }
998
999 do_trap_or_bp(regs, bcode, "Break");
1000
1001 out:
1002 set_fs(seg);
1003 exception_exit(prev_state);
1004 return;
1005
1006 out_sigsegv:
1007 force_sig(SIGSEGV, current);
1008 goto out;
1009 }
1010
1011 asmlinkage void do_tr(struct pt_regs *regs)
1012 {
1013 u32 opcode, tcode = 0;
1014 enum ctx_state prev_state;
1015 u16 instr[2];
1016 mm_segment_t seg;
1017 unsigned long epc = msk_isa16_mode(exception_epc(regs));
1018
1019 seg = get_fs();
1020 if (!user_mode(regs))
1021 set_fs(get_ds());
1022
1023 prev_state = exception_enter();
1024 if (get_isa16_mode(regs->cp0_epc)) {
1025 if (__get_user(instr[0], (u16 __user *)(epc + 0)) ||
1026 __get_user(instr[1], (u16 __user *)(epc + 2)))
1027 goto out_sigsegv;
1028 opcode = (instr[0] << 16) | instr[1];
1029 /* Immediate versions don't provide a code. */
1030 if (!(opcode & OPCODE))
1031 tcode = (opcode >> 12) & ((1 << 4) - 1);
1032 } else {
1033 if (__get_user(opcode, (u32 __user *)epc))
1034 goto out_sigsegv;
1035 /* Immediate versions don't provide a code. */
1036 if (!(opcode & OPCODE))
1037 tcode = (opcode >> 6) & ((1 << 10) - 1);
1038 }
1039
1040 do_trap_or_bp(regs, tcode, "Trap");
1041
1042 out:
1043 set_fs(seg);
1044 exception_exit(prev_state);
1045 return;
1046
1047 out_sigsegv:
1048 force_sig(SIGSEGV, current);
1049 goto out;
1050 }
1051
1052 asmlinkage void do_ri(struct pt_regs *regs)
1053 {
1054 unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
1055 unsigned long old_epc = regs->cp0_epc;
1056 unsigned long old31 = regs->regs[31];
1057 enum ctx_state prev_state;
1058 unsigned int opcode = 0;
1059 int status = -1;
1060
1061 /*
1062 * Avoid any kernel code. Just emulate the R2 instruction
1063 * as quickly as possible.
1064 */
1065 if (mipsr2_emulation && cpu_has_mips_r6 &&
1066 likely(user_mode(regs)) &&
1067 likely(get_user(opcode, epc) >= 0)) {
1068 unsigned long fcr31 = 0;
1069
1070 status = mipsr2_decoder(regs, opcode, &fcr31);
1071 switch (status) {
1072 case 0:
1073 case SIGEMT:
1074 task_thread_info(current)->r2_emul_return = 1;
1075 return;
1076 case SIGILL:
1077 goto no_r2_instr;
1078 default:
1079 process_fpemu_return(status,
1080 &current->thread.cp0_baduaddr,
1081 fcr31);
1082 task_thread_info(current)->r2_emul_return = 1;
1083 return;
1084 }
1085 }
1086
1087 no_r2_instr:
1088
1089 prev_state = exception_enter();
1090
1091 if (notify_die(DIE_RI, "RI Fault", regs, 0, regs_to_trapnr(regs),
1092 SIGILL) == NOTIFY_STOP)
1093 goto out;
1094
1095 die_if_kernel("Reserved instruction in kernel code", regs);
1096
1097 if (unlikely(compute_return_epc(regs) < 0))
1098 goto out;
1099
1100 if (get_isa16_mode(regs->cp0_epc)) {
1101 unsigned short mmop[2] = { 0 };
1102
1103 if (unlikely(get_user(mmop[0], epc) < 0))
1104 status = SIGSEGV;
1105 if (unlikely(get_user(mmop[1], epc) < 0))
1106 status = SIGSEGV;
1107 opcode = (mmop[0] << 16) | mmop[1];
1108
1109 if (status < 0)
1110 status = simulate_rdhwr_mm(regs, opcode);
1111 } else {
1112 if (unlikely(get_user(opcode, epc) < 0))
1113 status = SIGSEGV;
1114
1115 if (!cpu_has_llsc && status < 0)
1116 status = simulate_llsc(regs, opcode);
1117
1118 if (status < 0)
1119 status = simulate_rdhwr_normal(regs, opcode);
1120
1121 if (status < 0)
1122 status = simulate_sync(regs, opcode);
1123
1124 if (status < 0)
1125 status = simulate_fp(regs, opcode, old_epc, old31);
1126 }
1127
1128 if (status < 0)
1129 status = SIGILL;
1130
1131 if (unlikely(status > 0)) {
1132 regs->cp0_epc = old_epc; /* Undo skip-over. */
1133 regs->regs[31] = old31;
1134 force_sig(status, current);
1135 }
1136
1137 out:
1138 exception_exit(prev_state);
1139 }
1140
1141 /*
1142 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
1143 * emulated more than some threshold number of instructions, force migration to
1144 * a "CPU" that has FP support.
1145 */
1146 static void mt_ase_fp_affinity(void)
1147 {
1148 #ifdef CONFIG_MIPS_MT_FPAFF
1149 if (mt_fpemul_threshold > 0 &&
1150 ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
1151 /*
1152 * If there's no FPU present, or if the application has already
1153 * restricted the allowed set to exclude any CPUs with FPUs,
1154 * we'll skip the procedure.
1155 */
1156 if (cpumask_intersects(&current->cpus_allowed, &mt_fpu_cpumask)) {
1157 cpumask_t tmask;
1158
1159 current->thread.user_cpus_allowed
1160 = current->cpus_allowed;
1161 cpumask_and(&tmask, &current->cpus_allowed,
1162 &mt_fpu_cpumask);
1163 set_cpus_allowed_ptr(current, &tmask);
1164 set_thread_flag(TIF_FPUBOUND);
1165 }
1166 }
1167 #endif /* CONFIG_MIPS_MT_FPAFF */
1168 }
1169
1170 /*
1171 * No lock; only written during early bootup by CPU 0.
