Merge branch 'parisc-3.13' of git://git.kernel.org/pub/scm/linux/kernel/git/deller...
[deliverable/linux.git] / arch / mips / kernel / traps.c
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7 * Copyright (C) 1995, 1996 Paul M. Antoine
8 * Copyright (C) 1998 Ulf Carlsson
9 * Copyright (C) 1999 Silicon Graphics, Inc.
10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11 * Copyright (C) 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki
12 * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc. All rights reserved.
13 */
14 #include <linux/bug.h>
15 #include <linux/compiler.h>
16 #include <linux/context_tracking.h>
17 #include <linux/kexec.h>
18 #include <linux/init.h>
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/mm.h>
22 #include <linux/sched.h>
23 #include <linux/smp.h>
24 #include <linux/spinlock.h>
25 #include <linux/kallsyms.h>
26 #include <linux/bootmem.h>
27 #include <linux/interrupt.h>
28 #include <linux/ptrace.h>
29 #include <linux/kgdb.h>
30 #include <linux/kdebug.h>
31 #include <linux/kprobes.h>
32 #include <linux/notifier.h>
33 #include <linux/kdb.h>
34 #include <linux/irq.h>
35 #include <linux/perf_event.h>
36
37 #include <asm/bootinfo.h>
38 #include <asm/branch.h>
39 #include <asm/break.h>
40 #include <asm/cop2.h>
41 #include <asm/cpu.h>
42 #include <asm/cpu-type.h>
43 #include <asm/dsp.h>
44 #include <asm/fpu.h>
45 #include <asm/fpu_emulator.h>
46 #include <asm/idle.h>
47 #include <asm/mipsregs.h>
48 #include <asm/mipsmtregs.h>
49 #include <asm/module.h>
50 #include <asm/pgtable.h>
51 #include <asm/ptrace.h>
52 #include <asm/sections.h>
53 #include <asm/tlbdebug.h>
54 #include <asm/traps.h>
55 #include <asm/uaccess.h>
56 #include <asm/watch.h>
57 #include <asm/mmu_context.h>
58 #include <asm/types.h>
59 #include <asm/stacktrace.h>
60 #include <asm/uasm.h>
61
62 extern void check_wait(void);
63 extern asmlinkage void rollback_handle_int(void);
64 extern asmlinkage void handle_int(void);
65 extern u32 handle_tlbl[];
66 extern u32 handle_tlbs[];
67 extern u32 handle_tlbm[];
68 extern asmlinkage void handle_adel(void);
69 extern asmlinkage void handle_ades(void);
70 extern asmlinkage void handle_ibe(void);
71 extern asmlinkage void handle_dbe(void);
72 extern asmlinkage void handle_sys(void);
73 extern asmlinkage void handle_bp(void);
74 extern asmlinkage void handle_ri(void);
75 extern asmlinkage void handle_ri_rdhwr_vivt(void);
76 extern asmlinkage void handle_ri_rdhwr(void);
77 extern asmlinkage void handle_cpu(void);
78 extern asmlinkage void handle_ov(void);
79 extern asmlinkage void handle_tr(void);
80 extern asmlinkage void handle_fpe(void);
81 extern asmlinkage void handle_mdmx(void);
82 extern asmlinkage void handle_watch(void);
83 extern asmlinkage void handle_mt(void);
84 extern asmlinkage void handle_dsp(void);
85 extern asmlinkage void handle_mcheck(void);
86 extern asmlinkage void handle_reserved(void);
87
88 void (*board_be_init)(void);
89 int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
90 void (*board_nmi_handler_setup)(void);
91 void (*board_ejtag_handler_setup)(void);
92 void (*board_bind_eic_interrupt)(int irq, int regset);
93 void (*board_ebase_setup)(void);
94 void(*board_cache_error_setup)(void);
95
96 static void show_raw_backtrace(unsigned long reg29)
97 {
98 unsigned long *sp = (unsigned long *)(reg29 & ~3);
99 unsigned long addr;
100
101 printk("Call Trace:");
102 #ifdef CONFIG_KALLSYMS
103 printk("\n");
104 #endif
105 while (!kstack_end(sp)) {
106 unsigned long __user *p =
107 (unsigned long __user *)(unsigned long)sp++;
108 if (__get_user(addr, p)) {
109 printk(" (Bad stack address)");
110 break;
111 }
112 if (__kernel_text_address(addr))
113 print_ip_sym(addr);
114 }
115 printk("\n");
116 }
117
118 #ifdef CONFIG_KALLSYMS
119 int raw_show_trace;
120 static int __init set_raw_show_trace(char *str)
121 {
122 raw_show_trace = 1;
123 return 1;
124 }
125 __setup("raw_show_trace", set_raw_show_trace);
126 #endif
127
128 static void show_backtrace(struct task_struct *task, const struct pt_regs *regs)
129 {
130 unsigned long sp = regs->regs[29];
131 unsigned long ra = regs->regs[31];
132 unsigned long pc = regs->cp0_epc;
133
134 if (!task)
135 task = current;
136
137 if (raw_show_trace || !__kernel_text_address(pc)) {
138 show_raw_backtrace(sp);
139 return;
140 }
141 printk("Call Trace:\n");
142 do {
143 print_ip_sym(pc);
144 pc = unwind_stack(task, &sp, pc, &ra);
145 } while (pc);
146 printk("\n");
147 }
148
149 /*
150 * This routine abuses get_user()/put_user() to reference pointers
151 * with at least a bit of error checking ...
152 */
153 static void show_stacktrace(struct task_struct *task,
154 const struct pt_regs *regs)
155 {
156 const int field = 2 * sizeof(unsigned long);
157 long stackdata;
158 int i;
159 unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
160
161 printk("Stack :");
162 i = 0;
163 while ((unsigned long) sp & (PAGE_SIZE - 1)) {
164 if (i && ((i % (64 / field)) == 0))
165 printk("\n ");
166 if (i > 39) {
167 printk(" ...");
168 break;
169 }
170
171 if (__get_user(stackdata, sp++)) {
172 printk(" (Bad stack address)");
173 break;
174 }
175
176 printk(" %0*lx", field, stackdata);
177 i++;
178 }
179 printk("\n");
180 show_backtrace(task, regs);
181 }
182
183 void show_stack(struct task_struct *task, unsigned long *sp)
184 {
185 struct pt_regs regs;
186 if (sp) {
187 regs.regs[29] = (unsigned long)sp;
188 regs.regs[31] = 0;
189 regs.cp0_epc = 0;
190 } else {
191 if (task && task != current) {
192 regs.regs[29] = task->thread.reg29;
193 regs.regs[31] = 0;
194 regs.cp0_epc = task->thread.reg31;
195 #ifdef CONFIG_KGDB_KDB
196 } else if (atomic_read(&kgdb_active) != -1 &&
197 kdb_current_regs) {
198 memcpy(&regs, kdb_current_regs, sizeof(regs));
199 #endif /* CONFIG_KGDB_KDB */
200 } else {
201 prepare_frametrace(&regs);
202 }
203 }
204 show_stacktrace(task, &regs);
205 }
206
207 static void show_code(unsigned int __user *pc)
208 {
209 long i;
210 unsigned short __user *pc16 = NULL;
211
212 printk("\nCode:");
213
214 if ((unsigned long)pc & 1)
215 pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
216 for(i = -3 ; i < 6 ; i++) {
217 unsigned int insn;
218 if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
219 printk(" (Bad address in epc)\n");
220 break;
221 }
222 printk("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
223 }
224 }
225
226 static void __show_regs(const struct pt_regs *regs)
227 {
228 const int field = 2 * sizeof(unsigned long);
229 unsigned int cause = regs->cp0_cause;
230 int i;
231
232 show_regs_print_info(KERN_DEFAULT);
233
234 /*
235 * Saved main processor registers
236 */
237 for (i = 0; i < 32; ) {
238 if ((i % 4) == 0)
239 printk("$%2d :", i);
240 if (i == 0)
241 printk(" %0*lx", field, 0UL);
242 else if (i == 26 || i == 27)
243 printk(" %*s", field, "");
244 else
245 printk(" %0*lx", field, regs->regs[i]);
246
247 i++;
248 if ((i % 4) == 0)
249 printk("\n");
250 }
251
252 #ifdef CONFIG_CPU_HAS_SMARTMIPS
253 printk("Acx : %0*lx\n", field, regs->acx);
254 #endif
255 printk("Hi : %0*lx\n", field, regs->hi);
256 printk("Lo : %0*lx\n", field, regs->lo);
257
258 /*
259 * Saved cp0 registers
260 */
261 printk("epc : %0*lx %pS\n", field, regs->cp0_epc,
262 (void *) regs->cp0_epc);
263 printk(" %s\n", print_tainted());
264 printk("ra : %0*lx %pS\n", field, regs->regs[31],
265 (void *) regs->regs[31]);
266
267 printk("Status: %08x ", (uint32_t) regs->cp0_status);
268
269 if (cpu_has_3kex) {
270 if (regs->cp0_status & ST0_KUO)
271 printk("KUo ");
272 if (regs->cp0_status & ST0_IEO)
273 printk("IEo ");
274 if (regs->cp0_status & ST0_KUP)
275 printk("KUp ");
276 if (regs->cp0_status & ST0_IEP)
277 printk("IEp ");
278 if (regs->cp0_status & ST0_KUC)
279 printk("KUc ");
280 if (regs->cp0_status & ST0_IEC)
281 printk("IEc ");
282 } else if (cpu_has_4kex) {
283 if (regs->cp0_status & ST0_KX)
284 printk("KX ");
285 if (regs->cp0_status & ST0_SX)
286 printk("SX ");
287 if (regs->cp0_status & ST0_UX)
288 printk("UX ");
289 switch (regs->cp0_status & ST0_KSU) {
290 case KSU_USER:
291 printk("USER ");
292 break;
293 case KSU_SUPERVISOR:
294 printk("SUPERVISOR ");
295 break;
296 case KSU_KERNEL:
297 printk("KERNEL ");
298 break;
299 default:
300 printk("BAD_MODE ");
301 break;
302 }
303 if (regs->cp0_status & ST0_ERL)
304 printk("ERL ");
305 if (regs->cp0_status & ST0_EXL)
306 printk("EXL ");
307 if (regs->cp0_status & ST0_IE)
308 printk("IE ");
309 }
310 printk("\n");
311
312 printk("Cause : %08x\n", cause);
313
314 cause = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
315 if (1 <= cause && cause <= 5)
316 printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
317
318 printk("PrId : %08x (%s)\n", read_c0_prid(),
319 cpu_name_string());
320 }
321
322 /*
323 * FIXME: really the generic show_regs should take a const pointer argument.
