GFS2: Check for glock already held in gfs2_getxattr
[deliverable/linux.git] / arch / mips / mm / tlbex.c
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Synthesize TLB refill handlers at runtime.
7 *
8 * Copyright (C) 2004, 2005, 2006, 2008 Thiemo Seufer
9 * Copyright (C) 2005, 2007, 2008, 2009 Maciej W. Rozycki
10 * Copyright (C) 2006 Ralf Baechle (ralf@linux-mips.org)
11 * Copyright (C) 2008, 2009 Cavium Networks, Inc.
12 * Copyright (C) 2011 MIPS Technologies, Inc.
13 *
14 * ... and the days got worse and worse and now you see
15 * I've gone completly out of my mind.
16 *
17 * They're coming to take me a away haha
18 * they're coming to take me a away hoho hihi haha
19 * to the funny farm where code is beautiful all the time ...
20 *
21 * (Condolences to Napoleon XIV)
22 */
23
24 #include <linux/bug.h>
25 #include <linux/kernel.h>
26 #include <linux/types.h>
27 #include <linux/smp.h>
28 #include <linux/string.h>
29 #include <linux/init.h>
30 #include <linux/cache.h>
31
32 #include <asm/cacheflush.h>
33 #include <asm/pgtable.h>
34 #include <asm/war.h>
35 #include <asm/uasm.h>
36 #include <asm/setup.h>
37
38 /*
39 * TLB load/store/modify handlers.
40 *
41 * Only the fastpath gets synthesized at runtime, the slowpath for
42 * do_page_fault remains normal asm.
43 */
44 extern void tlb_do_page_fault_0(void);
45 extern void tlb_do_page_fault_1(void);
46
47 struct work_registers {
48 int r1;
49 int r2;
50 int r3;
51 };
52
53 struct tlb_reg_save {
54 unsigned long a;
55 unsigned long b;
56 } ____cacheline_aligned_in_smp;
57
58 static struct tlb_reg_save handler_reg_save[NR_CPUS];
59
60 static inline int r45k_bvahwbug(void)
61 {
62 /* XXX: We should probe for the presence of this bug, but we don't. */
63 return 0;
64 }
65
66 static inline int r4k_250MHZhwbug(void)
67 {
68 /* XXX: We should probe for the presence of this bug, but we don't. */
69 return 0;
70 }
71
72 static inline int __maybe_unused bcm1250_m3_war(void)
73 {
74 return BCM1250_M3_WAR;
75 }
76
77 static inline int __maybe_unused r10000_llsc_war(void)
78 {
79 return R10000_LLSC_WAR;
80 }
81
82 static int use_bbit_insns(void)
83 {
84 switch (current_cpu_type()) {
85 case CPU_CAVIUM_OCTEON:
86 case CPU_CAVIUM_OCTEON_PLUS:
87 case CPU_CAVIUM_OCTEON2:
88 return 1;
89 default:
90 return 0;
91 }
92 }
93
94 static int use_lwx_insns(void)
95 {
96 switch (current_cpu_type()) {
97 case CPU_CAVIUM_OCTEON2:
98 return 1;
99 default:
100 return 0;
101 }
102 }
103 #if defined(CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE) && \
104 CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE > 0
105 static bool scratchpad_available(void)
106 {
107 return true;
108 }
109 static int scratchpad_offset(int i)
110 {
111 /*
112 * CVMSEG starts at address -32768 and extends for
113 * CAVIUM_OCTEON_CVMSEG_SIZE 128 byte cache lines.
114 */
115 i += 1; /* Kernel use starts at the top and works down. */
116 return CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE * 128 - (8 * i) - 32768;
117 }
118 #else
119 static bool scratchpad_available(void)
120 {
121 return false;
122 }
123 static int scratchpad_offset(int i)
124 {
125 BUG();
126 /* Really unreachable, but evidently some GCC want this. */
127 return 0;
128 }
129 #endif
130 /*
131 * Found by experiment: At least some revisions of the 4kc throw under
132 * some circumstances a machine check exception, triggered by invalid
133 * values in the index register. Delaying the tlbp instruction until
134 * after the next branch, plus adding an additional nop in front of
135 * tlbwi/tlbwr avoids the invalid index register values. Nobody knows
136 * why; it's not an issue caused by the core RTL.
137 *
138 */
139 static int __cpuinit m4kc_tlbp_war(void)
140 {
141 return (current_cpu_data.processor_id & 0xffff00) ==
142 (PRID_COMP_MIPS | PRID_IMP_4KC);
143 }
144
145 /* Handle labels (which must be positive integers). */
146 enum label_id {
147 label_second_part = 1,
148 label_leave,
149 label_vmalloc,
150 label_vmalloc_done,
151 label_tlbw_hazard_0,
152 label_split = label_tlbw_hazard_0 + 8,
153 label_tlbl_goaround1,
154 label_tlbl_goaround2,
155 label_nopage_tlbl,
156 label_nopage_tlbs,
157 label_nopage_tlbm,
158 label_smp_pgtable_change,
159 label_r3000_write_probe_fail,
160 label_large_segbits_fault,
161 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
162 label_tlb_huge_update,
163 #endif
164 };
165
166 UASM_L_LA(_second_part)
167 UASM_L_LA(_leave)
168 UASM_L_LA(_vmalloc)
169 UASM_L_LA(_vmalloc_done)
170 /* _tlbw_hazard_x is handled differently. */
171 UASM_L_LA(_split)
172 UASM_L_LA(_tlbl_goaround1)
173 UASM_L_LA(_tlbl_goaround2)
174 UASM_L_LA(_nopage_tlbl)
175 UASM_L_LA(_nopage_tlbs)
176 UASM_L_LA(_nopage_tlbm)
177 UASM_L_LA(_smp_pgtable_change)
178 UASM_L_LA(_r3000_write_probe_fail)
179 UASM_L_LA(_large_segbits_fault)
180 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
181 UASM_L_LA(_tlb_huge_update)
182 #endif
183
184 static int __cpuinitdata hazard_instance;
185
186 static void __cpuinit uasm_bgezl_hazard(u32 **p,
187 struct uasm_reloc **r,
188 int instance)
189 {
190 switch (instance) {
191 case 0 ... 7:
192 uasm_il_bgezl(p, r, 0, label_tlbw_hazard_0 + instance);
193 return;
194 default:
195 BUG();
196 }
197 }
198
199 static void __cpuinit uasm_bgezl_label(struct uasm_label **l,
200 u32 **p,
201 int instance)
202 {
203 switch (instance) {
204 case 0 ... 7:
205 uasm_build_label(l, *p, label_tlbw_hazard_0 + instance);
206 break;
207 default:
208 BUG();
209 }
210 }
211
212 /*
213 * pgtable bits are assigned dynamically depending on processor feature
214 * and statically based on kernel configuration. This spits out the actual
215 * values the kernel is using. Required to make sense from disassembled
216 * TLB exception handlers.
217 */
218 static void output_pgtable_bits_defines(void)
219 {
220 #define pr_define(fmt, ...) \
221 pr_debug("#define " fmt, ##__VA_ARGS__)
222
223 pr_debug("#include <asm/asm.h>\n");
224 pr_debug("#include <asm/regdef.h>\n");
225 pr_debug("\n");
226
227 pr_define("_PAGE_PRESENT_SHIFT %d\n", _PAGE_PRESENT_SHIFT);
228 pr_define("_PAGE_READ_SHIFT %d\n", _PAGE_READ_SHIFT);
229 pr_define("_PAGE_WRITE_SHIFT %d\n", _PAGE_WRITE_SHIFT);
230 pr_define("_PAGE_ACCESSED_SHIFT %d\n", _PAGE_ACCESSED_SHIFT);
231 pr_define("_PAGE_MODIFIED_SHIFT %d\n", _PAGE_MODIFIED_SHIFT);
232 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
233 pr_define("_PAGE_HUGE_SHIFT %d\n", _PAGE_HUGE_SHIFT);
234 pr_define("_PAGE_SPLITTING_SHIFT %d\n", _PAGE_SPLITTING_SHIFT);
235 #endif
236 if (cpu_has_rixi) {
237 #ifdef _PAGE_NO_EXEC_SHIFT
238 pr_define("_PAGE_NO_EXEC_SHIFT %d\n", _PAGE_NO_EXEC_SHIFT);
239 #endif
240 #ifdef _PAGE_NO_READ_SHIFT
241 pr_define("_PAGE_NO_READ_SHIFT %d\n", _PAGE_NO_READ_SHIFT);
242 #endif
243 }
244 pr_define("_PAGE_GLOBAL_SHIFT %d\n", _PAGE_GLOBAL_SHIFT);
245 pr_define("_PAGE_VALID_SHIFT %d\n", _PAGE_VALID_SHIFT);
246 pr_define("_PAGE_DIRTY_SHIFT %d\n", _PAGE_DIRTY_SHIFT);
247 pr_define("_PFN_SHIFT %d\n", _PFN_SHIFT);
248 pr_debug("\n");
249 }
250
251 static inline void dump_handler(const char *symbol, const u32 *handler, int count)
252 {
253 int i;
254
255 pr_debug("LEAF(%s)\n", symbol);
256
257 pr_debug("\t.set push\n");
258 pr_debug("\t.set noreorder\n");
259
260 for (i = 0; i < count; i++)
261 pr_debug("\t.word\t0x%08x\t\t# %p\n", handler[i], &handler[i]);
262
263 pr_debug("\t.set\tpop\n");
264
265 pr_debug("\tEND(%s)\n", symbol);
266 }
267
268 /* The only general purpose registers allowed in TLB handlers. */
269 #define K0 26
270 #define K1 27
271
272 /* Some CP0 registers */
273 #define C0_INDEX 0, 0
274 #define C0_ENTRYLO0 2, 0
275 #define C0_TCBIND 2, 2
276 #define C0_ENTRYLO1 3, 0
277 #define C0_CONTEXT 4, 0
278 #define C0_PAGEMASK 5, 0
279 #define C0_BADVADDR 8, 0
280 #define C0_ENTRYHI 10, 0
281 #define C0_EPC 14, 0
282 #define C0_XCONTEXT 20, 0
283
284 #ifdef CONFIG_64BIT
285 # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_XCONTEXT)
286 #else
287 # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_CONTEXT)
288 #endif
289
290 /* The worst case length of the handler is around 18 instructions for
291 * R3000-style TLBs and up to 63 instructions for R4000-style TLBs.
