Merge tag 'edac_fixes_for_3.10' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / arch / mips / kernel / traps.c
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7 * Copyright (C) 1995, 1996 Paul M. Antoine
8 * Copyright (C) 1998 Ulf Carlsson
9 * Copyright (C) 1999 Silicon Graphics, Inc.
10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11 * Copyright (C) 2000, 01 MIPS Technologies, Inc.
12 * Copyright (C) 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki
13 */
14 #include <linux/bug.h>
15 #include <linux/compiler.h>
16 #include <linux/kexec.h>
17 #include <linux/init.h>
18 #include <linux/kernel.h>
19 #include <linux/module.h>
20 #include <linux/mm.h>
21 #include <linux/sched.h>
22 #include <linux/smp.h>
23 #include <linux/spinlock.h>
24 #include <linux/kallsyms.h>
25 #include <linux/bootmem.h>
26 #include <linux/interrupt.h>
27 #include <linux/ptrace.h>
28 #include <linux/kgdb.h>
29 #include <linux/kdebug.h>
30 #include <linux/kprobes.h>
31 #include <linux/notifier.h>
32 #include <linux/kdb.h>
33 #include <linux/irq.h>
34 #include <linux/perf_event.h>
35
36 #include <asm/bootinfo.h>
37 #include <asm/branch.h>
38 #include <asm/break.h>
39 #include <asm/cop2.h>
40 #include <asm/cpu.h>
41 #include <asm/dsp.h>
42 #include <asm/fpu.h>
43 #include <asm/fpu_emulator.h>
44 #include <asm/mipsregs.h>
45 #include <asm/mipsmtregs.h>
46 #include <asm/module.h>
47 #include <asm/pgtable.h>
48 #include <asm/ptrace.h>
49 #include <asm/sections.h>
50 #include <asm/tlbdebug.h>
51 #include <asm/traps.h>
52 #include <asm/uaccess.h>
53 #include <asm/watch.h>
54 #include <asm/mmu_context.h>
55 #include <asm/types.h>
56 #include <asm/stacktrace.h>
57 #include <asm/uasm.h>
58
59 extern void check_wait(void);
60 extern asmlinkage void r4k_wait(void);
61 extern asmlinkage void rollback_handle_int(void);
62 extern asmlinkage void handle_int(void);
63 extern asmlinkage void handle_tlbm(void);
64 extern asmlinkage void handle_tlbl(void);
65 extern asmlinkage void handle_tlbs(void);
66 extern asmlinkage void handle_adel(void);
67 extern asmlinkage void handle_ades(void);
68 extern asmlinkage void handle_ibe(void);
69 extern asmlinkage void handle_dbe(void);
70 extern asmlinkage void handle_sys(void);
71 extern asmlinkage void handle_bp(void);
72 extern asmlinkage void handle_ri(void);
73 extern asmlinkage void handle_ri_rdhwr_vivt(void);
74 extern asmlinkage void handle_ri_rdhwr(void);
75 extern asmlinkage void handle_cpu(void);
76 extern asmlinkage void handle_ov(void);
77 extern asmlinkage void handle_tr(void);
78 extern asmlinkage void handle_fpe(void);
79 extern asmlinkage void handle_mdmx(void);
80 extern asmlinkage void handle_watch(void);
81 extern asmlinkage void handle_mt(void);
82 extern asmlinkage void handle_dsp(void);
83 extern asmlinkage void handle_mcheck(void);
84 extern asmlinkage void handle_reserved(void);
85
86 extern int fpu_emulator_cop1Handler(struct pt_regs *xcp,
87 struct mips_fpu_struct *ctx, int has_fpu,
88 void *__user *fault_addr);
89
90 void (*board_be_init)(void);
91 int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
92 void (*board_nmi_handler_setup)(void);
93 void (*board_ejtag_handler_setup)(void);
94 void (*board_bind_eic_interrupt)(int irq, int regset);
95 void (*board_ebase_setup)(void);
96 void __cpuinitdata(*board_cache_error_setup)(void);
97
98 static void show_raw_backtrace(unsigned long reg29)
99 {
100 unsigned long *sp = (unsigned long *)(reg29 & ~3);
101 unsigned long addr;
102
103 printk("Call Trace:");
104 #ifdef CONFIG_KALLSYMS
105 printk("\n");
106 #endif
107 while (!kstack_end(sp)) {
108 unsigned long __user *p =
109 (unsigned long __user *)(unsigned long)sp++;
110 if (__get_user(addr, p)) {
111 printk(" (Bad stack address)");
112 break;
113 }
114 if (__kernel_text_address(addr))
115 print_ip_sym(addr);
116 }
117 printk("\n");
118 }
119
120 #ifdef CONFIG_KALLSYMS
121 int raw_show_trace;
122 static int __init set_raw_show_trace(char *str)
123 {
124 raw_show_trace = 1;
125 return 1;
126 }
127 __setup("raw_show_trace", set_raw_show_trace);
128 #endif
129
130 static void show_backtrace(struct task_struct *task, const struct pt_regs *regs)
131 {
132 unsigned long sp = regs->regs[29];
133 unsigned long ra = regs->regs[31];
134 unsigned long pc = regs->cp0_epc;
135
136 if (!task)
137 task = current;
138
139 if (raw_show_trace || !__kernel_text_address(pc)) {
140 show_raw_backtrace(sp);
141 return;
142 }
143 printk("Call Trace:\n");
144 do {
145 print_ip_sym(pc);
146 pc = unwind_stack(task, &sp, pc, &ra);
147 } while (pc);
148 printk("\n");
149 }
150
151 /*
152 * This routine abuses get_user()/put_user() to reference pointers
153 * with at least a bit of error checking ...
