Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[deliverable/linux.git] / arch / mips / kernel / traps.c
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7 * Copyright (C) 1995, 1996 Paul M. Antoine
8 * Copyright (C) 1998 Ulf Carlsson
9 * Copyright (C) 1999 Silicon Graphics, Inc.
10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11 * Copyright (C) 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki
12 * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc. All rights reserved.
13 * Copyright (C) 2014, Imagination Technologies Ltd.
14 */
15 #include <linux/bitops.h>
16 #include <linux/bug.h>
17 #include <linux/compiler.h>
18 #include <linux/context_tracking.h>
19 #include <linux/cpu_pm.h>
20 #include <linux/kexec.h>
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/mm.h>
25 #include <linux/sched.h>
26 #include <linux/smp.h>
27 #include <linux/spinlock.h>
28 #include <linux/kallsyms.h>
29 #include <linux/bootmem.h>
30 #include <linux/interrupt.h>
31 #include <linux/ptrace.h>
32 #include <linux/kgdb.h>
33 #include <linux/kdebug.h>
34 #include <linux/kprobes.h>
35 #include <linux/notifier.h>
36 #include <linux/kdb.h>
37 #include <linux/irq.h>
38 #include <linux/perf_event.h>
39
40 #include <asm/addrspace.h>
41 #include <asm/bootinfo.h>
42 #include <asm/branch.h>
43 #include <asm/break.h>
44 #include <asm/cop2.h>
45 #include <asm/cpu.h>
46 #include <asm/cpu-type.h>
47 #include <asm/dsp.h>
48 #include <asm/fpu.h>
49 #include <asm/fpu_emulator.h>
50 #include <asm/idle.h>
51 #include <asm/mips-r2-to-r6-emul.h>
52 #include <asm/mipsregs.h>
53 #include <asm/mipsmtregs.h>
54 #include <asm/module.h>
55 #include <asm/msa.h>
56 #include <asm/pgtable.h>
57 #include <asm/ptrace.h>
58 #include <asm/sections.h>
59 #include <asm/siginfo.h>
60 #include <asm/tlbdebug.h>
61 #include <asm/traps.h>
62 #include <asm/uaccess.h>
63 #include <asm/watch.h>
64 #include <asm/mmu_context.h>
65 #include <asm/types.h>
66 #include <asm/stacktrace.h>
67 #include <asm/uasm.h>
68
69 extern void check_wait(void);
70 extern asmlinkage void rollback_handle_int(void);
71 extern asmlinkage void handle_int(void);
72 extern u32 handle_tlbl[];
73 extern u32 handle_tlbs[];
74 extern u32 handle_tlbm[];
75 extern asmlinkage void handle_adel(void);
76 extern asmlinkage void handle_ades(void);
77 extern asmlinkage void handle_ibe(void);
78 extern asmlinkage void handle_dbe(void);
79 extern asmlinkage void handle_sys(void);
80 extern asmlinkage void handle_bp(void);
81 extern asmlinkage void handle_ri(void);
82 extern asmlinkage void handle_ri_rdhwr_vivt(void);
83 extern asmlinkage void handle_ri_rdhwr(void);
84 extern asmlinkage void handle_cpu(void);
85 extern asmlinkage void handle_ov(void);
86 extern asmlinkage void handle_tr(void);
87 extern asmlinkage void handle_msa_fpe(void);
88 extern asmlinkage void handle_fpe(void);
89 extern asmlinkage void handle_ftlb(void);
90 extern asmlinkage void handle_msa(void);
91 extern asmlinkage void handle_mdmx(void);
92 extern asmlinkage void handle_watch(void);
93 extern asmlinkage void handle_mt(void);
94 extern asmlinkage void handle_dsp(void);
95 extern asmlinkage void handle_mcheck(void);
96 extern asmlinkage void handle_reserved(void);
97 extern void tlb_do_page_fault_0(void);
98
99 void (*board_be_init)(void);
100 int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
101 void (*board_nmi_handler_setup)(void);
102 void (*board_ejtag_handler_setup)(void);
103 void (*board_bind_eic_interrupt)(int irq, int regset);
104 void (*board_ebase_setup)(void);
105 void(*board_cache_error_setup)(void);
106
107 static void show_raw_backtrace(unsigned long reg29)
108 {
109 unsigned long *sp = (unsigned long *)(reg29 & ~3);
110 unsigned long addr;
111
112 printk("Call Trace:");
113 #ifdef CONFIG_KALLSYMS
114 printk("\n");
115 #endif
116 while (!kstack_end(sp)) {
117 unsigned long __user *p =
118 (unsigned long __user *)(unsigned long)sp++;
119 if (__get_user(addr, p)) {
120 printk(" (Bad stack address)");
121 break;
122 }
123 if (__kernel_text_address(addr))
124 print_ip_sym(addr);
125 }
126 printk("\n");
127 }
128
129 #ifdef CONFIG_KALLSYMS
130 int raw_show_trace;
131 static int __init set_raw_show_trace(char *str)
132 {
133 raw_show_trace = 1;
134 return 1;
135 }
136 __setup("raw_show_trace", set_raw_show_trace);
137 #endif
138
139 static void show_backtrace(struct task_struct *task, const struct pt_regs *regs)
140 {
141 unsigned long sp = regs->regs[29];
142 unsigned long ra = regs->regs[31];
143 unsigned long pc = regs->cp0_epc;
144
145 if (!task)
146 task = current;
147
148 if (raw_show_trace || user_mode(regs) || !__kernel_text_address(pc)) {
149 show_raw_backtrace(sp);
150 return;
151 }
152 printk("Call Trace:\n");
153 do {
154 print_ip_sym(pc);
155 pc = unwind_stack(task, &sp, pc, &ra);
156 } while (pc);
157 printk("\n");
158 }
159
160 /*
161 * This routine abuses get_user()/put_user() to reference pointers
162 * with at least a bit of error checking ...
163 */
164 static void show_stacktrace(struct task_struct *task,
165 const struct pt_regs *regs)
166 {
167 const int field = 2 * sizeof(unsigned long);
168 long stackdata;
169 int i;
170 unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
171
172 printk("Stack :");
173 i = 0;
174 while ((unsigned long) sp & (PAGE_SIZE - 1)) {
175 if (i && ((i % (64 / field)) == 0))
176 printk("\n ");
177 if (i > 39) {
178 printk(" ...");
179 break;
180 }
181
182 if (__get_user(stackdata, sp++)) {
183 printk(" (Bad stack address)");
184 break;
185 }
186
187 printk(" %0*lx", field, stackdata);
188 i++;
189 }
190 printk("\n");
191 show_backtrace(task, regs);
192 }
193
194 void show_stack(struct task_struct *task, unsigned long *sp)
195 {
196 struct pt_regs regs;
197 mm_segment_t old_fs = get_fs();
198 if (sp) {
199 regs.regs[29] = (unsigned long)sp;
200 regs.regs[31] = 0;
201 regs.cp0_epc = 0;
202 } else {
203 if (task && task != current) {
204 regs.regs[29] = task->thread.reg29;
205 regs.regs[31] = 0;
206 regs.cp0_epc = task->thread.reg31;
207 #ifdef CONFIG_KGDB_KDB
208 } else if (atomic_read(&kgdb_active) != -1 &&
209 kdb_current_regs) {
210 memcpy(&regs, kdb_current_regs, sizeof(regs));
211 #endif /* CONFIG_KGDB_KDB */
212 } else {
213 prepare_frametrace(&regs);
214 }
215 }
216 /*
217 * show_stack() deals exclusively with kernel mode, so be sure to access
218 * the stack in the kernel (not user) address space.
219 */
220 set_fs(KERNEL_DS);
221 show_stacktrace(task, &regs);
222 set_fs(old_fs);
223 }
224
225 static void show_code(unsigned int __user *pc)
226 {
227 long i;
228 unsigned short __user *pc16 = NULL;
229
230 printk("\nCode:");
231
232 if ((unsigned long)pc & 1)
233 pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
234 for(i = -3 ; i < 6 ; i++) {
235 unsigned int insn;
236 if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
237 printk(" (Bad address in epc)\n");
238 break;
239 }
240 printk("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
241 }
242 }
243
244 static void __show_regs(const struct pt_regs *regs)
245 {
246 const int field = 2 * sizeof(unsigned long);
247 unsigned int cause = regs->cp0_cause;
248 unsigned int exccode;
249 int i;
250
251 show_regs_print_info(KERN_DEFAULT);
252
253 /*
254 * Saved main processor registers
255 */
256 for (i = 0; i < 32; ) {
257 if ((i % 4) == 0)
258 printk("$%2d :", i);
259 if (i == 0)
260 printk(" %0*lx", field, 0UL);
261 else if (i == 26 || i == 27)
262 printk(" %*s", field, "");
263 else
264 printk(" %0*lx", field, regs->regs[i]);
265
266 i++;
267 if ((i % 4) == 0)
268 printk("\n");
269 }
270
271 #ifdef CONFIG_CPU_HAS_SMARTMIPS
272 printk("Acx : %0*lx\n", field, regs->acx);
273 #endif
274 printk("Hi : %0*lx\n", field, regs->hi);
275 printk("Lo : %0*lx\n", field, regs->lo);
276
277 /*
278 * Saved cp0 registers
279 */
280 printk("epc : %0*lx %pS\n", field, regs->cp0_epc,
281 (void *) regs->cp0_epc);
282 printk("ra : %0*lx %pS\n", field, regs->regs[31],
283 (void *) regs->regs[31]);
284
285 printk("Status: %08x ", (uint32_t) regs->cp0_status);
286
287 if (cpu_has_3kex) {
288 if (regs->cp0_status & ST0_KUO)
289 printk("KUo ");
290 if (regs->cp0_status & ST0_IEO)
291 printk("IEo ");
292 if (regs->cp0_status & ST0_KUP)
293 printk("KUp ");
294 if (regs->cp0_status & ST0_IEP)
295 printk("IEp ");
296 if (regs->cp0_status & ST0_KUC)
297 printk("KUc ");
298 if (regs->cp0_status & ST0_IEC)
299 printk("IEc ");
300 } else if (cpu_has_4kex) {
301 if (regs->cp0_status & ST0_KX)
302 printk("KX ");
303 if (regs->cp0_status & ST0_SX)
304 printk("SX ");
305 if (regs->cp0_status & ST0_UX)
306 printk("UX ");
307 switch (regs->cp0_status & ST0_KSU) {
308 case KSU_USER:
309 printk("USER ");
310 break;
311 case KSU_SUPERVISOR:
312 printk("SUPERVISOR ");
313 break;
314 case KSU_KERNEL:
315 printk("KERNEL ");
316 break;
317 default:
318 printk("BAD_MODE ");
319 break;
320 }
321 if (regs->cp0_status & ST0_ERL)
322 printk("ERL ");
323 if (regs->cp0_status & ST0_EXL)
324 printk("EXL ");
325 if (regs->cp0_status & ST0_IE)
326 printk("IE ");
327 }
328 printk("\n");
329
330 exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
331 printk("Cause : %08x (ExcCode %02x)\n", cause, exccode);
332
333 if (1 <= exccode && exccode <= 5)
334 printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
335
336 printk("PrId : %08x (%s)\n", read_c0_prid(),
337 cpu_name_string());
338 }
339
340 /*
341 * FIXME: really the generic show_regs should take a const pointer argument.