324 */
325 void show_regs(struct pt_regs *regs)
326 {
327 __show_regs((struct pt_regs *)regs);
328 }
329
330 void show_registers(struct pt_regs *regs)
331 {
332 const int field = 2 * sizeof(unsigned long);
333 mm_segment_t old_fs = get_fs();
334
335 __show_regs(regs);
336 print_modules();
337 printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
338 current->comm, current->pid, current_thread_info(), current,
339 field, current_thread_info()->tp_value);
340 if (cpu_has_userlocal) {
341 unsigned long tls;
342
343 tls = read_c0_userlocal();
344 if (tls != current_thread_info()->tp_value)
345 printk("*HwTLS: %0*lx\n", field, tls);
346 }
347
348 if (!user_mode(regs))
349 /* Necessary for getting the correct stack content */
350 set_fs(KERNEL_DS);
351 show_stacktrace(current, regs);
352 show_code((unsigned int __user *) regs->cp0_epc);
353 printk("\n");
354 set_fs(old_fs);
355 }
356
357 static int regs_to_trapnr(struct pt_regs *regs)
358 {
359 return (regs->cp0_cause >> 2) & 0x1f;
360 }
361
362 static DEFINE_RAW_SPINLOCK(die_lock);
363
364 void __noreturn die(const char *str, struct pt_regs *regs)
365 {
366 static int die_counter;
367 int sig = SIGSEGV;
368 #ifdef CONFIG_MIPS_MT_SMTC
369 unsigned long dvpret;
370 #endif /* CONFIG_MIPS_MT_SMTC */
371
372 oops_enter();
373
374 if (notify_die(DIE_OOPS, str, regs, 0, regs_to_trapnr(regs),
375 SIGSEGV) == NOTIFY_STOP)
376 sig = 0;
377
378 console_verbose();
379 raw_spin_lock_irq(&die_lock);
380 #ifdef CONFIG_MIPS_MT_SMTC
381 dvpret = dvpe();
382 #endif /* CONFIG_MIPS_MT_SMTC */
383 bust_spinlocks(1);
384 #ifdef CONFIG_MIPS_MT_SMTC
385 mips_mt_regdump(dvpret);
386 #endif /* CONFIG_MIPS_MT_SMTC */
387
388 printk("%s[#%d]:\n", str, ++die_counter);
389 show_registers(regs);
390 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
391 raw_spin_unlock_irq(&die_lock);
392
393 oops_exit();
394
395 if (in_interrupt())
396 panic("Fatal exception in interrupt");
397
398 if (panic_on_oops) {
399 printk(KERN_EMERG "Fatal exception: panic in 5 seconds");
400 ssleep(5);
401 panic("Fatal exception");
402 }
403
404 if (regs && kexec_should_crash(current))
405 crash_kexec(regs);
406
407 do_exit(sig);
408 }
409
410 extern struct exception_table_entry __start___dbe_table[];
411 extern struct exception_table_entry __stop___dbe_table[];
412
413 __asm__(
414 " .section __dbe_table, \"a\"\n"
415 " .previous \n");
416
417 /* Given an address, look for it in the exception tables. */
418 static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
419 {
420 const struct exception_table_entry *e;
421
422 e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr);
423 if (!e)
424 e = search_module_dbetables(addr);
425 return e;
426 }
427
428 asmlinkage void do_be(struct pt_regs *regs)
429 {
430 const int field = 2 * sizeof(unsigned long);
431 const struct exception_table_entry *fixup = NULL;
432 int data = regs->cp0_cause & 4;
433 int action = MIPS_BE_FATAL;
434 enum ctx_state prev_state;
435
436 prev_state = exception_enter();
437 /* XXX For now. Fixme, this searches the wrong table ... */
438 if (data && !user_mode(regs))
439 fixup = search_dbe_tables(exception_epc(regs));
440
441 if (fixup)
442 action = MIPS_BE_FIXUP;
443
444 if (board_be_handler)
445 action = board_be_handler(regs, fixup != NULL);
446
447 switch (action) {
448 case MIPS_BE_DISCARD:
449 goto out;
450 case MIPS_BE_FIXUP:
451 if (fixup) {
452 regs->cp0_epc = fixup->nextinsn;
453 goto out;
454 }
455 break;
456 default:
457 break;
458 }
459
460 /*
461 * Assume it would be too dangerous to continue ...
462 */
463 printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
464 data ? "Data" : "Instruction",
465 field, regs->cp0_epc, field, regs->regs[31]);
466 if (notify_die(DIE_OOPS, "bus error", regs, 0, regs_to_trapnr(regs),
467 SIGBUS) == NOTIFY_STOP)
468 goto out;
469
470 die_if_kernel("Oops", regs);
471 force_sig(SIGBUS, current);
472
473 out:
474 exception_exit(prev_state);
475 }
476
477 /*
478 * ll/sc, rdhwr, sync emulation
479 */
480
481 #define OPCODE 0xfc000000
482 #define BASE 0x03e00000
483 #define RT 0x001f0000
484 #define OFFSET 0x0000ffff
485 #define LL 0xc0000000
486 #define SC 0xe0000000
487 #define SPEC0 0x00000000
488 #define SPEC3 0x7c000000
489 #define RD 0x0000f800
490 #define FUNC 0x0000003f
491 #define SYNC 0x0000000f
492 #define RDHWR 0x0000003b
493
494 /* microMIPS definitions */
495 #define MM_POOL32A_FUNC 0xfc00ffff
496 #define MM_RDHWR 0x00006b3c
497 #define MM_RS 0x001f0000
498 #define MM_RT 0x03e00000
499
500 /*
501 * The ll_bit is cleared by r*_switch.S
502 */
503
504 unsigned int ll_bit;
505 struct task_struct *ll_task;
506
507 static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
508 {
509 unsigned long value, __user *vaddr;
510 long offset;
511
512 /*
513 * analyse the ll instruction that just caused a ri exception
514 * and put the referenced address to addr.