154 */
155 static void show_stacktrace(struct task_struct *task,
156 const struct pt_regs *regs)
157 {
158 const int field = 2 * sizeof(unsigned long);
159 long stackdata;
160 int i;
161 unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
162
163 printk("Stack :");
164 i = 0;
165 while ((unsigned long) sp & (PAGE_SIZE - 1)) {
166 if (i && ((i % (64 / field)) == 0))
167 printk("\n ");
168 if (i > 39) {
169 printk(" ...");
170 break;
171 }
172
173 if (__get_user(stackdata, sp++)) {
174 printk(" (Bad stack address)");
175 break;
176 }
177
178 printk(" %0*lx", field, stackdata);
179 i++;
180 }
181 printk("\n");
182 show_backtrace(task, regs);
183 }
184
185 void show_stack(struct task_struct *task, unsigned long *sp)
186 {
187 struct pt_regs regs;
188 if (sp) {
189 regs.regs[29] = (unsigned long)sp;
190 regs.regs[31] = 0;
191 regs.cp0_epc = 0;
192 } else {
193 if (task && task != current) {
194 regs.regs[29] = task->thread.reg29;
195 regs.regs[31] = 0;
196 regs.cp0_epc = task->thread.reg31;
197 #ifdef CONFIG_KGDB_KDB
198 } else if (atomic_read(&kgdb_active) != -1 &&
199 kdb_current_regs) {
200 memcpy(&regs, kdb_current_regs, sizeof(regs));
201 #endif /* CONFIG_KGDB_KDB */
202 } else {
203 prepare_frametrace(&regs);
204 }
205 }
206 show_stacktrace(task, &regs);
207 }
208
209 static void show_code(unsigned int __user *pc)
210 {
211 long i;
212 unsigned short __user *pc16 = NULL;
213
214 printk("\nCode:");
215
216 if ((unsigned long)pc & 1)
217 pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
218 for(i = -3 ; i < 6 ; i++) {
219 unsigned int insn;
220 if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
221 printk(" (Bad address in epc)\n");
222 break;
223 }
224 printk("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
225 }
226 }
227
228 static void __show_regs(const struct pt_regs *regs)
229 {
230 const int field = 2 * sizeof(unsigned long);
231 unsigned int cause = regs->cp0_cause;
232 int i;
233
234 show_regs_print_info(KERN_DEFAULT);
235
236 /*
237 * Saved main processor registers
238 */
239 for (i = 0; i < 32; ) {
240 if ((i % 4) == 0)
241 printk("$%2d :", i);
242 if (i == 0)
243 printk(" %0*lx", field, 0UL);
244 else if (i == 26 || i == 27)
245 printk(" %*s", field, "");
246 else
247 printk(" %0*lx", field, regs->regs[i]);
248
249 i++;
250 if ((i % 4) == 0)
251 printk("\n");
252 }
253
254 #ifdef CONFIG_CPU_HAS_SMARTMIPS
255 printk("Acx : %0*lx\n", field, regs->acx);
256 #endif
257 printk("Hi : %0*lx\n", field, regs->hi);
258 printk("Lo : %0*lx\n", field, regs->lo);
259
260 /*
261 * Saved cp0 registers
262 */
263 printk("epc : %0*lx %pS\n", field, regs->cp0_epc,
264 (void *) regs->cp0_epc);
265 printk(" %s\n", print_tainted());
266 printk("ra : %0*lx %pS\n", field, regs->regs[31],
267 (void *) regs->regs[31]);
268
269 printk("Status: %08x ", (uint32_t) regs->cp0_status);
270
271 if (current_cpu_data.isa_level == MIPS_CPU_ISA_I) {
272 if (regs->cp0_status & ST0_KUO)
273 printk("KUo ");
274 if (regs->cp0_status & ST0_IEO)
275 printk("IEo ");
276 if (regs->cp0_status & ST0_KUP)
277 printk("KUp ");
278 if (regs->cp0_status & ST0_IEP)
279 printk("IEp ");
280 if (regs->cp0_status & ST0_KUC)
281 printk("KUc ");
282 if (regs->cp0_status & ST0_IEC)
283 printk("IEc ");
284 } else {
285 if (regs->cp0_status & ST0_KX)
286 printk("KX ");
287 if (regs->cp0_status & ST0_SX)
288 printk("SX ");
289 if (regs->cp0_status & ST0_UX)
290 printk("UX ");
291 switch (regs->cp0_status & ST0_KSU) {
292 case KSU_USER:
293 printk("USER ");
294 break;
295 case KSU_SUPERVISOR:
296 printk("SUPERVISOR ");
297 break;
298 case KSU_KERNEL:
299 printk("KERNEL ");
300 break;
301 default:
302 printk("BAD_MODE ");
303 break;
304 }
305 if (regs->cp0_status & ST0_ERL)
306 printk("ERL ");
307 if (regs->cp0_status & ST0_EXL)
308 printk("EXL ");
309 if (regs->cp0_status & ST0_IE)
310 printk("IE ");
311 }
312 printk("\n");
313
314 printk("Cause : %08x\n", cause);
315
316 cause = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
317 if (1 <= cause && cause <= 5)
318 printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
319
320 printk("PrId : %08x (%s)\n", read_c0_prid(),
321 cpu_name_string());
322 }
323
324 /*
325 * FIXME: really the generic show_regs should take a const pointer argument.
326 */
327 void show_regs(struct pt_regs *regs)
328 {
329 __show_regs((struct pt_regs *)regs);
330 }
331
332 void show_registers(struct pt_regs *regs)
333 {
334 const int field = 2 * sizeof(unsigned long);
335
336 __show_regs(regs);
337 print_modules();
338 printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
339 current->comm, current->pid, current_thread_info(), current,
340 field, current_thread_info()->tp_value);
341 if (cpu_has_userlocal) {
342 unsigned long tls;
343
344 tls = read_c0_userlocal();
345 if (tls != current_thread_info()->tp_value)
346 printk("*HwTLS: %0*lx\n", field, tls);
347 }
348
349 show_stacktrace(current, regs);
350 show_code((unsigned int __user *) regs->cp0_epc);
351 printk("\n");
352 }
353
354 static int regs_to_trapnr(struct pt_regs *regs)
355 {
356 return (regs->cp0_cause >> 2) & 0x1f;
357 }
358
359 static DEFINE_RAW_SPINLOCK(die_lock);
360
361 void __noreturn die(const char *str, struct pt_regs *regs)
362 {
363 static int die_counter;
364 int sig = SIGSEGV;
365 #ifdef CONFIG_MIPS_MT_SMTC
366 unsigned long dvpret;
367 #endif /* CONFIG_MIPS_MT_SMTC */
368
369 oops_enter();
370
371 if (notify_die(DIE_OOPS, str, regs, 0, regs_to_trapnr(regs), SIGSEGV) == NOTIFY_STOP)
372 sig = 0;
373
374 console_verbose();
375 raw_spin_lock_irq(&die_lock);
376 #ifdef CONFIG_MIPS_MT_SMTC
377 dvpret = dvpe();
378 #endif /* CONFIG_MIPS_MT_SMTC */
379 bust_spinlocks(1);
380 #ifdef CONFIG_MIPS_MT_SMTC
381 mips_mt_regdump(dvpret);
382 #endif /* CONFIG_MIPS_MT_SMTC */
383
384 printk("%s[#%d]:\n", str, ++die_counter);
385 show_registers(regs);
386 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
387 raw_spin_unlock_irq(&die_lock);
388
389 oops_exit();
390
391 if (in_interrupt())
392 panic("Fatal exception in interrupt");
393
394 if (panic_on_oops) {
395 printk(KERN_EMERG "Fatal exception: panic in 5 seconds");
396 ssleep(5);
397 panic("Fatal exception");
398 }
399
400 if (regs && kexec_should_crash(current))
401 crash_kexec(regs);
402
403 do_exit(sig);
404 }
405
406 extern struct exception_table_entry __start___dbe_table[];
407 extern struct exception_table_entry __stop___dbe_table[];
408
409 __asm__(
410 " .section __dbe_table, \"a\"\n"
411 " .previous \n");
412
413 /* Given an address, look for it in the exception tables. */
414 static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
415 {
416 const struct exception_table_entry *e;
417
418 e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr);
419 if (!e)
420 e = search_module_dbetables(addr);
421 return e;
422 }
423
424 asmlinkage void do_be(struct pt_regs *regs)
425 {
426 const int field = 2 * sizeof(unsigned long);
427 const struct exception_table_entry *fixup = NULL;
428 int data = regs->cp0_cause & 4;
429 int action = MIPS_BE_FATAL;
430
431 /* XXX For now. Fixme, this searches the wrong table ... */
432 if (data && !user_mode(regs))
433 fixup = search_dbe_tables(exception_epc(regs));
434
435 if (fixup)
436 action = MIPS_BE_FIXUP;
437
438 if (board_be_handler)
439 action = board_be_handler(regs, fixup != NULL);
440
441 switch (action) {
442 case MIPS_BE_DISCARD:
443 return;
444 case MIPS_BE_FIXUP:
445 if (fixup) {
446 regs->cp0_epc = fixup->nextinsn;
447 return;
448 }
449 break;
450 default:
451 break;
452 }
453
454 /*
455 * Assume it would be too dangerous to continue ...