292 * Maximum space available is 32 instructions for R3000 and 64
293 * instructions for R4000.
294 *
295 * We deliberately chose a buffer size of 128, so we won't scribble
296 * over anything important on overflow before we panic.
297 */
298 static u32 tlb_handler[128] __cpuinitdata;
299
300 /* simply assume worst case size for labels and relocs */
301 static struct uasm_label labels[128] __cpuinitdata;
302 static struct uasm_reloc relocs[128] __cpuinitdata;
303
304 static int check_for_high_segbits __cpuinitdata;
305
306 static unsigned int kscratch_used_mask __cpuinitdata;
307
308 static inline int __maybe_unused c0_kscratch(void)
309 {
310 switch (current_cpu_type()) {
311 case CPU_XLP:
312 case CPU_XLR:
313 return 22;
314 default:
315 return 31;
316 }
317 }
318
319 static int __cpuinit allocate_kscratch(void)
320 {
321 int r;
322 unsigned int a = cpu_data[0].kscratch_mask & ~kscratch_used_mask;
323
324 r = ffs(a);
325
326 if (r == 0)
327 return -1;
328
329 r--; /* make it zero based */
330
331 kscratch_used_mask |= (1 << r);
332
333 return r;
334 }
335
336 static int scratch_reg __cpuinitdata;
337 static int pgd_reg __cpuinitdata;
338 enum vmalloc64_mode {not_refill, refill_scratch, refill_noscratch};
339
340 static struct work_registers __cpuinit build_get_work_registers(u32 **p)
341 {
342 struct work_registers r;
343
344 int smp_processor_id_reg;
345 int smp_processor_id_sel;
346 int smp_processor_id_shift;
347
348 if (scratch_reg >= 0) {
349 /* Save in CPU local C0_KScratch? */
350 UASM_i_MTC0(p, 1, c0_kscratch(), scratch_reg);
351 r.r1 = K0;
352 r.r2 = K1;
353 r.r3 = 1;
354 return r;
355 }
356
357 if (num_possible_cpus() > 1) {
358 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
359 smp_processor_id_shift = 51;
360 smp_processor_id_reg = 20; /* XContext */
361 smp_processor_id_sel = 0;
362 #else
363 # ifdef CONFIG_32BIT
364 smp_processor_id_shift = 25;
365 smp_processor_id_reg = 4; /* Context */
366 smp_processor_id_sel = 0;
367 # endif
368 # ifdef CONFIG_64BIT
369 smp_processor_id_shift = 26;
370 smp_processor_id_reg = 4; /* Context */
371 smp_processor_id_sel = 0;
372 # endif
373 #endif
374 /* Get smp_processor_id */
375 UASM_i_MFC0(p, K0, smp_processor_id_reg, smp_processor_id_sel);
376 UASM_i_SRL_SAFE(p, K0, K0, smp_processor_id_shift);
377
378 /* handler_reg_save index in K0 */
379 UASM_i_SLL(p, K0, K0, ilog2(sizeof(struct tlb_reg_save)));
380
381 UASM_i_LA(p, K1, (long)&handler_reg_save);
382 UASM_i_ADDU(p, K0, K0, K1);
383 } else {
384 UASM_i_LA(p, K0, (long)&handler_reg_save);
385 }
386 /* K0 now points to save area, save $1 and $2 */
387 UASM_i_SW(p, 1, offsetof(struct tlb_reg_save, a), K0);
388 UASM_i_SW(p, 2, offsetof(struct tlb_reg_save, b), K0);
389
390 r.r1 = K1;
391 r.r2 = 1;
392 r.r3 = 2;
393 return r;
394 }
395
396 static void __cpuinit build_restore_work_registers(u32 **p)
397 {
398 if (scratch_reg >= 0) {
399 UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
400 return;
401 }
402 /* K0 already points to save area, restore $1 and $2 */
403 UASM_i_LW(p, 1, offsetof(struct tlb_reg_save, a), K0);
404 UASM_i_LW(p, 2, offsetof(struct tlb_reg_save, b), K0);
405 }
406
407 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
408
409 /*
410 * CONFIG_MIPS_PGD_C0_CONTEXT implies 64 bit and lack of pgd_current,
411 * we cannot do r3000 under these circumstances.
412 *
413 * Declare pgd_current here instead of including mmu_context.h to avoid type
414 * conflicts for tlbmiss_handler_setup_pgd
415 */
416 extern unsigned long pgd_current[];
417
418 /*
419 * The R3000 TLB handler is simple.
420 */
421 static void __cpuinit build_r3000_tlb_refill_handler(void)
422 {
423 long pgdc = (long)pgd_current;
424 u32 *p;
425
426 memset(tlb_handler, 0, sizeof(tlb_handler));
427 p = tlb_handler;
428
429 uasm_i_mfc0(&p, K0, C0_BADVADDR);
430 uasm_i_lui(&p, K1, uasm_rel_hi(pgdc)); /* cp0 delay */
431 uasm_i_lw(&p, K1, uasm_rel_lo(pgdc), K1);
432 uasm_i_srl(&p, K0, K0, 22); /* load delay */
433 uasm_i_sll(&p, K0, K0, 2);
434 uasm_i_addu(&p, K1, K1, K0);
435 uasm_i_mfc0(&p, K0, C0_CONTEXT);
436 uasm_i_lw(&p, K1, 0, K1); /* cp0 delay */
437 uasm_i_andi(&p, K0, K0, 0xffc); /* load delay */
438 uasm_i_addu(&p, K1, K1, K0);
439 uasm_i_lw(&p, K0, 0, K1);
440 uasm_i_nop(&p); /* load delay */
441 uasm_i_mtc0(&p, K0, C0_ENTRYLO0);
442 uasm_i_mfc0(&p, K1, C0_EPC); /* cp0 delay */
443 uasm_i_tlbwr(&p); /* cp0 delay */
444 uasm_i_jr(&p, K1);
445 uasm_i_rfe(&p); /* branch delay */
446
447 if (p > tlb_handler + 32)
448 panic("TLB refill handler space exceeded");
449
450 pr_debug("Wrote TLB refill handler (%u instructions).\n",
451 (unsigned int)(p - tlb_handler));
452
453 memcpy((void *)ebase, tlb_handler, 0x80);
454
455 dump_handler("r3000_tlb_refill", (u32 *)ebase, 32);
456 }
457 #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
458
459 /*
460 * The R4000 TLB handler is much more complicated. We have two
461 * consecutive handler areas with 32 instructions space each.
462 * Since they aren't used at the same time, we can overflow in the
463 * other one.To keep things simple, we first assume linear space,
464 * then we relocate it to the final handler layout as needed.
465 */
466 static u32 final_handler[64] __cpuinitdata;
467
468 /*
469 * Hazards
470 *
471 * From the IDT errata for the QED RM5230 (Nevada), processor revision 1.0:
472 * 2. A timing hazard exists for the TLBP instruction.
473 *
474 * stalling_instruction
475 * TLBP
476 *
477 * The JTLB is being read for the TLBP throughout the stall generated by the
478 * previous instruction. This is not really correct as the stalling instruction
479 * can modify the address used to access the JTLB. The failure symptom is that
480 * the TLBP instruction will use an address created for the stalling instruction
481 * and not the address held in C0_ENHI and thus report the wrong results.
482 *
483 * The software work-around is to not allow the instruction preceding the TLBP
484 * to stall - make it an NOP or some other instruction guaranteed not to stall.
485 *
486 * Errata 2 will not be fixed. This errata is also on the R5000.
487 *
488 * As if we MIPS hackers wouldn't know how to nop pipelines happy ...
