Merge git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs-unstable
[deliverable/linux.git] / arch / mips / math-emu / cp1emu.c
1 /*
2 * cp1emu.c: a MIPS coprocessor 1 (fpu) instruction emulator
3 *
4 * MIPS floating point support
5 * Copyright (C) 1994-2000 Algorithmics Ltd.
6 * http://www.algor.co.uk
7 *
8 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
9 * Copyright (C) 2000 MIPS Technologies, Inc.
10 *
11 * This program is free software; you can distribute it and/or modify it
12 * under the terms of the GNU General Public License (Version 2) as
13 * published by the Free Software Foundation.
14 *
15 * This program is distributed in the hope it will be useful, but WITHOUT
16 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 * for more details.
19 *
20 * You should have received a copy of the GNU General Public License along
21 * with this program; if not, write to the Free Software Foundation, Inc.,
22 * 59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
23 *
24 * A complete emulator for MIPS coprocessor 1 instructions. This is
25 * required for #float(switch) or #float(trap), where it catches all
26 * COP1 instructions via the "CoProcessor Unusable" exception.
27 *
28 * More surprisingly it is also required for #float(ieee), to help out
29 * the hardware fpu at the boundaries of the IEEE-754 representation
30 * (denormalised values, infinities, underflow, etc). It is made
31 * quite nasty because emulation of some non-COP1 instructions is
32 * required, e.g. in branch delay slots.
33 *
34 * Note if you know that you won't have an fpu, then you'll get much
35 * better performance by compiling with -msoft-float!
36 */
37 #include <linux/sched.h>
38 #include <linux/module.h>
39 #include <linux/debugfs.h>
40
41 #include <asm/inst.h>
42 #include <asm/bootinfo.h>
43 #include <asm/processor.h>
44 #include <asm/ptrace.h>
45 #include <asm/signal.h>
46 #include <asm/mipsregs.h>
47 #include <asm/fpu_emulator.h>
48 #include <asm/uaccess.h>
49 #include <asm/branch.h>
50
51 #include "ieee754.h"
52
53 /* Strap kernel emulator for full MIPS IV emulation */
54
55 #ifdef __mips
56 #undef __mips
57 #endif
58 #define __mips 4
59
60 /* Function which emulates a floating point instruction. */
61
62 static int fpu_emu(struct pt_regs *, struct mips_fpu_struct *,
63 mips_instruction);
64
65 #if __mips >= 4 && __mips != 32
66 static int fpux_emu(struct pt_regs *,
67 struct mips_fpu_struct *, mips_instruction);
68 #endif
69
70 /* Further private data for which no space exists in mips_fpu_struct */
71
72 #ifdef CONFIG_DEBUG_FS
73 DEFINE_PER_CPU(struct mips_fpu_emulator_stats, fpuemustats);
74 #endif
75
76 /* Control registers */
77
78 #define FPCREG_RID 0 /* $0 = revision id */
79 #define FPCREG_CSR 31 /* $31 = csr */
80
81 /* Determine rounding mode from the RM bits of the FCSR */
82 #define modeindex(v) ((v) & FPU_CSR_RM)
83
84 /* Convert Mips rounding mode (0..3) to IEEE library modes. */
85 static const unsigned char ieee_rm[4] = {
86 [FPU_CSR_RN] = IEEE754_RN,
87 [FPU_CSR_RZ] = IEEE754_RZ,
88 [FPU_CSR_RU] = IEEE754_RU,
89 [FPU_CSR_RD] = IEEE754_RD,
90 };
91 /* Convert IEEE library modes to Mips rounding mode (0..3). */
92 static const unsigned char mips_rm[4] = {
93 [IEEE754_RN] = FPU_CSR_RN,
94 [IEEE754_RZ] = FPU_CSR_RZ,
95 [IEEE754_RD] = FPU_CSR_RD,
96 [IEEE754_RU] = FPU_CSR_RU,
97 };
98
99 #if __mips >= 4
100 /* convert condition code register number to csr bit */
101 static const unsigned int fpucondbit[8] = {
102 FPU_CSR_COND0,
103 FPU_CSR_COND1,
104 FPU_CSR_COND2,
105 FPU_CSR_COND3,
106 FPU_CSR_COND4,
107 FPU_CSR_COND5,
108 FPU_CSR_COND6,
109 FPU_CSR_COND7
110 };
111 #endif
112
113
114 /*
115 * Redundant with logic already in kernel/branch.c,
116 * embedded in compute_return_epc. At some point,
117 * a single subroutine should be used across both
118 * modules.
119 */
120 static int isBranchInstr(mips_instruction * i)
121 {
122 switch (MIPSInst_OPCODE(*i)) {
123 case spec_op:
124 switch (MIPSInst_FUNC(*i)) {
125 case jalr_op:
126 case jr_op:
127 return 1;
128 }
129 break;
130
131 case bcond_op:
132 switch (MIPSInst_RT(*i)) {
133 case bltz_op:
134 case bgez_op:
135 case bltzl_op:
136 case bgezl_op:
137 case bltzal_op:
138 case bgezal_op:
139 case bltzall_op:
140 case bgezall_op:
141 return 1;
142 }
143 break;
144
145 case j_op:
146 case jal_op:
147 case jalx_op:
148 case beq_op:
149 case bne_op:
150 case blez_op:
151 case bgtz_op:
152 case beql_op:
153 case bnel_op:
154 case blezl_op:
155 case bgtzl_op:
156 return 1;
157
158 case cop0_op:
159 case cop1_op:
160 case cop2_op:
161 case cop1x_op:
162 if (MIPSInst_RS(*i) == bc_op)
163 return 1;
164 break;
165 }
166
167 return 0;
168 }
169
170 /*
171 * In the Linux kernel, we support selection of FPR format on the
172 * basis of the Status.FR bit. If an FPU is not present, the FR bit
173 * is hardwired to zero, which would imply a 32-bit FPU even for
174 * 64-bit CPUs. For 64-bit kernels with no FPU we use TIF_32BIT_REGS
175 * as a proxy for the FR bit so that a 64-bit FPU is emulated. In any
176 * case, for a 32-bit kernel which uses the O32 MIPS ABI, only the
177 * even FPRs are used (Status.FR = 0).
