Merge commit 'v2.6.36' into kbuild/misc
[deliverable/linux.git] / arch / mips / mm / dma-default.c
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 2000 Ani Joshi <ajoshi@unixbox.com>
7 * Copyright (C) 2000, 2001, 06 Ralf Baechle <ralf@linux-mips.org>
8 * swiped from i386, and cloned for MIPS by Geert, polished by Ralf.
9 */
10
11 #include <linux/types.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/mm.h>
14 #include <linux/module.h>
15 #include <linux/scatterlist.h>
16 #include <linux/string.h>
17 #include <linux/gfp.h>
18
19 #include <asm/cache.h>
20 #include <asm/io.h>
21
22 #include <dma-coherence.h>
23
24 static inline unsigned long dma_addr_to_virt(struct device *dev,
25 dma_addr_t dma_addr)
26 {
27 unsigned long addr = plat_dma_addr_to_phys(dev, dma_addr);
28
29 return (unsigned long)phys_to_virt(addr);
30 }
31
32 /*
33 * Warning on the terminology - Linux calls an uncached area coherent;
34 * MIPS terminology calls memory areas with hardware maintained coherency
35 * coherent.
36 */
37
38 static inline int cpu_is_noncoherent_r10000(struct device *dev)
39 {
40 return !plat_device_is_coherent(dev) &&
41 (current_cpu_type() == CPU_R10000 ||
42 current_cpu_type() == CPU_R12000);
43 }
44
45 static gfp_t massage_gfp_flags(const struct device *dev, gfp_t gfp)
46 {
47 gfp_t dma_flag;
48
49 /* ignore region specifiers */
50 gfp &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);
51
52 #ifdef CONFIG_ISA
53 if (dev == NULL)
54 dma_flag = __GFP_DMA;
55 else
56 #endif
57 #if defined(CONFIG_ZONE_DMA32) && defined(CONFIG_ZONE_DMA)
58 if (dev->coherent_dma_mask < DMA_BIT_MASK(32))
59 dma_flag = __GFP_DMA;
60 else if (dev->coherent_dma_mask < DMA_BIT_MASK(64))
61 dma_flag = __GFP_DMA32;
62 else
63 #endif
64 #if defined(CONFIG_ZONE_DMA32) && !defined(CONFIG_ZONE_DMA)
65 if (dev->coherent_dma_mask < DMA_BIT_MASK(64))
66 dma_flag = __GFP_DMA32;
67 else
68 #endif
69 #if defined(CONFIG_ZONE_DMA) && !defined(CONFIG_ZONE_DMA32)
70 if (dev->coherent_dma_mask < DMA_BIT_MASK(64))
71 dma_flag = __GFP_DMA;
72 else
73 #endif
74 dma_flag = 0;
75
76 /* Don't invoke OOM killer */
77 gfp |= __GFP_NORETRY;
78
79 return gfp | dma_flag;
80 }
81
82 void *dma_alloc_noncoherent(struct device *dev, size_t size,
83 dma_addr_t * dma_handle, gfp_t gfp)
84 {
85 void *ret;
86
87 gfp = massage_gfp_flags(dev, gfp);
88
89 ret = (void *) __get_free_pages(gfp, get_order(size));
90
91 if (ret != NULL) {
92 memset(ret, 0, size);
93 *dma_handle = plat_map_dma_mem(dev, ret, size);
94 }
95
96 return ret;
97 }
98
99 EXPORT_SYMBOL(dma_alloc_noncoherent);
100
101 void *dma_alloc_coherent(struct device *dev, size_t size,
102 dma_addr_t * dma_handle, gfp_t gfp)
103 {
104 void *ret;
105
106 if (dma_alloc_from_coherent(dev, size, dma_handle, &ret))
107 return ret;
108
109 gfp = massage_gfp_flags(dev, gfp);
110
111 ret = (void *) __get_free_pages(gfp, get_order(size));
112
113 if (ret) {
114 memset(ret, 0, size);
115 *dma_handle = plat_map_dma_mem(dev, ret, size);
116
117 if (!plat_device_is_coherent(dev)) {
118 dma_cache_wback_inv((unsigned long) ret, size);
119 ret = UNCAC_ADDR(ret);
120 }
121 }
122
123 return ret;
124 }
125
126 EXPORT_SYMBOL(dma_alloc_coherent);
127
128 void dma_free_noncoherent(struct device *dev, size_t size, void *vaddr,
129 dma_addr_t dma_handle)
130 {