342 */
343 void show_regs(struct pt_regs *regs)
344 {
345 __show_regs((struct pt_regs *)regs);
346 }
347
348 void show_registers(struct pt_regs *regs)
349 {
350 const int field = 2 * sizeof(unsigned long);
351 mm_segment_t old_fs = get_fs();
352
353 __show_regs(regs);
354 print_modules();
355 printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
356 current->comm, current->pid, current_thread_info(), current,
357 field, current_thread_info()->tp_value);
358 if (cpu_has_userlocal) {
359 unsigned long tls;
360
361 tls = read_c0_userlocal();
362 if (tls != current_thread_info()->tp_value)
363 printk("*HwTLS: %0*lx\n", field, tls);
364 }
365
366 if (!user_mode(regs))
367 /* Necessary for getting the correct stack content */
368 set_fs(KERNEL_DS);
369 show_stacktrace(current, regs);
370 show_code((unsigned int __user *) regs->cp0_epc);
371 printk("\n");
372 set_fs(old_fs);
373 }
374
375 static DEFINE_RAW_SPINLOCK(die_lock);
376
377 void __noreturn die(const char *str, struct pt_regs *regs)
378 {
379 static int die_counter;
380 int sig = SIGSEGV;
381
382 oops_enter();
383
384 if (notify_die(DIE_OOPS, str, regs, 0, current->thread.trap_nr,
385 SIGSEGV) == NOTIFY_STOP)
386 sig = 0;
387
388 console_verbose();
389 raw_spin_lock_irq(&die_lock);
390 bust_spinlocks(1);
391
392 printk("%s[#%d]:\n", str, ++die_counter);
393 show_registers(regs);
394 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
395 raw_spin_unlock_irq(&die_lock);
396
397 oops_exit();
398
399 if (in_interrupt())
400 panic("Fatal exception in interrupt");
401
402 if (panic_on_oops)
403 panic("Fatal exception");
404
405 if (regs && kexec_should_crash(current))
406 crash_kexec(regs);
407
408 do_exit(sig);
409 }
410
411 extern struct exception_table_entry __start___dbe_table[];
412 extern struct exception_table_entry __stop___dbe_table[];
413
414 __asm__(
415 " .section __dbe_table, \"a\"\n"
416 " .previous \n");
417
418 /* Given an address, look for it in the exception tables. */
419 static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
420 {
421 const struct exception_table_entry *e;
422
423 e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr);
424 if (!e)
425 e = search_module_dbetables(addr);
426 return e;
427 }
428
429 asmlinkage void do_be(struct pt_regs *regs)
430 {
431 const int field = 2 * sizeof(unsigned long);
432 const struct exception_table_entry *fixup = NULL;
433 int data = regs->cp0_cause & 4;
434 int action = MIPS_BE_FATAL;
435 enum ctx_state prev_state;
436
437 prev_state = exception_enter();
438 /* XXX For now. Fixme, this searches the wrong table ... */
439 if (data && !user_mode(regs))
440 fixup = search_dbe_tables(exception_epc(regs));
441
442 if (fixup)
443 action = MIPS_BE_FIXUP;
444
445 if (board_be_handler)
446 action = board_be_handler(regs, fixup != NULL);
447
448 switch (action) {
449 case MIPS_BE_DISCARD:
450 goto out;
451 case MIPS_BE_FIXUP:
452 if (fixup) {
453 regs->cp0_epc = fixup->nextinsn;
454 goto out;
455 }
456 break;
457 default:
458 break;
459 }
460
461 /*
462 * Assume it would be too dangerous to continue ...
463 */
464 printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
465 data ? "Data" : "Instruction",
466 field, regs->cp0_epc, field, regs->regs[31]);
467 if (notify_die(DIE_OOPS, "bus error", regs, 0, current->thread.trap_nr,
468 SIGBUS) == NOTIFY_STOP)
469 goto out;
470
471 die_if_kernel("Oops", regs);
472 force_sig(SIGBUS, current);
473
474 out:
475 exception_exit(prev_state);
476 }
477
478 /*
479 * ll/sc, rdhwr, sync emulation
480 */
481
482 #define OPCODE 0xfc000000
483 #define BASE 0x03e00000
484 #define RT 0x001f0000
485 #define OFFSET 0x0000ffff
486 #define LL 0xc0000000
487 #define SC 0xe0000000
488 #define SPEC0 0x00000000
489 #define SPEC3 0x7c000000
490 #define RD 0x0000f800
491 #define FUNC 0x0000003f
492 #define SYNC 0x0000000f
493 #define RDHWR 0x0000003b
494
495 /* microMIPS definitions */
496 #define MM_POOL32A_FUNC 0xfc00ffff
497 #define MM_RDHWR 0x00006b3c
498 #define MM_RS 0x001f0000
499 #define MM_RT 0x03e00000
500
501 /*
502 * The ll_bit is cleared by r*_switch.S
503 */
504
505 unsigned int ll_bit;
506 struct task_struct *ll_task;
507
508 static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
509 {
510 unsigned long value, __user *vaddr;
511 long offset;
512
513 /*
514 * analyse the ll instruction that just caused a ri exception
515 * and put the referenced address to addr.
516 */
517
518 /* sign extend offset */
519 offset = opcode & OFFSET;
520 offset <<= 16;
521 offset >>= 16;
522
523 vaddr = (unsigned long __user *)
524 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
525
526 if ((unsigned long)vaddr & 3)
527 return SIGBUS;
528 if (get_user(value, vaddr))
529 return SIGSEGV;
530
531 preempt_disable();
532
533 if (ll_task == NULL || ll_task == current) {
534 ll_bit = 1;
535 } else {
536 ll_bit = 0;
537 }
538 ll_task = current;
539
540 preempt_enable();
541
542 regs->regs[(opcode & RT) >> 16] = value;
543
544 return 0;
545 }
546
547 static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
548 {
549 unsigned long __user *vaddr;
550 unsigned long reg;
551 long offset;
552
553 /*
554 * analyse the sc instruction that just caused a ri exception
555 * and put the referenced address to addr.
556 */
557
558 /* sign extend offset */
559 offset = opcode & OFFSET;
560 offset <<= 16;
561 offset >>= 16;
562
563 vaddr = (unsigned long __user *)
564 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
565 reg = (opcode & RT) >> 16;
566
567 if ((unsigned long)vaddr & 3)
568 return SIGBUS;
569
570 preempt_disable();
571
572 if (ll_bit == 0 || ll_task != current) {
573 regs->regs[reg] = 0;
574 preempt_enable();
575 return 0;
576 }
577
578 preempt_enable();
579
580 if (put_user(regs->regs[reg], vaddr))
581 return SIGSEGV;
582
583 regs->regs[reg] = 1;
584
585 return 0;
586 }
587
588 /*
589 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both
590 * opcodes are supposed to result in coprocessor unusable exceptions if
591 * executed on ll/sc-less processors. That's the theory. In practice a
592 * few processors such as NEC's VR4100 throw reserved instruction exceptions
593 * instead, so we're doing the emulation thing in both exception handlers.
594 */
595 static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
596 {
597 if ((opcode & OPCODE) == LL) {
598 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
599 1, regs, 0);
600 return simulate_ll(regs, opcode);
601 }
602 if ((opcode & OPCODE) == SC) {
603 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
604 1, regs, 0);
605 return simulate_sc(regs, opcode);
606 }
607
608 return -1; /* Must be something else ... */
609 }
610
611 /*
612 * Simulate trapping 'rdhwr' instructions to provide user accessible
613 * registers not implemented in hardware.