1172 */
1173 static RAW_NOTIFIER_HEAD(cu2_chain);
1174
1175 int __ref register_cu2_notifier(struct notifier_block *nb)
1176 {
1177 return raw_notifier_chain_register(&cu2_chain, nb);
1178 }
1179
1180 int cu2_notifier_call_chain(unsigned long val, void *v)
1181 {
1182 return raw_notifier_call_chain(&cu2_chain, val, v);
1183 }
1184
1185 static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
1186 void *data)
1187 {
1188 struct pt_regs *regs = data;
1189
1190 die_if_kernel("COP2: Unhandled kernel unaligned access or invalid "
1191 "instruction", regs);
1192 force_sig(SIGILL, current);
1193
1194 return NOTIFY_OK;
1195 }
1196
1197 static int wait_on_fp_mode_switch(atomic_t *p)
1198 {
1199 /*
1200 * The FP mode for this task is currently being switched. That may
1201 * involve modifications to the format of this tasks FP context which
1202 * make it unsafe to proceed with execution for the moment. Instead,
1203 * schedule some other task.
1204 */
1205 schedule();
1206 return 0;
1207 }
1208
1209 static int enable_restore_fp_context(int msa)
1210 {
1211 int err, was_fpu_owner, prior_msa;
1212
1213 /*
1214 * If an FP mode switch is currently underway, wait for it to
1215 * complete before proceeding.
1216 */
1217 wait_on_atomic_t(&current->mm->context.fp_mode_switching,
1218 wait_on_fp_mode_switch, TASK_KILLABLE);
1219
1220 if (!used_math()) {
1221 /* First time FP context user. */
1222 preempt_disable();
1223 err = init_fpu();
1224 if (msa && !err) {
1225 enable_msa();
1226 _init_msa_upper();
1227 set_thread_flag(TIF_USEDMSA);
1228 set_thread_flag(TIF_MSA_CTX_LIVE);
1229 }
1230 preempt_enable();
1231 if (!err)
1232 set_used_math();
1233 return err;
1234 }
1235
1236 /*
1237 * This task has formerly used the FP context.
1238 *
1239 * If this thread has no live MSA vector context then we can simply
1240 * restore the scalar FP context. If it has live MSA vector context
1241 * (that is, it has or may have used MSA since last performing a
1242 * function call) then we'll need to restore the vector context. This
1243 * applies even if we're currently only executing a scalar FP
1244 * instruction. This is because if we were to later execute an MSA
1245 * instruction then we'd either have to:
1246 *
1247 * - Restore the vector context & clobber any registers modified by
1248 * scalar FP instructions between now & then.
1249 *
1250 * or
1251 *
1252 * - Not restore the vector context & lose the most significant bits
1253 * of all vector registers.
1254 *
1255 * Neither of those options is acceptable. We cannot restore the least
1256 * significant bits of the registers now & only restore the most
1257 * significant bits later because the most significant bits of any
1258 * vector registers whose aliased FP register is modified now will have
1259 * been zeroed. We'd have no way to know that when restoring the vector
1260 * context & thus may load an outdated value for the most significant
1261 * bits of a vector register.
1262 */
1263 if (!msa && !thread_msa_context_live())
1264 return own_fpu(1);
1265
1266 /*
1267 * This task is using or has previously used MSA. Thus we require
1268 * that Status.FR == 1.
1269 */
1270 preempt_disable();
1271 was_fpu_owner = is_fpu_owner();
1272 err = own_fpu_inatomic(0);
1273 if (err)
1274 goto out;
1275
1276 enable_msa();
1277 write_msa_csr(current->thread.fpu.msacsr);
1278 set_thread_flag(TIF_USEDMSA);
1279
1280 /*
1281 * If this is the first time that the task is using MSA and it has
1282 * previously used scalar FP in this time slice then we already nave
1283 * FP context which we shouldn't clobber. We do however need to clear
1284 * the upper 64b of each vector register so that this task has no
1285 * opportunity to see data left behind by another.
1286 */
1287 prior_msa = test_and_set_thread_flag(TIF_MSA_CTX_LIVE);
1288 if (!prior_msa && was_fpu_owner) {
1289 _init_msa_upper();
1290
1291 goto out;
1292 }
1293
1294 if (!prior_msa) {
1295 /*
1296 * Restore the least significant 64b of each vector register
1297 * from the existing scalar FP context.
1298 */
1299 _restore_fp(current);
1300
1301 /*
1302 * The task has not formerly used MSA, so clear the upper 64b
1303 * of each vector register such that it cannot see data left
1304 * behind by another task.