489 */
490 static void __cpuinit __maybe_unused build_tlb_probe_entry(u32 **p)
491 {
492 switch (current_cpu_type()) {
493 /* Found by experiment: R4600 v2.0/R4700 needs this, too. */
494 case CPU_R4600:
495 case CPU_R4700:
496 case CPU_R5000:
497 case CPU_NEVADA:
498 uasm_i_nop(p);
499 uasm_i_tlbp(p);
500 break;
501
502 default:
503 uasm_i_tlbp(p);
504 break;
505 }
506 }
507
508 /*
509 * Write random or indexed TLB entry, and care about the hazards from
510 * the preceding mtc0 and for the following eret.
511 */
512 enum tlb_write_entry { tlb_random, tlb_indexed };
513
514 static void __cpuinit build_tlb_write_entry(u32 **p, struct uasm_label **l,
515 struct uasm_reloc **r,
516 enum tlb_write_entry wmode)
517 {
518 void(*tlbw)(u32 **) = NULL;
519
520 switch (wmode) {
521 case tlb_random: tlbw = uasm_i_tlbwr; break;
522 case tlb_indexed: tlbw = uasm_i_tlbwi; break;
523 }
524
525 if (cpu_has_mips_r2) {
526 /*
527 * The architecture spec says an ehb is required here,
528 * but a number of cores do not have the hazard and
529 * using an ehb causes an expensive pipeline stall.
530 */
531 switch (current_cpu_type()) {
532 case CPU_M14KC:
533 case CPU_74K:
534 break;
535
536 default:
537 uasm_i_ehb(p);
538 break;
539 }
540 tlbw(p);
541 return;
542 }
543
544 switch (current_cpu_type()) {
545 case CPU_R4000PC:
546 case CPU_R4000SC:
547 case CPU_R4000MC:
548 case CPU_R4400PC:
549 case CPU_R4400SC:
550 case CPU_R4400MC:
551 /*
552 * This branch uses up a mtc0 hazard nop slot and saves
553 * two nops after the tlbw instruction.
554 */
555 uasm_bgezl_hazard(p, r, hazard_instance);
556 tlbw(p);
557 uasm_bgezl_label(l, p, hazard_instance);
558 hazard_instance++;
559 uasm_i_nop(p);
560 break;
561
562 case CPU_R4600:
563 case CPU_R4700:
564 uasm_i_nop(p);
565 tlbw(p);
566 uasm_i_nop(p);
567 break;
568
569 case CPU_R5000:
570 case CPU_NEVADA:
571 uasm_i_nop(p); /* QED specifies 2 nops hazard */
572 uasm_i_nop(p); /* QED specifies 2 nops hazard */
573 tlbw(p);
574 break;
575
576 case CPU_R4300:
577 case CPU_5KC:
578 case CPU_TX49XX:
579 case CPU_PR4450:
580 case CPU_XLR:
581 uasm_i_nop(p);
582 tlbw(p);
583 break;
584
585 case CPU_R10000:
586 case CPU_R12000:
587 case CPU_R14000:
588 case CPU_4KC:
589 case CPU_4KEC:
590 case CPU_M14KC:
591 case CPU_M14KEC:
592 case CPU_SB1:
593 case CPU_SB1A:
594 case CPU_4KSC:
595 case CPU_20KC:
596 case CPU_25KF:
597 case CPU_BMIPS32:
598 case CPU_BMIPS3300:
599 case CPU_BMIPS4350:
600 case CPU_BMIPS4380:
601 case CPU_BMIPS5000:
602 case CPU_LOONGSON2:
603 case CPU_R5500:
604 if (m4kc_tlbp_war())
605 uasm_i_nop(p);
606 case CPU_ALCHEMY:
607 tlbw(p);
608 break;
609
610 case CPU_RM7000:
611 uasm_i_nop(p);
612 uasm_i_nop(p);
613 uasm_i_nop(p);
614 uasm_i_nop(p);
615 tlbw(p);
616 break;
617
618 case CPU_VR4111:
619 case CPU_VR4121:
620 case CPU_VR4122:
621 case CPU_VR4181:
622 case CPU_VR4181A:
623 uasm_i_nop(p);
624 uasm_i_nop(p);
625 tlbw(p);
626 uasm_i_nop(p);
627 uasm_i_nop(p);
628 break;
629
630 case CPU_VR4131:
631 case CPU_VR4133:
632 case CPU_R5432:
633 uasm_i_nop(p);
634 uasm_i_nop(p);
635 tlbw(p);
636 break;
637
638 case CPU_JZRISC:
639 tlbw(p);
640 uasm_i_nop(p);
641 break;
642
643 default:
644 panic("No TLB refill handler yet (CPU type: %d)",
645 current_cpu_data.cputype);
646 break;
647 }
648 }
649
650 static __cpuinit __maybe_unused void build_convert_pte_to_entrylo(u32 **p,
651 unsigned int reg)
652 {
653 if (cpu_has_rixi) {
654 UASM_i_ROTR(p, reg, reg, ilog2(_PAGE_GLOBAL));
655 } else {
656 #ifdef CONFIG_64BIT_PHYS_ADDR
657 uasm_i_dsrl_safe(p, reg, reg, ilog2(_PAGE_GLOBAL));
658 #else
659 UASM_i_SRL(p, reg, reg, ilog2(_PAGE_GLOBAL));
660 #endif
661 }
662 }
663
664 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
665
666 static __cpuinit void build_restore_pagemask(u32 **p,
667 struct uasm_reloc **r,
668 unsigned int tmp,
669 enum label_id lid,
670 int restore_scratch)
671 {
672 if (restore_scratch) {
673 /* Reset default page size */
674 if (PM_DEFAULT_MASK >> 16) {
675 uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
676 uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
677 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
678 uasm_il_b(p, r, lid);
679 } else if (PM_DEFAULT_MASK) {
680 uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
681 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
682 uasm_il_b(p, r, lid);
683 } else {
684 uasm_i_mtc0(p, 0, C0_PAGEMASK);
685 uasm_il_b(p, r, lid);
686 }
687 if (scratch_reg >= 0)
688 UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
689 else
690 UASM_i_LW(p, 1, scratchpad_offset(0), 0);
691 } else {
692 /* Reset default page size */
693 if (PM_DEFAULT_MASK >> 16) {
694 uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
695 uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
696 uasm_il_b(p, r, lid);
697 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
698 } else if (PM_DEFAULT_MASK) {
699 uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
700 uasm_il_b(p, r, lid);
701 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
702 } else {
703 uasm_il_b(p, r, lid);
704 uasm_i_mtc0(p, 0, C0_PAGEMASK);
705 }
706 }
707 }
708
709 static __cpuinit void build_huge_tlb_write_entry(u32 **p,
710 struct uasm_label **l,
711 struct uasm_reloc **r,
712 unsigned int tmp,
713 enum tlb_write_entry wmode,
714 int restore_scratch)
715 {
716 /* Set huge page tlb entry size */
717 uasm_i_lui(p, tmp, PM_HUGE_MASK >> 16);
718 uasm_i_ori(p, tmp, tmp, PM_HUGE_MASK & 0xffff);
719 uasm_i_mtc0(p, tmp, C0_PAGEMASK);
720
721 build_tlb_write_entry(p, l, r, wmode);
722
723 build_restore_pagemask(p, r, tmp, label_leave, restore_scratch);
724 }
725
726 /*
727 * Check if Huge PTE is present, if so then jump to LABEL.
728 */
729 static void __cpuinit
730 build_is_huge_pte(u32 **p, struct uasm_reloc **r, unsigned int tmp,
731 unsigned int pmd, int lid)
732 {
733 UASM_i_LW(p, tmp, 0, pmd);
734 if (use_bbit_insns()) {
735 uasm_il_bbit1(p, r, tmp, ilog2(_PAGE_HUGE), lid);
736 } else {
737 uasm_i_andi(p, tmp, tmp, _PAGE_HUGE);
738 uasm_il_bnez(p, r, tmp, lid);
739 }
740 }
741
742 static __cpuinit void build_huge_update_entries(u32 **p,
743 unsigned int pte,
744 unsigned int tmp)
745 {
746 int small_sequence;
747
748 /*
749 * A huge PTE describes an area the size of the
750 * configured huge page size. This is twice the
751 * of the large TLB entry size we intend to use.
752 * A TLB entry half the size of the configured
753 * huge page size is configured into entrylo0
754 * and entrylo1 to cover the contiguous huge PTE
755 * address space.