614 */
615 static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt)
616 {
617 struct thread_info *ti = task_thread_info(current);
618
619 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
620 1, regs, 0);
621 switch (rd) {
622 case 0: /* CPU number */
623 regs->regs[rt] = smp_processor_id();
624 return 0;
625 case 1: /* SYNCI length */
626 regs->regs[rt] = min(current_cpu_data.dcache.linesz,
627 current_cpu_data.icache.linesz);
628 return 0;
629 case 2: /* Read count register */
630 regs->regs[rt] = read_c0_count();
631 return 0;
632 case 3: /* Count register resolution */
633 switch (current_cpu_type()) {
634 case CPU_20KC:
635 case CPU_25KF:
636 regs->regs[rt] = 1;
637 break;
638 default:
639 regs->regs[rt] = 2;
640 }
641 return 0;
642 case 29:
643 regs->regs[rt] = ti->tp_value;
644 return 0;
645 default:
646 return -1;
647 }
648 }
649
650 static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode)
651 {
652 if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
653 int rd = (opcode & RD) >> 11;
654 int rt = (opcode & RT) >> 16;
655
656 simulate_rdhwr(regs, rd, rt);
657 return 0;
658 }
659
660 /* Not ours. */
661 return -1;
662 }
663
664 static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned int opcode)
665 {
666 if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) {
667 int rd = (opcode & MM_RS) >> 16;
668 int rt = (opcode & MM_RT) >> 21;
669 simulate_rdhwr(regs, rd, rt);
670 return 0;
671 }
672
673 /* Not ours. */
674 return -1;
675 }
676
677 static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
678 {
679 if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
680 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
681 1, regs, 0);
682 return 0;
683 }
684
685 return -1; /* Must be something else ... */
686 }
687
688 asmlinkage void do_ov(struct pt_regs *regs)
689 {
690 enum ctx_state prev_state;
691 siginfo_t info = {
692 .si_signo = SIGFPE,
693 .si_code = FPE_INTOVF,
694 .si_addr = (void __user *)regs->cp0_epc,
695 };
696
697 prev_state = exception_enter();
698 die_if_kernel("Integer overflow", regs);
699
700 force_sig_info(SIGFPE, &info, current);
701 exception_exit(prev_state);
702 }
703
704 int process_fpemu_return(int sig, void __user *fault_addr, unsigned long fcr31)
705 {
706 struct siginfo si = { 0 };
707
708 switch (sig) {
709 case 0:
710 return 0;
711
712 case SIGFPE:
713 si.si_addr = fault_addr;
714 si.si_signo = sig;
715 /*
716 * Inexact can happen together with Overflow or Underflow.
717 * Respect the mask to deliver the correct exception.
718 */
719 fcr31 &= (fcr31 & FPU_CSR_ALL_E) <<
720 (ffs(FPU_CSR_ALL_X) - ffs(FPU_CSR_ALL_E));
721 if (fcr31 & FPU_CSR_INV_X)
722 si.si_code = FPE_FLTINV;
723 else if (fcr31 & FPU_CSR_DIV_X)
724 si.si_code = FPE_FLTDIV;
725 else if (fcr31 & FPU_CSR_OVF_X)
726 si.si_code = FPE_FLTOVF;
727 else if (fcr31 & FPU_CSR_UDF_X)
728 si.si_code = FPE_FLTUND;
729 else if (fcr31 & FPU_CSR_INE_X)
730 si.si_code = FPE_FLTRES;
731 else
732 si.si_code = __SI_FAULT;
733 force_sig_info(sig, &si, current);
734 return 1;
735
736 case SIGBUS:
737 si.si_addr = fault_addr;
738 si.si_signo = sig;
739 si.si_code = BUS_ADRERR;
740 force_sig_info(sig, &si, current);
741 return 1;
742
743 case SIGSEGV:
744 si.si_addr = fault_addr;
745 si.si_signo = sig;
746 down_read(&current->mm->mmap_sem);
747 if (find_vma(current->mm, (unsigned long)fault_addr))
748 si.si_code = SEGV_ACCERR;
749 else
750 si.si_code = SEGV_MAPERR;
751 up_read(&current->mm->mmap_sem);
752 force_sig_info(sig, &si, current);
753 return 1;
754
755 default:
756 force_sig(sig, current);
757 return 1;
758 }
759 }
760
761 static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
762 unsigned long old_epc, unsigned long old_ra)
763 {
764 union mips_instruction inst = { .word = opcode };
765 void __user *fault_addr;
766 unsigned long fcr31;
767 int sig;
768
769 /* If it's obviously not an FP instruction, skip it */
770 switch (inst.i_format.opcode) {
771 case cop1_op:
772 case cop1x_op:
773 case lwc1_op:
774 case ldc1_op:
775 case swc1_op:
776 case sdc1_op:
777 break;
778
779 default:
780 return -1;
781 }
782
783 /*
784 * do_ri skipped over the instruction via compute_return_epc, undo
785 * that for the FPU emulator.
786 */
787 regs->cp0_epc = old_epc;
788 regs->regs[31] = old_ra;
789
790 /* Save the FP context to struct thread_struct */
791 lose_fpu(1);
792
793 /* Run the emulator */
794 sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
795 &fault_addr);
796 fcr31 = current->thread.fpu.fcr31;
797
798 /*
799 * We can't allow the emulated instruction to leave any of
800 * the cause bits set in $fcr31.
801 */
802 current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
803
804 /* Restore the hardware register state */
805 own_fpu(1);
806
807 /* Send a signal if required. */
808 process_fpemu_return(sig, fault_addr, fcr31);
809
810 return 0;
811 }
812
813 /*
814 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
815 */
816 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
817 {
818 enum ctx_state prev_state;
819 void __user *fault_addr;
820 int sig;
821
822 prev_state = exception_enter();
823 if (notify_die(DIE_FP, "FP exception", regs, 0, current->thread.trap_nr,
824 SIGFPE) == NOTIFY_STOP)
825 goto out;
826
827 /* Clear FCSR.Cause before enabling interrupts */
828 write_32bit_cp1_register(CP1_STATUS, fcr31 & ~FPU_CSR_ALL_X);
829 local_irq_enable();
830
831 die_if_kernel("FP exception in kernel code", regs);
832
833 if (fcr31 & FPU_CSR_UNI_X) {
834 /*
835 * Unimplemented operation exception. If we've got the full
836 * software emulator on-board, let's use it...
837 *
838 * Force FPU to dump state into task/thread context. We're
839 * moving a lot of data here for what is probably a single
840 * instruction, but the alternative is to pre-decode the FP
841 * register operands before invoking the emulator, which seems
842 * a bit extreme for what should be an infrequent event.
843 */
844 /* Ensure 'resume' not overwrite saved fp context again. */
845 lose_fpu(1);
846
847 /* Run the emulator */
848 sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
849 &fault_addr);
850 fcr31 = current->thread.fpu.fcr31;
851
852 /*
853 * We can't allow the emulated instruction to leave any of
854 * the cause bits set in $fcr31.
855 */
856 current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
857
858 /* Restore the hardware register state */
859 own_fpu(1); /* Using the FPU again. */
860 } else {
861 sig = SIGFPE;
862 fault_addr = (void __user *) regs->cp0_epc;
863 }
864
865 /* Send a signal if required. */
866 process_fpemu_return(sig, fault_addr, fcr31);
867
868 out:
869 exception_exit(prev_state);
870 }
871
872 void do_trap_or_bp(struct pt_regs *regs, unsigned int code, int si_code,
873 const char *str)
874 {
875 siginfo_t info = { 0 };
876 char b[40];
877
878 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
879 if (kgdb_ll_trap(DIE_TRAP, str, regs, code, current->thread.trap_nr,
880 SIGTRAP) == NOTIFY_STOP)
881 return;
882 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
883
884 if (notify_die(DIE_TRAP, str, regs, code, current->thread.trap_nr,
885 SIGTRAP) == NOTIFY_STOP)
886 return;
887
888 /*
889 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
890 * insns, even for trap and break codes that indicate arithmetic
891 * failures. Weird ...
892 * But should we continue the brokenness??? --macro
893 */
894 switch (code) {
895 case BRK_OVERFLOW:
896 case BRK_DIVZERO:
897 scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
898 die_if_kernel(b, regs);
899 if (code == BRK_DIVZERO)
900 info.si_code = FPE_INTDIV;
901 else
902 info.si_code = FPE_INTOVF;
903 info.si_signo = SIGFPE;
904 info.si_addr = (void __user *) regs->cp0_epc;
905 force_sig_info(SIGFPE, &info, current);
906 break;
907 case BRK_BUG:
908 die_if_kernel("Kernel bug detected", regs);
909 force_sig(SIGTRAP, current);
910 break;
911 case BRK_MEMU:
912 /*
913 * This breakpoint code is used by the FPU emulator to retake
914 * control of the CPU after executing the instruction from the
915 * delay slot of an emulated branch.
916 *
917 * Terminate if exception was recognized as a delay slot return
918 * otherwise handle as normal.
919 */
920 if (do_dsemulret(regs))
921 return;
922
923 die_if_kernel("Math emu break/trap", regs);
924 force_sig(SIGTRAP, current);
925 break;
926 default:
927 scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
928 die_if_kernel(b, regs);
929 if (si_code) {
930 info.si_signo = SIGTRAP;
931 info.si_code = si_code;
932 force_sig_info(SIGTRAP, &info, current);
933 } else {
934 force_sig(SIGTRAP, current);
935 }
936 }
937 }
938
939 asmlinkage void do_bp(struct pt_regs *regs)
940 {
941 unsigned long epc = msk_isa16_mode(exception_epc(regs));
942 unsigned int opcode, bcode;
943 enum ctx_state prev_state;
944 mm_segment_t seg;
945
946 seg = get_fs();
947 if (!user_mode(regs))
948 set_fs(KERNEL_DS);
949
950 prev_state = exception_enter();
951 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
952 if (get_isa16_mode(regs->cp0_epc)) {
953 u16 instr[2];
954
955 if (__get_user(instr[0], (u16 __user *)epc))
956 goto out_sigsegv;
957
958 if (!cpu_has_mmips) {
959 /* MIPS16e mode */
960 bcode = (instr[0] >> 5) & 0x3f;
961 } else if (mm_insn_16bit(instr[0])) {
962 /* 16-bit microMIPS BREAK */
963 bcode = instr[0] & 0xf;
964 } else {
965 /* 32-bit microMIPS BREAK */
966 if (__get_user(instr[1], (u16 __user *)(epc + 2)))
967 goto out_sigsegv;
968 opcode = (instr[0] << 16) | instr[1];
969 bcode = (opcode >> 6) & ((1 << 20) - 1);
970 }
971 } else {
972 if (__get_user(opcode, (unsigned int __user *)epc))
973 goto out_sigsegv;
974 bcode = (opcode >> 6) & ((1 << 20) - 1);
975 }
976
977 /*
978 * There is the ancient bug in the MIPS assemblers that the break
979 * code starts left to bit 16 instead to bit 6 in the opcode.