456 */
457 printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
458 data ? "Data" : "Instruction",
459 field, regs->cp0_epc, field, regs->regs[31]);
460 if (notify_die(DIE_OOPS, "bus error", regs, 0, regs_to_trapnr(regs), SIGBUS)
461 == NOTIFY_STOP)
462 return;
463
464 die_if_kernel("Oops", regs);
465 force_sig(SIGBUS, current);
466 }
467
468 /*
469 * ll/sc, rdhwr, sync emulation
470 */
471
472 #define OPCODE 0xfc000000
473 #define BASE 0x03e00000
474 #define RT 0x001f0000
475 #define OFFSET 0x0000ffff
476 #define LL 0xc0000000
477 #define SC 0xe0000000
478 #define SPEC0 0x00000000
479 #define SPEC3 0x7c000000
480 #define RD 0x0000f800
481 #define FUNC 0x0000003f
482 #define SYNC 0x0000000f
483 #define RDHWR 0x0000003b
484
485 /*
486 * The ll_bit is cleared by r*_switch.S
487 */
488
489 unsigned int ll_bit;
490 struct task_struct *ll_task;
491
492 static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
493 {
494 unsigned long value, __user *vaddr;
495 long offset;
496
497 /*
498 * analyse the ll instruction that just caused a ri exception
499 * and put the referenced address to addr.
500 */
501
502 /* sign extend offset */
503 offset = opcode & OFFSET;
504 offset <<= 16;
505 offset >>= 16;
506
507 vaddr = (unsigned long __user *)
508 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
509
510 if ((unsigned long)vaddr & 3)
511 return SIGBUS;
512 if (get_user(value, vaddr))
513 return SIGSEGV;
514
515 preempt_disable();
516
517 if (ll_task == NULL || ll_task == current) {
518 ll_bit = 1;
519 } else {
520 ll_bit = 0;
521 }
522 ll_task = current;
523
524 preempt_enable();
525
526 regs->regs[(opcode & RT) >> 16] = value;
527
528 return 0;
529 }
530
531 static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
532 {
533 unsigned long __user *vaddr;
534 unsigned long reg;
535 long offset;
536
537 /*
538 * analyse the sc instruction that just caused a ri exception
539 * and put the referenced address to addr.
540 */
541
542 /* sign extend offset */
543 offset = opcode & OFFSET;
544 offset <<= 16;
545 offset >>= 16;
546
547 vaddr = (unsigned long __user *)
548 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
549 reg = (opcode & RT) >> 16;
550
551 if ((unsigned long)vaddr & 3)
552 return SIGBUS;
553
554 preempt_disable();
555
556 if (ll_bit == 0 || ll_task != current) {
557 regs->regs[reg] = 0;
558 preempt_enable();
559 return 0;
560 }
561
562 preempt_enable();
563
564 if (put_user(regs->regs[reg], vaddr))
565 return SIGSEGV;
566
567 regs->regs[reg] = 1;
568
569 return 0;
570 }
571
572 /*
573 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both
574 * opcodes are supposed to result in coprocessor unusable exceptions if
575 * executed on ll/sc-less processors. That's the theory. In practice a
576 * few processors such as NEC's VR4100 throw reserved instruction exceptions
577 * instead, so we're doing the emulation thing in both exception handlers.
578 */
579 static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
580 {
581 if ((opcode & OPCODE) == LL) {
582 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
583 1, regs, 0);
584 return simulate_ll(regs, opcode);
585 }
586 if ((opcode & OPCODE) == SC) {
587 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
588 1, regs, 0);
589 return simulate_sc(regs, opcode);
590 }
591
592 return -1; /* Must be something else ... */
593 }
594
595 /*
596 * Simulate trapping 'rdhwr' instructions to provide user accessible
597 * registers not implemented in hardware.
598 */
599 static int simulate_rdhwr(struct pt_regs *regs, unsigned int opcode)
600 {
601 struct thread_info *ti = task_thread_info(current);
602
603 if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
604 int rd = (opcode & RD) >> 11;
605 int rt = (opcode & RT) >> 16;
606 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
607 1, regs, 0);
608 switch (rd) {
609 case 0: /* CPU number */
610 regs->regs[rt] = smp_processor_id();
611 return 0;
612 case 1: /* SYNCI length */
613 regs->regs[rt] = min(current_cpu_data.dcache.linesz,
614 current_cpu_data.icache.linesz);
615 return 0;
616 case 2: /* Read count register */
617 regs->regs[rt] = read_c0_count();
618 return 0;
619 case 3: /* Count register resolution */
620 switch (current_cpu_data.cputype) {
621 case CPU_20KC:
622 case CPU_25KF:
623 regs->regs[rt] = 1;
624 break;
625 default:
626 regs->regs[rt] = 2;
627 }
628 return 0;
629 case 29:
630 regs->regs[rt] = ti->tp_value;
631 return 0;
632 default:
633 return -1;
634 }
635 }
636
637 /* Not ours. */
638 return -1;
639 }
640
641 static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
642 {
643 if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
644 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
645 1, regs, 0);
646 return 0;
647 }
648
649 return -1; /* Must be something else ... */
650 }
651
652 asmlinkage void do_ov(struct pt_regs *regs)
653 {
654 siginfo_t info;
655
656 die_if_kernel("Integer overflow", regs);
657
658 info.si_code = FPE_INTOVF;
659 info.si_signo = SIGFPE;
660 info.si_errno = 0;
661 info.si_addr = (void __user *) regs->cp0_epc;
662 force_sig_info(SIGFPE, &info, current);
663 }
664
665 static int process_fpemu_return(int sig, void __user *fault_addr)
666 {
667 if (sig == SIGSEGV || sig == SIGBUS) {
668 struct siginfo si = {0};
669 si.si_addr = fault_addr;
670 si.si_signo = sig;
671 if (sig == SIGSEGV) {
672 if (find_vma(current->mm, (unsigned long)fault_addr))
673 si.si_code = SEGV_ACCERR;
674 else
675 si.si_code = SEGV_MAPERR;
676 } else {
677 si.si_code = BUS_ADRERR;
678 }
679 force_sig_info(sig, &si, current);
680 return 1;
681 } else if (sig) {
682 force_sig(sig, current);
683 return 1;
684 } else {
685 return 0;
686 }
687 }
688
689 /*
690 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
691 */
692 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
693 {
694 siginfo_t info = {0};
695
696 if (notify_die(DIE_FP, "FP exception", regs, 0, regs_to_trapnr(regs), SIGFPE)
697 == NOTIFY_STOP)
698 return;
699 die_if_kernel("FP exception in kernel code", regs);
700
701 if (fcr31 & FPU_CSR_UNI_X) {
702 int sig;
703 void __user *fault_addr = NULL;
704
705 /*
706 * Unimplemented operation exception. If we've got the full
707 * software emulator on-board, let's use it...
708 *
709 * Force FPU to dump state into task/thread context. We're
710 * moving a lot of data here for what is probably a single
711 * instruction, but the alternative is to pre-decode the FP
712 * register operands before invoking the emulator, which seems
713 * a bit extreme for what should be an infrequent event.
714 */
715 /* Ensure 'resume' not overwrite saved fp context again. */
716 lose_fpu(1);
717
718 /* Run the emulator */
719 sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
720 &fault_addr);
721
722 /*
723 * We can't allow the emulated instruction to leave any of
724 * the cause bit set in $fcr31.