131 plat_unmap_dma_mem(dev, dma_handle, size, DMA_BIDIRECTIONAL);
132 free_pages((unsigned long) vaddr, get_order(size));
133 }
134
135 EXPORT_SYMBOL(dma_free_noncoherent);
136
137 void dma_free_coherent(struct device *dev, size_t size, void *vaddr,
138 dma_addr_t dma_handle)
139 {
140 unsigned long addr = (unsigned long) vaddr;
141 int order = get_order(size);
142
143 if (dma_release_from_coherent(dev, order, vaddr))
144 return;
145
146 plat_unmap_dma_mem(dev, dma_handle, size, DMA_BIDIRECTIONAL);
147
148 if (!plat_device_is_coherent(dev))
149 addr = CAC_ADDR(addr);
150
151 free_pages(addr, get_order(size));
152 }
153
154 EXPORT_SYMBOL(dma_free_coherent);
155
156 static inline void __dma_sync(unsigned long addr, size_t size,
157 enum dma_data_direction direction)
158 {
159 switch (direction) {
160 case DMA_TO_DEVICE:
161 dma_cache_wback(addr, size);
162 break;
163
164 case DMA_FROM_DEVICE:
165 dma_cache_inv(addr, size);
166 break;
167
168 case DMA_BIDIRECTIONAL:
169 dma_cache_wback_inv(addr, size);
170 break;
171
172 default:
173 BUG();
174 }
175 }
176
177 dma_addr_t dma_map_single(struct device *dev, void *ptr, size_t size,
178 enum dma_data_direction direction)
179 {
180 unsigned long addr = (unsigned long) ptr;
181
182 if (!plat_device_is_coherent(dev))
183 __dma_sync(addr, size, direction);
184
185 return plat_map_dma_mem(dev, ptr, size);
186 }
187
188 EXPORT_SYMBOL(dma_map_single);
189
190 void dma_unmap_single(struct device *dev, dma_addr_t dma_addr, size_t size,
191 enum dma_data_direction direction)
192 {
193 if (cpu_is_noncoherent_r10000(dev))
194 __dma_sync(dma_addr_to_virt(dev, dma_addr), size,
195 direction);
196
197 plat_unmap_dma_mem(dev, dma_addr, size, direction);
198 }
199
200 EXPORT_SYMBOL(dma_unmap_single);
201
202 int dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
203 enum dma_data_direction direction)
204 {
205 int i;
206
207 BUG_ON(direction == DMA_NONE);
208
209 for (i = 0; i < nents; i++, sg++) {
210 unsigned long addr;
211
212 addr = (unsigned long) sg_virt(sg);
213 if (!plat_device_is_coherent(dev) && addr)
214 __dma_sync(addr, sg->length, direction);
215 sg->dma_address = plat_map_dma_mem(dev,
216 (void *)addr, sg->length);
217 }
218
219 return nents;
220 }
221
222 EXPORT_SYMBOL(dma_map_sg);
223
224 dma_addr_t dma_map_page(struct device *dev, struct page *page,
225 unsigned long offset, size_t size, enum dma_data_direction direction)
226 {
227 BUG_ON(direction == DMA_NONE);
228
229 if (!plat_device_is_coherent(dev)) {
230 unsigned long addr;
231
232 addr = (unsigned long) page_address(page) + offset;
233 __dma_sync(addr, size, direction);
234 }
235
236 return plat_map_dma_mem_page(dev, page) + offset;
237 }
238
239 EXPORT_SYMBOL(dma_map_page);
240
241 void dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nhwentries,
242 enum dma_data_direction direction)
243 {
244 unsigned long addr;
245 int i;
246
247 BUG_ON(direction == DMA_NONE);
248
249 for (i = 0; i < nhwentries; i++, sg++) {
250 if (!plat_device_is_coherent(dev) &&
251 direction != DMA_TO_DEVICE) {
252 addr = (unsigned long) sg_virt(sg);
253 if (addr)
254 __dma_sync(addr, sg->length, direction);
255 }
256 plat_unmap_dma_mem(dev, sg->dma_address, sg->length, direction);
257 }
258 }
259
260 EXPORT_SYMBOL(dma_unmap_sg);
261
262 void dma_sync_single_for_cpu(struct device *dev, dma_addr_t dma_handle,