980 * Gas is bug-compatible, but not always, grrr...
981 * We handle both cases with a simple heuristics. --macro
982 */
983 if (bcode >= (1 << 10))
984 bcode = ((bcode & ((1 << 10) - 1)) << 10) | (bcode >> 10);
985
986 /*
987 * notify the kprobe handlers, if instruction is likely to
988 * pertain to them.
989 */
990 switch (bcode) {
991 case BRK_UPROBE:
992 if (notify_die(DIE_UPROBE, "uprobe", regs, bcode,
993 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
994 goto out;
995 else
996 break;
997 case BRK_UPROBE_XOL:
998 if (notify_die(DIE_UPROBE_XOL, "uprobe_xol", regs, bcode,
999 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1000 goto out;
1001 else
1002 break;
1003 case BRK_KPROBE_BP:
1004 if (notify_die(DIE_BREAK, "debug", regs, bcode,
1005 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1006 goto out;
1007 else
1008 break;
1009 case BRK_KPROBE_SSTEPBP:
1010 if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode,
1011 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1012 goto out;
1013 else
1014 break;
1015 default:
1016 break;
1017 }
1018
1019 do_trap_or_bp(regs, bcode, TRAP_BRKPT, "Break");
1020
1021 out:
1022 set_fs(seg);
1023 exception_exit(prev_state);
1024 return;
1025
1026 out_sigsegv:
1027 force_sig(SIGSEGV, current);
1028 goto out;
1029 }
1030
1031 asmlinkage void do_tr(struct pt_regs *regs)
1032 {
1033 u32 opcode, tcode = 0;
1034 enum ctx_state prev_state;
1035 u16 instr[2];
1036 mm_segment_t seg;
1037 unsigned long epc = msk_isa16_mode(exception_epc(regs));
1038
1039 seg = get_fs();
1040 if (!user_mode(regs))
1041 set_fs(get_ds());
1042
1043 prev_state = exception_enter();
1044 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1045 if (get_isa16_mode(regs->cp0_epc)) {
1046 if (__get_user(instr[0], (u16 __user *)(epc + 0)) ||
1047 __get_user(instr[1], (u16 __user *)(epc + 2)))
1048 goto out_sigsegv;
1049 opcode = (instr[0] << 16) | instr[1];
1050 /* Immediate versions don't provide a code. */
1051 if (!(opcode & OPCODE))
1052 tcode = (opcode >> 12) & ((1 << 4) - 1);
1053 } else {
1054 if (__get_user(opcode, (u32 __user *)epc))
1055 goto out_sigsegv;
1056 /* Immediate versions don't provide a code. */
1057 if (!(opcode & OPCODE))
1058 tcode = (opcode >> 6) & ((1 << 10) - 1);
1059 }
1060
1061 do_trap_or_bp(regs, tcode, 0, "Trap");
1062
1063 out:
1064 set_fs(seg);
1065 exception_exit(prev_state);
1066 return;
1067
1068 out_sigsegv:
1069 force_sig(SIGSEGV, current);
1070 goto out;
1071 }
1072
1073 asmlinkage void do_ri(struct pt_regs *regs)
1074 {
1075 unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
1076 unsigned long old_epc = regs->cp0_epc;
1077 unsigned long old31 = regs->regs[31];
1078 enum ctx_state prev_state;
1079 unsigned int opcode = 0;
1080 int status = -1;
1081
1082 /*
1083 * Avoid any kernel code. Just emulate the R2 instruction
1084 * as quickly as possible.
1085 */
1086 if (mipsr2_emulation && cpu_has_mips_r6 &&
1087 likely(user_mode(regs)) &&
1088 likely(get_user(opcode, epc) >= 0)) {
1089 unsigned long fcr31 = 0;
1090
1091 status = mipsr2_decoder(regs, opcode, &fcr31);
1092 switch (status) {
1093 case 0:
1094 case SIGEMT:
1095 task_thread_info(current)->r2_emul_return = 1;
1096 return;
1097 case SIGILL:
1098 goto no_r2_instr;
1099 default:
1100 process_fpemu_return(status,
1101 &current->thread.cp0_baduaddr,
1102 fcr31);
1103 task_thread_info(current)->r2_emul_return = 1;
1104 return;
1105 }
1106 }
1107
1108 no_r2_instr:
1109
1110 prev_state = exception_enter();
1111 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1112
1113 if (notify_die(DIE_RI, "RI Fault", regs, 0, current->thread.trap_nr,
1114 SIGILL) == NOTIFY_STOP)
1115 goto out;
1116
1117 die_if_kernel("Reserved instruction in kernel code", regs);
1118
1119 if (unlikely(compute_return_epc(regs) < 0))
1120 goto out;
1121
1122 if (!get_isa16_mode(regs->cp0_epc)) {
1123 if (unlikely(get_user(opcode, epc) < 0))
1124 status = SIGSEGV;
1125
1126 if (!cpu_has_llsc && status < 0)
1127 status = simulate_llsc(regs, opcode);
1128
1129 if (status < 0)
1130 status = simulate_rdhwr_normal(regs, opcode);
1131
1132 if (status < 0)
1133 status = simulate_sync(regs, opcode);
1134
1135 if (status < 0)
1136 status = simulate_fp(regs, opcode, old_epc, old31);
1137 } else if (cpu_has_mmips) {
1138 unsigned short mmop[2] = { 0 };
1139
1140 if (unlikely(get_user(mmop[0], (u16 __user *)epc + 0) < 0))
1141 status = SIGSEGV;
1142 if (unlikely(get_user(mmop[1], (u16 __user *)epc + 1) < 0))
1143 status = SIGSEGV;
1144 opcode = mmop[0];
1145 opcode = (opcode << 16) | mmop[1];
1146
1147 if (status < 0)
1148 status = simulate_rdhwr_mm(regs, opcode);
1149 }
1150
1151 if (status < 0)
1152 status = SIGILL;
1153
1154 if (unlikely(status > 0)) {
1155 regs->cp0_epc = old_epc; /* Undo skip-over. */
1156 regs->regs[31] = old31;
1157 force_sig(status, current);
1158 }
1159
1160 out:
1161 exception_exit(prev_state);
1162 }
1163
1164 /*
1165 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
1166 * emulated more than some threshold number of instructions, force migration to
1167 * a "CPU" that has FP support.
1168 */
1169 static void mt_ase_fp_affinity(void)
1170 {
1171 #ifdef CONFIG_MIPS_MT_FPAFF
1172 if (mt_fpemul_threshold > 0 &&
1173 ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
1174 /*
1175 * If there's no FPU present, or if the application has already
1176 * restricted the allowed set to exclude any CPUs with FPUs,
1177 * we'll skip the procedure.
1178 */
1179 if (cpumask_intersects(&current->cpus_allowed, &mt_fpu_cpumask)) {
1180 cpumask_t tmask;
1181
1182 current->thread.user_cpus_allowed
1183 = current->cpus_allowed;
1184 cpumask_and(&tmask, &current->cpus_allowed,
1185 &mt_fpu_cpumask);
1186 set_cpus_allowed_ptr(current, &tmask);
1187 set_thread_flag(TIF_FPUBOUND);
1188 }
1189 }
1190 #endif /* CONFIG_MIPS_MT_FPAFF */
1191 }
1192
1193 /*
1194 * No lock; only written during early bootup by CPU 0.
1195 */
1196 static RAW_NOTIFIER_HEAD(cu2_chain);
1197
1198 int __ref register_cu2_notifier(struct notifier_block *nb)
1199 {
1200 return raw_notifier_chain_register(&cu2_chain, nb);
1201 }
1202
1203 int cu2_notifier_call_chain(unsigned long val, void *v)
1204 {
1205 return raw_notifier_call_chain(&cu2_chain, val, v);
1206 }
1207
1208 static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
1209 void *data)
1210 {
1211 struct pt_regs *regs = data;
1212
1213 die_if_kernel("COP2: Unhandled kernel unaligned access or invalid "
1214 "instruction", regs);
1215 force_sig(SIGILL, current);
1216
1217 return NOTIFY_OK;
1218 }
1219
1220 static int wait_on_fp_mode_switch(atomic_t *p)
1221 {
1222 /*
1223 * The FP mode for this task is currently being switched. That may
1224 * involve modifications to the format of this tasks FP context which
1225 * make it unsafe to proceed with execution for the moment. Instead,
1226 * schedule some other task.
1227 */
1228 schedule();
1229 return 0;
1230 }
1231
1232 static int enable_restore_fp_context(int msa)
1233 {
1234 int err, was_fpu_owner, prior_msa;
1235
1236 /*
1237 * If an FP mode switch is currently underway, wait for it to
1238 * complete before proceeding.