756 */
757 small_sequence = (HPAGE_SIZE >> 7) < 0x10000;
758
759 /* We can clobber tmp. It isn't used after this.*/
760 if (!small_sequence)
761 uasm_i_lui(p, tmp, HPAGE_SIZE >> (7 + 16));
762
763 build_convert_pte_to_entrylo(p, pte);
764 UASM_i_MTC0(p, pte, C0_ENTRYLO0); /* load it */
765 /* convert to entrylo1 */
766 if (small_sequence)
767 UASM_i_ADDIU(p, pte, pte, HPAGE_SIZE >> 7);
768 else
769 UASM_i_ADDU(p, pte, pte, tmp);
770
771 UASM_i_MTC0(p, pte, C0_ENTRYLO1); /* load it */
772 }
773
774 static __cpuinit void build_huge_handler_tail(u32 **p,
775 struct uasm_reloc **r,
776 struct uasm_label **l,
777 unsigned int pte,
778 unsigned int ptr)
779 {
780 #ifdef CONFIG_SMP
781 UASM_i_SC(p, pte, 0, ptr);
782 uasm_il_beqz(p, r, pte, label_tlb_huge_update);
783 UASM_i_LW(p, pte, 0, ptr); /* Needed because SC killed our PTE */
784 #else
785 UASM_i_SW(p, pte, 0, ptr);
786 #endif
787 build_huge_update_entries(p, pte, ptr);
788 build_huge_tlb_write_entry(p, l, r, pte, tlb_indexed, 0);
789 }
790 #endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
791
792 #ifdef CONFIG_64BIT
793 /*
794 * TMP and PTR are scratch.
795 * TMP will be clobbered, PTR will hold the pmd entry.
796 */
797 static void __cpuinit
798 build_get_pmde64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
799 unsigned int tmp, unsigned int ptr)
800 {
801 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
802 long pgdc = (long)pgd_current;
803 #endif
804 /*
805 * The vmalloc handling is not in the hotpath.
806 */
807 uasm_i_dmfc0(p, tmp, C0_BADVADDR);
808
809 if (check_for_high_segbits) {
810 /*
811 * The kernel currently implicitely assumes that the
812 * MIPS SEGBITS parameter for the processor is
813 * (PGDIR_SHIFT+PGDIR_BITS) or less, and will never
814 * allocate virtual addresses outside the maximum
815 * range for SEGBITS = (PGDIR_SHIFT+PGDIR_BITS). But
816 * that doesn't prevent user code from accessing the
817 * higher xuseg addresses. Here, we make sure that
818 * everything but the lower xuseg addresses goes down
819 * the module_alloc/vmalloc path.
820 */
821 uasm_i_dsrl_safe(p, ptr, tmp, PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
822 uasm_il_bnez(p, r, ptr, label_vmalloc);
823 } else {
824 uasm_il_bltz(p, r, tmp, label_vmalloc);
825 }
826 /* No uasm_i_nop needed here, since the next insn doesn't touch TMP. */
827
828 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
829 if (pgd_reg != -1) {
830 /* pgd is in pgd_reg */
831 UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
832 } else {
833 /*
834 * &pgd << 11 stored in CONTEXT [23..63].
835 */
836 UASM_i_MFC0(p, ptr, C0_CONTEXT);
837
838 /* Clear lower 23 bits of context. */
839 uasm_i_dins(p, ptr, 0, 0, 23);
840
841 /* 1 0 1 0 1 << 6 xkphys cached */
842 uasm_i_ori(p, ptr, ptr, 0x540);
843 uasm_i_drotr(p, ptr, ptr, 11);
844 }
845 #elif defined(CONFIG_SMP)
846 # ifdef CONFIG_MIPS_MT_SMTC
847 /*
848 * SMTC uses TCBind value as "CPU" index
849 */
850 uasm_i_mfc0(p, ptr, C0_TCBIND);
851 uasm_i_dsrl_safe(p, ptr, ptr, 19);
852 # else
853 /*
854 * 64 bit SMP running in XKPHYS has smp_processor_id() << 3
855 * stored in CONTEXT.
856 */
857 uasm_i_dmfc0(p, ptr, C0_CONTEXT);
858 uasm_i_dsrl_safe(p, ptr, ptr, 23);
859 # endif
860 UASM_i_LA_mostly(p, tmp, pgdc);
861 uasm_i_daddu(p, ptr, ptr, tmp);
862 uasm_i_dmfc0(p, tmp, C0_BADVADDR);
863 uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
864 #else
865 UASM_i_LA_mostly(p, ptr, pgdc);
866 uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
867 #endif
868
869 uasm_l_vmalloc_done(l, *p);
870
871 /* get pgd offset in bytes */
872 uasm_i_dsrl_safe(p, tmp, tmp, PGDIR_SHIFT - 3);
873
874 uasm_i_andi(p, tmp, tmp, (PTRS_PER_PGD - 1)<<3);
875 uasm_i_daddu(p, ptr, ptr, tmp); /* add in pgd offset */
876 #ifndef __PAGETABLE_PMD_FOLDED
877 uasm_i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */
878 uasm_i_ld(p, ptr, 0, ptr); /* get pmd pointer */
879 uasm_i_dsrl_safe(p, tmp, tmp, PMD_SHIFT-3); /* get pmd offset in bytes */
880 uasm_i_andi(p, tmp, tmp, (PTRS_PER_PMD - 1)<<3);
881 uasm_i_daddu(p, ptr, ptr, tmp); /* add in pmd offset */
882 #endif
883 }
884
885 /*
886 * BVADDR is the faulting address, PTR is scratch.
887 * PTR will hold the pgd for vmalloc.
888 */
889 static void __cpuinit
890 build_get_pgd_vmalloc64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
891 unsigned int bvaddr, unsigned int ptr,
892 enum vmalloc64_mode mode)
893 {
894 long swpd = (long)swapper_pg_dir;
895 int single_insn_swpd;
896 int did_vmalloc_branch = 0;
897
898 single_insn_swpd = uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd);
899
900 uasm_l_vmalloc(l, *p);
901
902 if (mode != not_refill && check_for_high_segbits) {
903 if (single_insn_swpd) {
904 uasm_il_bltz(p, r, bvaddr, label_vmalloc_done);
905 uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
906 did_vmalloc_branch = 1;
907 /* fall through */
908 } else {
909 uasm_il_bgez(p, r, bvaddr, label_large_segbits_fault);
910 }
911 }
912 if (!did_vmalloc_branch) {
913 if (uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd)) {
914 uasm_il_b(p, r, label_vmalloc_done);
915 uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
916 } else {
917 UASM_i_LA_mostly(p, ptr, swpd);
918 uasm_il_b(p, r, label_vmalloc_done);
919 if (uasm_in_compat_space_p(swpd))
920 uasm_i_addiu(p, ptr, ptr, uasm_rel_lo(swpd));
921 else
922 uasm_i_daddiu(p, ptr, ptr, uasm_rel_lo(swpd));
923 }
924 }
925 if (mode != not_refill && check_for_high_segbits) {
926 uasm_l_large_segbits_fault(l, *p);
927 /*
928 * We get here if we are an xsseg address, or if we are
929 * an xuseg address above (PGDIR_SHIFT+PGDIR_BITS) boundary.
930 *
931 * Ignoring xsseg (assume disabled so would generate
932 * (address errors?), the only remaining possibility
933 * is the upper xuseg addresses. On processors with
934 * TLB_SEGBITS <= PGDIR_SHIFT+PGDIR_BITS, these
935 * addresses would have taken an address error. We try
936 * to mimic that here by taking a load/istream page
937 * fault.
938 */
939 UASM_i_LA(p, ptr, (unsigned long)tlb_do_page_fault_0);
940 uasm_i_jr(p, ptr);
941
942 if (mode == refill_scratch) {
943 if (scratch_reg >= 0)
944 UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
945 else
946 UASM_i_LW(p, 1, scratchpad_offset(0), 0);
947 } else {
948 uasm_i_nop(p);
949 }
950 }
951 }
952
953 #else /* !CONFIG_64BIT */
954
955 /*
956 * TMP and PTR are scratch.
957 * TMP will be clobbered, PTR will hold the pgd entry.
958 */
959 static void __cpuinit __maybe_unused
960 build_get_pgde32(u32 **p, unsigned int tmp, unsigned int ptr)
961 {
962 long pgdc = (long)pgd_current;
963
964 /* 32 bit SMP has smp_processor_id() stored in CONTEXT. */
965 #ifdef CONFIG_SMP
966 #ifdef CONFIG_MIPS_MT_SMTC
967 /*
968 * SMTC uses TCBind value as "CPU" index
969 */
970 uasm_i_mfc0(p, ptr, C0_TCBIND);
971 UASM_i_LA_mostly(p, tmp, pgdc);
972 uasm_i_srl(p, ptr, ptr, 19);
973 #else
974 /*
975 * smp_processor_id() << 2 is stored in CONTEXT.