515 */
516
517 /* sign extend offset */
518 offset = opcode & OFFSET;
519 offset <<= 16;
520 offset >>= 16;
521
522 vaddr = (unsigned long __user *)
523 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
524
525 if ((unsigned long)vaddr & 3)
526 return SIGBUS;
527 if (get_user(value, vaddr))
528 return SIGSEGV;
529
530 preempt_disable();
531
532 if (ll_task == NULL || ll_task == current) {
533 ll_bit = 1;
534 } else {
535 ll_bit = 0;
536 }
537 ll_task = current;
538
539 preempt_enable();
540
541 regs->regs[(opcode & RT) >> 16] = value;
542
543 return 0;
544 }
545
546 static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
547 {
548 unsigned long __user *vaddr;
549 unsigned long reg;
550 long offset;
551
552 /*
553 * analyse the sc instruction that just caused a ri exception
554 * and put the referenced address to addr.
555 */
556
557 /* sign extend offset */
558 offset = opcode & OFFSET;
559 offset <<= 16;
560 offset >>= 16;
561
562 vaddr = (unsigned long __user *)
563 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
564 reg = (opcode & RT) >> 16;
565
566 if ((unsigned long)vaddr & 3)
567 return SIGBUS;
568
569 preempt_disable();
570
571 if (ll_bit == 0 || ll_task != current) {
572 regs->regs[reg] = 0;
573 preempt_enable();
574 return 0;
575 }
576
577 preempt_enable();
578
579 if (put_user(regs->regs[reg], vaddr))
580 return SIGSEGV;
581
582 regs->regs[reg] = 1;
583
584 return 0;
585 }
586
587 /*
588 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both
589 * opcodes are supposed to result in coprocessor unusable exceptions if
590 * executed on ll/sc-less processors. That's the theory. In practice a
591 * few processors such as NEC's VR4100 throw reserved instruction exceptions
592 * instead, so we're doing the emulation thing in both exception handlers.
593 */
594 static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
595 {
596 if ((opcode & OPCODE) == LL) {
597 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
598 1, regs, 0);
599 return simulate_ll(regs, opcode);
600 }
601 if ((opcode & OPCODE) == SC) {
602 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
603 1, regs, 0);
604 return simulate_sc(regs, opcode);
605 }
606
607 return -1; /* Must be something else ... */
608 }
609
610 /*
611 * Simulate trapping 'rdhwr' instructions to provide user accessible
612 * registers not implemented in hardware.
613 */
614 static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt)
615 {
616 struct thread_info *ti = task_thread_info(current);
617
618 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
619 1, regs, 0);
620 switch (rd) {
621 case 0: /* CPU number */
622 regs->regs[rt] = smp_processor_id();
623 return 0;
624 case 1: /* SYNCI length */
625 regs->regs[rt] = min(current_cpu_data.dcache.linesz,
626 current_cpu_data.icache.linesz);
627 return 0;
628 case 2: /* Read count register */
629 regs->regs[rt] = read_c0_count();
630 return 0;
631 case 3: /* Count register resolution */
632 switch (current_cpu_type()) {
633 case CPU_20KC:
634 case CPU_25KF:
635 regs->regs[rt] = 1;
636 break;
637 default:
638 regs->regs[rt] = 2;
639 }
640 return 0;
641 case 29:
642 regs->regs[rt] = ti->tp_value;
643 return 0;
644 default:
645 return -1;
646 }
647 }
648
649 static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode)
650 {
651 if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
652 int rd = (opcode & RD) >> 11;
653 int rt = (opcode & RT) >> 16;
654
655 simulate_rdhwr(regs, rd, rt);
656 return 0;
657 }
658
659 /* Not ours. */
660 return -1;
661 }
662
663 static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned short opcode)
664 {
665 if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) {
666 int rd = (opcode & MM_RS) >> 16;
667 int rt = (opcode & MM_RT) >> 21;
668 simulate_rdhwr(regs, rd, rt);
669 return 0;
670 }
671
672 /* Not ours. */
673 return -1;
674 }
675
676 static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
677 {
678 if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
679 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
680 1, regs, 0);
681 return 0;
682 }
683
684 return -1; /* Must be something else ... */
685 }
686
687 asmlinkage void do_ov(struct pt_regs *regs)
688 {
689 enum ctx_state prev_state;
690 siginfo_t info;
691
692 prev_state = exception_enter();
693 die_if_kernel("Integer overflow", regs);
694
695 info.si_code = FPE_INTOVF;
696 info.si_signo = SIGFPE;
697 info.si_errno = 0;
698 info.si_addr = (void __user *) regs->cp0_epc;
699 force_sig_info(SIGFPE, &info, current);
700 exception_exit(prev_state);
701 }
702
703 int process_fpemu_return(int sig, void __user *fault_addr)
704 {
705 if (sig == SIGSEGV || sig == SIGBUS) {
706 struct siginfo si = {0};
707 si.si_addr = fault_addr;
708 si.si_signo = sig;
709 if (sig == SIGSEGV) {
710 if (find_vma(current->mm, (unsigned long)fault_addr))
711 si.si_code = SEGV_ACCERR;
712 else
713 si.si_code = SEGV_MAPERR;
714 } else {
715 si.si_code = BUS_ADRERR;
716 }
717 force_sig_info(sig, &si, current);
718 return 1;
719 } else if (sig) {
720 force_sig(sig, current);
721 return 1;
722 } else {
723 return 0;
724 }
725 }
726
727 /*
728 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
729 */
730 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
731 {
732 enum ctx_state prev_state;
733 siginfo_t info = {0};
734
735 prev_state = exception_enter();
736 if (notify_die(DIE_FP, "FP exception", regs, 0, regs_to_trapnr(regs),
737 SIGFPE) == NOTIFY_STOP)
738 goto out;
739 die_if_kernel("FP exception in kernel code", regs);
740
741 if (fcr31 & FPU_CSR_UNI_X) {
742 int sig;
743 void __user *fault_addr = NULL;
744
745 /*
746 * Unimplemented operation exception. If we've got the full
747 * software emulator on-board, let's use it...
748 *
749 * Force FPU to dump state into task/thread context. We're
750 * moving a lot of data here for what is probably a single
751 * instruction, but the alternative is to pre-decode the FP
752 * register operands before invoking the emulator, which seems
753 * a bit extreme for what should be an infrequent event.
754 */
755 /* Ensure 'resume' not overwrite saved fp context again. */
756 lose_fpu(1);
757
758 /* Run the emulator */
759 sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
760 &fault_addr);
761
762 /*
763 * We can't allow the emulated instruction to leave any of
764 * the cause bit set in $fcr31.
765 */
766 current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
767
768 /* Restore the hardware register state */
769 own_fpu(1); /* Using the FPU again. */
770
771 /* If something went wrong, signal */
772 process_fpemu_return(sig, fault_addr);
773
774 goto out;
775 } else if (fcr31 & FPU_CSR_INV_X)
776 info.si_code = FPE_FLTINV;
777 else if (fcr31 & FPU_CSR_DIV_X)
778 info.si_code = FPE_FLTDIV;
779 else if (fcr31 & FPU_CSR_OVF_X)
780 info.si_code = FPE_FLTOVF;
781 else if (fcr31 & FPU_CSR_UDF_X)
782 info.si_code = FPE_FLTUND;
783 else if (fcr31 & FPU_CSR_INE_X)
784 info.si_code = FPE_FLTRES;
785 else
786 info.si_code = __SI_FAULT;
787 info.si_signo = SIGFPE;
788 info.si_errno = 0;
789 info.si_addr = (void __user *) regs->cp0_epc;
790 force_sig_info(SIGFPE, &info, current);
791
792 out:
793 exception_exit(prev_state);
794 }
795
796 static void do_trap_or_bp(struct pt_regs *regs, unsigned int code,
797 const char *str)
798 {
799 siginfo_t info;
800 char b[40];
801
802 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
803 if (kgdb_ll_trap(DIE_TRAP, str, regs, code, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
804 return;
805 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
806
807 if (notify_die(DIE_TRAP, str, regs, code, regs_to_trapnr(regs),
808 SIGTRAP) == NOTIFY_STOP)
809 return;
810
811 /*
812 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
813 * insns, even for trap and break codes that indicate arithmetic
814 * failures. Weird ...