725 */
726 current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
727
728 /* Restore the hardware register state */
729 own_fpu(1); /* Using the FPU again. */
730
731 /* If something went wrong, signal */
732 process_fpemu_return(sig, fault_addr);
733
734 return;
735 } else if (fcr31 & FPU_CSR_INV_X)
736 info.si_code = FPE_FLTINV;
737 else if (fcr31 & FPU_CSR_DIV_X)
738 info.si_code = FPE_FLTDIV;
739 else if (fcr31 & FPU_CSR_OVF_X)
740 info.si_code = FPE_FLTOVF;
741 else if (fcr31 & FPU_CSR_UDF_X)
742 info.si_code = FPE_FLTUND;
743 else if (fcr31 & FPU_CSR_INE_X)
744 info.si_code = FPE_FLTRES;
745 else
746 info.si_code = __SI_FAULT;
747 info.si_signo = SIGFPE;
748 info.si_errno = 0;
749 info.si_addr = (void __user *) regs->cp0_epc;
750 force_sig_info(SIGFPE, &info, current);
751 }
752
753 static void do_trap_or_bp(struct pt_regs *regs, unsigned int code,
754 const char *str)
755 {
756 siginfo_t info;
757 char b[40];
758
759 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
760 if (kgdb_ll_trap(DIE_TRAP, str, regs, code, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
761 return;
762 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
763
764 if (notify_die(DIE_TRAP, str, regs, code, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
765 return;
766
767 /*
768 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
769 * insns, even for trap and break codes that indicate arithmetic
770 * failures. Weird ...
771 * But should we continue the brokenness??? --macro
772 */
773 switch (code) {
774 case BRK_OVERFLOW:
775 case BRK_DIVZERO:
776 scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
777 die_if_kernel(b, regs);
778 if (code == BRK_DIVZERO)
779 info.si_code = FPE_INTDIV;
780 else
781 info.si_code = FPE_INTOVF;
782 info.si_signo = SIGFPE;
783 info.si_errno = 0;
784 info.si_addr = (void __user *) regs->cp0_epc;
785 force_sig_info(SIGFPE, &info, current);
786 break;
787 case BRK_BUG:
788 die_if_kernel("Kernel bug detected", regs);
789 force_sig(SIGTRAP, current);
790 break;
791 case BRK_MEMU:
792 /*
793 * Address errors may be deliberately induced by the FPU
794 * emulator to retake control of the CPU after executing the
795 * instruction in the delay slot of an emulated branch.
796 *
797 * Terminate if exception was recognized as a delay slot return
798 * otherwise handle as normal.
799 */
800 if (do_dsemulret(regs))
801 return;
802
803 die_if_kernel("Math emu break/trap", regs);
804 force_sig(SIGTRAP, current);
805 break;
806 default:
807 scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
808 die_if_kernel(b, regs);
809 force_sig(SIGTRAP, current);
810 }
811 }
812
813 asmlinkage void do_bp(struct pt_regs *regs)
814 {
815 unsigned int opcode, bcode;
816
817 if (__get_user(opcode, (unsigned int __user *) exception_epc(regs)))
818 goto out_sigsegv;
819
820 /*
821 * There is the ancient bug in the MIPS assemblers that the break
822 * code starts left to bit 16 instead to bit 6 in the opcode.
823 * Gas is bug-compatible, but not always, grrr...
824 * We handle both cases with a simple heuristics. --macro
825 */
826 bcode = ((opcode >> 6) & ((1 << 20) - 1));
827 if (bcode >= (1 << 10))
828 bcode >>= 10;
829
830 /*
831 * notify the kprobe handlers, if instruction is likely to
832 * pertain to them.
833 */
834 switch (bcode) {
835 case BRK_KPROBE_BP:
836 if (notify_die(DIE_BREAK, "debug", regs, bcode, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
837 return;
838 else
839 break;
840 case BRK_KPROBE_SSTEPBP:
841 if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
842 return;
843 else
844 break;
845 default:
846 break;
847 }
848
849 do_trap_or_bp(regs, bcode, "Break");
850 return;
851
852 out_sigsegv:
853 force_sig(SIGSEGV, current);
854 }
855
856 asmlinkage void do_tr(struct pt_regs *regs)
857 {
858 unsigned int opcode, tcode = 0;
859
860 if (__get_user(opcode, (unsigned int __user *) exception_epc(regs)))
861 goto out_sigsegv;
862
863 /* Immediate versions don't provide a code. */
864 if (!(opcode & OPCODE))
865 tcode = ((opcode >> 6) & ((1 << 10) - 1));
866
867 do_trap_or_bp(regs, tcode, "Trap");
868 return;
869
870 out_sigsegv:
871 force_sig(SIGSEGV, current);
872 }
873
874 asmlinkage void do_ri(struct pt_regs *regs)
875 {
876 unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
877 unsigned long old_epc = regs->cp0_epc;
878 unsigned int opcode = 0;
879 int status = -1;
880
881 if (notify_die(DIE_RI, "RI Fault", regs, 0, regs_to_trapnr(regs), SIGILL)
882 == NOTIFY_STOP)
883 return;
884
885 die_if_kernel("Reserved instruction in kernel code", regs);
886
887 if (unlikely(compute_return_epc(regs) < 0))
888 return;
889
890 if (unlikely(get_user(opcode, epc) < 0))
891 status = SIGSEGV;
892
893 if (!cpu_has_llsc && status < 0)
894 status = simulate_llsc(regs, opcode);
895
896 if (status < 0)
897 status = simulate_rdhwr(regs, opcode);
898
899 if (status < 0)
900 status = simulate_sync(regs, opcode);
901
902 if (status < 0)
903 status = SIGILL;
904
905 if (unlikely(status > 0)) {
906 regs->cp0_epc = old_epc; /* Undo skip-over. */
907 force_sig(status, current);
908 }
909 }
910
911 /*
912 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
913 * emulated more than some threshold number of instructions, force migration to
914 * a "CPU" that has FP support.
915 */
916 static void mt_ase_fp_affinity(void)
917 {
918 #ifdef CONFIG_MIPS_MT_FPAFF
919 if (mt_fpemul_threshold > 0 &&
920 ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
921 /*
922 * If there's no FPU present, or if the application has already
923 * restricted the allowed set to exclude any CPUs with FPUs,
924 * we'll skip the procedure.
925 */
926 if (cpus_intersects(current->cpus_allowed, mt_fpu_cpumask)) {
927 cpumask_t tmask;
928
929 current->thread.user_cpus_allowed
930 = current->cpus_allowed;
931 cpus_and(tmask, current->cpus_allowed,
932 mt_fpu_cpumask);
933 set_cpus_allowed_ptr(current, &tmask);
934 set_thread_flag(TIF_FPUBOUND);
935 }
936 }
937 #endif /* CONFIG_MIPS_MT_FPAFF */
938 }
939
940 /*
941 * No lock; only written during early bootup by CPU 0.