1239 */
1240 wait_on_atomic_t(&current->mm->context.fp_mode_switching,
1241 wait_on_fp_mode_switch, TASK_KILLABLE);
1242
1243 if (!used_math()) {
1244 /* First time FP context user. */
1245 preempt_disable();
1246 err = init_fpu();
1247 if (msa && !err) {
1248 enable_msa();
1249 init_msa_upper();
1250 set_thread_flag(TIF_USEDMSA);
1251 set_thread_flag(TIF_MSA_CTX_LIVE);
1252 }
1253 preempt_enable();
1254 if (!err)
1255 set_used_math();
1256 return err;
1257 }
1258
1259 /*
1260 * This task has formerly used the FP context.
1261 *
1262 * If this thread has no live MSA vector context then we can simply
1263 * restore the scalar FP context. If it has live MSA vector context
1264 * (that is, it has or may have used MSA since last performing a
1265 * function call) then we'll need to restore the vector context. This
1266 * applies even if we're currently only executing a scalar FP
1267 * instruction. This is because if we were to later execute an MSA
1268 * instruction then we'd either have to:
1269 *
1270 * - Restore the vector context & clobber any registers modified by
1271 * scalar FP instructions between now & then.
1272 *
1273 * or
1274 *
1275 * - Not restore the vector context & lose the most significant bits
1276 * of all vector registers.
1277 *
1278 * Neither of those options is acceptable. We cannot restore the least
1279 * significant bits of the registers now & only restore the most
1280 * significant bits later because the most significant bits of any
1281 * vector registers whose aliased FP register is modified now will have
1282 * been zeroed. We'd have no way to know that when restoring the vector
1283 * context & thus may load an outdated value for the most significant
1284 * bits of a vector register.
1285 */
1286 if (!msa && !thread_msa_context_live())
1287 return own_fpu(1);
1288
1289 /*
1290 * This task is using or has previously used MSA. Thus we require
1291 * that Status.FR == 1.
1292 */
1293 preempt_disable();
1294 was_fpu_owner = is_fpu_owner();
1295 err = own_fpu_inatomic(0);
1296 if (err)
1297 goto out;
1298
1299 enable_msa();
1300 write_msa_csr(current->thread.fpu.msacsr);
1301 set_thread_flag(TIF_USEDMSA);
1302
1303 /*
1304 * If this is the first time that the task is using MSA and it has
1305 * previously used scalar FP in this time slice then we already nave
1306 * FP context which we shouldn't clobber. We do however need to clear
1307 * the upper 64b of each vector register so that this task has no
1308 * opportunity to see data left behind by another.
1309 */
1310 prior_msa = test_and_set_thread_flag(TIF_MSA_CTX_LIVE);
1311 if (!prior_msa && was_fpu_owner) {
1312 init_msa_upper();
1313
1314 goto out;
1315 }
1316
1317 if (!prior_msa) {
1318 /*
1319 * Restore the least significant 64b of each vector register
1320 * from the existing scalar FP context.
1321 */
1322 _restore_fp(current);
1323
1324 /*
1325 * The task has not formerly used MSA, so clear the upper 64b
1326 * of each vector register such that it cannot see data left
1327 * behind by another task.
1328 */
1329 init_msa_upper();
1330 } else {
1331 /* We need to restore the vector context. */
1332 restore_msa(current);
1333
1334 /* Restore the scalar FP control & status register */
1335 if (!was_fpu_owner)
1336 write_32bit_cp1_register(CP1_STATUS,
1337 current->thread.fpu.fcr31);
1338 }
1339
1340 out:
1341 preempt_enable();
1342
1343 return 0;
1344 }
1345
1346 asmlinkage void do_cpu(struct pt_regs *regs)
1347 {
1348 enum ctx_state prev_state;
1349 unsigned int __user *epc;
1350 unsigned long old_epc, old31;
1351 void __user *fault_addr;
1352 unsigned int opcode;
1353 unsigned long fcr31;
1354 unsigned int cpid;
1355 int status, err;
1356 int sig;
1357
1358 prev_state = exception_enter();
1359 cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
1360
1361 if (cpid != 2)
1362 die_if_kernel("do_cpu invoked from kernel context!", regs);
1363
1364 switch (cpid) {
1365 case 0:
1366 epc = (unsigned int __user *)exception_epc(regs);
1367 old_epc = regs->cp0_epc;
1368 old31 = regs->regs[31];
1369 opcode = 0;
1370 status = -1;
1371
1372 if (unlikely(compute_return_epc(regs) < 0))
1373 break;
1374
1375 if (!get_isa16_mode(regs->cp0_epc)) {
1376 if (unlikely(get_user(opcode, epc) < 0))
1377 status = SIGSEGV;
1378
1379 if (!cpu_has_llsc && status < 0)
1380 status = simulate_llsc(regs, opcode);
1381 }
1382
1383 if (status < 0)
1384 status = SIGILL;
1385
1386 if (unlikely(status > 0)) {
1387 regs->cp0_epc = old_epc; /* Undo skip-over. */
1388 regs->regs[31] = old31;
1389 force_sig(status, current);
1390 }
1391
1392 break;
1393
1394 case 3:
1395 /*
1396 * The COP3 opcode space and consequently the CP0.Status.CU3
1397 * bit and the CP0.Cause.CE=3 encoding have been removed as
1398 * of the MIPS III ISA. From the MIPS IV and MIPS32r2 ISAs
1399 * up the space has been reused for COP1X instructions, that
1400 * are enabled by the CP0.Status.CU1 bit and consequently
1401 * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable
1402 * exceptions. Some FPU-less processors that implement one
1403 * of these ISAs however use this code erroneously for COP1X
1404 * instructions. Therefore we redirect this trap to the FP
1405 * emulator too.
1406 */
1407 if (raw_cpu_has_fpu || !cpu_has_mips_4_5_64_r2_r6) {
1408 force_sig(SIGILL, current);
1409 break;
1410 }
1411 /* Fall through. */
1412
1413 case 1:
1414 err = enable_restore_fp_context(0);
1415
1416 if (raw_cpu_has_fpu && !err)
1417 break;
1418
1419 sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 0,
1420 &fault_addr);
1421 fcr31 = current->thread.fpu.fcr31;
1422
1423 /*
1424 * We can't allow the emulated instruction to leave
1425 * any of the cause bits set in $fcr31.
1426 */
1427 current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
1428
1429 /* Send a signal if required. */
1430 if (!process_fpemu_return(sig, fault_addr, fcr31) && !err)
1431 mt_ase_fp_affinity();
1432
1433 break;
1434
1435 case 2:
1436 raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
1437 break;
1438 }
1439
1440 exception_exit(prev_state);
1441 }
1442
1443 asmlinkage void do_msa_fpe(struct pt_regs *regs, unsigned int msacsr)
1444 {
1445 enum ctx_state prev_state;
1446
1447 prev_state = exception_enter();
1448 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1449 if (notify_die(DIE_MSAFP, "MSA FP exception", regs, 0,
1450 current->thread.trap_nr, SIGFPE) == NOTIFY_STOP)
1451 goto out;
1452
1453 /* Clear MSACSR.Cause before enabling interrupts */
1454 write_msa_csr(msacsr & ~MSA_CSR_CAUSEF);
1455 local_irq_enable();
1456
1457 die_if_kernel("do_msa_fpe invoked from kernel context!", regs);
1458 force_sig(SIGFPE, current);
1459 out:
1460 exception_exit(prev_state);
1461 }
1462
1463 asmlinkage void do_msa(struct pt_regs *regs)
1464 {
1465 enum ctx_state prev_state;
1466 int err;
1467
1468 prev_state = exception_enter();
1469
1470 if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) {
1471 force_sig(SIGILL, current);
1472 goto out;
1473 }
1474
1475 die_if_kernel("do_msa invoked from kernel context!", regs);
1476
1477 err = enable_restore_fp_context(1);
1478 if (err)
1479 force_sig(SIGILL, current);
1480 out:
1481 exception_exit(prev_state);
1482 }
1483
1484 asmlinkage void do_mdmx(struct pt_regs *regs)
1485 {
1486 enum ctx_state prev_state;
1487
1488 prev_state = exception_enter();
1489 force_sig(SIGILL, current);
1490 exception_exit(prev_state);
1491 }
1492
1493 /*
1494 * Called with interrupts disabled.
1495 */
1496 asmlinkage void do_watch(struct pt_regs *regs)
1497 {
1498 siginfo_t info = { .si_signo = SIGTRAP, .si_code = TRAP_HWBKPT };
1499 enum ctx_state prev_state;
1500
1501 prev_state = exception_enter();
1502 /*
1503 * Clear WP (bit 22) bit of cause register so we don't loop
1504 * forever.
1505 */
1506 clear_c0_cause(CAUSEF_WP);
1507
1508 /*
1509 * If the current thread has the watch registers loaded, save
1510 * their values and send SIGTRAP. Otherwise another thread
1511 * left the registers set, clear them and continue.