178 */
179 static inline int cop1_64bit(struct pt_regs *xcp)
180 {
181 if (cpu_has_fpu)
182 return xcp->cp0_status & ST0_FR;
183 #ifdef CONFIG_64BIT
184 return !test_thread_flag(TIF_32BIT_REGS);
185 #else
186 return 0;
187 #endif
188 }
189
190 #define SIFROMREG(si, x) ((si) = cop1_64bit(xcp) || !(x & 1) ? \
191 (int)ctx->fpr[x] : (int)(ctx->fpr[x & ~1] >> 32))
192
193 #define SITOREG(si, x) (ctx->fpr[x & ~(cop1_64bit(xcp) == 0)] = \
194 cop1_64bit(xcp) || !(x & 1) ? \
195 ctx->fpr[x & ~1] >> 32 << 32 | (u32)(si) : \
196 ctx->fpr[x & ~1] << 32 >> 32 | (u64)(si) << 32)
197
198 #define DIFROMREG(di, x) ((di) = ctx->fpr[x & ~(cop1_64bit(xcp) == 0)])
199 #define DITOREG(di, x) (ctx->fpr[x & ~(cop1_64bit(xcp) == 0)] = (di))
200
201 #define SPFROMREG(sp, x) SIFROMREG((sp).bits, x)
202 #define SPTOREG(sp, x) SITOREG((sp).bits, x)
203 #define DPFROMREG(dp, x) DIFROMREG((dp).bits, x)
204 #define DPTOREG(dp, x) DITOREG((dp).bits, x)
205
206 /*
207 * Emulate the single floating point instruction pointed at by EPC.
208 * Two instructions if the instruction is in a branch delay slot.
209 */
210
211 static int cop1Emulate(struct pt_regs *xcp, struct mips_fpu_struct *ctx)
212 {
213 mips_instruction ir;
214 unsigned long emulpc, contpc;
215 unsigned int cond;
216
217 if (get_user(ir, (mips_instruction __user *) xcp->cp0_epc)) {
218 MIPS_FPU_EMU_INC_STATS(errors);
219 return SIGBUS;
220 }
221
222 /* XXX NEC Vr54xx bug workaround */
223 if ((xcp->cp0_cause & CAUSEF_BD) && !isBranchInstr(&ir))
224 xcp->cp0_cause &= ~CAUSEF_BD;
225
226 if (xcp->cp0_cause & CAUSEF_BD) {
227 /*
228 * The instruction to be emulated is in a branch delay slot
229 * which means that we have to emulate the branch instruction
230 * BEFORE we do the cop1 instruction.
231 *
232 * This branch could be a COP1 branch, but in that case we
233 * would have had a trap for that instruction, and would not
234 * come through this route.
235 *
236 * Linux MIPS branch emulator operates on context, updating the
237 * cp0_epc.
238 */
239 emulpc = xcp->cp0_epc + 4; /* Snapshot emulation target */
240
241 if (__compute_return_epc(xcp)) {
242 #ifdef CP1DBG
243 printk("failed to emulate branch at %p\n",
244 (void *) (xcp->cp0_epc));
245 #endif
246 return SIGILL;
247 }
248 if (get_user(ir, (mips_instruction __user *) emulpc)) {
249 MIPS_FPU_EMU_INC_STATS(errors);
250 return SIGBUS;
251 }
252 /* __compute_return_epc() will have updated cp0_epc */
253 contpc = xcp->cp0_epc;
254 /* In order not to confuse ptrace() et al, tweak context */
255 xcp->cp0_epc = emulpc - 4;
256 } else {
257 emulpc = xcp->cp0_epc;
258 contpc = xcp->cp0_epc + 4;
259 }
260
261 emul:
262 MIPS_FPU_EMU_INC_STATS(emulated);
263 switch (MIPSInst_OPCODE(ir)) {
264 case ldc1_op:{
265 u64 __user *va = (u64 __user *) (xcp->regs[MIPSInst_RS(ir)] +
266 MIPSInst_SIMM(ir));
267 u64 val;
268
269 MIPS_FPU_EMU_INC_STATS(loads);
270 if (get_user(val, va)) {
271 MIPS_FPU_EMU_INC_STATS(errors);
272 return SIGBUS;
273 }
274 DITOREG(val, MIPSInst_RT(ir));
275 break;
276 }
277
278 case sdc1_op:{
279 u64 __user *va = (u64 __user *) (xcp->regs[MIPSInst_RS(ir)] +
280 MIPSInst_SIMM(ir));
281 u64 val;
282
283 MIPS_FPU_EMU_INC_STATS(stores);
284 DIFROMREG(val, MIPSInst_RT(ir));
285 if (put_user(val, va)) {
286 MIPS_FPU_EMU_INC_STATS(errors);
287 return SIGBUS;
288 }
289 break;
290 }
291
292 case lwc1_op:{
293 u32 __user *va = (u32 __user *) (xcp->regs[MIPSInst_RS(ir)] +
294 MIPSInst_SIMM(ir));
295 u32 val;
296
297 MIPS_FPU_EMU_INC_STATS(loads);
298 if (get_user(val, va)) {
299 MIPS_FPU_EMU_INC_STATS(errors);
300 return SIGBUS;
301 }
302 SITOREG(val, MIPSInst_RT(ir));
303 break;
304 }
305
306 case swc1_op:{
307 u32 __user *va = (u32 __user *) (xcp->regs[MIPSInst_RS(ir)] +
308 MIPSInst_SIMM(ir));
309 u32 val;
310
311 MIPS_FPU_EMU_INC_STATS(stores);
312 SIFROMREG(val, MIPSInst_RT(ir));
313 if (put_user(val, va)) {
314 MIPS_FPU_EMU_INC_STATS(errors);
315 return SIGBUS;
316 }
317 break;
318 }
319
320 case cop1_op:
321 switch (MIPSInst_RS(ir)) {
322
323 #if defined(__mips64)
324 case dmfc_op:
325 /* copregister fs -> gpr[rt] */
326 if (MIPSInst_RT(ir) != 0) {
327 DIFROMREG(xcp->regs[MIPSInst_RT(ir)],
328 MIPSInst_RD(ir));
329 }
330 break;
331
332 case dmtc_op:
333 /* copregister fs <- rt */
334 DITOREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir));
335 break;
336 #endif
337
338 case mfc_op:
339 /* copregister rd -> gpr[rt] */
340 if (MIPSInst_RT(ir) != 0) {
341 SIFROMREG(xcp->regs[MIPSInst_RT(ir)],
342 MIPSInst_RD(ir));
343 }
344 break;
345
346 case mtc_op:
347 /* copregister rd <- rt */
348 SITOREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir));
349 break;
350
351 case cfc_op:{
352 /* cop control register rd -> gpr[rt] */
353 u32 value;
354
355 if (MIPSInst_RD(ir) == FPCREG_CSR) {
356 value = ctx->fcr31;
357 value = (value & ~FPU_CSR_RM) |
358 mips_rm[modeindex(value)];
359 #ifdef CSRTRACE
360 printk("%p gpr[%d]<-csr=%08x\n",
361 (void *) (xcp->cp0_epc),
362 MIPSInst_RT(ir), value);
363 #endif
364 }
365 else if (MIPSInst_RD(ir) == FPCREG_RID)
366 value = 0;
367 else
368 value = 0;
369 if (MIPSInst_RT(ir))
370 xcp->regs[MIPSInst_RT(ir)] = value;
371 break;
372 }
373
374 case ctc_op:{
375 /* copregister rd <- rt */
376 u32 value;
377
378 if (MIPSInst_RT(ir) == 0)
379 value = 0;
380 else
381 value = xcp->regs[MIPSInst_RT(ir)];
382
383 /* we only have one writable control reg
384 */
385 if (MIPSInst_RD(ir) == FPCREG_CSR) {
386 #ifdef CSRTRACE
387 printk("%p gpr[%d]->csr=%08x\n",
388 (void *) (xcp->cp0_epc),
389 MIPSInst_RT(ir), value);
390 #endif
391
392 /*
393 * Don't write reserved bits,
394 * and convert to ieee library modes
395 */
396 ctx->fcr31 = (value &
397 ~(FPU_CSR_RSVD | FPU_CSR_RM)) |
398 ieee_rm[modeindex(value)];
399 }
400 if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
401 return SIGFPE;
402 }
403 break;
404 }
405
406 case bc_op:{
407 int likely = 0;
408
409 if (xcp->cp0_cause & CAUSEF_BD)
410 return SIGILL;
411
412 #if __mips >= 4
413 cond = ctx->fcr31 & fpucondbit[MIPSInst_RT(ir) >> 2];
414 #else
415 cond = ctx->fcr31 & FPU_CSR_COND;
416 #endif
417 switch (MIPSInst_RT(ir) & 3) {
418 case bcfl_op:
419 likely = 1;
420 case bcf_op:
421 cond = !cond;
422 break;
423 case bctl_op:
424 likely = 1;
425 case bct_op:
426 break;
427 default:
428 /* thats an illegal instruction */
429 return SIGILL;
430 }
431
432 xcp->cp0_cause |= CAUSEF_BD;
433 if (cond) {
434 /* branch taken: emulate dslot
435 * instruction
436 */
437 xcp->cp0_epc += 4;
438 contpc = (xcp->cp0_epc +
439 (MIPSInst_SIMM(ir) << 2));
440
441 if (get_user(ir,
442 (mips_instruction __user *) xcp->cp0_epc)) {
443 MIPS_FPU_EMU_INC_STATS(errors);
444 return SIGBUS;
445 }
446
447 switch (MIPSInst_OPCODE(ir)) {
448 case lwc1_op:
449 case swc1_op:
450 #if (__mips >= 2 || defined(__mips64))
451 case ldc1_op:
452 case sdc1_op:
453 #endif
454 case cop1_op:
455 #if __mips >= 4 && __mips != 32
456 case cop1x_op:
457 #endif
458 /* its one of ours */
459 goto emul;
460 #if __mips >= 4
461 case spec_op:
462 if (MIPSInst_FUNC(ir) == movc_op)
463 goto emul;
464 break;
465 #endif
466 }
467
468 /*
469 * Single step the non-cp1
470 * instruction in the dslot
471 */
472 return mips_dsemul(xcp, ir, contpc);
473 }
474 else {
475 /* branch not taken */
476 if (likely) {
477 /*
478 * branch likely nullifies
479 * dslot if not taken
480 */
481 xcp->cp0_epc += 4;
482 contpc += 4;
483 /*
484 * else continue & execute
485 * dslot as normal insn
486 */
487 }
488 }
489 break;
490 }
491
492 default:
493 if (!(MIPSInst_RS(ir) & 0x10))
494 return SIGILL;
495 {
496 int sig;
497
498 /* a real fpu computation instruction */
499 if ((sig = fpu_emu(xcp, ctx, ir)))
500 return sig;
501 }
502 }
503 break;
504
505 #if __mips >= 4 && __mips != 32
506 case cop1x_op:{
507 int sig;
508
509 if ((sig = fpux_emu(xcp, ctx, ir)))
510 return sig;
511 break;
512 }
513 #endif
514
515 #if __mips >= 4
516 case spec_op:
517 if (MIPSInst_FUNC(ir) != movc_op)