942 */
943 static RAW_NOTIFIER_HEAD(cu2_chain);
944
945 int __ref register_cu2_notifier(struct notifier_block *nb)
946 {
947 return raw_notifier_chain_register(&cu2_chain, nb);
948 }
949
950 int cu2_notifier_call_chain(unsigned long val, void *v)
951 {
952 return raw_notifier_call_chain(&cu2_chain, val, v);
953 }
954
955 static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
956 void *data)
957 {
958 struct pt_regs *regs = data;
959
960 switch (action) {
961 default:
962 die_if_kernel("Unhandled kernel unaligned access or invalid "
963 "instruction", regs);
964 /* Fall through */
965
966 case CU2_EXCEPTION:
967 force_sig(SIGILL, current);
968 }
969
970 return NOTIFY_OK;
971 }
972
973 asmlinkage void do_cpu(struct pt_regs *regs)
974 {
975 unsigned int __user *epc;
976 unsigned long old_epc;
977 unsigned int opcode;
978 unsigned int cpid;
979 int status;
980 unsigned long __maybe_unused flags;
981
982 die_if_kernel("do_cpu invoked from kernel context!", regs);
983
984 cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
985
986 switch (cpid) {
987 case 0:
988 epc = (unsigned int __user *)exception_epc(regs);
989 old_epc = regs->cp0_epc;
990 opcode = 0;
991 status = -1;
992
993 if (unlikely(compute_return_epc(regs) < 0))
994 return;
995
996 if (unlikely(get_user(opcode, epc) < 0))
997 status = SIGSEGV;
998
999 if (!cpu_has_llsc && status < 0)
1000 status = simulate_llsc(regs, opcode);
1001
1002 if (status < 0)
1003 status = simulate_rdhwr(regs, opcode);
1004
1005 if (status < 0)
1006 status = SIGILL;
1007
1008 if (unlikely(status > 0)) {
1009 regs->cp0_epc = old_epc; /* Undo skip-over. */
1010 force_sig(status, current);
1011 }
1012
1013 return;
1014
1015 case 3:
1016 /*
1017 * Old (MIPS I and MIPS II) processors will set this code
1018 * for COP1X opcode instructions that replaced the original
1019 * COP3 space. We don't limit COP1 space instructions in
1020 * the emulator according to the CPU ISA, so we want to
1021 * treat COP1X instructions consistently regardless of which
1022 * code the CPU chose. Therefore we redirect this trap to
1023 * the FP emulator too.
1024 *
1025 * Then some newer FPU-less processors use this code
1026 * erroneously too, so they are covered by this choice
1027 * as well.
1028 */
1029 if (raw_cpu_has_fpu)
1030 break;
1031 /* Fall through. */
1032
1033 case 1:
1034 if (used_math()) /* Using the FPU again. */
1035 own_fpu(1);
1036 else { /* First time FPU user. */
1037 init_fpu();
1038 set_used_math();
1039 }
1040
1041 if (!raw_cpu_has_fpu) {
1042 int sig;
1043 void __user *fault_addr = NULL;
1044 sig = fpu_emulator_cop1Handler(regs,
1045 &current->thread.fpu,
1046 0, &fault_addr);
1047 if (!process_fpemu_return(sig, fault_addr))
1048 mt_ase_fp_affinity();
1049 }
1050
1051 return;
1052
1053 case 2:
1054 raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
1055 return;
1056 }
1057
1058 force_sig(SIGILL, current);
1059 }
1060
1061 asmlinkage void do_mdmx(struct pt_regs *regs)
1062 {
1063 force_sig(SIGILL, current);
1064 }
1065
1066 /*
1067 * Called with interrupts disabled.
1068 */
1069 asmlinkage void do_watch(struct pt_regs *regs)
1070 {
1071 u32 cause;
1072
1073 /*
1074 * Clear WP (bit 22) bit of cause register so we don't loop
1075 * forever.
1076 */
1077 cause = read_c0_cause();
1078 cause &= ~(1 << 22);
1079 write_c0_cause(cause);
1080
1081 /*
1082 * If the current thread has the watch registers loaded, save
1083 * their values and send SIGTRAP. Otherwise another thread
1084 * left the registers set, clear them and continue.
1085 */
1086 if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
1087 mips_read_watch_registers();
1088 local_irq_enable();
1089 force_sig(SIGTRAP, current);
1090 } else {
1091 mips_clear_watch_registers();
1092 local_irq_enable();
1093 }
1094 }
1095
1096 asmlinkage void do_mcheck(struct pt_regs *regs)
1097 {
1098 const int field = 2 * sizeof(unsigned long);
1099 int multi_match = regs->cp0_status & ST0_TS;
1100
1101 show_regs(regs);
1102
1103 if (multi_match) {
1104 printk("Index : %0x\n", read_c0_index());
1105 printk("Pagemask: %0x\n", read_c0_pagemask());
1106 printk("EntryHi : %0*lx\n", field, read_c0_entryhi());
1107 printk("EntryLo0: %0*lx\n", field, read_c0_entrylo0());
1108 printk("EntryLo1: %0*lx\n", field, read_c0_entrylo1());
1109 printk("\n");
1110 dump_tlb_all();
1111 }
1112
1113 show_code((unsigned int __user *) regs->cp0_epc);
1114
1115 /*
1116 * Some chips may have other causes of machine check (e.g. SB1
1117 * graduation timer)
1118 */
1119 panic("Caught Machine Check exception - %scaused by multiple "
1120 "matching entries in the TLB.",
1121 (multi_match) ? "" : "not ");
1122 }
1123
1124 asmlinkage void do_mt(struct pt_regs *regs)
1125 {
1126 int subcode;
1127
1128 subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1129 >> VPECONTROL_EXCPT_SHIFT;
1130 switch (subcode) {
1131 case 0:
1132 printk(KERN_DEBUG "Thread Underflow\n");
1133 break;
1134 case 1:
1135 printk(KERN_DEBUG "Thread Overflow\n");
1136 break;
1137 case 2:
1138 printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
1139 break;
1140 case 3:
1141 printk(KERN_DEBUG "Gating Storage Exception\n");
1142 break;
1143 case 4:
1144 printk(KERN_DEBUG "YIELD Scheduler Exception\n");
1145 break;
1146 case 5:
1147 printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
1148 break;
1149 default:
1150 printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
1151 subcode);
1152 break;
1153 }
1154 die_if_kernel("MIPS MT Thread exception in kernel", regs);
1155
1156 force_sig(SIGILL, current);
1157 }
1158
1159
1160 asmlinkage void do_dsp(struct pt_regs *regs)
1161 {
1162 if (cpu_has_dsp)
1163 panic("Unexpected DSP exception");
1164
1165 force_sig(SIGILL, current);
1166 }
1167
1168 asmlinkage void do_reserved(struct pt_regs *regs)
1169 {
1170 /*
1171 * Game over - no way to handle this if it ever occurs. Most probably
1172 * caused by a new unknown cpu type or after another deadly
1173 * hard/software error.
1174 */
1175 show_regs(regs);
1176 panic("Caught reserved exception %ld - should not happen.",
1177 (regs->cp0_cause & 0x7f) >> 2);
1178 }
1179
1180 static int __initdata l1parity = 1;
1181 static int __init nol1parity(char *s)
1182 {
1183 l1parity = 0;
1184 return 1;
1185 }
1186 __setup("nol1par", nol1parity);
1187 static int __initdata l2parity = 1;
1188 static int __init nol2parity(char *s)
1189 {
1190 l2parity = 0;
1191 return 1;
1192 }
1193 __setup("nol2par", nol2parity);
1194
1195 /*
1196 * Some MIPS CPUs can enable/disable for cache parity detection, but do
1197 * it different ways.