815 * But should we continue the brokenness??? --macro
816 */
817 switch (code) {
818 case BRK_OVERFLOW:
819 case BRK_DIVZERO:
820 scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
821 die_if_kernel(b, regs);
822 if (code == BRK_DIVZERO)
823 info.si_code = FPE_INTDIV;
824 else
825 info.si_code = FPE_INTOVF;
826 info.si_signo = SIGFPE;
827 info.si_errno = 0;
828 info.si_addr = (void __user *) regs->cp0_epc;
829 force_sig_info(SIGFPE, &info, current);
830 break;
831 case BRK_BUG:
832 die_if_kernel("Kernel bug detected", regs);
833 force_sig(SIGTRAP, current);
834 break;
835 case BRK_MEMU:
836 /*
837 * Address errors may be deliberately induced by the FPU
838 * emulator to retake control of the CPU after executing the
839 * instruction in the delay slot of an emulated branch.
840 *
841 * Terminate if exception was recognized as a delay slot return
842 * otherwise handle as normal.
843 */
844 if (do_dsemulret(regs))
845 return;
846
847 die_if_kernel("Math emu break/trap", regs);
848 force_sig(SIGTRAP, current);
849 break;
850 default:
851 scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
852 die_if_kernel(b, regs);
853 force_sig(SIGTRAP, current);
854 }
855 }
856
857 asmlinkage void do_bp(struct pt_regs *regs)
858 {
859 unsigned int opcode, bcode;
860 enum ctx_state prev_state;
861 unsigned long epc;
862 u16 instr[2];
863
864 prev_state = exception_enter();
865 if (get_isa16_mode(regs->cp0_epc)) {
866 /* Calculate EPC. */
867 epc = exception_epc(regs);
868 if (cpu_has_mmips) {
869 if ((__get_user(instr[0], (u16 __user *)msk_isa16_mode(epc)) ||
870 (__get_user(instr[1], (u16 __user *)msk_isa16_mode(epc + 2)))))
871 goto out_sigsegv;
872 opcode = (instr[0] << 16) | instr[1];
873 } else {
874 /* MIPS16e mode */
875 if (__get_user(instr[0], (u16 __user *)msk_isa16_mode(epc)))
876 goto out_sigsegv;
877 bcode = (instr[0] >> 6) & 0x3f;
878 do_trap_or_bp(regs, bcode, "Break");
879 goto out;
880 }
881 } else {
882 if (__get_user(opcode, (unsigned int __user *) exception_epc(regs)))
883 goto out_sigsegv;
884 }
885
886 /*
887 * There is the ancient bug in the MIPS assemblers that the break
888 * code starts left to bit 16 instead to bit 6 in the opcode.
889 * Gas is bug-compatible, but not always, grrr...
890 * We handle both cases with a simple heuristics. --macro
891 */
892 bcode = ((opcode >> 6) & ((1 << 20) - 1));
893 if (bcode >= (1 << 10))
894 bcode >>= 10;
895
896 /*
897 * notify the kprobe handlers, if instruction is likely to
898 * pertain to them.
899 */
900 switch (bcode) {
901 case BRK_KPROBE_BP:
902 if (notify_die(DIE_BREAK, "debug", regs, bcode,
903 regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
904 goto out;
905 else
906 break;
907 case BRK_KPROBE_SSTEPBP:
908 if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode,
909 regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
910 goto out;
911 else
912 break;
913 default:
914 break;
915 }
916
917 do_trap_or_bp(regs, bcode, "Break");
918
919 out:
920 exception_exit(prev_state);
921 return;
922
923 out_sigsegv:
924 force_sig(SIGSEGV, current);
925 goto out;
926 }
927
928 asmlinkage void do_tr(struct pt_regs *regs)
929 {
930 u32 opcode, tcode = 0;
931 enum ctx_state prev_state;
932 u16 instr[2];
933 unsigned long epc = msk_isa16_mode(exception_epc(regs));
934
935 prev_state = exception_enter();
936 if (get_isa16_mode(regs->cp0_epc)) {
937 if (__get_user(instr[0], (u16 __user *)(epc + 0)) ||
938 __get_user(instr[1], (u16 __user *)(epc + 2)))
939 goto out_sigsegv;
940 opcode = (instr[0] << 16) | instr[1];
941 /* Immediate versions don't provide a code. */
942 if (!(opcode & OPCODE))
943 tcode = (opcode >> 12) & ((1 << 4) - 1);
944 } else {
945 if (__get_user(opcode, (u32 __user *)epc))
946 goto out_sigsegv;
947 /* Immediate versions don't provide a code. */
948 if (!(opcode & OPCODE))
949 tcode = (opcode >> 6) & ((1 << 10) - 1);
950 }
951
952 do_trap_or_bp(regs, tcode, "Trap");
953
954 out:
955 exception_exit(prev_state);
956 return;
957
958 out_sigsegv:
959 force_sig(SIGSEGV, current);
960 goto out;
961 }
962
963 asmlinkage void do_ri(struct pt_regs *regs)
964 {
965 unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
966 unsigned long old_epc = regs->cp0_epc;
967 unsigned long old31 = regs->regs[31];
968 enum ctx_state prev_state;
969 unsigned int opcode = 0;
970 int status = -1;
971
972 prev_state = exception_enter();
973 if (notify_die(DIE_RI, "RI Fault", regs, 0, regs_to_trapnr(regs),
974 SIGILL) == NOTIFY_STOP)
975 goto out;
976
977 die_if_kernel("Reserved instruction in kernel code", regs);
978
979 if (unlikely(compute_return_epc(regs) < 0))
980 goto out;
981
982 if (get_isa16_mode(regs->cp0_epc)) {
983 unsigned short mmop[2] = { 0 };
984
985 if (unlikely(get_user(mmop[0], epc) < 0))
986 status = SIGSEGV;
987 if (unlikely(get_user(mmop[1], epc) < 0))
988 status = SIGSEGV;
989 opcode = (mmop[0] << 16) | mmop[1];
990
991 if (status < 0)
992 status = simulate_rdhwr_mm(regs, opcode);
993 } else {
994 if (unlikely(get_user(opcode, epc) < 0))
995 status = SIGSEGV;
996
997 if (!cpu_has_llsc && status < 0)
998 status = simulate_llsc(regs, opcode);
999
1000 if (status < 0)
1001 status = simulate_rdhwr_normal(regs, opcode);
1002
1003 if (status < 0)
1004 status = simulate_sync(regs, opcode);
1005 }
1006
1007 if (status < 0)
1008 status = SIGILL;
1009
1010 if (unlikely(status > 0)) {
1011 regs->cp0_epc = old_epc; /* Undo skip-over. */
1012 regs->regs[31] = old31;
1013 force_sig(status, current);
1014 }
1015
1016 out:
1017 exception_exit(prev_state);
1018 }
1019
1020 /*
1021 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
1022 * emulated more than some threshold number of instructions, force migration to
1023 * a "CPU" that has FP support.
1024 */
1025 static void mt_ase_fp_affinity(void)
1026 {
1027 #ifdef CONFIG_MIPS_MT_FPAFF
1028 if (mt_fpemul_threshold > 0 &&
1029 ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
1030 /*
1031 * If there's no FPU present, or if the application has already
1032 * restricted the allowed set to exclude any CPUs with FPUs,
1033 * we'll skip the procedure.
1034 */
1035 if (cpus_intersects(current->cpus_allowed, mt_fpu_cpumask)) {
1036 cpumask_t tmask;
1037
1038 current->thread.user_cpus_allowed
1039 = current->cpus_allowed;
1040 cpus_and(tmask, current->cpus_allowed,
1041 mt_fpu_cpumask);
1042 set_cpus_allowed_ptr(current, &tmask);
1043 set_thread_flag(TIF_FPUBOUND);
1044 }
1045 }
1046 #endif /* CONFIG_MIPS_MT_FPAFF */
1047 }
1048
1049 /*
1050 * No lock; only written during early bootup by CPU 0.