518 return SIGILL;
519 cond = fpucondbit[MIPSInst_RT(ir) >> 2];
520 if (((ctx->fcr31 & cond) != 0) == ((MIPSInst_RT(ir) & 1) != 0))
521 xcp->regs[MIPSInst_RD(ir)] =
522 xcp->regs[MIPSInst_RS(ir)];
523 break;
524 #endif
525
526 default:
527 return SIGILL;
528 }
529
530 /* we did it !! */
531 xcp->cp0_epc = contpc;
532 xcp->cp0_cause &= ~CAUSEF_BD;
533
534 return 0;
535 }
536
537 /*
538 * Conversion table from MIPS compare ops 48-63
539 * cond = ieee754dp_cmp(x,y,IEEE754_UN,sig);
540 */
541 static const unsigned char cmptab[8] = {
542 0, /* cmp_0 (sig) cmp_sf */
543 IEEE754_CUN, /* cmp_un (sig) cmp_ngle */
544 IEEE754_CEQ, /* cmp_eq (sig) cmp_seq */
545 IEEE754_CEQ | IEEE754_CUN, /* cmp_ueq (sig) cmp_ngl */
546 IEEE754_CLT, /* cmp_olt (sig) cmp_lt */
547 IEEE754_CLT | IEEE754_CUN, /* cmp_ult (sig) cmp_nge */
548 IEEE754_CLT | IEEE754_CEQ, /* cmp_ole (sig) cmp_le */
549 IEEE754_CLT | IEEE754_CEQ | IEEE754_CUN, /* cmp_ule (sig) cmp_ngt */
550 };
551
552
553 #if __mips >= 4 && __mips != 32
554
555 /*
556 * Additional MIPS4 instructions
557 */
558
559 #define DEF3OP(name, p, f1, f2, f3) \
560 static ieee754##p fpemu_##p##_##name(ieee754##p r, ieee754##p s, \
561 ieee754##p t) \
562 { \
563 struct _ieee754_csr ieee754_csr_save; \
564 s = f1(s, t); \
565 ieee754_csr_save = ieee754_csr; \
566 s = f2(s, r); \
567 ieee754_csr_save.cx |= ieee754_csr.cx; \
568 ieee754_csr_save.sx |= ieee754_csr.sx; \
569 s = f3(s); \
570 ieee754_csr.cx |= ieee754_csr_save.cx; \
571 ieee754_csr.sx |= ieee754_csr_save.sx; \
572 return s; \
573 }
574
575 static ieee754dp fpemu_dp_recip(ieee754dp d)
576 {
577 return ieee754dp_div(ieee754dp_one(0), d);
578 }
579
580 static ieee754dp fpemu_dp_rsqrt(ieee754dp d)
581 {
582 return ieee754dp_div(ieee754dp_one(0), ieee754dp_sqrt(d));
583 }
584
585 static ieee754sp fpemu_sp_recip(ieee754sp s)
586 {
587 return ieee754sp_div(ieee754sp_one(0), s);
588 }
589
590 static ieee754sp fpemu_sp_rsqrt(ieee754sp s)
591 {
592 return ieee754sp_div(ieee754sp_one(0), ieee754sp_sqrt(s));
593 }
594
595 DEF3OP(madd, sp, ieee754sp_mul, ieee754sp_add, );
596 DEF3OP(msub, sp, ieee754sp_mul, ieee754sp_sub, );
597 DEF3OP(nmadd, sp, ieee754sp_mul, ieee754sp_add, ieee754sp_neg);
598 DEF3OP(nmsub, sp, ieee754sp_mul, ieee754sp_sub, ieee754sp_neg);
599 DEF3OP(madd, dp, ieee754dp_mul, ieee754dp_add, );
600 DEF3OP(msub, dp, ieee754dp_mul, ieee754dp_sub, );
601 DEF3OP(nmadd, dp, ieee754dp_mul, ieee754dp_add, ieee754dp_neg);
602 DEF3OP(nmsub, dp, ieee754dp_mul, ieee754dp_sub, ieee754dp_neg);
603
604 static int fpux_emu(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
605 mips_instruction ir)
606 {
607 unsigned rcsr = 0; /* resulting csr */
608
609 MIPS_FPU_EMU_INC_STATS(cp1xops);
610
611 switch (MIPSInst_FMA_FFMT(ir)) {
612 case s_fmt:{ /* 0 */
613
614 ieee754sp(*handler) (ieee754sp, ieee754sp, ieee754sp);
615 ieee754sp fd, fr, fs, ft;
616 u32 __user *va;
617 u32 val;
618
619 switch (MIPSInst_FUNC(ir)) {
620 case lwxc1_op:
621 va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
622 xcp->regs[MIPSInst_FT(ir)]);
623
624 MIPS_FPU_EMU_INC_STATS(loads);
625 if (get_user(val, va)) {
626 MIPS_FPU_EMU_INC_STATS(errors);
627 return SIGBUS;
628 }
629 SITOREG(val, MIPSInst_FD(ir));
630 break;
631
632 case swxc1_op:
633 va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
634 xcp->regs[MIPSInst_FT(ir)]);
635
636 MIPS_FPU_EMU_INC_STATS(stores);
637
638 SIFROMREG(val, MIPSInst_FS(ir));
639 if (put_user(val, va)) {
640 MIPS_FPU_EMU_INC_STATS(errors);
641 return SIGBUS;
642 }
643 break;
644
645 case madd_s_op:
646 handler = fpemu_sp_madd;
647 goto scoptop;
648 case msub_s_op:
649 handler = fpemu_sp_msub;
650 goto scoptop;
651 case nmadd_s_op:
652 handler = fpemu_sp_nmadd;
653 goto scoptop;
654 case nmsub_s_op:
655 handler = fpemu_sp_nmsub;
656 goto scoptop;
657
658 scoptop:
659 SPFROMREG(fr, MIPSInst_FR(ir));
660 SPFROMREG(fs, MIPSInst_FS(ir));
661 SPFROMREG(ft, MIPSInst_FT(ir));
662 fd = (*handler) (fr, fs, ft);