263 size_t size, enum dma_data_direction direction)
264 {
265 BUG_ON(direction == DMA_NONE);
266
267 if (cpu_is_noncoherent_r10000(dev)) {
268 unsigned long addr;
269
270 addr = dma_addr_to_virt(dev, dma_handle);
271 __dma_sync(addr, size, direction);
272 }
273 }
274
275 EXPORT_SYMBOL(dma_sync_single_for_cpu);
276
277 void dma_sync_single_for_device(struct device *dev, dma_addr_t dma_handle,
278 size_t size, enum dma_data_direction direction)
279 {
280 BUG_ON(direction == DMA_NONE);
281
282 plat_extra_sync_for_device(dev);
283 if (!plat_device_is_coherent(dev)) {
284 unsigned long addr;
285
286 addr = dma_addr_to_virt(dev, dma_handle);
287 __dma_sync(addr, size, direction);
288 }
289 }
290
291 EXPORT_SYMBOL(dma_sync_single_for_device);
292
293 void dma_sync_single_range_for_cpu(struct device *dev, dma_addr_t dma_handle,
294 unsigned long offset, size_t size, enum dma_data_direction direction)
295 {
296 BUG_ON(direction == DMA_NONE);
297
298 if (cpu_is_noncoherent_r10000(dev)) {
299 unsigned long addr;
300
301 addr = dma_addr_to_virt(dev, dma_handle);
302 __dma_sync(addr + offset, size, direction);
303 }
304 }
305
306 EXPORT_SYMBOL(dma_sync_single_range_for_cpu);
307
308 void dma_sync_single_range_for_device(struct device *dev, dma_addr_t dma_handle,
309 unsigned long offset, size_t size, enum dma_data_direction direction)
310 {
311 BUG_ON(direction == DMA_NONE);
312
313 plat_extra_sync_for_device(dev);
314 if (!plat_device_is_coherent(dev)) {
315 unsigned long addr;
316
317 addr = dma_addr_to_virt(dev, dma_handle);
318 __dma_sync(addr + offset, size, direction);
319 }
320 }
321
322 EXPORT_SYMBOL(dma_sync_single_range_for_device);
323
324 void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, int nelems,
325 enum dma_data_direction direction)
326 {
327 int i;
328
329 BUG_ON(direction == DMA_NONE);
330
331 /* Make sure that gcc doesn't leave the empty loop body. */
332 for (i = 0; i < nelems; i++, sg++) {
333 if (cpu_is_noncoherent_r10000(dev))
334 __dma_sync((unsigned long)page_address(sg_page(sg)),
335 sg->length, direction);
336 }
337 }
338
339 EXPORT_SYMBOL(dma_sync_sg_for_cpu);
340
341 void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, int nelems,
342 enum dma_data_direction direction)
343 {
344 int i;
345
346 BUG_ON(direction == DMA_NONE);
347
348 /* Make sure that gcc doesn't leave the empty loop body. */
349 for (i = 0; i < nelems; i++, sg++) {
350 if (!plat_device_is_coherent(dev))
351 __dma_sync((unsigned long)page_address(sg_page(sg)),
352 sg->length, direction);
353 }
354 }
355
356 EXPORT_SYMBOL(dma_sync_sg_for_device);
357
358 int dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
359 {
360 return plat_dma_mapping_error(dev, dma_addr);
361 }
362
363 EXPORT_SYMBOL(dma_mapping_error);
364
365 int dma_supported(struct device *dev, u64 mask)
366 {
367 return plat_dma_supported(dev, mask);
368 }
369
370 EXPORT_SYMBOL(dma_supported);
371
372 void dma_cache_sync(struct device *dev, void *vaddr, size_t size,
373 enum dma_data_direction direction)
374 {
375 BUG_ON(direction == DMA_NONE);
376
377 plat_extra_sync_for_device(dev);
378 if (!plat_device_is_coherent(dev))
379 __dma_sync((unsigned long)vaddr, size, direction);
380 }
381
382 EXPORT_SYMBOL(dma_cache_sync);
This page took 0.039075 seconds and 6 git commands to generate.