1051 */
1052 static RAW_NOTIFIER_HEAD(cu2_chain);
1053
1054 int __ref register_cu2_notifier(struct notifier_block *nb)
1055 {
1056 return raw_notifier_chain_register(&cu2_chain, nb);
1057 }
1058
1059 int cu2_notifier_call_chain(unsigned long val, void *v)
1060 {
1061 return raw_notifier_call_chain(&cu2_chain, val, v);
1062 }
1063
1064 static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
1065 void *data)
1066 {
1067 struct pt_regs *regs = data;
1068
1069 die_if_kernel("COP2: Unhandled kernel unaligned access or invalid "
1070 "instruction", regs);
1071 force_sig(SIGILL, current);
1072
1073 return NOTIFY_OK;
1074 }
1075
1076 asmlinkage void do_cpu(struct pt_regs *regs)
1077 {
1078 enum ctx_state prev_state;
1079 unsigned int __user *epc;
1080 unsigned long old_epc, old31;
1081 unsigned int opcode;
1082 unsigned int cpid;
1083 int status;
1084 unsigned long __maybe_unused flags;
1085
1086 prev_state = exception_enter();
1087 cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
1088
1089 if (cpid != 2)
1090 die_if_kernel("do_cpu invoked from kernel context!", regs);
1091
1092 switch (cpid) {
1093 case 0:
1094 epc = (unsigned int __user *)exception_epc(regs);
1095 old_epc = regs->cp0_epc;
1096 old31 = regs->regs[31];
1097 opcode = 0;
1098 status = -1;
1099
1100 if (unlikely(compute_return_epc(regs) < 0))
1101 goto out;
1102
1103 if (get_isa16_mode(regs->cp0_epc)) {
1104 unsigned short mmop[2] = { 0 };
1105
1106 if (unlikely(get_user(mmop[0], epc) < 0))
1107 status = SIGSEGV;
1108 if (unlikely(get_user(mmop[1], epc) < 0))
1109 status = SIGSEGV;
1110 opcode = (mmop[0] << 16) | mmop[1];
1111
1112 if (status < 0)
1113 status = simulate_rdhwr_mm(regs, opcode);
1114 } else {
1115 if (unlikely(get_user(opcode, epc) < 0))
1116 status = SIGSEGV;
1117
1118 if (!cpu_has_llsc && status < 0)
1119 status = simulate_llsc(regs, opcode);
1120
1121 if (status < 0)
1122 status = simulate_rdhwr_normal(regs, opcode);
1123 }
1124
1125 if (status < 0)
1126 status = SIGILL;
1127
1128 if (unlikely(status > 0)) {
1129 regs->cp0_epc = old_epc; /* Undo skip-over. */
1130 regs->regs[31] = old31;
1131 force_sig(status, current);
1132 }
1133
1134 goto out;
1135
1136 case 3:
1137 /*
1138 * Old (MIPS I and MIPS II) processors will set this code
1139 * for COP1X opcode instructions that replaced the original
1140 * COP3 space. We don't limit COP1 space instructions in
1141 * the emulator according to the CPU ISA, so we want to
1142 * treat COP1X instructions consistently regardless of which
1143 * code the CPU chose. Therefore we redirect this trap to
1144 * the FP emulator too.
1145 *
1146 * Then some newer FPU-less processors use this code
1147 * erroneously too, so they are covered by this choice
1148 * as well.
1149 */
1150 if (raw_cpu_has_fpu)
1151 break;
1152 /* Fall through. */
1153
1154 case 1:
1155 if (used_math()) /* Using the FPU again. */
1156 own_fpu(1);
1157 else { /* First time FPU user. */
1158 init_fpu();
1159 set_used_math();
1160 }
1161
1162 if (!raw_cpu_has_fpu) {
1163 int sig;
1164 void __user *fault_addr = NULL;
1165 sig = fpu_emulator_cop1Handler(regs,
1166 &current->thread.fpu,
1167 0, &fault_addr);
1168 if (!process_fpemu_return(sig, fault_addr))
1169 mt_ase_fp_affinity();
1170 }
1171
1172 goto out;
1173
1174 case 2:
1175 raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
1176 goto out;
1177 }
1178
1179 force_sig(SIGILL, current);
1180
1181 out:
1182 exception_exit(prev_state);
1183 }
1184
1185 asmlinkage void do_mdmx(struct pt_regs *regs)
1186 {
1187 enum ctx_state prev_state;
1188
1189 prev_state = exception_enter();
1190 force_sig(SIGILL, current);
1191 exception_exit(prev_state);
1192 }
1193
1194 /*
1195 * Called with interrupts disabled.
1196 */
1197 asmlinkage void do_watch(struct pt_regs *regs)
1198 {
1199 enum ctx_state prev_state;
1200 u32 cause;
1201
1202 prev_state = exception_enter();
1203 /*
1204 * Clear WP (bit 22) bit of cause register so we don't loop
1205 * forever.
1206 */
1207 cause = read_c0_cause();
1208 cause &= ~(1 << 22);
1209 write_c0_cause(cause);
1210
1211 /*
1212 * If the current thread has the watch registers loaded, save
1213 * their values and send SIGTRAP. Otherwise another thread
1214 * left the registers set, clear them and continue.
1215 */
1216 if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
1217 mips_read_watch_registers();
1218 local_irq_enable();
1219 force_sig(SIGTRAP, current);
1220 } else {
1221 mips_clear_watch_registers();
1222 local_irq_enable();
1223 }
1224 exception_exit(prev_state);
1225 }
1226
1227 asmlinkage void do_mcheck(struct pt_regs *regs)
1228 {
1229 const int field = 2 * sizeof(unsigned long);
1230 int multi_match = regs->cp0_status & ST0_TS;
1231 enum ctx_state prev_state;
1232
1233 prev_state = exception_enter();
1234 show_regs(regs);
1235
1236 if (multi_match) {
1237 printk("Index : %0x\n", read_c0_index());
1238 printk("Pagemask: %0x\n", read_c0_pagemask());
1239 printk("EntryHi : %0*lx\n", field, read_c0_entryhi());
1240 printk("EntryLo0: %0*lx\n", field, read_c0_entrylo0());
1241 printk("EntryLo1: %0*lx\n", field, read_c0_entrylo1());
1242 printk("\n");
1243 dump_tlb_all();
1244 }
1245
1246 show_code((unsigned int __user *) regs->cp0_epc);
1247
1248 /*
1249 * Some chips may have other causes of machine check (e.g. SB1
1250 * graduation timer)
1251 */
1252 panic("Caught Machine Check exception - %scaused by multiple "
1253 "matching entries in the TLB.",
1254 (multi_match) ? "" : "not ");
1255 }
1256
1257 asmlinkage void do_mt(struct pt_regs *regs)
1258 {
1259 int subcode;
1260
1261 subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1262 >> VPECONTROL_EXCPT_SHIFT;
1263 switch (subcode) {
1264 case 0:
1265 printk(KERN_DEBUG "Thread Underflow\n");
1266 break;
1267 case 1:
1268 printk(KERN_DEBUG "Thread Overflow\n");
1269 break;
1270 case 2:
1271 printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
1272 break;
1273 case 3:
1274 printk(KERN_DEBUG "Gating Storage Exception\n");
1275 break;
1276 case 4:
1277 printk(KERN_DEBUG "YIELD Scheduler Exception\n");
1278 break;
1279 case 5:
1280 printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
1281 break;
1282 default:
1283 printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
1284 subcode);
1285 break;
1286 }
1287 die_if_kernel("MIPS MT Thread exception in kernel", regs);
1288
1289 force_sig(SIGILL, current);
1290 }
1291
1292
1293 asmlinkage void do_dsp(struct pt_regs *regs)
1294 {
1295 if (cpu_has_dsp)
1296 panic("Unexpected DSP exception");
1297
1298 force_sig(SIGILL, current);
1299 }
1300
1301 asmlinkage void do_reserved(struct pt_regs *regs)
1302 {
1303 /*
1304 * Game over - no way to handle this if it ever occurs. Most probably
1305 * caused by a new unknown cpu type or after another deadly
1306 * hard/software error.
1307 */
1308 show_regs(regs);
1309 panic("Caught reserved exception %ld - should not happen.",
1310 (regs->cp0_cause & 0x7f) >> 2);
1311 }
1312
1313 static int __initdata l1parity = 1;
1314 static int __init nol1parity(char *s)
1315 {
1316 l1parity = 0;
1317 return 1;
1318 }
1319 __setup("nol1par", nol1parity);
1320 static int __initdata l2parity = 1;
1321 static int __init nol2parity(char *s)
1322 {
1323 l2parity = 0;
1324 return 1;
1325 }
1326 __setup("nol2par", nol2parity);
1327
1328 /*
1329 * Some MIPS CPUs can enable/disable for cache parity detection, but do
1330 * it different ways.