1305 */
1306 _init_msa_upper();
1307 } else {
1308 /* We need to restore the vector context. */
1309 restore_msa(current);
1310
1311 /* Restore the scalar FP control & status register */
1312 if (!was_fpu_owner)
1313 write_32bit_cp1_register(CP1_STATUS,
1314 current->thread.fpu.fcr31);
1315 }
1316
1317 out:
1318 preempt_enable();
1319
1320 return 0;
1321 }
1322
1323 asmlinkage void do_cpu(struct pt_regs *regs)
1324 {
1325 enum ctx_state prev_state;
1326 unsigned int __user *epc;
1327 unsigned long old_epc, old31;
1328 void __user *fault_addr;
1329 unsigned int opcode;
1330 unsigned long fcr31;
1331 unsigned int cpid;
1332 int status, err;
1333 unsigned long __maybe_unused flags;
1334 int sig;
1335
1336 prev_state = exception_enter();
1337 cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
1338
1339 if (cpid != 2)
1340 die_if_kernel("do_cpu invoked from kernel context!", regs);
1341
1342 switch (cpid) {
1343 case 0:
1344 epc = (unsigned int __user *)exception_epc(regs);
1345 old_epc = regs->cp0_epc;
1346 old31 = regs->regs[31];
1347 opcode = 0;
1348 status = -1;
1349
1350 if (unlikely(compute_return_epc(regs) < 0))
1351 break;
1352
1353 if (get_isa16_mode(regs->cp0_epc)) {
1354 unsigned short mmop[2] = { 0 };
1355
1356 if (unlikely(get_user(mmop[0], epc) < 0))
1357 status = SIGSEGV;
1358 if (unlikely(get_user(mmop[1], epc) < 0))
1359 status = SIGSEGV;
1360 opcode = (mmop[0] << 16) | mmop[1];
1361
1362 if (status < 0)
1363 status = simulate_rdhwr_mm(regs, opcode);
1364 } else {
1365 if (unlikely(get_user(opcode, epc) < 0))
1366 status = SIGSEGV;
1367
1368 if (!cpu_has_llsc && status < 0)
1369 status = simulate_llsc(regs, opcode);
1370
1371 if (status < 0)
1372 status = simulate_rdhwr_normal(regs, opcode);
1373 }
1374
1375 if (status < 0)
1376 status = SIGILL;
1377
1378 if (unlikely(status > 0)) {
1379 regs->cp0_epc = old_epc; /* Undo skip-over. */
1380 regs->regs[31] = old31;
1381 force_sig(status, current);
1382 }
1383
1384 break;
1385
1386 case 3:
1387 /*
1388 * The COP3 opcode space and consequently the CP0.Status.CU3
1389 * bit and the CP0.Cause.CE=3 encoding have been removed as
1390 * of the MIPS III ISA. From the MIPS IV and MIPS32r2 ISAs
1391 * up the space has been reused for COP1X instructions, that
1392 * are enabled by the CP0.Status.CU1 bit and consequently
1393 * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable
1394 * exceptions. Some FPU-less processors that implement one
1395 * of these ISAs however use this code erroneously for COP1X
1396 * instructions. Therefore we redirect this trap to the FP
1397 * emulator too.
1398 */
1399 if (raw_cpu_has_fpu || !cpu_has_mips_4_5_64_r2_r6) {
1400 force_sig(SIGILL, current);
1401 break;
1402 }
1403 /* Fall through. */
1404
1405 case 1:
1406 err = enable_restore_fp_context(0);
1407
1408 if (raw_cpu_has_fpu && !err)
1409 break;
1410
1411 sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 0,
1412 &fault_addr);
1413 fcr31 = current->thread.fpu.fcr31;
1414
1415 /*
1416 * We can't allow the emulated instruction to leave
1417 * any of the cause bits set in $fcr31.
1418 */
1419 current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
1420
1421 /* Send a signal if required. */
1422 if (!process_fpemu_return(sig, fault_addr, fcr31) && !err)
1423 mt_ase_fp_affinity();
1424
1425 break;
1426
1427 case 2:
1428 raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
1429 break;
1430 }
1431
1432 exception_exit(prev_state);
1433 }
1434
1435 asmlinkage void do_msa_fpe(struct pt_regs *regs, unsigned int msacsr)
1436 {
1437 enum ctx_state prev_state;
1438
1439 prev_state = exception_enter();
1440 if (notify_die(DIE_MSAFP, "MSA FP exception", regs, 0,
1441 regs_to_trapnr(regs), SIGFPE) == NOTIFY_STOP)
1442 goto out;
1443
1444 /* Clear MSACSR.Cause before enabling interrupts */
1445 write_msa_csr(msacsr & ~MSA_CSR_CAUSEF);
1446 local_irq_enable();
1447
1448 die_if_kernel("do_msa_fpe invoked from kernel context!", regs);
1449 force_sig(SIGFPE, current);
1450 out:
1451 exception_exit(prev_state);
1452 }
1453
1454 asmlinkage void do_msa(struct pt_regs *regs)
1455 {
1456 enum ctx_state prev_state;
1457 int err;
1458
1459 prev_state = exception_enter();
1460
1461 if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) {
1462 force_sig(SIGILL, current);
1463 goto out;
1464 }
1465
1466 die_if_kernel("do_msa invoked from kernel context!", regs);
1467
1468 err = enable_restore_fp_context(1);
1469 if (err)
1470 force_sig(SIGILL, current);
1471 out:
1472 exception_exit(prev_state);
1473 }
1474
1475 asmlinkage void do_mdmx(struct pt_regs *regs)
1476 {
1477 enum ctx_state prev_state;
1478
1479 prev_state = exception_enter();
1480 force_sig(SIGILL, current);
1481 exception_exit(prev_state);
1482 }
1483
1484 /*
1485 * Called with interrupts disabled.
1486 */
1487 asmlinkage void do_watch(struct pt_regs *regs)
1488 {
1489 enum ctx_state prev_state;
1490 u32 cause;
1491
1492 prev_state = exception_enter();
1493 /*
1494 * Clear WP (bit 22) bit of cause register so we don't loop
1495 * forever.
1496 */
1497 cause = read_c0_cause();
1498 cause &= ~(1 << 22);
1499 write_c0_cause(cause);
1500
1501 /*
1502 * If the current thread has the watch registers loaded, save
1503 * their values and send SIGTRAP. Otherwise another thread
1504 * left the registers set, clear them and continue.