663 SPTOREG(fd, MIPSInst_FD(ir));
664
665 copcsr:
666 if (ieee754_cxtest(IEEE754_INEXACT))
667 rcsr |= FPU_CSR_INE_X | FPU_CSR_INE_S;
668 if (ieee754_cxtest(IEEE754_UNDERFLOW))
669 rcsr |= FPU_CSR_UDF_X | FPU_CSR_UDF_S;
670 if (ieee754_cxtest(IEEE754_OVERFLOW))
671 rcsr |= FPU_CSR_OVF_X | FPU_CSR_OVF_S;
672 if (ieee754_cxtest(IEEE754_INVALID_OPERATION))
673 rcsr |= FPU_CSR_INV_X | FPU_CSR_INV_S;
674
675 ctx->fcr31 = (ctx->fcr31 & ~FPU_CSR_ALL_X) | rcsr;
676 if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
677 /*printk ("SIGFPE: fpu csr = %08x\n",
678 ctx->fcr31); */
679 return SIGFPE;
680 }
681
682 break;
683
684 default:
685 return SIGILL;
686 }
687 break;
688 }
689
690 case d_fmt:{ /* 1 */
691 ieee754dp(*handler) (ieee754dp, ieee754dp, ieee754dp);
692 ieee754dp fd, fr, fs, ft;
693 u64 __user *va;
694 u64 val;
695
696 switch (MIPSInst_FUNC(ir)) {
697 case ldxc1_op:
698 va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
699 xcp->regs[MIPSInst_FT(ir)]);
700
701 MIPS_FPU_EMU_INC_STATS(loads);
702 if (get_user(val, va)) {
703 MIPS_FPU_EMU_INC_STATS(errors);
704 return SIGBUS;
705 }
706 DITOREG(val, MIPSInst_FD(ir));
707 break;
708
709 case sdxc1_op:
710 va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
711 xcp->regs[MIPSInst_FT(ir)]);
712
713 MIPS_FPU_EMU_INC_STATS(stores);
714 DIFROMREG(val, MIPSInst_FS(ir));
715 if (put_user(val, va)) {
716 MIPS_FPU_EMU_INC_STATS(errors);
717 return SIGBUS;
718 }
719 break;
720
721 case madd_d_op:
722 handler = fpemu_dp_madd;
723 goto dcoptop;
724 case msub_d_op:
725 handler = fpemu_dp_msub;
726 goto dcoptop;
727 case nmadd_d_op:
728 handler = fpemu_dp_nmadd;
729 goto dcoptop;
730 case nmsub_d_op:
731 handler = fpemu_dp_nmsub;
732 goto dcoptop;
733
734 dcoptop:
735 DPFROMREG(fr, MIPSInst_FR(ir));
736 DPFROMREG(fs, MIPSInst_FS(ir));
737 DPFROMREG(ft, MIPSInst_FT(ir));
738 fd = (*handler) (fr, fs, ft);
739 DPTOREG(fd, MIPSInst_FD(ir));
740 goto copcsr;
741
742 default:
743 return SIGILL;
744 }
745 break;
746 }
747
748 case 0x7: /* 7 */
749 if (MIPSInst_FUNC(ir) != pfetch_op) {
750 return SIGILL;
751 }
752 /* ignore prefx operation */
753 break;
754
755 default:
756 return SIGILL;
757 }
758
759 return 0;
760 }
761 #endif
762
763
764
765 /*
766 * Emulate a single COP1 arithmetic instruction.
767 */
768 static int fpu_emu(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
769 mips_instruction ir)
770 {
771 int rfmt; /* resulting format */
772 unsigned rcsr = 0; /* resulting csr */
773 unsigned cond;
774 union {
775 ieee754dp d;
776 ieee754sp s;
777 int w;
778 #ifdef __mips64
779 s64 l;
780 #endif
781 } rv; /* resulting value */
782
783 MIPS_FPU_EMU_INC_STATS(cp1ops);
784 switch (rfmt = (MIPSInst_FFMT(ir) & 0xf)) {
785 case s_fmt:{ /* 0 */
786 union {
787 ieee754sp(*b) (ieee754sp, ieee754sp);
788 ieee754sp(*u) (ieee754sp);
789 } handler;
790
791 switch (MIPSInst_FUNC(ir)) {
792 /* binary ops */
793 case fadd_op:
794 handler.b = ieee754sp_add;
795 goto scopbop;
796 case fsub_op:
797 handler.b = ieee754sp_sub;
798 goto scopbop;
799 case fmul_op:
800 handler.b = ieee754sp_mul;
801 goto scopbop;
802 case fdiv_op:
803 handler.b = ieee754sp_div;
804 goto scopbop;
805
806 /* unary ops */
807 #if __mips >= 2 || defined(__mips64)
808 case fsqrt_op:
809 handler.u = ieee754sp_sqrt;
810 goto scopuop;
811 #endif
812 #if __mips >= 4 && __mips != 32
813 case frsqrt_op:
814 handler.u = fpemu_sp_rsqrt;
815 goto scopuop;
816 case frecip_op:
817 handler.u = fpemu_sp_recip;
818 goto scopuop;
819 #endif
820 #if __mips >= 4
821 case fmovc_op:
822 cond = fpucondbit[MIPSInst_FT(ir) >> 2];
823 if (((ctx->fcr31 & cond) != 0) !=
824 ((MIPSInst_FT(ir) & 1) != 0))
825 return 0;
826 SPFROMREG(rv.s, MIPSInst_FS(ir));
827 break;
828 case fmovz_op:
829 if (xcp->regs[MIPSInst_FT(ir)] != 0)
830 return 0;
831 SPFROMREG(rv.s, MIPSInst_FS(ir));
832 break;
833 case fmovn_op:
834 if (xcp->regs[MIPSInst_FT(ir)] == 0)
835 return 0;
836 SPFROMREG(rv.s, MIPSInst_FS(ir));