1198 */
1199 static inline void parity_protection_init(void)
1200 {
1201 switch (current_cpu_type()) {
1202 case CPU_24K:
1203 case CPU_34K:
1204 case CPU_74K:
1205 case CPU_1004K:
1206 {
1207 #define ERRCTL_PE 0x80000000
1208 #define ERRCTL_L2P 0x00800000
1209 unsigned long errctl;
1210 unsigned int l1parity_present, l2parity_present;
1211
1212 errctl = read_c0_ecc();
1213 errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1214
1215 /* probe L1 parity support */
1216 write_c0_ecc(errctl | ERRCTL_PE);
1217 back_to_back_c0_hazard();
1218 l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1219
1220 /* probe L2 parity support */
1221 write_c0_ecc(errctl|ERRCTL_L2P);
1222 back_to_back_c0_hazard();
1223 l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1224
1225 if (l1parity_present && l2parity_present) {
1226 if (l1parity)
1227 errctl |= ERRCTL_PE;
1228 if (l1parity ^ l2parity)
1229 errctl |= ERRCTL_L2P;
1230 } else if (l1parity_present) {
1231 if (l1parity)
1232 errctl |= ERRCTL_PE;
1233 } else if (l2parity_present) {
1234 if (l2parity)
1235 errctl |= ERRCTL_L2P;
1236 } else {
1237 /* No parity available */
1238 }
1239
1240 printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1241
1242 write_c0_ecc(errctl);
1243 back_to_back_c0_hazard();
1244 errctl = read_c0_ecc();
1245 printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1246
1247 if (l1parity_present)
1248 printk(KERN_INFO "Cache parity protection %sabled\n",
1249 (errctl & ERRCTL_PE) ? "en" : "dis");
1250
1251 if (l2parity_present) {
1252 if (l1parity_present && l1parity)
1253 errctl ^= ERRCTL_L2P;
1254 printk(KERN_INFO "L2 cache parity protection %sabled\n",
1255 (errctl & ERRCTL_L2P) ? "en" : "dis");
1256 }
1257 }
1258 break;
1259
1260 case CPU_5KC:
1261 case CPU_5KE:
1262 case CPU_LOONGSON1:
1263 write_c0_ecc(0x80000000);
1264 back_to_back_c0_hazard();
1265 /* Set the PE bit (bit 31) in the c0_errctl register. */
1266 printk(KERN_INFO "Cache parity protection %sabled\n",
1267 (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1268 break;
1269 case CPU_20KC:
1270 case CPU_25KF:
1271 /* Clear the DE bit (bit 16) in the c0_status register. */
1272 printk(KERN_INFO "Enable cache parity protection for "
1273 "MIPS 20KC/25KF CPUs.\n");
1274 clear_c0_status(ST0_DE);
1275 break;
1276 default:
1277 break;
1278 }
1279 }
1280
1281 asmlinkage void cache_parity_error(void)
1282 {
1283 const int field = 2 * sizeof(unsigned long);
1284 unsigned int reg_val;
1285
1286 /* For the moment, report the problem and hang. */
1287 printk("Cache error exception:\n");
1288 printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1289 reg_val = read_c0_cacheerr();
1290 printk("c0_cacheerr == %08x\n", reg_val);
1291
1292 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1293 reg_val & (1<<30) ? "secondary" : "primary",
1294 reg_val & (1<<31) ? "data" : "insn");
1295 printk("Error bits: %s%s%s%s%s%s%s\n",
1296 reg_val & (1<<29) ? "ED " : "",
1297 reg_val & (1<<28) ? "ET " : "",
1298 reg_val & (1<<26) ? "EE " : "",
1299 reg_val & (1<<25) ? "EB " : "",
1300 reg_val & (1<<24) ? "EI " : "",
1301 reg_val & (1<<23) ? "E1 " : "",
1302 reg_val & (1<<22) ? "E0 " : "");
1303 printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1304
1305 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1306 if (reg_val & (1<<22))
1307 printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1308
1309 if (reg_val & (1<<23))
1310 printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1311 #endif
1312
1313 panic("Can't handle the cache error!");
1314 }
1315
1316 /*
1317 * SDBBP EJTAG debug exception handler.
1318 * We skip the instruction and return to the next instruction.
1319 */
1320 void ejtag_exception_handler(struct pt_regs *regs)
1321 {
1322 const int field = 2 * sizeof(unsigned long);
1323 unsigned long depc, old_epc;
1324 unsigned int debug;
1325
1326 printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1327 depc = read_c0_depc();
1328 debug = read_c0_debug();
1329 printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1330 if (debug & 0x80000000) {
1331 /*
1332 * In branch delay slot.
1333 * We cheat a little bit here and use EPC to calculate the
1334 * debug return address (DEPC). EPC is restored after the
1335 * calculation.
1336 */
1337 old_epc = regs->cp0_epc;
1338 regs->cp0_epc = depc;
1339 __compute_return_epc(regs);
1340 depc = regs->cp0_epc;
1341 regs->cp0_epc = old_epc;
1342 } else
1343 depc += 4;
1344 write_c0_depc(depc);
1345
1346 #if 0
1347 printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1348 write_c0_debug(debug | 0x100);
1349 #endif
1350 }
1351
1352 /*
1353 * NMI exception handler.
1354 * No lock; only written during early bootup by CPU 0.
1355 */
1356 static RAW_NOTIFIER_HEAD(nmi_chain);
1357
1358 int register_nmi_notifier(struct notifier_block *nb)
1359 {
1360 return raw_notifier_chain_register(&nmi_chain, nb);
1361 }
1362
1363 void __noreturn nmi_exception_handler(struct pt_regs *regs)
1364 {
1365 raw_notifier_call_chain(&nmi_chain, 0, regs);
1366 bust_spinlocks(1);
1367 printk("NMI taken!!!!\n");
1368 die("NMI", regs);
1369 }
1370
1371 #define VECTORSPACING 0x100 /* for EI/VI mode */
1372
1373 unsigned long ebase;
1374 unsigned long exception_handlers[32];
1375 unsigned long vi_handlers[64];
1376
1377 void __init *set_except_vector(int n, void *addr)
1378 {
1379 unsigned long handler = (unsigned long) addr;
1380 unsigned long old_handler = exception_handlers[n];
1381
1382 exception_handlers[n] = handler;
1383 if (n == 0 && cpu_has_divec) {
1384 unsigned long jump_mask = ~((1 << 28) - 1);
1385 u32 *buf = (u32 *)(ebase + 0x200);
1386 unsigned int k0 = 26;
1387 if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
1388 uasm_i_j(&buf, handler & ~jump_mask);
1389 uasm_i_nop(&buf);
1390 } else {
1391 UASM_i_LA(&buf, k0, handler);
1392 uasm_i_jr(&buf, k0);
1393 uasm_i_nop(&buf);
1394 }
1395 local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
1396 }
1397 return (void *)old_handler;
1398 }
1399
1400 static asmlinkage void do_default_vi(void)
1401 {
1402 show_regs(get_irq_regs());
1403 panic("Caught unexpected vectored interrupt.");
1404 }
1405
1406 static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
1407 {
1408 unsigned long handler;
1409 unsigned long old_handler = vi_handlers[n];
1410 int srssets = current_cpu_data.srsets;
1411 u32 *w;
1412 unsigned char *b;
1413
1414 BUG_ON(!cpu_has_veic && !cpu_has_vint);
1415
1416 if (addr == NULL) {
1417 handler = (unsigned long) do_default_vi;
1418 srs = 0;
1419 } else
1420 handler = (unsigned long) addr;
1421 vi_handlers[n] = (unsigned long) addr;
1422
1423 b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
1424
1425 if (srs >= srssets)
1426 panic("Shadow register set %d not supported", srs);
1427
1428 if (cpu_has_veic) {
1429 if (board_bind_eic_interrupt)
1430 board_bind_eic_interrupt(n, srs);
1431 } else if (cpu_has_vint) {
1432 /* SRSMap is only defined if shadow sets are implemented */
1433 if (srssets > 1)
1434 change_c0_srsmap(0xf << n*4, srs << n*4);
1435 }
1436
1437 if (srs == 0) {
1438 /*
1439 * If no shadow set is selected then use the default handler
1440 * that does normal register saving and a standard interrupt exit
1441 */
1442
1443 extern char except_vec_vi, except_vec_vi_lui;
1444 extern char except_vec_vi_ori, except_vec_vi_end;
1445 extern char rollback_except_vec_vi;
1446 char *vec_start = (cpu_wait == r4k_wait) ?