1505 */
1506 if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
1507 mips_read_watch_registers();
1508 local_irq_enable();
1509 force_sig(SIGTRAP, current);
1510 } else {
1511 mips_clear_watch_registers();
1512 local_irq_enable();
1513 }
1514 exception_exit(prev_state);
1515 }
1516
1517 asmlinkage void do_mcheck(struct pt_regs *regs)
1518 {
1519 const int field = 2 * sizeof(unsigned long);
1520 int multi_match = regs->cp0_status & ST0_TS;
1521 enum ctx_state prev_state;
1522
1523 prev_state = exception_enter();
1524 show_regs(regs);
1525
1526 if (multi_match) {
1527 pr_err("Index : %0x\n", read_c0_index());
1528 pr_err("Pagemask: %0x\n", read_c0_pagemask());
1529 pr_err("EntryHi : %0*lx\n", field, read_c0_entryhi());
1530 pr_err("EntryLo0: %0*lx\n", field, read_c0_entrylo0());
1531 pr_err("EntryLo1: %0*lx\n", field, read_c0_entrylo1());
1532 pr_err("Wired : %0x\n", read_c0_wired());
1533 pr_err("Pagegrain: %0x\n", read_c0_pagegrain());
1534 if (cpu_has_htw) {
1535 pr_err("PWField : %0*lx\n", field, read_c0_pwfield());
1536 pr_err("PWSize : %0*lx\n", field, read_c0_pwsize());
1537 pr_err("PWCtl : %0x\n", read_c0_pwctl());
1538 }
1539 pr_err("\n");
1540 dump_tlb_all();
1541 }
1542
1543 show_code((unsigned int __user *) regs->cp0_epc);
1544
1545 /*
1546 * Some chips may have other causes of machine check (e.g. SB1
1547 * graduation timer)
1548 */
1549 panic("Caught Machine Check exception - %scaused by multiple "
1550 "matching entries in the TLB.",
1551 (multi_match) ? "" : "not ");
1552 }
1553
1554 asmlinkage void do_mt(struct pt_regs *regs)
1555 {
1556 int subcode;
1557
1558 subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1559 >> VPECONTROL_EXCPT_SHIFT;
1560 switch (subcode) {
1561 case 0:
1562 printk(KERN_DEBUG "Thread Underflow\n");
1563 break;
1564 case 1:
1565 printk(KERN_DEBUG "Thread Overflow\n");
1566 break;
1567 case 2:
1568 printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
1569 break;
1570 case 3:
1571 printk(KERN_DEBUG "Gating Storage Exception\n");
1572 break;
1573 case 4:
1574 printk(KERN_DEBUG "YIELD Scheduler Exception\n");
1575 break;
1576 case 5:
1577 printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
1578 break;
1579 default:
1580 printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
1581 subcode);
1582 break;
1583 }
1584 die_if_kernel("MIPS MT Thread exception in kernel", regs);
1585
1586 force_sig(SIGILL, current);
1587 }
1588
1589
1590 asmlinkage void do_dsp(struct pt_regs *regs)
1591 {
1592 if (cpu_has_dsp)
1593 panic("Unexpected DSP exception");
1594
1595 force_sig(SIGILL, current);
1596 }
1597
1598 asmlinkage void do_reserved(struct pt_regs *regs)
1599 {
1600 /*
1601 * Game over - no way to handle this if it ever occurs. Most probably
1602 * caused by a new unknown cpu type or after another deadly
1603 * hard/software error.
1604 */
1605 show_regs(regs);
1606 panic("Caught reserved exception %ld - should not happen.",
1607 (regs->cp0_cause & 0x7f) >> 2);
1608 }
1609
1610 static int __initdata l1parity = 1;
1611 static int __init nol1parity(char *s)
1612 {
1613 l1parity = 0;
1614 return 1;
1615 }
1616 __setup("nol1par", nol1parity);
1617 static int __initdata l2parity = 1;
1618 static int __init nol2parity(char *s)
1619 {
1620 l2parity = 0;
1621 return 1;
1622 }
1623 __setup("nol2par", nol2parity);
1624
1625 /*
1626 * Some MIPS CPUs can enable/disable for cache parity detection, but do
1627 * it different ways.
1628 */
1629 static inline void parity_protection_init(void)
1630 {
1631 switch (current_cpu_type()) {
1632 case CPU_24K:
1633 case CPU_34K:
1634 case CPU_74K:
1635 case CPU_1004K:
1636 case CPU_1074K:
1637 case CPU_INTERAPTIV:
1638 case CPU_PROAPTIV:
1639 case CPU_P5600:
1640 case CPU_QEMU_GENERIC:
1641 {
1642 #define ERRCTL_PE 0x80000000
1643 #define ERRCTL_L2P 0x00800000
1644 unsigned long errctl;
1645 unsigned int l1parity_present, l2parity_present;
1646
1647 errctl = read_c0_ecc();
1648 errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1649
1650 /* probe L1 parity support */
1651 write_c0_ecc(errctl | ERRCTL_PE);
1652 back_to_back_c0_hazard();
1653 l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1654
1655 /* probe L2 parity support */
1656 write_c0_ecc(errctl|ERRCTL_L2P);
1657 back_to_back_c0_hazard();
1658 l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1659
1660 if (l1parity_present && l2parity_present) {
1661 if (l1parity)
1662 errctl |= ERRCTL_PE;
1663 if (l1parity ^ l2parity)
1664 errctl |= ERRCTL_L2P;
1665 } else if (l1parity_present) {
1666 if (l1parity)
1667 errctl |= ERRCTL_PE;
1668 } else if (l2parity_present) {
1669 if (l2parity)
1670 errctl |= ERRCTL_L2P;
1671 } else {
1672 /* No parity available */
1673 }
1674
1675 printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1676
1677 write_c0_ecc(errctl);
1678 back_to_back_c0_hazard();
1679 errctl = read_c0_ecc();
1680 printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1681
1682 if (l1parity_present)
1683 printk(KERN_INFO "Cache parity protection %sabled\n",
1684 (errctl & ERRCTL_PE) ? "en" : "dis");
1685
1686 if (l2parity_present) {
1687 if (l1parity_present && l1parity)
1688 errctl ^= ERRCTL_L2P;
1689 printk(KERN_INFO "L2 cache parity protection %sabled\n",
1690 (errctl & ERRCTL_L2P) ? "en" : "dis");
1691 }
1692 }
1693 break;
1694
1695 case CPU_5KC:
1696 case CPU_5KE:
1697 case CPU_LOONGSON1:
1698 write_c0_ecc(0x80000000);
1699 back_to_back_c0_hazard();
1700 /* Set the PE bit (bit 31) in the c0_errctl register. */