1512 */
1513 if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
1514 mips_read_watch_registers();
1515 local_irq_enable();
1516 force_sig_info(SIGTRAP, &info, current);
1517 } else {
1518 mips_clear_watch_registers();
1519 local_irq_enable();
1520 }
1521 exception_exit(prev_state);
1522 }
1523
1524 asmlinkage void do_mcheck(struct pt_regs *regs)
1525 {
1526 int multi_match = regs->cp0_status & ST0_TS;
1527 enum ctx_state prev_state;
1528 mm_segment_t old_fs = get_fs();
1529
1530 prev_state = exception_enter();
1531 show_regs(regs);
1532
1533 if (multi_match) {
1534 dump_tlb_regs();
1535 pr_info("\n");
1536 dump_tlb_all();
1537 }
1538
1539 if (!user_mode(regs))
1540 set_fs(KERNEL_DS);
1541
1542 show_code((unsigned int __user *) regs->cp0_epc);
1543
1544 set_fs(old_fs);
1545
1546 /*
1547 * Some chips may have other causes of machine check (e.g. SB1
1548 * graduation timer)
1549 */
1550 panic("Caught Machine Check exception - %scaused by multiple "
1551 "matching entries in the TLB.",
1552 (multi_match) ? "" : "not ");
1553 }
1554
1555 asmlinkage void do_mt(struct pt_regs *regs)
1556 {
1557 int subcode;
1558
1559 subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1560 >> VPECONTROL_EXCPT_SHIFT;
1561 switch (subcode) {
1562 case 0:
1563 printk(KERN_DEBUG "Thread Underflow\n");
1564 break;
1565 case 1:
1566 printk(KERN_DEBUG "Thread Overflow\n");
1567 break;
1568 case 2:
1569 printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
1570 break;
1571 case 3:
1572 printk(KERN_DEBUG "Gating Storage Exception\n");
1573 break;
1574 case 4:
1575 printk(KERN_DEBUG "YIELD Scheduler Exception\n");
1576 break;
1577 case 5:
1578 printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
1579 break;
1580 default:
1581 printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
1582 subcode);
1583 break;
1584 }
1585 die_if_kernel("MIPS MT Thread exception in kernel", regs);
1586
1587 force_sig(SIGILL, current);
1588 }
1589
1590
1591 asmlinkage void do_dsp(struct pt_regs *regs)
1592 {
1593 if (cpu_has_dsp)
1594 panic("Unexpected DSP exception");
1595
1596 force_sig(SIGILL, current);
1597 }
1598
1599 asmlinkage void do_reserved(struct pt_regs *regs)
1600 {
1601 /*
1602 * Game over - no way to handle this if it ever occurs. Most probably
1603 * caused by a new unknown cpu type or after another deadly
1604 * hard/software error.
1605 */
1606 show_regs(regs);
1607 panic("Caught reserved exception %ld - should not happen.",
1608 (regs->cp0_cause & 0x7f) >> 2);
1609 }
1610
1611 static int __initdata l1parity = 1;
1612 static int __init nol1parity(char *s)
1613 {
1614 l1parity = 0;
1615 return 1;
1616 }
1617 __setup("nol1par", nol1parity);
1618 static int __initdata l2parity = 1;
1619 static int __init nol2parity(char *s)
1620 {
1621 l2parity = 0;
1622 return 1;
1623 }
1624 __setup("nol2par", nol2parity);
1625
1626 /*
1627 * Some MIPS CPUs can enable/disable for cache parity detection, but do
1628 * it different ways.
1629 */
1630 static inline void parity_protection_init(void)
1631 {
1632 switch (current_cpu_type()) {
1633 case CPU_24K:
1634 case CPU_34K:
1635 case CPU_74K:
1636 case CPU_1004K:
1637 case CPU_1074K:
1638 case CPU_INTERAPTIV:
1639 case CPU_PROAPTIV:
1640 case CPU_P5600:
1641 case CPU_QEMU_GENERIC:
1642 case CPU_I6400:
1643 case CPU_P6600:
1644 {
1645 #define ERRCTL_PE 0x80000000
1646 #define ERRCTL_L2P 0x00800000
1647 unsigned long errctl;
1648 unsigned int l1parity_present, l2parity_present;
1649
1650 errctl = read_c0_ecc();
1651 errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1652
1653 /* probe L1 parity support */
1654 write_c0_ecc(errctl | ERRCTL_PE);
1655 back_to_back_c0_hazard();
1656 l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1657
1658 /* probe L2 parity support */
1659 write_c0_ecc(errctl|ERRCTL_L2P);
1660 back_to_back_c0_hazard();
1661 l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1662
1663 if (l1parity_present && l2parity_present) {
1664 if (l1parity)
1665 errctl |= ERRCTL_PE;
1666 if (l1parity ^ l2parity)
1667 errctl |= ERRCTL_L2P;
1668 } else if (l1parity_present) {
1669 if (l1parity)
1670 errctl |= ERRCTL_PE;
1671 } else if (l2parity_present) {
1672 if (l2parity)
1673 errctl |= ERRCTL_L2P;
1674 } else {
1675 /* No parity available */
1676 }
1677
1678 printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1679
1680 write_c0_ecc(errctl);
1681 back_to_back_c0_hazard();
1682 errctl = read_c0_ecc();
1683 printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1684
1685 if (l1parity_present)
1686 printk(KERN_INFO "Cache parity protection %sabled\n",
1687 (errctl & ERRCTL_PE) ? "en" : "dis");
1688
1689 if (l2parity_present) {
1690 if (l1parity_present && l1parity)
1691 errctl ^= ERRCTL_L2P;
1692 printk(KERN_INFO "L2 cache parity protection %sabled\n",
1693 (errctl & ERRCTL_L2P) ? "en" : "dis");
1694 }
1695 }
1696 break;
1697
1698 case CPU_5KC:
1699 case CPU_5KE:
1700 case CPU_LOONGSON1:
1701 write_c0_ecc(0x80000000);
1702 back_to_back_c0_hazard();
1703 /* Set the PE bit (bit 31) in the c0_errctl register. */
1704 printk(KERN_INFO "Cache parity protection %sabled\n",
1705 (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1706 break;
1707 case CPU_20KC:
1708 case CPU_25KF:
1709 /* Clear the DE bit (bit 16) in the c0_status register. */
1710 printk(KERN_INFO "Enable cache parity protection for "
1711 "MIPS 20KC/25KF CPUs.\n");
1712 clear_c0_status(ST0_DE);
1713 break;
1714 default:
1715 break;
1716 }
1717 }
1718
1719 asmlinkage void cache_parity_error(void)
1720 {
1721 const int field = 2 * sizeof(unsigned long);
1722 unsigned int reg_val;
1723
1724 /* For the moment, report the problem and hang. */
1725 printk("Cache error exception:\n");
1726 printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1727 reg_val = read_c0_cacheerr();
1728 printk("c0_cacheerr == %08x\n", reg_val);
1729
1730 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1731 reg_val & (1<<30) ? "secondary" : "primary",
1732 reg_val & (1<<31) ? "data" : "insn");
1733 if ((cpu_has_mips_r2_r6) &&
1734 ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
1735 pr_err("Error bits: %s%s%s%s%s%s%s%s\n",
1736 reg_val & (1<<29) ? "ED " : "",
1737 reg_val & (1<<28) ? "ET " : "",
1738 reg_val & (1<<27) ? "ES " : "",
1739 reg_val & (1<<26) ? "EE " : "",
1740 reg_val & (1<<25) ? "EB " : "",
1741 reg_val & (1<<24) ? "EI " : "",
1742 reg_val & (1<<23) ? "E1 " : "",
1743 reg_val & (1<<22) ? "E0 " : "");
1744 } else {
1745 pr_err("Error bits: %s%s%s%s%s%s%s\n",
1746 reg_val & (1<<29) ? "ED " : "",
1747 reg_val & (1<<28) ? "ET " : "",
1748 reg_val & (1<<26) ? "EE " : "",
1749 reg_val & (1<<25) ? "EB " : "",
1750 reg_val & (1<<24) ? "EI " : "",
1751 reg_val & (1<<23) ? "E1 " : "",
1752 reg_val & (1<<22) ? "E0 " : "");
1753 }
1754 printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1755
1756 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1757 if (reg_val & (1<<22))
1758 printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1759
1760 if (reg_val & (1<<23))
1761 printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1762 #endif
1763
1764 panic("Can't handle the cache error!");
1765 }
1766
1767 asmlinkage void do_ftlb(void)
1768 {
1769 const int field = 2 * sizeof(unsigned long);
1770 unsigned int reg_val;
1771
1772 /* For the moment, report the problem and hang. */
1773 if ((cpu_has_mips_r2_r6) &&
1774 (((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS) ||
1775 ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_LOONGSON))) {
1776 pr_err("FTLB error exception, cp0_ecc=0x%08x:\n",
1777 read_c0_ecc());
1778 pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1779 reg_val = read_c0_cacheerr();
1780 pr_err("c0_cacheerr == %08x\n", reg_val);
1781
1782 if ((reg_val & 0xc0000000) == 0xc0000000) {
1783 pr_err("Decoded c0_cacheerr: FTLB parity error\n");
1784 } else {
1785 pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1786 reg_val & (1<<30) ? "secondary" : "primary",
1787 reg_val & (1<<31) ? "data" : "insn");
1788 }
1789 } else {
1790 pr_err("FTLB error exception\n");
1791 }
1792 /* Just print the cacheerr bits for now */
1793 cache_parity_error();
1794 }
1795
1796 /*
1797 * SDBBP EJTAG debug exception handler.
1798 * We skip the instruction and return to the next instruction.
1799 */
1800 void ejtag_exception_handler(struct pt_regs *regs)
1801 {
1802 const int field = 2 * sizeof(unsigned long);
1803 unsigned long depc, old_epc, old_ra;
1804 unsigned int debug;
1805
1806 printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1807 depc = read_c0_depc();
1808 debug = read_c0_debug();
1809 printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1810 if (debug & 0x80000000) {
1811 /*
1812 * In branch delay slot.
1813 * We cheat a little bit here and use EPC to calculate the
1814 * debug return address (DEPC). EPC is restored after the
1815 * calculation.
1816 */
1817 old_epc = regs->cp0_epc;
1818 old_ra = regs->regs[31];
1819 regs->cp0_epc = depc;
1820 compute_return_epc(regs);
1821 depc = regs->cp0_epc;
1822 regs->cp0_epc = old_epc;
1823 regs->regs[31] = old_ra;
1824 } else
1825 depc += 4;
1826 write_c0_depc(depc);
1827
1828 #if 0
1829 printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1830 write_c0_debug(debug | 0x100);
1831 #endif
1832 }
1833
1834 /*
1835 * NMI exception handler.