1447 &rollback_except_vec_vi : &except_vec_vi;
1448 #ifdef CONFIG_MIPS_MT_SMTC
1449 /*
1450 * We need to provide the SMTC vectored interrupt handler
1451 * not only with the address of the handler, but with the
1452 * Status.IM bit to be masked before going there.
1453 */
1454 extern char except_vec_vi_mori;
1455 const int mori_offset = &except_vec_vi_mori - vec_start;
1456 #endif /* CONFIG_MIPS_MT_SMTC */
1457 const int handler_len = &except_vec_vi_end - vec_start;
1458 const int lui_offset = &except_vec_vi_lui - vec_start;
1459 const int ori_offset = &except_vec_vi_ori - vec_start;
1460
1461 if (handler_len > VECTORSPACING) {
1462 /*
1463 * Sigh... panicing won't help as the console
1464 * is probably not configured :(
1465 */
1466 panic("VECTORSPACING too small");
1467 }
1468
1469 memcpy(b, vec_start, handler_len);
1470 #ifdef CONFIG_MIPS_MT_SMTC
1471 BUG_ON(n > 7); /* Vector index %d exceeds SMTC maximum. */
1472
1473 w = (u32 *)(b + mori_offset);
1474 *w = (*w & 0xffff0000) | (0x100 << n);
1475 #endif /* CONFIG_MIPS_MT_SMTC */
1476 w = (u32 *)(b + lui_offset);
1477 *w = (*w & 0xffff0000) | (((u32)handler >> 16) & 0xffff);
1478 w = (u32 *)(b + ori_offset);
1479 *w = (*w & 0xffff0000) | ((u32)handler & 0xffff);
1480 local_flush_icache_range((unsigned long)b,
1481 (unsigned long)(b+handler_len));
1482 }
1483 else {
1484 /*
1485 * In other cases jump directly to the interrupt handler
1486 *
1487 * It is the handlers responsibility to save registers if required
1488 * (eg hi/lo) and return from the exception using "eret"
1489 */
1490 w = (u32 *)b;
1491 *w++ = 0x08000000 | (((u32)handler >> 2) & 0x03fffff); /* j handler */
1492 *w = 0;
1493 local_flush_icache_range((unsigned long)b,
1494 (unsigned long)(b+8));
1495 }
1496
1497 return (void *)old_handler;
1498 }
1499
1500 void *set_vi_handler(int n, vi_handler_t addr)
1501 {
1502 return set_vi_srs_handler(n, addr, 0);
1503 }
1504
1505 extern void tlb_init(void);
1506 extern void flush_tlb_handlers(void);
1507
1508 /*
1509 * Timer interrupt
1510 */
1511 int cp0_compare_irq;
1512 EXPORT_SYMBOL_GPL(cp0_compare_irq);
1513 int cp0_compare_irq_shift;
1514
1515 /*
1516 * Performance counter IRQ or -1 if shared with timer
1517 */
1518 int cp0_perfcount_irq;
1519 EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
1520
1521 static int __cpuinitdata noulri;
1522
1523 static int __init ulri_disable(char *s)
1524 {
1525 pr_info("Disabling ulri\n");
1526 noulri = 1;
1527
1528 return 1;
1529 }
1530 __setup("noulri", ulri_disable);
1531
1532 void __cpuinit per_cpu_trap_init(bool is_boot_cpu)
1533 {
1534 unsigned int cpu = smp_processor_id();
1535 unsigned int status_set = ST0_CU0;
1536 unsigned int hwrena = cpu_hwrena_impl_bits;
1537 #ifdef CONFIG_MIPS_MT_SMTC
1538 int secondaryTC = 0;
1539 int bootTC = (cpu == 0);
1540
1541 /*
1542 * Only do per_cpu_trap_init() for first TC of Each VPE.
1543 * Note that this hack assumes that the SMTC init code
1544 * assigns TCs consecutively and in ascending order.
1545 */
1546
1547 if (((read_c0_tcbind() & TCBIND_CURTC) != 0) &&
1548 ((read_c0_tcbind() & TCBIND_CURVPE) == cpu_data[cpu - 1].vpe_id))
1549 secondaryTC = 1;
1550 #endif /* CONFIG_MIPS_MT_SMTC */
1551
1552 /*
1553 * Disable coprocessors and select 32-bit or 64-bit addressing
1554 * and the 16/32 or 32/32 FPR register model. Reset the BEV
1555 * flag that some firmware may have left set and the TS bit (for
1556 * IP27). Set XX for ISA IV code to work.
1557 */
1558 #ifdef CONFIG_64BIT
1559 status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
1560 #endif
1561 if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV)
1562 status_set |= ST0_XX;
1563 if (cpu_has_dsp)
1564 status_set |= ST0_MX;
1565
1566 change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
1567 status_set);
1568
1569 if (cpu_has_mips_r2)
1570 hwrena |= 0x0000000f;
1571
1572 if (!noulri && cpu_has_userlocal)
1573 hwrena |= (1 << 29);
1574
1575 if (hwrena)
1576 write_c0_hwrena(hwrena);
1577
1578 #ifdef CONFIG_MIPS_MT_SMTC
1579 if (!secondaryTC) {
1580 #endif /* CONFIG_MIPS_MT_SMTC */
1581
1582 if (cpu_has_veic || cpu_has_vint) {
1583 unsigned long sr = set_c0_status(ST0_BEV);
1584 write_c0_ebase(ebase);
1585 write_c0_status(sr);
1586 /* Setting vector spacing enables EI/VI mode */
1587 change_c0_intctl(0x3e0, VECTORSPACING);
1588 }
1589 if (cpu_has_divec) {
1590 if (cpu_has_mipsmt) {
1591 unsigned int vpflags = dvpe();
1592 set_c0_cause(CAUSEF_IV);
1593 evpe(vpflags);
1594 } else
1595 set_c0_cause(CAUSEF_IV);
1596 }
1597
1598 /*
1599 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
1600 *
1601 * o read IntCtl.IPTI to determine the timer interrupt
1602 * o read IntCtl.IPPCI to determine the performance counter interrupt
1603 */
1604 if (cpu_has_mips_r2) {
1605 cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
1606 cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
1607 cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
1608 if (cp0_perfcount_irq == cp0_compare_irq)
1609 cp0_perfcount_irq = -1;
1610 } else {
1611 cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
1612 cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
1613 cp0_perfcount_irq = -1;
1614 }
1615
1616 #ifdef CONFIG_MIPS_MT_SMTC
1617 }
1618 #endif /* CONFIG_MIPS_MT_SMTC */
1619
1620 if (!cpu_data[cpu].asid_cache)
1621 cpu_data[cpu].asid_cache = ASID_FIRST_VERSION;
1622
1623 atomic_inc(&init_mm.mm_count);
1624 current->active_mm = &init_mm;
1625 BUG_ON(current->mm);
1626 enter_lazy_tlb(&init_mm, current);
1627
1628 #ifdef CONFIG_MIPS_MT_SMTC
1629 if (bootTC) {
1630 #endif /* CONFIG_MIPS_MT_SMTC */
1631 /* Boot CPU's cache setup in setup_arch(). */
1632 if (!is_boot_cpu)
1633 cpu_cache_init();
1634 tlb_init();
1635 #ifdef CONFIG_MIPS_MT_SMTC
1636 } else if (!secondaryTC) {
1637 /*
1638 * First TC in non-boot VPE must do subset of tlb_init()
1639 * for MMU countrol registers.