1701 printk(KERN_INFO "Cache parity protection %sabled\n",
1702 (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1703 break;
1704 case CPU_20KC:
1705 case CPU_25KF:
1706 /* Clear the DE bit (bit 16) in the c0_status register. */
1707 printk(KERN_INFO "Enable cache parity protection for "
1708 "MIPS 20KC/25KF CPUs.\n");
1709 clear_c0_status(ST0_DE);
1710 break;
1711 default:
1712 break;
1713 }
1714 }
1715
1716 asmlinkage void cache_parity_error(void)
1717 {
1718 const int field = 2 * sizeof(unsigned long);
1719 unsigned int reg_val;
1720
1721 /* For the moment, report the problem and hang. */
1722 printk("Cache error exception:\n");
1723 printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1724 reg_val = read_c0_cacheerr();
1725 printk("c0_cacheerr == %08x\n", reg_val);
1726
1727 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1728 reg_val & (1<<30) ? "secondary" : "primary",
1729 reg_val & (1<<31) ? "data" : "insn");
1730 if ((cpu_has_mips_r2_r6) &&
1731 ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
1732 pr_err("Error bits: %s%s%s%s%s%s%s%s\n",
1733 reg_val & (1<<29) ? "ED " : "",
1734 reg_val & (1<<28) ? "ET " : "",
1735 reg_val & (1<<27) ? "ES " : "",
1736 reg_val & (1<<26) ? "EE " : "",
1737 reg_val & (1<<25) ? "EB " : "",
1738 reg_val & (1<<24) ? "EI " : "",
1739 reg_val & (1<<23) ? "E1 " : "",
1740 reg_val & (1<<22) ? "E0 " : "");
1741 } else {
1742 pr_err("Error bits: %s%s%s%s%s%s%s\n",
1743 reg_val & (1<<29) ? "ED " : "",
1744 reg_val & (1<<28) ? "ET " : "",
1745 reg_val & (1<<26) ? "EE " : "",
1746 reg_val & (1<<25) ? "EB " : "",
1747 reg_val & (1<<24) ? "EI " : "",
1748 reg_val & (1<<23) ? "E1 " : "",
1749 reg_val & (1<<22) ? "E0 " : "");
1750 }
1751 printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1752
1753 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1754 if (reg_val & (1<<22))
1755 printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1756
1757 if (reg_val & (1<<23))
1758 printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1759 #endif
1760
1761 panic("Can't handle the cache error!");
1762 }
1763
1764 asmlinkage void do_ftlb(void)
1765 {
1766 const int field = 2 * sizeof(unsigned long);
1767 unsigned int reg_val;
1768
1769 /* For the moment, report the problem and hang. */
1770 if ((cpu_has_mips_r2_r6) &&
1771 ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
1772 pr_err("FTLB error exception, cp0_ecc=0x%08x:\n",
1773 read_c0_ecc());
1774 pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1775 reg_val = read_c0_cacheerr();
1776 pr_err("c0_cacheerr == %08x\n", reg_val);
1777
1778 if ((reg_val & 0xc0000000) == 0xc0000000) {
1779 pr_err("Decoded c0_cacheerr: FTLB parity error\n");
1780 } else {
1781 pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1782 reg_val & (1<<30) ? "secondary" : "primary",
1783 reg_val & (1<<31) ? "data" : "insn");
1784 }
1785 } else {
1786 pr_err("FTLB error exception\n");
1787 }
1788 /* Just print the cacheerr bits for now */
1789 cache_parity_error();
1790 }
1791
1792 /*
1793 * SDBBP EJTAG debug exception handler.
1794 * We skip the instruction and return to the next instruction.
1795 */
1796 void ejtag_exception_handler(struct pt_regs *regs)
1797 {
1798 const int field = 2 * sizeof(unsigned long);
1799 unsigned long depc, old_epc, old_ra;
1800 unsigned int debug;
1801
1802 printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1803 depc = read_c0_depc();
1804 debug = read_c0_debug();
1805 printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1806 if (debug & 0x80000000) {
1807 /*
1808 * In branch delay slot.
1809 * We cheat a little bit here and use EPC to calculate the
1810 * debug return address (DEPC). EPC is restored after the
1811 * calculation.
1812 */
1813 old_epc = regs->cp0_epc;
1814 old_ra = regs->regs[31];
1815 regs->cp0_epc = depc;
1816 compute_return_epc(regs);
1817 depc = regs->cp0_epc;
1818 regs->cp0_epc = old_epc;
1819 regs->regs[31] = old_ra;
1820 } else
1821 depc += 4;
1822 write_c0_depc(depc);
1823
1824 #if 0
1825 printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1826 write_c0_debug(debug | 0x100);
1827 #endif
1828 }
1829
1830 /*
1831 * NMI exception handler.
1832 * No lock; only written during early bootup by CPU 0.
1833 */
1834 static RAW_NOTIFIER_HEAD(nmi_chain);
1835
1836 int register_nmi_notifier(struct notifier_block *nb)
1837 {
1838 return raw_notifier_chain_register(&nmi_chain, nb);
1839 }
1840
1841 void __noreturn nmi_exception_handler(struct pt_regs *regs)
1842 {
1843 char str[100];
1844
1845 raw_notifier_call_chain(&nmi_chain, 0, regs);
1846 bust_spinlocks(1);
1847 snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n",
1848 smp_processor_id(), regs->cp0_epc);
1849 regs->cp0_epc = read_c0_errorepc();
1850 die(str, regs);
1851 }
1852
1853 #define VECTORSPACING 0x100 /* for EI/VI mode */
1854
1855 unsigned long ebase;
1856 unsigned long exception_handlers[32];
1857 unsigned long vi_handlers[64];
1858
1859 void __init *set_except_vector(int n, void *addr)
1860 {
1861 unsigned long handler = (unsigned long) addr;
1862 unsigned long old_handler;
1863
1864 #ifdef CONFIG_CPU_MICROMIPS
1865 /*
1866 * Only the TLB handlers are cache aligned with an even
1867 * address. All other handlers are on an odd address and
1868 * require no modification. Otherwise, MIPS32 mode will
1869 * be entered when handling any TLB exceptions. That
1870 * would be bad...since we must stay in microMIPS mode.