1836 * No lock; only written during early bootup by CPU 0.
1837 */
1838 static RAW_NOTIFIER_HEAD(nmi_chain);
1839
1840 int register_nmi_notifier(struct notifier_block *nb)
1841 {
1842 return raw_notifier_chain_register(&nmi_chain, nb);
1843 }
1844
1845 void __noreturn nmi_exception_handler(struct pt_regs *regs)
1846 {
1847 char str[100];
1848
1849 nmi_enter();
1850 raw_notifier_call_chain(&nmi_chain, 0, regs);
1851 bust_spinlocks(1);
1852 snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n",
1853 smp_processor_id(), regs->cp0_epc);
1854 regs->cp0_epc = read_c0_errorepc();
1855 die(str, regs);
1856 nmi_exit();
1857 }
1858
1859 #define VECTORSPACING 0x100 /* for EI/VI mode */
1860
1861 unsigned long ebase;
1862 unsigned long exception_handlers[32];
1863 unsigned long vi_handlers[64];
1864
1865 void __init *set_except_vector(int n, void *addr)
1866 {
1867 unsigned long handler = (unsigned long) addr;
1868 unsigned long old_handler;
1869
1870 #ifdef CONFIG_CPU_MICROMIPS
1871 /*
1872 * Only the TLB handlers are cache aligned with an even
1873 * address. All other handlers are on an odd address and
1874 * require no modification. Otherwise, MIPS32 mode will
1875 * be entered when handling any TLB exceptions. That
1876 * would be bad...since we must stay in microMIPS mode.
1877 */
1878 if (!(handler & 0x1))
1879 handler |= 1;
1880 #endif
1881 old_handler = xchg(&exception_handlers[n], handler);
1882
1883 if (n == 0 && cpu_has_divec) {
1884 #ifdef CONFIG_CPU_MICROMIPS
1885 unsigned long jump_mask = ~((1 << 27) - 1);
1886 #else
1887 unsigned long jump_mask = ~((1 << 28) - 1);
1888 #endif
1889 u32 *buf = (u32 *)(ebase + 0x200);
1890 unsigned int k0 = 26;
1891 if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
1892 uasm_i_j(&buf, handler & ~jump_mask);
1893 uasm_i_nop(&buf);
1894 } else {
1895 UASM_i_LA(&buf, k0, handler);
1896 uasm_i_jr(&buf, k0);
1897 uasm_i_nop(&buf);
1898 }
1899 local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
1900 }
1901 return (void *)old_handler;
1902 }
1903
1904 static void do_default_vi(void)
1905 {
1906 show_regs(get_irq_regs());
1907 panic("Caught unexpected vectored interrupt.");
1908 }
1909
1910 static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
1911 {
1912 unsigned long handler;
1913 unsigned long old_handler = vi_handlers[n];
1914 int srssets = current_cpu_data.srsets;
1915 u16 *h;
1916 unsigned char *b;
1917
1918 BUG_ON(!cpu_has_veic && !cpu_has_vint);
1919
1920 if (addr == NULL) {
1921 handler = (unsigned long) do_default_vi;
1922 srs = 0;
1923 } else
1924 handler = (unsigned long) addr;
1925 vi_handlers[n] = handler;
1926
1927 b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
1928
1929 if (srs >= srssets)
1930 panic("Shadow register set %d not supported", srs);
1931
1932 if (cpu_has_veic) {
1933 if (board_bind_eic_interrupt)
1934 board_bind_eic_interrupt(n, srs);
1935 } else if (cpu_has_vint) {
1936 /* SRSMap is only defined if shadow sets are implemented */
1937 if (srssets > 1)
1938 change_c0_srsmap(0xf << n*4, srs << n*4);
1939 }
1940
1941 if (srs == 0) {
1942 /*
1943 * If no shadow set is selected then use the default handler
1944 * that does normal register saving and standard interrupt exit
1945 */
1946 extern char except_vec_vi, except_vec_vi_lui;
1947 extern char except_vec_vi_ori, except_vec_vi_end;
1948 extern char rollback_except_vec_vi;
1949 char *vec_start = using_rollback_handler() ?
1950 &rollback_except_vec_vi : &except_vec_vi;
1951 #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
1952 const int lui_offset = &except_vec_vi_lui - vec_start + 2;
1953 const int ori_offset = &except_vec_vi_ori - vec_start + 2;
1954 #else
1955 const int lui_offset = &except_vec_vi_lui - vec_start;
1956 const int ori_offset = &except_vec_vi_ori - vec_start;
1957 #endif
1958 const int handler_len = &except_vec_vi_end - vec_start;
1959
1960 if (handler_len > VECTORSPACING) {
1961 /*
1962 * Sigh... panicing won't help as the console
1963 * is probably not configured :(
1964 */
1965 panic("VECTORSPACING too small");
1966 }
1967
1968 set_handler(((unsigned long)b - ebase), vec_start,
1969 #ifdef CONFIG_CPU_MICROMIPS
1970 (handler_len - 1));
1971 #else
1972 handler_len);
1973 #endif
1974 h = (u16 *)(b + lui_offset);
1975 *h = (handler >> 16) & 0xffff;
1976 h = (u16 *)(b + ori_offset);
1977 *h = (handler & 0xffff);
1978 local_flush_icache_range((unsigned long)b,
1979 (unsigned long)(b+handler_len));
1980 }
1981 else {
1982 /*
1983 * In other cases jump directly to the interrupt handler. It
1984 * is the handler's responsibility to save registers if required
1985 * (eg hi/lo) and return from the exception using "eret".
1986 */
1987 u32 insn;
1988
1989 h = (u16 *)b;
1990 /* j handler */
1991 #ifdef CONFIG_CPU_MICROMIPS
1992 insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1);
1993 #else
1994 insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2);
1995 #endif
1996 h[0] = (insn >> 16) & 0xffff;
1997 h[1] = insn & 0xffff;
1998 h[2] = 0;
1999 h[3] = 0;
2000 local_flush_icache_range((unsigned long)b,
2001 (unsigned long)(b+8));
2002 }
2003
2004 return (void *)old_handler;
2005 }
2006
2007 void *set_vi_handler(int n, vi_handler_t addr)
2008 {
2009 return set_vi_srs_handler(n, addr, 0);
2010 }
2011
2012 extern void tlb_init(void);
2013
2014 /*
2015 * Timer interrupt
2016 */
2017 int cp0_compare_irq;
2018 EXPORT_SYMBOL_GPL(cp0_compare_irq);
2019 int cp0_compare_irq_shift;
2020
2021 /*
2022 * Performance counter IRQ or -1 if shared with timer
2023 */
2024 int cp0_perfcount_irq;
2025 EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
2026
2027 /*
2028 * Fast debug channel IRQ or -1 if not present
2029 */
2030 int cp0_fdc_irq;
2031 EXPORT_SYMBOL_GPL(cp0_fdc_irq);
2032
2033 static int noulri;
2034
2035 static int __init ulri_disable(char *s)
2036 {
2037 pr_info("Disabling ulri\n");
2038 noulri = 1;
2039
2040 return 1;
2041 }
2042 __setup("noulri", ulri_disable);
2043
2044 /* configure STATUS register */
2045 static void configure_status(void)
2046 {
2047 /*
2048 * Disable coprocessors and select 32-bit or 64-bit addressing
2049 * and the 16/32 or 32/32 FPR register model. Reset the BEV
2050 * flag that some firmware may have left set and the TS bit (for
2051 * IP27). Set XX for ISA IV code to work.
2052 */
2053 unsigned int status_set = ST0_CU0;
2054 #ifdef CONFIG_64BIT
2055 status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
2056 #endif
2057 if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV)
2058 status_set |= ST0_XX;
2059 if (cpu_has_dsp)
2060 status_set |= ST0_MX;
2061
2062 change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
2063 status_set);
2064 }
2065
2066 /* configure HWRENA register */
2067 static void configure_hwrena(void)
2068 {
2069 unsigned int hwrena = cpu_hwrena_impl_bits;
2070
2071 if (cpu_has_mips_r2_r6)
2072 hwrena |= 0x0000000f;
2073
2074 if (!noulri && cpu_has_userlocal)
2075 hwrena |= (1 << 29);
2076
2077 if (hwrena)
2078 write_c0_hwrena(hwrena);
2079 }
2080
2081 static void configure_exception_vector(void)
2082 {
2083 if (cpu_has_veic || cpu_has_vint) {
2084 unsigned long sr = set_c0_status(ST0_BEV);
2085 write_c0_ebase(ebase);
2086 write_c0_status(sr);
2087 /* Setting vector spacing enables EI/VI mode */
2088 change_c0_intctl(0x3e0, VECTORSPACING);
2089 }
2090 if (cpu_has_divec) {
2091 if (cpu_has_mipsmt) {
2092 unsigned int vpflags = dvpe();
2093 set_c0_cause(CAUSEF_IV);
2094 evpe(vpflags);
2095 } else
2096 set_c0_cause(CAUSEF_IV);
2097 }
2098 }
2099
2100 void per_cpu_trap_init(bool is_boot_cpu)
2101 {
2102 unsigned int cpu = smp_processor_id();
2103
2104 configure_status();
2105 configure_hwrena();
2106
2107 configure_exception_vector();
2108
2109 /*
2110 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
2111 *
2112 * o read IntCtl.IPTI to determine the timer interrupt
2113 * o read IntCtl.IPPCI to determine the performance counter interrupt
2114 * o read IntCtl.IPFDC to determine the fast debug channel interrupt
2115 */
2116 if (cpu_has_mips_r2_r6) {
2117 /*
2118 * We shouldn't trust a secondary core has a sane EBASE register
2119 * so use the one calculated by the boot CPU.