1331 */
1332 static inline void parity_protection_init(void)
1333 {
1334 switch (current_cpu_type()) {
1335 case CPU_24K:
1336 case CPU_34K:
1337 case CPU_74K:
1338 case CPU_1004K:
1339 {
1340 #define ERRCTL_PE 0x80000000
1341 #define ERRCTL_L2P 0x00800000
1342 unsigned long errctl;
1343 unsigned int l1parity_present, l2parity_present;
1344
1345 errctl = read_c0_ecc();
1346 errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1347
1348 /* probe L1 parity support */
1349 write_c0_ecc(errctl | ERRCTL_PE);
1350 back_to_back_c0_hazard();
1351 l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1352
1353 /* probe L2 parity support */
1354 write_c0_ecc(errctl|ERRCTL_L2P);
1355 back_to_back_c0_hazard();
1356 l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1357
1358 if (l1parity_present && l2parity_present) {
1359 if (l1parity)
1360 errctl |= ERRCTL_PE;
1361 if (l1parity ^ l2parity)
1362 errctl |= ERRCTL_L2P;
1363 } else if (l1parity_present) {
1364 if (l1parity)
1365 errctl |= ERRCTL_PE;
1366 } else if (l2parity_present) {
1367 if (l2parity)
1368 errctl |= ERRCTL_L2P;
1369 } else {
1370 /* No parity available */
1371 }
1372
1373 printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1374
1375 write_c0_ecc(errctl);
1376 back_to_back_c0_hazard();
1377 errctl = read_c0_ecc();
1378 printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1379
1380 if (l1parity_present)
1381 printk(KERN_INFO "Cache parity protection %sabled\n",
1382 (errctl & ERRCTL_PE) ? "en" : "dis");
1383
1384 if (l2parity_present) {
1385 if (l1parity_present && l1parity)
1386 errctl ^= ERRCTL_L2P;
1387 printk(KERN_INFO "L2 cache parity protection %sabled\n",
1388 (errctl & ERRCTL_L2P) ? "en" : "dis");
1389 }
1390 }
1391 break;
1392
1393 case CPU_5KC:
1394 case CPU_5KE:
1395 case CPU_LOONGSON1:
1396 write_c0_ecc(0x80000000);
1397 back_to_back_c0_hazard();
1398 /* Set the PE bit (bit 31) in the c0_errctl register. */
1399 printk(KERN_INFO "Cache parity protection %sabled\n",
1400 (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1401 break;
1402 case CPU_20KC:
1403 case CPU_25KF:
1404 /* Clear the DE bit (bit 16) in the c0_status register. */
1405 printk(KERN_INFO "Enable cache parity protection for "
1406 "MIPS 20KC/25KF CPUs.\n");
1407 clear_c0_status(ST0_DE);
1408 break;
1409 default:
1410 break;
1411 }
1412 }
1413
1414 asmlinkage void cache_parity_error(void)
1415 {
1416 const int field = 2 * sizeof(unsigned long);
1417 unsigned int reg_val;
1418
1419 /* For the moment, report the problem and hang. */
1420 printk("Cache error exception:\n");
1421 printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1422 reg_val = read_c0_cacheerr();
1423 printk("c0_cacheerr == %08x\n", reg_val);
1424
1425 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1426 reg_val & (1<<30) ? "secondary" : "primary",
1427 reg_val & (1<<31) ? "data" : "insn");
1428 printk("Error bits: %s%s%s%s%s%s%s\n",
1429 reg_val & (1<<29) ? "ED " : "",
1430 reg_val & (1<<28) ? "ET " : "",
1431 reg_val & (1<<26) ? "EE " : "",
1432 reg_val & (1<<25) ? "EB " : "",
1433 reg_val & (1<<24) ? "EI " : "",
1434 reg_val & (1<<23) ? "E1 " : "",
1435 reg_val & (1<<22) ? "E0 " : "");
1436 printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1437
1438 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1439 if (reg_val & (1<<22))
1440 printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1441
1442 if (reg_val & (1<<23))
1443 printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1444 #endif
1445
1446 panic("Can't handle the cache error!");
1447 }
1448
1449 /*
1450 * SDBBP EJTAG debug exception handler.
1451 * We skip the instruction and return to the next instruction.
1452 */
1453 void ejtag_exception_handler(struct pt_regs *regs)
1454 {
1455 const int field = 2 * sizeof(unsigned long);
1456 unsigned long depc, old_epc, old_ra;
1457 unsigned int debug;
1458
1459 printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1460 depc = read_c0_depc();
1461 debug = read_c0_debug();
1462 printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1463 if (debug & 0x80000000) {
1464 /*
1465 * In branch delay slot.
1466 * We cheat a little bit here and use EPC to calculate the
1467 * debug return address (DEPC). EPC is restored after the
1468 * calculation.
1469 */
1470 old_epc = regs->cp0_epc;
1471 old_ra = regs->regs[31];
1472 regs->cp0_epc = depc;
1473 compute_return_epc(regs);
1474 depc = regs->cp0_epc;
1475 regs->cp0_epc = old_epc;
1476 regs->regs[31] = old_ra;
1477 } else
1478 depc += 4;
1479 write_c0_depc(depc);
1480
1481 #if 0
1482 printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1483 write_c0_debug(debug | 0x100);
1484 #endif
1485 }
1486
1487 /*
1488 * NMI exception handler.
1489 * No lock; only written during early bootup by CPU 0.
1490 */
1491 static RAW_NOTIFIER_HEAD(nmi_chain);
1492
1493 int register_nmi_notifier(struct notifier_block *nb)
1494 {
1495 return raw_notifier_chain_register(&nmi_chain, nb);
1496 }
1497
1498 void __noreturn nmi_exception_handler(struct pt_regs *regs)
1499 {
1500 char str[100];
1501
1502 raw_notifier_call_chain(&nmi_chain, 0, regs);
1503 bust_spinlocks(1);
1504 snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n",
1505 smp_processor_id(), regs->cp0_epc);
1506 regs->cp0_epc = read_c0_errorepc();
1507 die(str, regs);
1508 }
1509
1510 #define VECTORSPACING 0x100 /* for EI/VI mode */
1511
1512 unsigned long ebase;
1513 unsigned long exception_handlers[32];
1514 unsigned long vi_handlers[64];
1515
1516 void __init *set_except_vector(int n, void *addr)
1517 {
1518 unsigned long handler = (unsigned long) addr;
1519 unsigned long old_handler;
1520
1521 #ifdef CONFIG_CPU_MICROMIPS
1522 /*
1523 * Only the TLB handlers are cache aligned with an even
1524 * address. All other handlers are on an odd address and
1525 * require no modification. Otherwise, MIPS32 mode will
1526 * be entered when handling any TLB exceptions. That
1527 * would be bad...since we must stay in microMIPS mode.
1528 */
1529 if (!(handler & 0x1))
1530 handler |= 1;
1531 #endif
1532 old_handler = xchg(&exception_handlers[n], handler);
1533
1534 if (n == 0 && cpu_has_divec) {
1535 #ifdef CONFIG_CPU_MICROMIPS
1536 unsigned long jump_mask = ~((1 << 27) - 1);
1537 #else
1538 unsigned long jump_mask = ~((1 << 28) - 1);
1539 #endif
1540 u32 *buf = (u32 *)(ebase + 0x200);
1541 unsigned int k0 = 26;
1542 if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
1543 uasm_i_j(&buf, handler & ~jump_mask);
1544 uasm_i_nop(&buf);
1545 } else {
1546 UASM_i_LA(&buf, k0, handler);
1547 uasm_i_jr(&buf, k0);
1548 uasm_i_nop(&buf);
1549 }
1550 local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
1551 }
1552 return (void *)old_handler;
1553 }
1554
1555 static void do_default_vi(void)
1556 {
1557 show_regs(get_irq_regs());
1558 panic("Caught unexpected vectored interrupt.");
1559 }
1560
1561 static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
1562 {
1563 unsigned long handler;
1564 unsigned long old_handler = vi_handlers[n];
1565 int srssets = current_cpu_data.srsets;
1566 u16 *h;
1567 unsigned char *b;
1568
1569 BUG_ON(!cpu_has_veic && !cpu_has_vint);
1570
1571 if (addr == NULL) {
1572 handler = (unsigned long) do_default_vi;
1573 srs = 0;
1574 } else
1575 handler = (unsigned long) addr;
1576 vi_handlers[n] = handler;
1577
1578 b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
1579
1580 if (srs >= srssets)
1581 panic("Shadow register set %d not supported", srs);
1582
1583 if (cpu_has_veic) {
1584 if (board_bind_eic_interrupt)
1585 board_bind_eic_interrupt(n, srs);
1586 } else if (cpu_has_vint) {
1587 /* SRSMap is only defined if shadow sets are implemented */
1588 if (srssets > 1)
1589 change_c0_srsmap(0xf << n*4, srs << n*4);
1590 }
1591
1592 if (srs == 0) {
1593 /*
1594 * If no shadow set is selected then use the default handler
1595 * that does normal register saving and standard interrupt exit
1596 */
1597 extern char except_vec_vi, except_vec_vi_lui;
1598 extern char except_vec_vi_ori, except_vec_vi_end;
1599 extern char rollback_except_vec_vi;
1600 char *vec_start = using_rollback_handler() ?