1871 */
1872 if (!(handler & 0x1))
1873 handler |= 1;
1874 #endif
1875 old_handler = xchg(&exception_handlers[n], handler);
1876
1877 if (n == 0 && cpu_has_divec) {
1878 #ifdef CONFIG_CPU_MICROMIPS
1879 unsigned long jump_mask = ~((1 << 27) - 1);
1880 #else
1881 unsigned long jump_mask = ~((1 << 28) - 1);
1882 #endif
1883 u32 *buf = (u32 *)(ebase + 0x200);
1884 unsigned int k0 = 26;
1885 if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
1886 uasm_i_j(&buf, handler & ~jump_mask);
1887 uasm_i_nop(&buf);
1888 } else {
1889 UASM_i_LA(&buf, k0, handler);
1890 uasm_i_jr(&buf, k0);
1891 uasm_i_nop(&buf);
1892 }
1893 local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
1894 }
1895 return (void *)old_handler;
1896 }
1897
1898 static void do_default_vi(void)
1899 {
1900 show_regs(get_irq_regs());
1901 panic("Caught unexpected vectored interrupt.");
1902 }
1903
1904 static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
1905 {
1906 unsigned long handler;
1907 unsigned long old_handler = vi_handlers[n];
1908 int srssets = current_cpu_data.srsets;
1909 u16 *h;
1910 unsigned char *b;
1911
1912 BUG_ON(!cpu_has_veic && !cpu_has_vint);
1913
1914 if (addr == NULL) {
1915 handler = (unsigned long) do_default_vi;
1916 srs = 0;
1917 } else
1918 handler = (unsigned long) addr;
1919 vi_handlers[n] = handler;
1920
1921 b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
1922
1923 if (srs >= srssets)
1924 panic("Shadow register set %d not supported", srs);
1925
1926 if (cpu_has_veic) {
1927 if (board_bind_eic_interrupt)
1928 board_bind_eic_interrupt(n, srs);
1929 } else if (cpu_has_vint) {
1930 /* SRSMap is only defined if shadow sets are implemented */
1931 if (srssets > 1)
1932 change_c0_srsmap(0xf << n*4, srs << n*4);
1933 }
1934
1935 if (srs == 0) {
1936 /*
1937 * If no shadow set is selected then use the default handler
1938 * that does normal register saving and standard interrupt exit
1939 */
1940 extern char except_vec_vi, except_vec_vi_lui;
1941 extern char except_vec_vi_ori, except_vec_vi_end;
1942 extern char rollback_except_vec_vi;
1943 char *vec_start = using_rollback_handler() ?
1944 &rollback_except_vec_vi : &except_vec_vi;
1945 #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
1946 const int lui_offset = &except_vec_vi_lui - vec_start + 2;
1947 const int ori_offset = &except_vec_vi_ori - vec_start + 2;
1948 #else
1949 const int lui_offset = &except_vec_vi_lui - vec_start;
1950 const int ori_offset = &except_vec_vi_ori - vec_start;
1951 #endif
1952 const int handler_len = &except_vec_vi_end - vec_start;
1953
1954 if (handler_len > VECTORSPACING) {
1955 /*
1956 * Sigh... panicing won't help as the console
1957 * is probably not configured :(
1958 */
1959 panic("VECTORSPACING too small");
1960 }
1961
1962 set_handler(((unsigned long)b - ebase), vec_start,
1963 #ifdef CONFIG_CPU_MICROMIPS
1964 (handler_len - 1));
1965 #else
1966 handler_len);
1967 #endif
1968 h = (u16 *)(b + lui_offset);
1969 *h = (handler >> 16) & 0xffff;
1970 h = (u16 *)(b + ori_offset);
1971 *h = (handler & 0xffff);
1972 local_flush_icache_range((unsigned long)b,
1973 (unsigned long)(b+handler_len));
1974 }
1975 else {
1976 /*
1977 * In other cases jump directly to the interrupt handler. It
1978 * is the handler's responsibility to save registers if required
1979 * (eg hi/lo) and return from the exception using "eret".
1980 */
1981 u32 insn;
1982
1983 h = (u16 *)b;
1984 /* j handler */
1985 #ifdef CONFIG_CPU_MICROMIPS
1986 insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1);
1987 #else
1988 insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2);
1989 #endif
1990 h[0] = (insn >> 16) & 0xffff;
1991 h[1] = insn & 0xffff;
1992 h[2] = 0;
1993 h[3] = 0;
1994 local_flush_icache_range((unsigned long)b,
1995 (unsigned long)(b+8));
1996 }
1997
1998 return (void *)old_handler;
1999 }
2000
2001 void *set_vi_handler(int n, vi_handler_t addr)
2002 {
2003 return set_vi_srs_handler(n, addr, 0);
2004 }
2005
2006 extern void tlb_init(void);
2007
2008 /*
2009 * Timer interrupt
2010 */
2011 int cp0_compare_irq;
2012 EXPORT_SYMBOL_GPL(cp0_compare_irq);
2013 int cp0_compare_irq_shift;
2014
2015 /*
2016 * Performance counter IRQ or -1 if shared with timer
2017 */
2018 int cp0_perfcount_irq;
2019 EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
2020
2021 /*
2022 * Fast debug channel IRQ or -1 if not present
2023 */
2024 int cp0_fdc_irq;
2025 EXPORT_SYMBOL_GPL(cp0_fdc_irq);
2026
2027 static int noulri;
2028
2029 static int __init ulri_disable(char *s)
2030 {
2031 pr_info("Disabling ulri\n");
2032 noulri = 1;
2033
2034 return 1;
2035 }
2036 __setup("noulri", ulri_disable);
2037
2038 /* configure STATUS register */
2039 static void configure_status(void)
2040 {
2041 /*
2042 * Disable coprocessors and select 32-bit or 64-bit addressing
2043 * and the 16/32 or 32/32 FPR register model. Reset the BEV
2044 * flag that some firmware may have left set and the TS bit (for
2045 * IP27). Set XX for ISA IV code to work.