2120 */
2121 if (!is_boot_cpu)
2122 write_c0_ebase(ebase);
2123
2124 cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
2125 cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
2126 cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
2127 cp0_fdc_irq = (read_c0_intctl() >> INTCTLB_IPFDC) & 7;
2128 if (!cp0_fdc_irq)
2129 cp0_fdc_irq = -1;
2130
2131 } else {
2132 cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
2133 cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
2134 cp0_perfcount_irq = -1;
2135 cp0_fdc_irq = -1;
2136 }
2137
2138 if (!cpu_data[cpu].asid_cache)
2139 cpu_data[cpu].asid_cache = asid_first_version(cpu);
2140
2141 atomic_inc(&init_mm.mm_count);
2142 current->active_mm = &init_mm;
2143 BUG_ON(current->mm);
2144 enter_lazy_tlb(&init_mm, current);
2145
2146 /* Boot CPU's cache setup in setup_arch(). */
2147 if (!is_boot_cpu)
2148 cpu_cache_init();
2149 tlb_init();
2150 TLBMISS_HANDLER_SETUP();
2151 }
2152
2153 /* Install CPU exception handler */
2154 void set_handler(unsigned long offset, void *addr, unsigned long size)
2155 {
2156 #ifdef CONFIG_CPU_MICROMIPS
2157 memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size);
2158 #else
2159 memcpy((void *)(ebase + offset), addr, size);
2160 #endif
2161 local_flush_icache_range(ebase + offset, ebase + offset + size);
2162 }
2163
2164 static char panic_null_cerr[] =
2165 "Trying to set NULL cache error exception handler";
2166
2167 /*
2168 * Install uncached CPU exception handler.
2169 * This is suitable only for the cache error exception which is the only
2170 * exception handler that is being run uncached.
2171 */
2172 void set_uncached_handler(unsigned long offset, void *addr,
2173 unsigned long size)
2174 {
2175 unsigned long uncached_ebase = CKSEG1ADDR(ebase);
2176
2177 if (!addr)
2178 panic(panic_null_cerr);
2179
2180 memcpy((void *)(uncached_ebase + offset), addr, size);
2181 }
2182
2183 static int __initdata rdhwr_noopt;
2184 static int __init set_rdhwr_noopt(char *str)
2185 {
2186 rdhwr_noopt = 1;
2187 return 1;
2188 }
2189
2190 __setup("rdhwr_noopt", set_rdhwr_noopt);
2191
2192 void __init trap_init(void)
2193 {
2194 extern char except_vec3_generic;
2195 extern char except_vec4;
2196 extern char except_vec3_r4000;
2197 unsigned long i;
2198
2199 check_wait();
2200
2201 if (cpu_has_veic || cpu_has_vint) {
2202 unsigned long size = 0x200 + VECTORSPACING*64;
2203 ebase = (unsigned long)
2204 __alloc_bootmem(size, 1 << fls(size), 0);
2205 } else {
2206 ebase = CAC_BASE;
2207
2208 if (cpu_has_mips_r2_r6)
2209 ebase += (read_c0_ebase() & 0x3ffff000);
2210 }
2211
2212 if (cpu_has_mmips) {
2213 unsigned int config3 = read_c0_config3();
2214
2215 if (IS_ENABLED(CONFIG_CPU_MICROMIPS))
2216 write_c0_config3(config3 | MIPS_CONF3_ISA_OE);
2217 else
2218 write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE);
2219 }
2220
2221 if (board_ebase_setup)
2222 board_ebase_setup();
2223 per_cpu_trap_init(true);
2224
2225 /*
2226 * Copy the generic exception handlers to their final destination.
2227 * This will be overridden later as suitable for a particular
2228 * configuration.
2229 */
2230 set_handler(0x180, &except_vec3_generic, 0x80);
2231
2232 /*
2233 * Setup default vectors
2234 */
2235 for (i = 0; i <= 31; i++)
2236 set_except_vector(i, handle_reserved);
2237
2238 /*
2239 * Copy the EJTAG debug exception vector handler code to it's final
2240 * destination.
2241 */
2242 if (cpu_has_ejtag && board_ejtag_handler_setup)
2243 board_ejtag_handler_setup();
2244
2245 /*
2246 * Only some CPUs have the watch exceptions.
2247 */
2248 if (cpu_has_watch)
2249 set_except_vector(EXCCODE_WATCH, handle_watch);
2250
2251 /*
2252 * Initialise interrupt handlers
2253 */
2254 if (cpu_has_veic || cpu_has_vint) {
2255 int nvec = cpu_has_veic ? 64 : 8;
2256 for (i = 0; i < nvec; i++)
2257 set_vi_handler(i, NULL);
2258 }
2259 else if (cpu_has_divec)
2260 set_handler(0x200, &except_vec4, 0x8);
2261
2262 /*
2263 * Some CPUs can enable/disable for cache parity detection, but does
2264 * it different ways.
2265 */
2266 parity_protection_init();
2267
2268 /*
2269 * The Data Bus Errors / Instruction Bus Errors are signaled
2270 * by external hardware. Therefore these two exceptions
2271 * may have board specific handlers.
2272 */
2273 if (board_be_init)
2274 board_be_init();
2275
2276 set_except_vector(EXCCODE_INT, using_rollback_handler() ?
2277 rollback_handle_int : handle_int);
2278 set_except_vector(EXCCODE_MOD, handle_tlbm);
2279 set_except_vector(EXCCODE_TLBL, handle_tlbl);
2280 set_except_vector(EXCCODE_TLBS, handle_tlbs);
2281
2282 set_except_vector(EXCCODE_ADEL, handle_adel);
2283 set_except_vector(EXCCODE_ADES, handle_ades);
2284
2285 set_except_vector(EXCCODE_IBE, handle_ibe);
2286 set_except_vector(EXCCODE_DBE, handle_dbe);
2287
2288 set_except_vector(EXCCODE_SYS, handle_sys);
2289 set_except_vector(EXCCODE_BP, handle_bp);
2290 set_except_vector(EXCCODE_RI, rdhwr_noopt ? handle_ri :
2291 (cpu_has_vtag_icache ?
2292 handle_ri_rdhwr_vivt : handle_ri_rdhwr));
2293 set_except_vector(EXCCODE_CPU, handle_cpu);
2294 set_except_vector(EXCCODE_OV, handle_ov);
2295 set_except_vector(EXCCODE_TR, handle_tr);
2296 set_except_vector(EXCCODE_MSAFPE, handle_msa_fpe);
2297
2298 if (current_cpu_type() == CPU_R6000 ||
2299 current_cpu_type() == CPU_R6000A) {
2300 /*
2301 * The R6000 is the only R-series CPU that features a machine
2302 * check exception (similar to the R4000 cache error) and
2303 * unaligned ldc1/sdc1 exception. The handlers have not been
2304 * written yet. Well, anyway there is no R6000 machine on the
2305 * current list of targets for Linux/MIPS.
2306 * (Duh, crap, there is someone with a triple R6k machine)
2307 */
2308 //set_except_vector(14, handle_mc);
2309 //set_except_vector(15, handle_ndc);
2310 }
2311
2312
2313 if (board_nmi_handler_setup)
2314 board_nmi_handler_setup();
2315
2316 if (cpu_has_fpu && !cpu_has_nofpuex)
2317 set_except_vector(EXCCODE_FPE, handle_fpe);
2318
2319 set_except_vector(MIPS_EXCCODE_TLBPAR, handle_ftlb);
2320
2321 if (cpu_has_rixiex) {
2322 set_except_vector(EXCCODE_TLBRI, tlb_do_page_fault_0);
2323 set_except_vector(EXCCODE_TLBXI, tlb_do_page_fault_0);
2324 }
2325
2326 set_except_vector(EXCCODE_MSADIS, handle_msa);
2327 set_except_vector(EXCCODE_MDMX, handle_mdmx);
2328
2329 if (cpu_has_mcheck)
2330 set_except_vector(EXCCODE_MCHECK, handle_mcheck);
2331
2332 if (cpu_has_mipsmt)
2333 set_except_vector(EXCCODE_THREAD, handle_mt);
2334
2335 set_except_vector(EXCCODE_DSPDIS, handle_dsp);
2336
2337 if (board_cache_error_setup)
2338 board_cache_error_setup();
2339
2340 if (cpu_has_vce)
2341 /* Special exception: R4[04]00 uses also the divec space. */
2342 set_handler(0x180, &except_vec3_r4000, 0x100);
2343 else if (cpu_has_4kex)
2344 set_handler(0x180, &except_vec3_generic, 0x80);
2345 else
2346 set_handler(0x080, &except_vec3_generic, 0x80);
2347
2348 local_flush_icache_range(ebase, ebase + 0x400);
2349
2350 sort_extable(__start___dbe_table, __stop___dbe_table);
2351
2352 cu2_notifier(default_cu2_call, 0x80000000); /* Run last */
2353 }
2354
2355 static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd,
2356 void *v)
2357 {
2358 switch (cmd) {
2359 case CPU_PM_ENTER_FAILED:
2360 case CPU_PM_EXIT:
2361 configure_status();
2362 configure_hwrena();
2363 configure_exception_vector();
2364
2365 /* Restore register with CPU number for TLB handlers */
2366 TLBMISS_HANDLER_RESTORE();
2367
2368 break;
2369 }
2370
2371 return NOTIFY_OK;
2372 }
2373
2374 static struct notifier_block trap_pm_notifier_block = {
2375 .notifier_call = trap_pm_notifier,
2376 };
2377
2378 static int __init trap_pm_init(void)
2379 {
2380 return cpu_pm_register_notifier(&trap_pm_notifier_block);
2381 }
2382 arch_initcall(trap_pm_init);
This page took 0.080869 seconds and 6 git commands to generate.