976 */
977 uasm_i_mfc0(p, ptr, C0_CONTEXT);
978 UASM_i_LA_mostly(p, tmp, pgdc);
979 uasm_i_srl(p, ptr, ptr, 23);
980 #endif
981 uasm_i_addu(p, ptr, tmp, ptr);
982 #else
983 UASM_i_LA_mostly(p, ptr, pgdc);
984 #endif
985 uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
986 uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
987 uasm_i_srl(p, tmp, tmp, PGDIR_SHIFT); /* get pgd only bits */
988 uasm_i_sll(p, tmp, tmp, PGD_T_LOG2);
989 uasm_i_addu(p, ptr, ptr, tmp); /* add in pgd offset */
990 }
991
992 #endif /* !CONFIG_64BIT */
993
994 static void __cpuinit build_adjust_context(u32 **p, unsigned int ctx)
995 {
996 unsigned int shift = 4 - (PTE_T_LOG2 + 1) + PAGE_SHIFT - 12;
997 unsigned int mask = (PTRS_PER_PTE / 2 - 1) << (PTE_T_LOG2 + 1);
998
999 switch (current_cpu_type()) {
1000 case CPU_VR41XX:
1001 case CPU_VR4111:
1002 case CPU_VR4121:
1003 case CPU_VR4122:
1004 case CPU_VR4131:
1005 case CPU_VR4181:
1006 case CPU_VR4181A:
1007 case CPU_VR4133:
1008 shift += 2;
1009 break;
1010
1011 default:
1012 break;
1013 }
1014
1015 if (shift)
1016 UASM_i_SRL(p, ctx, ctx, shift);
1017 uasm_i_andi(p, ctx, ctx, mask);
1018 }
1019
1020 static void __cpuinit build_get_ptep(u32 **p, unsigned int tmp, unsigned int ptr)
1021 {
1022 /*
1023 * Bug workaround for the Nevada. It seems as if under certain
1024 * circumstances the move from cp0_context might produce a
1025 * bogus result when the mfc0 instruction and its consumer are
1026 * in a different cacheline or a load instruction, probably any
1027 * memory reference, is between them.
1028 */
1029 switch (current_cpu_type()) {
1030 case CPU_NEVADA:
1031 UASM_i_LW(p, ptr, 0, ptr);
1032 GET_CONTEXT(p, tmp); /* get context reg */
1033 break;
1034
1035 default:
1036 GET_CONTEXT(p, tmp); /* get context reg */
1037 UASM_i_LW(p, ptr, 0, ptr);
1038 break;
1039 }
1040
1041 build_adjust_context(p, tmp);
1042 UASM_i_ADDU(p, ptr, ptr, tmp); /* add in offset */
1043 }
1044
1045 static void __cpuinit build_update_entries(u32 **p, unsigned int tmp,
1046 unsigned int ptep)
1047 {
1048 /*
1049 * 64bit address support (36bit on a 32bit CPU) in a 32bit
1050 * Kernel is a special case. Only a few CPUs use it.
1051 */
1052 #ifdef CONFIG_64BIT_PHYS_ADDR
1053 if (cpu_has_64bits) {
1054 uasm_i_ld(p, tmp, 0, ptep); /* get even pte */
1055 uasm_i_ld(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
1056 if (cpu_has_rixi) {
1057 UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL));
1058 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1059 UASM_i_ROTR(p, ptep, ptep, ilog2(_PAGE_GLOBAL));
1060 } else {
1061 uasm_i_dsrl_safe(p, tmp, tmp, ilog2(_PAGE_GLOBAL)); /* convert to entrylo0 */
1062 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1063 uasm_i_dsrl_safe(p, ptep, ptep, ilog2(_PAGE_GLOBAL)); /* convert to entrylo1 */
1064 }
1065 UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1066 } else {
1067 int pte_off_even = sizeof(pte_t) / 2;
1068 int pte_off_odd = pte_off_even + sizeof(pte_t);
1069
1070 /* The pte entries are pre-shifted */
1071 uasm_i_lw(p, tmp, pte_off_even, ptep); /* get even pte */
1072 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1073 uasm_i_lw(p, ptep, pte_off_odd, ptep); /* get odd pte */
1074 UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1075 }
1076 #else
1077 UASM_i_LW(p, tmp, 0, ptep); /* get even pte */
1078 UASM_i_LW(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
1079 if (r45k_bvahwbug())
1080 build_tlb_probe_entry(p);
1081 if (cpu_has_rixi) {
1082 UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL));
1083 if (r4k_250MHZhwbug())
1084 UASM_i_MTC0(p, 0, C0_ENTRYLO0);
1085 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1086 UASM_i_ROTR(p, ptep, ptep, ilog2(_PAGE_GLOBAL));
1087 } else {
1088 UASM_i_SRL(p, tmp, tmp, ilog2(_PAGE_GLOBAL)); /* convert to entrylo0 */
1089 if (r4k_250MHZhwbug())
1090 UASM_i_MTC0(p, 0, C0_ENTRYLO0);
1091 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1092 UASM_i_SRL(p, ptep, ptep, ilog2(_PAGE_GLOBAL)); /* convert to entrylo1 */
1093 if (r45k_bvahwbug())
1094 uasm_i_mfc0(p, tmp, C0_INDEX);
1095 }
1096 if (r4k_250MHZhwbug())
1097 UASM_i_MTC0(p, 0, C0_ENTRYLO1);
1098 UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1099 #endif
1100 }
1101
1102 struct mips_huge_tlb_info {
1103 int huge_pte;
1104 int restore_scratch;
1105 };
1106
1107 static struct mips_huge_tlb_info __cpuinit
1108 build_fast_tlb_refill_handler (u32 **p, struct uasm_label **l,
1109 struct uasm_reloc **r, unsigned int tmp,
1110 unsigned int ptr, int c0_scratch_reg)
1111 {
1112 struct mips_huge_tlb_info rv;
1113 unsigned int even, odd;
1114 int vmalloc_branch_delay_filled = 0;
1115 const int scratch = 1; /* Our extra working register */
1116
1117 rv.huge_pte = scratch;
1118 rv.restore_scratch = 0;
1119
1120 if (check_for_high_segbits) {
1121 UASM_i_MFC0(p, tmp, C0_BADVADDR);
1122
1123 if (pgd_reg != -1)
1124 UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
1125 else
1126 UASM_i_MFC0(p, ptr, C0_CONTEXT);
1127
1128 if (c0_scratch_reg >= 0)
1129 UASM_i_MTC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1130 else
1131 UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
1132
1133 uasm_i_dsrl_safe(p, scratch, tmp,
1134 PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
1135 uasm_il_bnez(p, r, scratch, label_vmalloc);
1136
1137 if (pgd_reg == -1) {
1138 vmalloc_branch_delay_filled = 1;
1139 /* Clear lower 23 bits of context. */
1140 uasm_i_dins(p, ptr, 0, 0, 23);
1141 }
1142 } else {
1143 if (pgd_reg != -1)
1144 UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
1145 else
1146 UASM_i_MFC0(p, ptr, C0_CONTEXT);
1147
1148 UASM_i_MFC0(p, tmp, C0_BADVADDR);
1149
1150 if (c0_scratch_reg >= 0)
1151 UASM_i_MTC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1152 else
1153 UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
1154
1155 if (pgd_reg == -1)
1156 /* Clear lower 23 bits of context. */
1157 uasm_i_dins(p, ptr, 0, 0, 23);
1158
1159 uasm_il_bltz(p, r, tmp, label_vmalloc);
1160 }
1161
1162 if (pgd_reg == -1) {
1163 vmalloc_branch_delay_filled = 1;
1164 /* 1 0 1 0 1 << 6 xkphys cached */
1165 uasm_i_ori(p, ptr, ptr, 0x540);
1166 uasm_i_drotr(p, ptr, ptr, 11);
1167 }
1168
1169 #ifdef __PAGETABLE_PMD_FOLDED
1170 #define LOC_PTEP scratch
1171 #else
1172 #define LOC_PTEP ptr
1173 #endif
1174
1175 if (!vmalloc_branch_delay_filled)
1176 /* get pgd offset in bytes */
1177 uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
1178
1179 uasm_l_vmalloc_done(l, *p);
1180
1181 /*
1182 * tmp ptr
1183 * fall-through case = badvaddr *pgd_current
1184 * vmalloc case = badvaddr swapper_pg_dir
1185 */
1186
1187 if (vmalloc_branch_delay_filled)
1188 /* get pgd offset in bytes */
1189 uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
1190
1191 #ifdef __PAGETABLE_PMD_FOLDED
1192 GET_CONTEXT(p, tmp); /* get context reg */
1193 #endif
1194 uasm_i_andi(p, scratch, scratch, (PTRS_PER_PGD - 1) << 3);
1195
1196 if (use_lwx_insns()) {
1197 UASM_i_LWX(p, LOC_PTEP, scratch, ptr);
1198 } else {
1199 uasm_i_daddu(p, ptr, ptr, scratch); /* add in pgd offset */
1200 uasm_i_ld(p, LOC_PTEP, 0, ptr); /* get pmd pointer */
1201 }
1202
1203 #ifndef __PAGETABLE_PMD_FOLDED
1204 /* get pmd offset in bytes */
1205 uasm_i_dsrl_safe(p, scratch, tmp, PMD_SHIFT - 3);
1206 uasm_i_andi(p, scratch, scratch, (PTRS_PER_PMD - 1) << 3);
1207 GET_CONTEXT(p, tmp); /* get context reg */
1208
1209 if (use_lwx_insns()) {
1210 UASM_i_LWX(p, scratch, scratch, ptr);
1211 } else {
1212 uasm_i_daddu(p, ptr, ptr, scratch); /* add in pmd offset */
1213 UASM_i_LW(p, scratch, 0, ptr);
1214 }
1215 #endif
1216 /* Adjust the context during the load latency. */
1217 build_adjust_context(p, tmp);
1218
1219 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1220 uasm_il_bbit1(p, r, scratch, ilog2(_PAGE_HUGE), label_tlb_huge_update);
1221 /*
1222 * The in the LWX case we don't want to do the load in the
1223 * delay slot. It cannot issue in the same cycle and may be
1224 * speculative and unneeded.