1601 &rollback_except_vec_vi : &except_vec_vi;
1602 #ifdef CONFIG_MIPS_MT_SMTC
1603 /*
1604 * We need to provide the SMTC vectored interrupt handler
1605 * not only with the address of the handler, but with the
1606 * Status.IM bit to be masked before going there.
1607 */
1608 extern char except_vec_vi_mori;
1609 #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
1610 const int mori_offset = &except_vec_vi_mori - vec_start + 2;
1611 #else
1612 const int mori_offset = &except_vec_vi_mori - vec_start;
1613 #endif
1614 #endif /* CONFIG_MIPS_MT_SMTC */
1615 #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
1616 const int lui_offset = &except_vec_vi_lui - vec_start + 2;
1617 const int ori_offset = &except_vec_vi_ori - vec_start + 2;
1618 #else
1619 const int lui_offset = &except_vec_vi_lui - vec_start;
1620 const int ori_offset = &except_vec_vi_ori - vec_start;
1621 #endif
1622 const int handler_len = &except_vec_vi_end - vec_start;
1623
1624 if (handler_len > VECTORSPACING) {
1625 /*
1626 * Sigh... panicing won't help as the console
1627 * is probably not configured :(
1628 */
1629 panic("VECTORSPACING too small");
1630 }
1631
1632 set_handler(((unsigned long)b - ebase), vec_start,
1633 #ifdef CONFIG_CPU_MICROMIPS
1634 (handler_len - 1));
1635 #else
1636 handler_len);
1637 #endif
1638 #ifdef CONFIG_MIPS_MT_SMTC
1639 BUG_ON(n > 7); /* Vector index %d exceeds SMTC maximum. */
1640
1641 h = (u16 *)(b + mori_offset);
1642 *h = (0x100 << n);
1643 #endif /* CONFIG_MIPS_MT_SMTC */
1644 h = (u16 *)(b + lui_offset);
1645 *h = (handler >> 16) & 0xffff;
1646 h = (u16 *)(b + ori_offset);
1647 *h = (handler & 0xffff);
1648 local_flush_icache_range((unsigned long)b,
1649 (unsigned long)(b+handler_len));
1650 }
1651 else {
1652 /*
1653 * In other cases jump directly to the interrupt handler. It
1654 * is the handler's responsibility to save registers if required
1655 * (eg hi/lo) and return from the exception using "eret".
1656 */
1657 u32 insn;
1658
1659 h = (u16 *)b;
1660 /* j handler */
1661 #ifdef CONFIG_CPU_MICROMIPS
1662 insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1);
1663 #else
1664 insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2);
1665 #endif
1666 h[0] = (insn >> 16) & 0xffff;
1667 h[1] = insn & 0xffff;
1668 h[2] = 0;
1669 h[3] = 0;
1670 local_flush_icache_range((unsigned long)b,
1671 (unsigned long)(b+8));
1672 }
1673
1674 return (void *)old_handler;
1675 }
1676
1677 void *set_vi_handler(int n, vi_handler_t addr)
1678 {
1679 return set_vi_srs_handler(n, addr, 0);
1680 }
1681
1682 extern void tlb_init(void);
1683
1684 /*
1685 * Timer interrupt
1686 */
1687 int cp0_compare_irq;
1688 EXPORT_SYMBOL_GPL(cp0_compare_irq);
1689 int cp0_compare_irq_shift;
1690
1691 /*
1692 * Performance counter IRQ or -1 if shared with timer
1693 */
1694 int cp0_perfcount_irq;
1695 EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
1696
1697 static int noulri;
1698
1699 static int __init ulri_disable(char *s)
1700 {
1701 pr_info("Disabling ulri\n");
1702 noulri = 1;
1703
1704 return 1;
1705 }
1706 __setup("noulri", ulri_disable);
1707
1708 void per_cpu_trap_init(bool is_boot_cpu)
1709 {
1710 unsigned int cpu = smp_processor_id();
1711 unsigned int status_set = ST0_CU0;
1712 unsigned int hwrena = cpu_hwrena_impl_bits;
1713 #ifdef CONFIG_MIPS_MT_SMTC
1714 int secondaryTC = 0;
1715 int bootTC = (cpu == 0);
1716
1717 /*
1718 * Only do per_cpu_trap_init() for first TC of Each VPE.
1719 * Note that this hack assumes that the SMTC init code
1720 * assigns TCs consecutively and in ascending order.
1721 */
1722
1723 if (((read_c0_tcbind() & TCBIND_CURTC) != 0) &&
1724 ((read_c0_tcbind() & TCBIND_CURVPE) == cpu_data[cpu - 1].vpe_id))
1725 secondaryTC = 1;
1726 #endif /* CONFIG_MIPS_MT_SMTC */
1727
1728 /*
1729 * Disable coprocessors and select 32-bit or 64-bit addressing
1730 * and the 16/32 or 32/32 FPR register model. Reset the BEV
1731 * flag that some firmware may have left set and the TS bit (for
1732 * IP27). Set XX for ISA IV code to work.
1733 */
1734 #ifdef CONFIG_64BIT
1735 status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
1736 #endif
1737 if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV)
1738 status_set |= ST0_XX;
1739 if (cpu_has_dsp)
1740 status_set |= ST0_MX;
1741
1742 change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
1743 status_set);
1744
1745 if (cpu_has_mips_r2)
1746 hwrena |= 0x0000000f;
1747
1748 if (!noulri && cpu_has_userlocal)
1749 hwrena |= (1 << 29);
1750
1751 if (hwrena)
1752 write_c0_hwrena(hwrena);
1753
1754 #ifdef CONFIG_MIPS_MT_SMTC
1755 if (!secondaryTC) {
1756 #endif /* CONFIG_MIPS_MT_SMTC */
1757
1758 if (cpu_has_veic || cpu_has_vint) {
1759 unsigned long sr = set_c0_status(ST0_BEV);
1760 write_c0_ebase(ebase);
1761 write_c0_status(sr);
1762 /* Setting vector spacing enables EI/VI mode */
1763 change_c0_intctl(0x3e0, VECTORSPACING);
1764 }
1765 if (cpu_has_divec) {
1766 if (cpu_has_mipsmt) {
1767 unsigned int vpflags = dvpe();
1768 set_c0_cause(CAUSEF_IV);
1769 evpe(vpflags);
1770 } else
1771 set_c0_cause(CAUSEF_IV);
1772 }
1773
1774 /*
1775 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
1776 *
1777 * o read IntCtl.IPTI to determine the timer interrupt
1778 * o read IntCtl.IPPCI to determine the performance counter interrupt
1779 */
1780 if (cpu_has_mips_r2) {
1781 cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
1782 cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
1783 cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
1784 if (cp0_perfcount_irq == cp0_compare_irq)
1785 cp0_perfcount_irq = -1;
1786 } else {
1787 cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
1788 cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
1789 cp0_perfcount_irq = -1;
1790 }
1791
1792 #ifdef CONFIG_MIPS_MT_SMTC
1793 }
1794 #endif /* CONFIG_MIPS_MT_SMTC */
1795
1796 if (!cpu_data[cpu].asid_cache)
1797 cpu_data[cpu].asid_cache = ASID_FIRST_VERSION;
1798
1799 atomic_inc(&init_mm.mm_count);
1800 current->active_mm = &init_mm;
1801 BUG_ON(current->mm);
1802 enter_lazy_tlb(&init_mm, current);
1803
1804 #ifdef CONFIG_MIPS_MT_SMTC
1805 if (bootTC) {
1806 #endif /* CONFIG_MIPS_MT_SMTC */
1807 /* Boot CPU's cache setup in setup_arch(). */
1808 if (!is_boot_cpu)
1809 cpu_cache_init();
1810 tlb_init();
1811 #ifdef CONFIG_MIPS_MT_SMTC
1812 } else if (!secondaryTC) {
1813 /*
1814 * First TC in non-boot VPE must do subset of tlb_init()
1815 * for MMU countrol registers.