1640 */
1641 write_c0_pagemask(PM_DEFAULT_MASK);
1642 write_c0_wired(0);
1643 }
1644 #endif /* CONFIG_MIPS_MT_SMTC */
1645 TLBMISS_HANDLER_SETUP();
1646 }
1647
1648 /* Install CPU exception handler */
1649 void __cpuinit set_handler(unsigned long offset, void *addr, unsigned long size)
1650 {
1651 memcpy((void *)(ebase + offset), addr, size);
1652 local_flush_icache_range(ebase + offset, ebase + offset + size);
1653 }
1654
1655 static char panic_null_cerr[] __cpuinitdata =
1656 "Trying to set NULL cache error exception handler";
1657
1658 /*
1659 * Install uncached CPU exception handler.
1660 * This is suitable only for the cache error exception which is the only
1661 * exception handler that is being run uncached.
1662 */
1663 void __cpuinit set_uncached_handler(unsigned long offset, void *addr,
1664 unsigned long size)
1665 {
1666 unsigned long uncached_ebase = CKSEG1ADDR(ebase);
1667
1668 if (!addr)
1669 panic(panic_null_cerr);
1670
1671 memcpy((void *)(uncached_ebase + offset), addr, size);
1672 }
1673
1674 static int __initdata rdhwr_noopt;
1675 static int __init set_rdhwr_noopt(char *str)
1676 {
1677 rdhwr_noopt = 1;
1678 return 1;
1679 }
1680
1681 __setup("rdhwr_noopt", set_rdhwr_noopt);
1682
1683 void __init trap_init(void)
1684 {
1685 extern char except_vec3_generic, except_vec3_r4000;
1686 extern char except_vec4;
1687 unsigned long i;
1688 int rollback;
1689
1690 check_wait();
1691 rollback = (cpu_wait == r4k_wait);
1692
1693 #if defined(CONFIG_KGDB)
1694 if (kgdb_early_setup)
1695 return; /* Already done */
1696 #endif
1697
1698 if (cpu_has_veic || cpu_has_vint) {
1699 unsigned long size = 0x200 + VECTORSPACING*64;
1700 ebase = (unsigned long)
1701 __alloc_bootmem(size, 1 << fls(size), 0);
1702 } else {
1703 ebase = CKSEG0;
1704 if (cpu_has_mips_r2)
1705 ebase += (read_c0_ebase() & 0x3ffff000);
1706 }
1707
1708 if (board_ebase_setup)
1709 board_ebase_setup();
1710 per_cpu_trap_init(true);
1711
1712 /*
1713 * Copy the generic exception handlers to their final destination.
1714 * This will be overriden later as suitable for a particular
1715 * configuration.
1716 */
1717 set_handler(0x180, &except_vec3_generic, 0x80);
1718
1719 /*
1720 * Setup default vectors
1721 */
1722 for (i = 0; i <= 31; i++)
1723 set_except_vector(i, handle_reserved);
1724
1725 /*
1726 * Copy the EJTAG debug exception vector handler code to it's final
1727 * destination.
1728 */
1729 if (cpu_has_ejtag && board_ejtag_handler_setup)
1730 board_ejtag_handler_setup();
1731
1732 /*
1733 * Only some CPUs have the watch exceptions.
1734 */
1735 if (cpu_has_watch)
1736 set_except_vector(23, handle_watch);
1737
1738 /*
1739 * Initialise interrupt handlers
1740 */
1741 if (cpu_has_veic || cpu_has_vint) {
1742 int nvec = cpu_has_veic ? 64 : 8;
1743 for (i = 0; i < nvec; i++)
1744 set_vi_handler(i, NULL);
1745 }
1746 else if (cpu_has_divec)
1747 set_handler(0x200, &except_vec4, 0x8);
1748
1749 /*
1750 * Some CPUs can enable/disable for cache parity detection, but does
1751 * it different ways.
1752 */
1753 parity_protection_init();
1754
1755 /*
1756 * The Data Bus Errors / Instruction Bus Errors are signaled
1757 * by external hardware. Therefore these two exceptions
1758 * may have board specific handlers.
1759 */
1760 if (board_be_init)
1761 board_be_init();
1762
1763 set_except_vector(0, rollback ? rollback_handle_int : handle_int);
1764 set_except_vector(1, handle_tlbm);
1765 set_except_vector(2, handle_tlbl);
1766 set_except_vector(3, handle_tlbs);
1767
1768 set_except_vector(4, handle_adel);
1769 set_except_vector(5, handle_ades);
1770
1771 set_except_vector(6, handle_ibe);
1772 set_except_vector(7, handle_dbe);
1773
1774 set_except_vector(8, handle_sys);
1775 set_except_vector(9, handle_bp);
1776 set_except_vector(10, rdhwr_noopt ? handle_ri :
1777 (cpu_has_vtag_icache ?
1778 handle_ri_rdhwr_vivt : handle_ri_rdhwr));
1779 set_except_vector(11, handle_cpu);
1780 set_except_vector(12, handle_ov);
1781 set_except_vector(13, handle_tr);
1782
1783 if (current_cpu_type() == CPU_R6000 ||
1784 current_cpu_type() == CPU_R6000A) {
1785 /*
1786 * The R6000 is the only R-series CPU that features a machine
1787 * check exception (similar to the R4000 cache error) and
1788 * unaligned ldc1/sdc1 exception. The handlers have not been
1789 * written yet. Well, anyway there is no R6000 machine on the
1790 * current list of targets for Linux/MIPS.
1791 * (Duh, crap, there is someone with a triple R6k machine)
1792 */
1793 //set_except_vector(14, handle_mc);
1794 //set_except_vector(15, handle_ndc);
1795 }
1796
1797
1798 if (board_nmi_handler_setup)
1799 board_nmi_handler_setup();
1800
1801 if (cpu_has_fpu && !cpu_has_nofpuex)
1802 set_except_vector(15, handle_fpe);
1803
1804 set_except_vector(22, handle_mdmx);
1805
1806 if (cpu_has_mcheck)
1807 set_except_vector(24, handle_mcheck);
1808
1809 if (cpu_has_mipsmt)
1810 set_except_vector(25, handle_mt);
1811
1812 set_except_vector(26, handle_dsp);
1813
1814 if (board_cache_error_setup)
1815 board_cache_error_setup();
1816
1817 if (cpu_has_vce)
1818 /* Special exception: R4[04]00 uses also the divec space. */
1819 memcpy((void *)(ebase + 0x180), &except_vec3_r4000, 0x100);
1820 else if (cpu_has_4kex)
1821 memcpy((void *)(ebase + 0x180), &except_vec3_generic, 0x80);
1822 else
1823 memcpy((void *)(ebase + 0x080), &except_vec3_generic, 0x80);
1824
1825 local_flush_icache_range(ebase, ebase + 0x400);
1826 flush_tlb_handlers();
1827
1828 sort_extable(__start___dbe_table, __stop___dbe_table);
1829
1830 cu2_notifier(default_cu2_call, 0x80000000); /* Run last */
1831 }
This page took 0.067298 seconds and 6 git commands to generate.