1225 */
1226 if (use_lwx_insns())
1227 uasm_i_nop(p);
1228 #endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
1229
1230
1231 /* build_update_entries */
1232 if (use_lwx_insns()) {
1233 even = ptr;
1234 odd = tmp;
1235 UASM_i_LWX(p, even, scratch, tmp);
1236 UASM_i_ADDIU(p, tmp, tmp, sizeof(pte_t));
1237 UASM_i_LWX(p, odd, scratch, tmp);
1238 } else {
1239 UASM_i_ADDU(p, ptr, scratch, tmp); /* add in offset */
1240 even = tmp;
1241 odd = ptr;
1242 UASM_i_LW(p, even, 0, ptr); /* get even pte */
1243 UASM_i_LW(p, odd, sizeof(pte_t), ptr); /* get odd pte */
1244 }
1245 if (cpu_has_rixi) {
1246 uasm_i_drotr(p, even, even, ilog2(_PAGE_GLOBAL));
1247 UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
1248 uasm_i_drotr(p, odd, odd, ilog2(_PAGE_GLOBAL));
1249 } else {
1250 uasm_i_dsrl_safe(p, even, even, ilog2(_PAGE_GLOBAL));
1251 UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
1252 uasm_i_dsrl_safe(p, odd, odd, ilog2(_PAGE_GLOBAL));
1253 }
1254 UASM_i_MTC0(p, odd, C0_ENTRYLO1); /* load it */
1255
1256 if (c0_scratch_reg >= 0) {
1257 UASM_i_MFC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1258 build_tlb_write_entry(p, l, r, tlb_random);
1259 uasm_l_leave(l, *p);
1260 rv.restore_scratch = 1;
1261 } else if (PAGE_SHIFT == 14 || PAGE_SHIFT == 13) {
1262 build_tlb_write_entry(p, l, r, tlb_random);
1263 uasm_l_leave(l, *p);
1264 UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
1265 } else {
1266 UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
1267 build_tlb_write_entry(p, l, r, tlb_random);
1268 uasm_l_leave(l, *p);
1269 rv.restore_scratch = 1;
1270 }
1271
1272 uasm_i_eret(p); /* return from trap */
1273
1274 return rv;
1275 }
1276
1277 /*
1278 * For a 64-bit kernel, we are using the 64-bit XTLB refill exception
1279 * because EXL == 0. If we wrap, we can also use the 32 instruction
1280 * slots before the XTLB refill exception handler which belong to the
1281 * unused TLB refill exception.
1282 */
1283 #define MIPS64_REFILL_INSNS 32
1284
1285 static void __cpuinit build_r4000_tlb_refill_handler(void)
1286 {
1287 u32 *p = tlb_handler;
1288 struct uasm_label *l = labels;
1289 struct uasm_reloc *r = relocs;
1290 u32 *f;
1291 unsigned int final_len;
1292 struct mips_huge_tlb_info htlb_info __maybe_unused;
1293 enum vmalloc64_mode vmalloc_mode __maybe_unused;
1294
1295 memset(tlb_handler, 0, sizeof(tlb_handler));
1296 memset(labels, 0, sizeof(labels));
1297 memset(relocs, 0, sizeof(relocs));
1298 memset(final_handler, 0, sizeof(final_handler));
1299
1300 if ((scratch_reg >= 0 || scratchpad_available()) && use_bbit_insns()) {
1301 htlb_info = build_fast_tlb_refill_handler(&p, &l, &r, K0, K1,
1302 scratch_reg);
1303 vmalloc_mode = refill_scratch;
1304 } else {
1305 htlb_info.huge_pte = K0;
1306 htlb_info.restore_scratch = 0;
1307 vmalloc_mode = refill_noscratch;
1308 /*
1309 * create the plain linear handler
1310 */
1311 if (bcm1250_m3_war()) {
1312 unsigned int segbits = 44;
1313
1314 uasm_i_dmfc0(&p, K0, C0_BADVADDR);
1315 uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
1316 uasm_i_xor(&p, K0, K0, K1);
1317 uasm_i_dsrl_safe(&p, K1, K0, 62);
1318 uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
1319 uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
1320 uasm_i_or(&p, K0, K0, K1);
1321 uasm_il_bnez(&p, &r, K0, label_leave);
1322 /* No need for uasm_i_nop */
1323 }
1324
1325 #ifdef CONFIG_64BIT
1326 build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */
1327 #else
1328 build_get_pgde32(&p, K0, K1); /* get pgd in K1 */
1329 #endif
1330
1331 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1332 build_is_huge_pte(&p, &r, K0, K1, label_tlb_huge_update);
1333 #endif
1334
1335 build_get_ptep(&p, K0, K1);
1336 build_update_entries(&p, K0, K1);
1337 build_tlb_write_entry(&p, &l, &r, tlb_random);
1338 uasm_l_leave(&l, p);
1339 uasm_i_eret(&p); /* return from trap */
1340 }
1341 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1342 uasm_l_tlb_huge_update(&l, p);
1343 build_huge_update_entries(&p, htlb_info.huge_pte, K1);
1344 build_huge_tlb_write_entry(&p, &l, &r, K0, tlb_random,
1345 htlb_info.restore_scratch);
1346 #endif
1347
1348 #ifdef CONFIG_64BIT
1349 build_get_pgd_vmalloc64(&p, &l, &r, K0, K1, vmalloc_mode);
1350 #endif
1351
1352 /*
1353 * Overflow check: For the 64bit handler, we need at least one
1354 * free instruction slot for the wrap-around branch. In worst
1355 * case, if the intended insertion point is a delay slot, we
1356 * need three, with the second nop'ed and the third being
1357 * unused.
1358 */
1359 /* Loongson2 ebase is different than r4k, we have more space */
1360 #if defined(CONFIG_32BIT) || defined(CONFIG_CPU_LOONGSON2)
1361 if ((p - tlb_handler) > 64)
1362 panic("TLB refill handler space exceeded");
1363 #else
1364 if (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 1)
1365 || (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 3)
1366 && uasm_insn_has_bdelay(relocs,
1367 tlb_handler + MIPS64_REFILL_INSNS - 3)))
1368 panic("TLB refill handler space exceeded");
1369 #endif
1370
1371 /*
1372 * Now fold the handler in the TLB refill handler space.
1373 */
1374 #if defined(CONFIG_32BIT) || defined(CONFIG_CPU_LOONGSON2)
1375 f = final_handler;
1376 /* Simplest case, just copy the handler. */
1377 uasm_copy_handler(relocs, labels, tlb_handler, p, f);
1378 final_len = p - tlb_handler;
1379 #else /* CONFIG_64BIT */
1380 f = final_handler + MIPS64_REFILL_INSNS;
1381 if ((p - tlb_handler) <= MIPS64_REFILL_INSNS) {
1382 /* Just copy the handler. */
1383 uasm_copy_handler(relocs, labels, tlb_handler, p, f);
1384 final_len = p - tlb_handler;
1385 } else {
1386 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1387 const enum label_id ls = label_tlb_huge_update;
1388 #else
1389 const enum label_id ls = label_vmalloc;
1390 #endif
1391 u32 *split;
1392 int ov = 0;
1393 int i;
1394
1395 for (i = 0; i < ARRAY_SIZE(labels) && labels[i].lab != ls; i++)
1396 ;
1397 BUG_ON(i == ARRAY_SIZE(labels));
1398 split = labels[i].addr;
1399
1400 /*
1401 * See if we have overflown one way or the other.
1402 */
1403 if (split > tlb_handler + MIPS64_REFILL_INSNS ||
1404 split < p - MIPS64_REFILL_INSNS)
1405 ov = 1;
1406
1407 if (ov) {
1408 /*
1409 * Split two instructions before the end. One
1410 * for the branch and one for the instruction
1411 * in the delay slot.
1412 */
1413 split = tlb_handler + MIPS64_REFILL_INSNS - 2;
1414
1415 /*
1416 * If the branch would fall in a delay slot,
1417 * we must back up an additional instruction
1418 * so that it is no longer in a delay slot.