1816 */
1817 write_c0_pagemask(PM_DEFAULT_MASK);
1818 write_c0_wired(0);
1819 }
1820 #endif /* CONFIG_MIPS_MT_SMTC */
1821 TLBMISS_HANDLER_SETUP();
1822 }
1823
1824 /* Install CPU exception handler */
1825 void set_handler(unsigned long offset, void *addr, unsigned long size)
1826 {
1827 #ifdef CONFIG_CPU_MICROMIPS
1828 memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size);
1829 #else
1830 memcpy((void *)(ebase + offset), addr, size);
1831 #endif
1832 local_flush_icache_range(ebase + offset, ebase + offset + size);
1833 }
1834
1835 static char panic_null_cerr[] =
1836 "Trying to set NULL cache error exception handler";
1837
1838 /*
1839 * Install uncached CPU exception handler.
1840 * This is suitable only for the cache error exception which is the only
1841 * exception handler that is being run uncached.
1842 */
1843 void set_uncached_handler(unsigned long offset, void *addr,
1844 unsigned long size)
1845 {
1846 unsigned long uncached_ebase = CKSEG1ADDR(ebase);
1847
1848 if (!addr)
1849 panic(panic_null_cerr);
1850
1851 memcpy((void *)(uncached_ebase + offset), addr, size);
1852 }
1853
1854 static int __initdata rdhwr_noopt;
1855 static int __init set_rdhwr_noopt(char *str)
1856 {
1857 rdhwr_noopt = 1;
1858 return 1;
1859 }
1860
1861 __setup("rdhwr_noopt", set_rdhwr_noopt);
1862
1863 void __init trap_init(void)
1864 {
1865 extern char except_vec3_generic;
1866 extern char except_vec4;
1867 extern char except_vec3_r4000;
1868 unsigned long i;
1869
1870 check_wait();
1871
1872 #if defined(CONFIG_KGDB)
1873 if (kgdb_early_setup)
1874 return; /* Already done */
1875 #endif
1876
1877 if (cpu_has_veic || cpu_has_vint) {
1878 unsigned long size = 0x200 + VECTORSPACING*64;
1879 ebase = (unsigned long)
1880 __alloc_bootmem(size, 1 << fls(size), 0);
1881 } else {
1882 #ifdef CONFIG_KVM_GUEST
1883 #define KVM_GUEST_KSEG0 0x40000000
1884 ebase = KVM_GUEST_KSEG0;
1885 #else
1886 ebase = CKSEG0;
1887 #endif
1888 if (cpu_has_mips_r2)
1889 ebase += (read_c0_ebase() & 0x3ffff000);
1890 }
1891
1892 if (cpu_has_mmips) {
1893 unsigned int config3 = read_c0_config3();
1894
1895 if (IS_ENABLED(CONFIG_CPU_MICROMIPS))
1896 write_c0_config3(config3 | MIPS_CONF3_ISA_OE);
1897 else
1898 write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE);
1899 }
1900
1901 if (board_ebase_setup)
1902 board_ebase_setup();
1903 per_cpu_trap_init(true);
1904
1905 /*
1906 * Copy the generic exception handlers to their final destination.
1907 * This will be overriden later as suitable for a particular
1908 * configuration.
1909 */
1910 set_handler(0x180, &except_vec3_generic, 0x80);
1911
1912 /*
1913 * Setup default vectors
1914 */
1915 for (i = 0; i <= 31; i++)
1916 set_except_vector(i, handle_reserved);
1917
1918 /*
1919 * Copy the EJTAG debug exception vector handler code to it's final
1920 * destination.
1921 */
1922 if (cpu_has_ejtag && board_ejtag_handler_setup)
1923 board_ejtag_handler_setup();
1924
1925 /*
1926 * Only some CPUs have the watch exceptions.
1927 */
1928 if (cpu_has_watch)
1929 set_except_vector(23, handle_watch);
1930
1931 /*
1932 * Initialise interrupt handlers
1933 */
1934 if (cpu_has_veic || cpu_has_vint) {
1935 int nvec = cpu_has_veic ? 64 : 8;
1936 for (i = 0; i < nvec; i++)
1937 set_vi_handler(i, NULL);
1938 }
1939 else if (cpu_has_divec)
1940 set_handler(0x200, &except_vec4, 0x8);
1941
1942 /*
1943 * Some CPUs can enable/disable for cache parity detection, but does
1944 * it different ways.
1945 */
1946 parity_protection_init();
1947
1948 /*
1949 * The Data Bus Errors / Instruction Bus Errors are signaled
1950 * by external hardware. Therefore these two exceptions
1951 * may have board specific handlers.
1952 */
1953 if (board_be_init)
1954 board_be_init();
1955
1956 set_except_vector(0, using_rollback_handler() ? rollback_handle_int
1957 : handle_int);
1958 set_except_vector(1, handle_tlbm);
1959 set_except_vector(2, handle_tlbl);
1960 set_except_vector(3, handle_tlbs);
1961
1962 set_except_vector(4, handle_adel);
1963 set_except_vector(5, handle_ades);
1964
1965 set_except_vector(6, handle_ibe);
1966 set_except_vector(7, handle_dbe);
1967
1968 set_except_vector(8, handle_sys);
1969 set_except_vector(9, handle_bp);
1970 set_except_vector(10, rdhwr_noopt ? handle_ri :
1971 (cpu_has_vtag_icache ?
1972 handle_ri_rdhwr_vivt : handle_ri_rdhwr));
1973 set_except_vector(11, handle_cpu);
1974 set_except_vector(12, handle_ov);
1975 set_except_vector(13, handle_tr);
1976
1977 if (current_cpu_type() == CPU_R6000 ||
1978 current_cpu_type() == CPU_R6000A) {
1979 /*
1980 * The R6000 is the only R-series CPU that features a machine
1981 * check exception (similar to the R4000 cache error) and
1982 * unaligned ldc1/sdc1 exception. The handlers have not been
1983 * written yet. Well, anyway there is no R6000 machine on the
1984 * current list of targets for Linux/MIPS.
1985 * (Duh, crap, there is someone with a triple R6k machine)
1986 */
1987 //set_except_vector(14, handle_mc);
1988 //set_except_vector(15, handle_ndc);
1989 }
1990
1991
1992 if (board_nmi_handler_setup)
1993 board_nmi_handler_setup();
1994
1995 if (cpu_has_fpu && !cpu_has_nofpuex)
1996 set_except_vector(15, handle_fpe);
1997
1998 set_except_vector(22, handle_mdmx);
1999
2000 if (cpu_has_mcheck)
2001 set_except_vector(24, handle_mcheck);
2002
2003 if (cpu_has_mipsmt)
2004 set_except_vector(25, handle_mt);
2005
2006 set_except_vector(26, handle_dsp);
2007
2008 if (board_cache_error_setup)
2009 board_cache_error_setup();
2010
2011 if (cpu_has_vce)
2012 /* Special exception: R4[04]00 uses also the divec space. */
2013 set_handler(0x180, &except_vec3_r4000, 0x100);
2014 else if (cpu_has_4kex)
2015 set_handler(0x180, &except_vec3_generic, 0x80);
2016 else
2017 set_handler(0x080, &except_vec3_generic, 0x80);
2018
2019 local_flush_icache_range(ebase, ebase + 0x400);
2020
2021 sort_extable(__start___dbe_table, __stop___dbe_table);
2022
2023 cu2_notifier(default_cu2_call, 0x80000000); /* Run last */
2024 }
This page took 0.077233 seconds and 6 git commands to generate.