837 break;
838 #endif
839 case fabs_op:
840 handler.u = ieee754sp_abs;
841 goto scopuop;
842 case fneg_op:
843 handler.u = ieee754sp_neg;
844 goto scopuop;
845 case fmov_op:
846 /* an easy one */
847 SPFROMREG(rv.s, MIPSInst_FS(ir));
848 goto copcsr;
849
850 /* binary op on handler */
851 scopbop:
852 {
853 ieee754sp fs, ft;
854
855 SPFROMREG(fs, MIPSInst_FS(ir));
856 SPFROMREG(ft, MIPSInst_FT(ir));
857
858 rv.s = (*handler.b) (fs, ft);
859 goto copcsr;
860 }
861 scopuop:
862 {
863 ieee754sp fs;
864
865 SPFROMREG(fs, MIPSInst_FS(ir));
866 rv.s = (*handler.u) (fs);
867 goto copcsr;
868 }
869 copcsr:
870 if (ieee754_cxtest(IEEE754_INEXACT))
871 rcsr |= FPU_CSR_INE_X | FPU_CSR_INE_S;
872 if (ieee754_cxtest(IEEE754_UNDERFLOW))
873 rcsr |= FPU_CSR_UDF_X | FPU_CSR_UDF_S;
874 if (ieee754_cxtest(IEEE754_OVERFLOW))
875 rcsr |= FPU_CSR_OVF_X | FPU_CSR_OVF_S;
876 if (ieee754_cxtest(IEEE754_ZERO_DIVIDE))
877 rcsr |= FPU_CSR_DIV_X | FPU_CSR_DIV_S;
878 if (ieee754_cxtest(IEEE754_INVALID_OPERATION))
879 rcsr |= FPU_CSR_INV_X | FPU_CSR_INV_S;
880 break;
881
882 /* unary conv ops */
883 case fcvts_op:
884 return SIGILL; /* not defined */
885 case fcvtd_op:{
886 ieee754sp fs;
887
888 SPFROMREG(fs, MIPSInst_FS(ir));
889 rv.d = ieee754dp_fsp(fs);
890 rfmt = d_fmt;
891 goto copcsr;
892 }
893 case fcvtw_op:{
894 ieee754sp fs;
895
896 SPFROMREG(fs, MIPSInst_FS(ir));
897 rv.w = ieee754sp_tint(fs);
898 rfmt = w_fmt;
899 goto copcsr;
900 }
901
902 #if __mips >= 2 || defined(__mips64)
903 case fround_op:
904 case ftrunc_op:
905 case fceil_op:
906 case ffloor_op:{
907 unsigned int oldrm = ieee754_csr.rm;
908 ieee754sp fs;
909
910 SPFROMREG(fs, MIPSInst_FS(ir));
911 ieee754_csr.rm = ieee_rm[modeindex(MIPSInst_FUNC(ir))];
912 rv.w = ieee754sp_tint(fs);
913 ieee754_csr.rm = oldrm;
914 rfmt = w_fmt;
915 goto copcsr;
916 }
917 #endif /* __mips >= 2 */
918
919 #if defined(__mips64)
920 case fcvtl_op:{
921 ieee754sp fs;
922
923 SPFROMREG(fs, MIPSInst_FS(ir));
924 rv.l = ieee754sp_tlong(fs);
925 rfmt = l_fmt;
926 goto copcsr;
927 }
928
929 case froundl_op:
930 case ftruncl_op:
931 case fceill_op:
932 case ffloorl_op:{
933 unsigned int oldrm = ieee754_csr.rm;
934 ieee754sp fs;
935
936 SPFROMREG(fs, MIPSInst_FS(ir));
937 ieee754_csr.rm = ieee_rm[modeindex(MIPSInst_FUNC(ir))];
938 rv.l = ieee754sp_tlong(fs);
939 ieee754_csr.rm = oldrm;
940 rfmt = l_fmt;
941 goto copcsr;
942 }
943 #endif /* defined(__mips64) */
944
945 default:
946 if (MIPSInst_FUNC(ir) >= fcmp_op) {
947 unsigned cmpop = MIPSInst_FUNC(ir) - fcmp_op;
948 ieee754sp fs, ft;
949
950 SPFROMREG(fs, MIPSInst_FS(ir));
951 SPFROMREG(ft, MIPSInst_FT(ir));
952 rv.w = ieee754sp_cmp(fs, ft,
953 cmptab[cmpop & 0x7], cmpop & 0x8);
954 rfmt = -1;
955 if ((cmpop & 0x8) && ieee754_cxtest
956 (IEEE754_INVALID_OPERATION))
957 rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
958 else
959 goto copcsr;
960
961 }
962 else {
963 return SIGILL;
964 }
965 break;
966 }
967 break;
968 }
969
970 case d_fmt:{
971 union {
972 ieee754dp(*b) (ieee754dp, ieee754dp);
973 ieee754dp(*u) (ieee754dp);
974 } handler;
975
976 switch (MIPSInst_FUNC(ir)) {
977 /* binary ops */
978 case fadd_op:
979 handler.b = ieee754dp_add;
980 goto dcopbop;
981 case fsub_op:
982 handler.b = ieee754dp_sub;
983 goto dcopbop;
984 case fmul_op:
985 handler.b = ieee754dp_mul;
986 goto dcopbop;
987 case fdiv_op:
988 handler.b = ieee754dp_div;
989 goto dcopbop;
990
991 /* unary ops */
992 #if __mips >= 2 || defined(__mips64)
993 case fsqrt_op:
994 handler.u = ieee754dp_sqrt;
995 goto dcopuop;
996 #endif
997 #if __mips >= 4 && __mips != 32
998 case frsqrt_op:
999 handler.u = fpemu_dp_rsqrt;
1000 goto dcopuop;
1001 case frecip_op:
1002 handler.u = fpemu_dp_recip;
1003 goto dcopuop;
1004 #endif
1005 #if __mips >= 4
1006 case fmovc_op:
1007 cond = fpucondbit[MIPSInst_FT(ir) >> 2];
1008 if (((ctx->fcr31 & cond) != 0) !=
1009 ((MIPSInst_FT(ir) & 1) != 0))
1010 return 0;
1011 DPFROMREG(rv.d, MIPSInst_FS(ir));