2046 */
2047 unsigned int status_set = ST0_CU0;
2048 #ifdef CONFIG_64BIT
2049 status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
2050 #endif
2051 if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV)
2052 status_set |= ST0_XX;
2053 if (cpu_has_dsp)
2054 status_set |= ST0_MX;
2055
2056 change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
2057 status_set);
2058 }
2059
2060 /* configure HWRENA register */
2061 static void configure_hwrena(void)
2062 {
2063 unsigned int hwrena = cpu_hwrena_impl_bits;
2064
2065 if (cpu_has_mips_r2_r6)
2066 hwrena |= 0x0000000f;
2067
2068 if (!noulri && cpu_has_userlocal)
2069 hwrena |= (1 << 29);
2070
2071 if (hwrena)
2072 write_c0_hwrena(hwrena);
2073 }
2074
2075 static void configure_exception_vector(void)
2076 {
2077 if (cpu_has_veic || cpu_has_vint) {
2078 unsigned long sr = set_c0_status(ST0_BEV);
2079 write_c0_ebase(ebase);
2080 write_c0_status(sr);
2081 /* Setting vector spacing enables EI/VI mode */
2082 change_c0_intctl(0x3e0, VECTORSPACING);
2083 }
2084 if (cpu_has_divec) {
2085 if (cpu_has_mipsmt) {
2086 unsigned int vpflags = dvpe();
2087 set_c0_cause(CAUSEF_IV);
2088 evpe(vpflags);
2089 } else
2090 set_c0_cause(CAUSEF_IV);
2091 }
2092 }
2093
2094 void per_cpu_trap_init(bool is_boot_cpu)
2095 {
2096 unsigned int cpu = smp_processor_id();
2097
2098 configure_status();
2099 configure_hwrena();
2100
2101 configure_exception_vector();
2102
2103 /*
2104 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
2105 *
2106 * o read IntCtl.IPTI to determine the timer interrupt
2107 * o read IntCtl.IPPCI to determine the performance counter interrupt
2108 * o read IntCtl.IPFDC to determine the fast debug channel interrupt
2109 */
2110 if (cpu_has_mips_r2_r6) {
2111 cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
2112 cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
2113 cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
2114 cp0_fdc_irq = (read_c0_intctl() >> INTCTLB_IPFDC) & 7;
2115 if (!cp0_fdc_irq)
2116 cp0_fdc_irq = -1;
2117
2118 } else {
2119 cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
2120 cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
2121 cp0_perfcount_irq = -1;
2122 cp0_fdc_irq = -1;
2123 }
2124
2125 if (!cpu_data[cpu].asid_cache)
2126 cpu_data[cpu].asid_cache = ASID_FIRST_VERSION;
2127
2128 atomic_inc(&init_mm.mm_count);
2129 current->active_mm = &init_mm;
2130 BUG_ON(current->mm);
2131 enter_lazy_tlb(&init_mm, current);
2132
2133 /* Boot CPU's cache setup in setup_arch(). */
2134 if (!is_boot_cpu)
2135 cpu_cache_init();
2136 tlb_init();
2137 TLBMISS_HANDLER_SETUP();
2138 }
2139
2140 /* Install CPU exception handler */
2141 void set_handler(unsigned long offset, void *addr, unsigned long size)
2142 {
2143 #ifdef CONFIG_CPU_MICROMIPS
2144 memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size);
2145 #else
2146 memcpy((void *)(ebase + offset), addr, size);
2147 #endif
2148 local_flush_icache_range(ebase + offset, ebase + offset + size);
2149 }
2150
2151 static char panic_null_cerr[] =
2152 "Trying to set NULL cache error exception handler";
2153
2154 /*
2155 * Install uncached CPU exception handler.
2156 * This is suitable only for the cache error exception which is the only
2157 * exception handler that is being run uncached.
2158 */
2159 void set_uncached_handler(unsigned long offset, void *addr,
2160 unsigned long size)
2161 {
2162 unsigned long uncached_ebase = CKSEG1ADDR(ebase);
2163
2164 if (!addr)
2165 panic(panic_null_cerr);
2166
2167 memcpy((void *)(uncached_ebase + offset), addr, size);
2168 }
2169
2170 static int __initdata rdhwr_noopt;
2171 static int __init set_rdhwr_noopt(char *str)
2172 {
2173 rdhwr_noopt = 1;
2174 return 1;
2175 }
2176
2177 __setup("rdhwr_noopt", set_rdhwr_noopt);
2178
2179 void __init trap_init(void)
2180 {
2181 extern char except_vec3_generic;
2182 extern char except_vec4;
2183 extern char except_vec3_r4000;
2184 unsigned long i;
2185
2186 check_wait();
2187
2188 if (cpu_has_veic || cpu_has_vint) {
2189 unsigned long size = 0x200 + VECTORSPACING*64;
2190 ebase = (unsigned long)
2191 __alloc_bootmem(size, 1 << fls(size), 0);
2192 } else {
2193 #ifdef CONFIG_KVM_GUEST
2194 #define KVM_GUEST_KSEG0 0x40000000
2195 ebase = KVM_GUEST_KSEG0;
2196 #else
2197 ebase = CKSEG0;
2198 #endif
2199 if (cpu_has_mips_r2_r6)
2200 ebase += (read_c0_ebase() & 0x3ffff000);
2201 }
2202
2203 if (cpu_has_mmips) {
2204 unsigned int config3 = read_c0_config3();
2205
2206 if (IS_ENABLED(CONFIG_CPU_MICROMIPS))
2207 write_c0_config3(config3 | MIPS_CONF3_ISA_OE);
2208 else
2209 write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE);
2210 }
2211
2212 if (board_ebase_setup)
2213 board_ebase_setup();
2214 per_cpu_trap_init(true);
2215
2216 /*
2217 * Copy the generic exception handlers to their final destination.