1419 */
1420 if (uasm_insn_has_bdelay(relocs, split - 1))
1421 split--;
1422 }
1423 /* Copy first part of the handler. */
1424 uasm_copy_handler(relocs, labels, tlb_handler, split, f);
1425 f += split - tlb_handler;
1426
1427 if (ov) {
1428 /* Insert branch. */
1429 uasm_l_split(&l, final_handler);
1430 uasm_il_b(&f, &r, label_split);
1431 if (uasm_insn_has_bdelay(relocs, split))
1432 uasm_i_nop(&f);
1433 else {
1434 uasm_copy_handler(relocs, labels,
1435 split, split + 1, f);
1436 uasm_move_labels(labels, f, f + 1, -1);
1437 f++;
1438 split++;
1439 }
1440 }
1441
1442 /* Copy the rest of the handler. */
1443 uasm_copy_handler(relocs, labels, split, p, final_handler);
1444 final_len = (f - (final_handler + MIPS64_REFILL_INSNS)) +
1445 (p - split);
1446 }
1447 #endif /* CONFIG_64BIT */
1448
1449 uasm_resolve_relocs(relocs, labels);
1450 pr_debug("Wrote TLB refill handler (%u instructions).\n",
1451 final_len);
1452
1453 memcpy((void *)ebase, final_handler, 0x100);
1454
1455 dump_handler("r4000_tlb_refill", (u32 *)ebase, 64);
1456 }
1457
1458 extern u32 handle_tlbl[], handle_tlbl_end[];
1459 extern u32 handle_tlbs[], handle_tlbs_end[];
1460 extern u32 handle_tlbm[], handle_tlbm_end[];
1461
1462 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
1463 extern u32 tlbmiss_handler_setup_pgd[], tlbmiss_handler_setup_pgd_end[];
1464
1465 static void __cpuinit build_r4000_setup_pgd(void)
1466 {
1467 const int a0 = 4;
1468 const int a1 = 5;
1469 u32 *p = tlbmiss_handler_setup_pgd_array;
1470 const int tlbmiss_handler_setup_pgd_size =
1471 tlbmiss_handler_setup_pgd_end - tlbmiss_handler_setup_pgd;
1472 struct uasm_label *l = labels;
1473 struct uasm_reloc *r = relocs;
1474
1475 memset(tlbmiss_handler_setup_pgd, 0, tlbmiss_handler_setup_pgd_size *
1476 sizeof(tlbmiss_handler_setup_pgd[0]));
1477 memset(labels, 0, sizeof(labels));
1478 memset(relocs, 0, sizeof(relocs));
1479
1480 pgd_reg = allocate_kscratch();
1481
1482 if (pgd_reg == -1) {
1483 /* PGD << 11 in c0_Context */
1484 /*
1485 * If it is a ckseg0 address, convert to a physical
1486 * address. Shifting right by 29 and adding 4 will
1487 * result in zero for these addresses.
1488 *
1489 */
1490 UASM_i_SRA(&p, a1, a0, 29);
1491 UASM_i_ADDIU(&p, a1, a1, 4);
1492 uasm_il_bnez(&p, &r, a1, label_tlbl_goaround1);
1493 uasm_i_nop(&p);
1494 uasm_i_dinsm(&p, a0, 0, 29, 64 - 29);
1495 uasm_l_tlbl_goaround1(&l, p);
1496 UASM_i_SLL(&p, a0, a0, 11);
1497 uasm_i_jr(&p, 31);
1498 UASM_i_MTC0(&p, a0, C0_CONTEXT);
1499 } else {
1500 /* PGD in c0_KScratch */
1501 uasm_i_jr(&p, 31);
1502 UASM_i_MTC0(&p, a0, c0_kscratch(), pgd_reg);
1503 }
1504 if (p >= tlbmiss_handler_setup_pgd_end)
1505 panic("tlbmiss_handler_setup_pgd space exceeded");
1506
1507 uasm_resolve_relocs(relocs, labels);
1508 pr_debug("Wrote tlbmiss_handler_setup_pgd (%u instructions).\n",
1509 (unsigned int)(p - tlbmiss_handler_setup_pgd));
1510
1511 dump_handler("tlbmiss_handler", tlbmiss_handler_setup_pgd,
1512 tlbmiss_handler_setup_pgd_size);
1513 }
1514 #endif
1515
1516 static void __cpuinit
1517 iPTE_LW(u32 **p, unsigned int pte, unsigned int ptr)
1518 {
1519 #ifdef CONFIG_SMP
1520 # ifdef CONFIG_64BIT_PHYS_ADDR
1521 if (cpu_has_64bits)
1522 uasm_i_lld(p, pte, 0, ptr);
1523 else
1524 # endif
1525 UASM_i_LL(p, pte, 0, ptr);
1526 #else
1527 # ifdef CONFIG_64BIT_PHYS_ADDR
1528 if (cpu_has_64bits)
1529 uasm_i_ld(p, pte, 0, ptr);
1530 else
1531 # endif
1532 UASM_i_LW(p, pte, 0, ptr);
1533 #endif
1534 }
1535
1536 static void __cpuinit
1537 iPTE_SW(u32 **p, struct uasm_reloc **r, unsigned int pte, unsigned int ptr,
1538 unsigned int mode)
1539 {
1540 #ifdef CONFIG_64BIT_PHYS_ADDR
1541 unsigned int hwmode = mode & (_PAGE_VALID | _PAGE_DIRTY);
1542 #endif
1543
1544 uasm_i_ori(p, pte, pte, mode);
1545 #ifdef CONFIG_SMP
1546 # ifdef CONFIG_64BIT_PHYS_ADDR
1547 if (cpu_has_64bits)
1548 uasm_i_scd(p, pte, 0, ptr);
1549 else
1550 # endif
1551 UASM_i_SC(p, pte, 0, ptr);
1552
1553 if (r10000_llsc_war())
1554 uasm_il_beqzl(p, r, pte, label_smp_pgtable_change);
1555 else
1556 uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
1557
1558 # ifdef CONFIG_64BIT_PHYS_ADDR
1559 if (!cpu_has_64bits) {
1560 /* no uasm_i_nop needed */
1561 uasm_i_ll(p, pte, sizeof(pte_t) / 2, ptr);
1562 uasm_i_ori(p, pte, pte, hwmode);
1563 uasm_i_sc(p, pte, sizeof(pte_t) / 2, ptr);
1564 uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
1565 /* no uasm_i_nop needed */
1566 uasm_i_lw(p, pte, 0, ptr);
1567 } else
1568 uasm_i_nop(p);
1569 # else
1570 uasm_i_nop(p);
1571 # endif
1572 #else
1573 # ifdef CONFIG_64BIT_PHYS_ADDR
1574 if (cpu_has_64bits)
1575 uasm_i_sd(p, pte, 0, ptr);
1576 else
1577 # endif
1578 UASM_i_SW(p, pte, 0, ptr);
1579
1580 # ifdef CONFIG_64BIT_PHYS_ADDR
1581 if (!cpu_has_64bits) {
1582 uasm_i_lw(p, pte, sizeof(pte_t) / 2, ptr);
1583 uasm_i_ori(p, pte, pte, hwmode);
1584 uasm_i_sw(p, pte, sizeof(pte_t) / 2, ptr);
1585 uasm_i_lw(p, pte, 0, ptr);
1586 }
1587 # endif
1588 #endif
1589 }
1590
1591 /*
1592 * Check if PTE is present, if not then jump to LABEL. PTR points to
1593 * the page table where this PTE is located, PTE will be re-loaded
1594 * with it's original value.
1595 */
1596 static void __cpuinit
1597 build_pte_present(u32 **p, struct uasm_reloc **r,
1598 int pte, int ptr, int scratch, enum label_id lid)
1599 {
1600 int t = scratch >= 0 ? scratch : pte;
1601
1602 if (cpu_has_rixi) {
1603 if (use_bbit_insns()) {
1604 uasm_il_bbit0(p, r, pte, ilog2(_PAGE_PRESENT), lid);
1605 uasm_i_nop(p);
1606 } else {
1607 uasm_i_andi(p, t, pte, _PAGE_PRESENT);
1608 uasm_il_beqz(p, r, t, lid);
1609 if (pte == t)
1610 /* You lose the SMP race :-(*/
1611 iPTE_LW(p, pte, ptr);
1612 }
1613 } else {
1614 uasm_i_andi(p, t, pte, _PAGE_PRESENT | _PAGE_READ);
1615 uasm_i_xori(p, t, t, _PAGE_PRESENT | _PAGE_READ);
1616 uasm_il_bnez(p, r, t, lid);
1617 if (pte == t)
1618 /* You lose the SMP race :-(*/
1619 iPTE_LW(p, pte, ptr);
1620 }
1621 }
1622
1623 /* Make PTE valid, store result in PTR. */
1624 static void __cpuinit
1625 build_make_valid(u32 **p, struct uasm_reloc **r, unsigned int pte,
1626 unsigned int ptr)
1627 {
1628 unsigned int mode = _PAGE_VALID | _PAGE_ACCESSED;
1629
1630 iPTE_SW(p, r, pte, ptr, mode);
1631 }
1632
1633 /*
1634 * Check if PTE can be written to, if not branch to LABEL. Regardless
1635 * restore PTE with value from PTR when done.