1012 break;
1013 case fmovz_op:
1014 if (xcp->regs[MIPSInst_FT(ir)] != 0)
1015 return 0;
1016 DPFROMREG(rv.d, MIPSInst_FS(ir));
1017 break;
1018 case fmovn_op:
1019 if (xcp->regs[MIPSInst_FT(ir)] == 0)
1020 return 0;
1021 DPFROMREG(rv.d, MIPSInst_FS(ir));
1022 break;
1023 #endif
1024 case fabs_op:
1025 handler.u = ieee754dp_abs;
1026 goto dcopuop;
1027
1028 case fneg_op:
1029 handler.u = ieee754dp_neg;
1030 goto dcopuop;
1031
1032 case fmov_op:
1033 /* an easy one */
1034 DPFROMREG(rv.d, MIPSInst_FS(ir));
1035 goto copcsr;
1036
1037 /* binary op on handler */
1038 dcopbop:{
1039 ieee754dp fs, ft;
1040
1041 DPFROMREG(fs, MIPSInst_FS(ir));
1042 DPFROMREG(ft, MIPSInst_FT(ir));
1043
1044 rv.d = (*handler.b) (fs, ft);
1045 goto copcsr;
1046 }
1047 dcopuop:{
1048 ieee754dp fs;
1049
1050 DPFROMREG(fs, MIPSInst_FS(ir));
1051 rv.d = (*handler.u) (fs);
1052 goto copcsr;
1053 }
1054
1055 /* unary conv ops */
1056 case fcvts_op:{
1057 ieee754dp fs;
1058
1059 DPFROMREG(fs, MIPSInst_FS(ir));
1060 rv.s = ieee754sp_fdp(fs);
1061 rfmt = s_fmt;
1062 goto copcsr;
1063 }
1064 case fcvtd_op:
1065 return SIGILL; /* not defined */
1066
1067 case fcvtw_op:{
1068 ieee754dp fs;
1069
1070 DPFROMREG(fs, MIPSInst_FS(ir));
1071 rv.w = ieee754dp_tint(fs); /* wrong */
1072 rfmt = w_fmt;
1073 goto copcsr;
1074 }
1075
1076 #if __mips >= 2 || defined(__mips64)
1077 case fround_op:
1078 case ftrunc_op:
1079 case fceil_op:
1080 case ffloor_op:{
1081 unsigned int oldrm = ieee754_csr.rm;
1082 ieee754dp fs;
1083
1084 DPFROMREG(fs, MIPSInst_FS(ir));
1085 ieee754_csr.rm = ieee_rm[modeindex(MIPSInst_FUNC(ir))];
1086 rv.w = ieee754dp_tint(fs);
1087 ieee754_csr.rm = oldrm;
1088 rfmt = w_fmt;
1089 goto copcsr;
1090 }
1091 #endif
1092
1093 #if defined(__mips64)
1094 case fcvtl_op:{
1095 ieee754dp fs;
1096
1097 DPFROMREG(fs, MIPSInst_FS(ir));
1098 rv.l = ieee754dp_tlong(fs);
1099 rfmt = l_fmt;
1100 goto copcsr;
1101 }
1102
1103 case froundl_op:
1104 case ftruncl_op:
1105 case fceill_op:
1106 case ffloorl_op:{
1107 unsigned int oldrm = ieee754_csr.rm;
1108 ieee754dp fs;
1109
1110 DPFROMREG(fs, MIPSInst_FS(ir));
1111 ieee754_csr.rm = ieee_rm[modeindex(MIPSInst_FUNC(ir))];
1112 rv.l = ieee754dp_tlong(fs);
1113 ieee754_csr.rm = oldrm;
1114 rfmt = l_fmt;
1115 goto copcsr;
1116 }
1117 #endif /* __mips >= 3 */
1118
1119 default:
1120 if (MIPSInst_FUNC(ir) >= fcmp_op) {
1121 unsigned cmpop = MIPSInst_FUNC(ir) - fcmp_op;
1122 ieee754dp fs, ft;
1123
1124 DPFROMREG(fs, MIPSInst_FS(ir));
1125 DPFROMREG(ft, MIPSInst_FT(ir));
1126 rv.w = ieee754dp_cmp(fs, ft,
1127 cmptab[cmpop & 0x7], cmpop & 0x8);
1128 rfmt = -1;
1129 if ((cmpop & 0x8)
1130 &&
1131 ieee754_cxtest
1132 (IEEE754_INVALID_OPERATION))
1133 rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
1134 else
1135 goto copcsr;
1136
1137 }
1138 else {
1139 return SIGILL;
1140 }
1141 break;
1142 }
1143 break;
1144 }
1145
1146 case w_fmt:{
1147 ieee754sp fs;
1148
1149 switch (MIPSInst_FUNC(ir)) {
1150 case fcvts_op:
1151 /* convert word to single precision real */
1152 SPFROMREG(fs, MIPSInst_FS(ir));
1153 rv.s = ieee754sp_fint(fs.bits);
1154 rfmt = s_fmt;
1155 goto copcsr;
1156 case fcvtd_op:
1157 /* convert word to double precision real */
1158 SPFROMREG(fs, MIPSInst_FS(ir));
1159 rv.d = ieee754dp_fint(fs.bits);
1160 rfmt = d_fmt;
1161 goto copcsr;
1162 default:
1163 return SIGILL;
1164 }
1165 break;
1166 }
1167
1168 #if defined(__mips64)
1169 case l_fmt:{
1170 switch (MIPSInst_FUNC(ir)) {
1171 case fcvts_op:
1172 /* convert long to single precision real */
1173 rv.s = ieee754sp_flong(ctx->fpr[MIPSInst_FS(ir)]);
1174 rfmt = s_fmt;
1175 goto copcsr;
1176 case fcvtd_op:
1177 /* convert long to double precision real */
1178 rv.d = ieee754dp_flong(ctx->fpr[MIPSInst_FS(ir)]);
1179 rfmt = d_fmt;
1180 goto copcsr;
1181 default:
1182 return SIGILL;
1183 }
1184 break;
1185 }
1186 #endif
1187
1188 default:
1189 return SIGILL;
1190 }
1191
1192 /*
1193 * Update the fpu CSR register for this operation.