2218 * This will be overriden later as suitable for a particular
2219 * configuration.
2220 */
2221 set_handler(0x180, &except_vec3_generic, 0x80);
2222
2223 /*
2224 * Setup default vectors
2225 */
2226 for (i = 0; i <= 31; i++)
2227 set_except_vector(i, handle_reserved);
2228
2229 /*
2230 * Copy the EJTAG debug exception vector handler code to it's final
2231 * destination.
2232 */
2233 if (cpu_has_ejtag && board_ejtag_handler_setup)
2234 board_ejtag_handler_setup();
2235
2236 /*
2237 * Only some CPUs have the watch exceptions.
2238 */
2239 if (cpu_has_watch)
2240 set_except_vector(23, handle_watch);
2241
2242 /*
2243 * Initialise interrupt handlers
2244 */
2245 if (cpu_has_veic || cpu_has_vint) {
2246 int nvec = cpu_has_veic ? 64 : 8;
2247 for (i = 0; i < nvec; i++)
2248 set_vi_handler(i, NULL);
2249 }
2250 else if (cpu_has_divec)
2251 set_handler(0x200, &except_vec4, 0x8);
2252
2253 /*
2254 * Some CPUs can enable/disable for cache parity detection, but does
2255 * it different ways.
2256 */
2257 parity_protection_init();
2258
2259 /*
2260 * The Data Bus Errors / Instruction Bus Errors are signaled
2261 * by external hardware. Therefore these two exceptions
2262 * may have board specific handlers.
2263 */
2264 if (board_be_init)
2265 board_be_init();
2266
2267 set_except_vector(0, using_rollback_handler() ? rollback_handle_int
2268 : handle_int);
2269 set_except_vector(1, handle_tlbm);
2270 set_except_vector(2, handle_tlbl);
2271 set_except_vector(3, handle_tlbs);
2272
2273 set_except_vector(4, handle_adel);
2274 set_except_vector(5, handle_ades);
2275
2276 set_except_vector(6, handle_ibe);
2277 set_except_vector(7, handle_dbe);
2278
2279 set_except_vector(8, handle_sys);
2280 set_except_vector(9, handle_bp);
2281 set_except_vector(10, rdhwr_noopt ? handle_ri :
2282 (cpu_has_vtag_icache ?
2283 handle_ri_rdhwr_vivt : handle_ri_rdhwr));
2284 set_except_vector(11, handle_cpu);
2285 set_except_vector(12, handle_ov);
2286 set_except_vector(13, handle_tr);
2287 set_except_vector(14, handle_msa_fpe);
2288
2289 if (current_cpu_type() == CPU_R6000 ||
2290 current_cpu_type() == CPU_R6000A) {
2291 /*
2292 * The R6000 is the only R-series CPU that features a machine
2293 * check exception (similar to the R4000 cache error) and
2294 * unaligned ldc1/sdc1 exception. The handlers have not been
2295 * written yet. Well, anyway there is no R6000 machine on the
2296 * current list of targets for Linux/MIPS.
2297 * (Duh, crap, there is someone with a triple R6k machine)
2298 */
2299 //set_except_vector(14, handle_mc);
2300 //set_except_vector(15, handle_ndc);
2301 }
2302
2303
2304 if (board_nmi_handler_setup)
2305 board_nmi_handler_setup();
2306
2307 if (cpu_has_fpu && !cpu_has_nofpuex)
2308 set_except_vector(15, handle_fpe);
2309
2310 set_except_vector(16, handle_ftlb);
2311
2312 if (cpu_has_rixiex) {
2313 set_except_vector(19, tlb_do_page_fault_0);
2314 set_except_vector(20, tlb_do_page_fault_0);
2315 }
2316
2317 set_except_vector(21, handle_msa);
2318 set_except_vector(22, handle_mdmx);
2319
2320 if (cpu_has_mcheck)
2321 set_except_vector(24, handle_mcheck);
2322
2323 if (cpu_has_mipsmt)
2324 set_except_vector(25, handle_mt);
2325
2326 set_except_vector(26, handle_dsp);
2327
2328 if (board_cache_error_setup)
2329 board_cache_error_setup();
2330
2331 if (cpu_has_vce)
2332 /* Special exception: R4[04]00 uses also the divec space. */
2333 set_handler(0x180, &except_vec3_r4000, 0x100);
2334 else if (cpu_has_4kex)
2335 set_handler(0x180, &except_vec3_generic, 0x80);
2336 else
2337 set_handler(0x080, &except_vec3_generic, 0x80);
2338
2339 local_flush_icache_range(ebase, ebase + 0x400);
2340
2341 sort_extable(__start___dbe_table, __stop___dbe_table);
2342
2343 cu2_notifier(default_cu2_call, 0x80000000); /* Run last */
2344 }
2345
2346 static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd,
2347 void *v)
2348 {
2349 switch (cmd) {
2350 case CPU_PM_ENTER_FAILED:
2351 case CPU_PM_EXIT:
2352 configure_status();
2353 configure_hwrena();
2354 configure_exception_vector();
2355
2356 /* Restore register with CPU number for TLB handlers */
2357 TLBMISS_HANDLER_RESTORE();
2358
2359 break;
2360 }
2361
2362 return NOTIFY_OK;
2363 }
2364
2365 static struct notifier_block trap_pm_notifier_block = {
2366 .notifier_call = trap_pm_notifier,
2367 };
2368
2369 static int __init trap_pm_init(void)
2370 {
2371 return cpu_pm_register_notifier(&trap_pm_notifier_block);
2372 }
2373 arch_initcall(trap_pm_init);
This page took 0.080641 seconds and 5 git commands to generate.