1194 * If an exception is required, generate a tidy SIGFPE exception,
1195 * without updating the result register.
1196 * Note: cause exception bits do not accumulate, they are rewritten
1197 * for each op; only the flag/sticky bits accumulate.
1198 */
1199 ctx->fcr31 = (ctx->fcr31 & ~FPU_CSR_ALL_X) | rcsr;
1200 if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
1201 /*printk ("SIGFPE: fpu csr = %08x\n",ctx->fcr31); */
1202 return SIGFPE;
1203 }
1204
1205 /*
1206 * Now we can safely write the result back to the register file.
1207 */
1208 switch (rfmt) {
1209 case -1:{
1210 #if __mips >= 4
1211 cond = fpucondbit[MIPSInst_FD(ir) >> 2];
1212 #else
1213 cond = FPU_CSR_COND;
1214 #endif
1215 if (rv.w)
1216 ctx->fcr31 |= cond;
1217 else
1218 ctx->fcr31 &= ~cond;
1219 break;
1220 }
1221 case d_fmt:
1222 DPTOREG(rv.d, MIPSInst_FD(ir));
1223 break;
1224 case s_fmt:
1225 SPTOREG(rv.s, MIPSInst_FD(ir));
1226 break;
1227 case w_fmt:
1228 SITOREG(rv.w, MIPSInst_FD(ir));
1229 break;
1230 #if defined(__mips64)
1231 case l_fmt:
1232 DITOREG(rv.l, MIPSInst_FD(ir));
1233 break;
1234 #endif
1235 default:
1236 return SIGILL;
1237 }
1238
1239 return 0;
1240 }
1241
1242 int fpu_emulator_cop1Handler(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
1243 int has_fpu)
1244 {
1245 unsigned long oldepc, prevepc;
1246 mips_instruction insn;
1247 int sig = 0;
1248
1249 oldepc = xcp->cp0_epc;
1250 do {
1251 prevepc = xcp->cp0_epc;
1252
1253 if (get_user(insn, (mips_instruction __user *) xcp->cp0_epc)) {
1254 MIPS_FPU_EMU_INC_STATS(errors);
1255 return SIGBUS;
1256 }
1257 if (insn == 0)
1258 xcp->cp0_epc += 4; /* skip nops */
1259 else {
1260 /*
1261 * The 'ieee754_csr' is an alias of
1262 * ctx->fcr31. No need to copy ctx->fcr31 to
1263 * ieee754_csr. But ieee754_csr.rm is ieee
1264 * library modes. (not mips rounding mode)
1265 */
1266 /* convert to ieee library modes */
1267 ieee754_csr.rm = ieee_rm[ieee754_csr.rm];
1268 sig = cop1Emulate(xcp, ctx);
1269 /* revert to mips rounding mode */
1270 ieee754_csr.rm = mips_rm[ieee754_csr.rm];
1271 }
1272
1273 if (has_fpu)
1274 break;
1275 if (sig)
1276 break;
1277
1278 cond_resched();
1279 } while (xcp->cp0_epc > prevepc);
1280
1281 /* SIGILL indicates a non-fpu instruction */
1282 if (sig == SIGILL && xcp->cp0_epc != oldepc)
1283 /* but if epc has advanced, then ignore it */
1284 sig = 0;
1285
1286 return sig;
1287 }
1288
1289 #ifdef CONFIG_DEBUG_FS
1290
1291 static int fpuemu_stat_get(void *data, u64 *val)
1292 {
1293 int cpu;
1294 unsigned long sum = 0;
1295 for_each_online_cpu(cpu) {
1296 struct mips_fpu_emulator_stats *ps;
1297 local_t *pv;
1298 ps = &per_cpu(fpuemustats, cpu);
1299 pv = (void *)ps + (unsigned long)data;
1300 sum += local_read(pv);
1301 }
1302 *val = sum;
1303 return 0;
1304 }
1305 DEFINE_SIMPLE_ATTRIBUTE(fops_fpuemu_stat, fpuemu_stat_get, NULL, "%llu\n");
1306
1307 extern struct dentry *mips_debugfs_dir;
1308 static int __init debugfs_fpuemu(void)
1309 {
1310 struct dentry *d, *dir;
1311
1312 if (!mips_debugfs_dir)
1313 return -ENODEV;
1314 dir = debugfs_create_dir("fpuemustats", mips_debugfs_dir);
1315 if (!dir)
1316 return -ENOMEM;
1317
1318 #define FPU_STAT_CREATE(M) \
1319 do { \
1320 d = debugfs_create_file(#M , S_IRUGO, dir, \
1321 (void *)offsetof(struct mips_fpu_emulator_stats, M), \
1322 &fops_fpuemu_stat); \
1323 if (!d) \
1324 return -ENOMEM; \
1325 } while (0)
1326
1327 FPU_STAT_CREATE(emulated);
1328 FPU_STAT_CREATE(loads);
1329 FPU_STAT_CREATE(stores);
1330 FPU_STAT_CREATE(cp1ops);
1331 FPU_STAT_CREATE(cp1xops);
1332 FPU_STAT_CREATE(errors);
1333
1334 return 0;
1335 }
1336 __initcall(debugfs_fpuemu);
1337 #endif
This page took 0.055694 seconds and 6 git commands to generate.