1636 */
1637 static void __cpuinit
1638 build_pte_writable(u32 **p, struct uasm_reloc **r,
1639 unsigned int pte, unsigned int ptr, int scratch,
1640 enum label_id lid)
1641 {
1642 int t = scratch >= 0 ? scratch : pte;
1643
1644 uasm_i_andi(p, t, pte, _PAGE_PRESENT | _PAGE_WRITE);
1645 uasm_i_xori(p, t, t, _PAGE_PRESENT | _PAGE_WRITE);
1646 uasm_il_bnez(p, r, t, lid);
1647 if (pte == t)
1648 /* You lose the SMP race :-(*/
1649 iPTE_LW(p, pte, ptr);
1650 else
1651 uasm_i_nop(p);
1652 }
1653
1654 /* Make PTE writable, update software status bits as well, then store
1655 * at PTR.
1656 */
1657 static void __cpuinit
1658 build_make_write(u32 **p, struct uasm_reloc **r, unsigned int pte,
1659 unsigned int ptr)
1660 {
1661 unsigned int mode = (_PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID
1662 | _PAGE_DIRTY);
1663
1664 iPTE_SW(p, r, pte, ptr, mode);
1665 }
1666
1667 /*
1668 * Check if PTE can be modified, if not branch to LABEL. Regardless
1669 * restore PTE with value from PTR when done.
1670 */
1671 static void __cpuinit
1672 build_pte_modifiable(u32 **p, struct uasm_reloc **r,
1673 unsigned int pte, unsigned int ptr, int scratch,
1674 enum label_id lid)
1675 {
1676 if (use_bbit_insns()) {
1677 uasm_il_bbit0(p, r, pte, ilog2(_PAGE_WRITE), lid);
1678 uasm_i_nop(p);
1679 } else {
1680 int t = scratch >= 0 ? scratch : pte;
1681 uasm_i_andi(p, t, pte, _PAGE_WRITE);
1682 uasm_il_beqz(p, r, t, lid);
1683 if (pte == t)
1684 /* You lose the SMP race :-(*/
1685 iPTE_LW(p, pte, ptr);
1686 }
1687 }
1688
1689 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
1690
1691
1692 /*
1693 * R3000 style TLB load/store/modify handlers.
1694 */
1695
1696 /*
1697 * This places the pte into ENTRYLO0 and writes it with tlbwi.
1698 * Then it returns.
1699 */
1700 static void __cpuinit
1701 build_r3000_pte_reload_tlbwi(u32 **p, unsigned int pte, unsigned int tmp)
1702 {
1703 uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1704 uasm_i_mfc0(p, tmp, C0_EPC); /* cp0 delay */
1705 uasm_i_tlbwi(p);
1706 uasm_i_jr(p, tmp);
1707 uasm_i_rfe(p); /* branch delay */
1708 }
1709
1710 /*
1711 * This places the pte into ENTRYLO0 and writes it with tlbwi
1712 * or tlbwr as appropriate. This is because the index register
1713 * may have the probe fail bit set as a result of a trap on a
1714 * kseg2 access, i.e. without refill. Then it returns.
1715 */
1716 static void __cpuinit
1717 build_r3000_tlb_reload_write(u32 **p, struct uasm_label **l,
1718 struct uasm_reloc **r, unsigned int pte,
1719 unsigned int tmp)
1720 {
1721 uasm_i_mfc0(p, tmp, C0_INDEX);
1722 uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1723 uasm_il_bltz(p, r, tmp, label_r3000_write_probe_fail); /* cp0 delay */
1724 uasm_i_mfc0(p, tmp, C0_EPC); /* branch delay */
1725 uasm_i_tlbwi(p); /* cp0 delay */
1726 uasm_i_jr(p, tmp);
1727 uasm_i_rfe(p); /* branch delay */
1728 uasm_l_r3000_write_probe_fail(l, *p);
1729 uasm_i_tlbwr(p); /* cp0 delay */
1730 uasm_i_jr(p, tmp);
1731 uasm_i_rfe(p); /* branch delay */
1732 }
1733
1734 static void __cpuinit
1735 build_r3000_tlbchange_handler_head(u32 **p, unsigned int pte,
1736 unsigned int ptr)
1737 {
1738 long pgdc = (long)pgd_current;
1739
1740 uasm_i_mfc0(p, pte, C0_BADVADDR);
1741 uasm_i_lui(p, ptr, uasm_rel_hi(pgdc)); /* cp0 delay */
1742 uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
1743 uasm_i_srl(p, pte, pte, 22); /* load delay */
1744 uasm_i_sll(p, pte, pte, 2);
1745 uasm_i_addu(p, ptr, ptr, pte);
1746 uasm_i_mfc0(p, pte, C0_CONTEXT);
1747 uasm_i_lw(p, ptr, 0, ptr); /* cp0 delay */
1748 uasm_i_andi(p, pte, pte, 0xffc); /* load delay */
1749 uasm_i_addu(p, ptr, ptr, pte);
1750 uasm_i_lw(p, pte, 0, ptr);
1751 uasm_i_tlbp(p); /* load delay */
1752 }
1753
1754 static void __cpuinit build_r3000_tlb_load_handler(void)
1755 {
1756 u32 *p = handle_tlbl;
1757 const int handle_tlbl_size = handle_tlbl_end - handle_tlbl;
1758 struct uasm_label *l = labels;
1759 struct uasm_reloc *r = relocs;
1760
1761 memset(handle_tlbl, 0, handle_tlbl_size * sizeof(handle_tlbl[0]));
1762 memset(labels, 0, sizeof(labels));
1763 memset(relocs, 0, sizeof(relocs));
1764
1765 build_r3000_tlbchange_handler_head(&p, K0, K1);
1766 build_pte_present(&p, &r, K0, K1, -1, label_nopage_tlbl);
1767 uasm_i_nop(&p); /* load delay */
1768 build_make_valid(&p, &r, K0, K1);
1769 build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1770
1771 uasm_l_nopage_tlbl(&l, p);
1772 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
1773 uasm_i_nop(&p);
1774
1775 if (p >= handle_tlbl_end)
1776 panic("TLB load handler fastpath space exceeded");
1777
1778 uasm_resolve_relocs(relocs, labels);
1779 pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
1780 (unsigned int)(p - handle_tlbl));
1781
1782 dump_handler("r3000_tlb_load", handle_tlbl, handle_tlbl_size);
1783 }
1784
1785 static void __cpuinit build_r3000_tlb_store_handler(void)
1786 {
1787 u32 *p = handle_tlbs;
1788 const int handle_tlbs_size = handle_tlbs_end - handle_tlbs;
1789 struct uasm_label *l = labels;
1790 struct uasm_reloc *r = relocs;
1791
1792 memset(handle_tlbs, 0, handle_tlbs_size * sizeof(handle_tlbs[0]));
1793 memset(labels, 0, sizeof(labels));
1794 memset(relocs, 0, sizeof(relocs));
1795
1796 build_r3000_tlbchange_handler_head(&p, K0, K1);
1797 build_pte_writable(&p, &r, K0, K1, -1, label_nopage_tlbs);
1798 uasm_i_nop(&p); /* load delay */
1799 build_make_write(&p, &r, K0, K1);
1800 build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1801
1802 uasm_l_nopage_tlbs(&l, p);
1803 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1804 uasm_i_nop(&p);
1805
1806 if (p >= handle_tlbs)
1807 panic("TLB store handler fastpath space exceeded");
1808
1809 uasm_resolve_relocs(relocs, labels);
1810 pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
1811 (unsigned int)(p - handle_tlbs));
1812
1813 dump_handler("r3000_tlb_store", handle_tlbs, handle_tlbs_size);
1814 }
1815
1816 static void __cpuinit build_r3000_tlb_modify_handler(void)
1817 {
1818 u32 *p = handle_tlbm;
1819 const int handle_tlbm_size = handle_tlbm_end - handle_tlbm;
1820 struct uasm_label *l = labels;
1821 struct uasm_reloc *r = relocs;
1822
1823 memset(handle_tlbm, 0, handle_tlbm_size * sizeof(handle_tlbm[0]));
1824 memset(labels, 0, sizeof(labels));
1825 memset(relocs, 0, sizeof(relocs));
1826
1827 build_r3000_tlbchange_handler_head(&p, K0, K1);
1828 build_pte_modifiable(&p, &r, K0, K1, -1, label_nopage_tlbm);
1829 uasm_i_nop(&p); /* load delay */
1830 build_make_write(&p, &r, K0, K1);
1831 build_r3000_pte_reload_tlbwi(&p, K0, K1);
1832
1833 uasm_l_nopage_tlbm(&l, p);
1834 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1835 uasm_i_nop(&p);
1836
1837 if (p >= handle_tlbm_end)
1838 panic("TLB modify handler fastpath space exceeded");
1839
1840 uasm_resolve_relocs(relocs, labels);
1841 pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
1842 (unsigned int)(p - handle_tlbm));
1843
1844 dump_handler("r3000_tlb_modify", handle_tlbm, handle_tlbm_size);
1845 }
1846 #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
1847
1848 /*
1849 * R4000 style TLB load/store/modify handlers.
1850 */
1851 static struct work_registers __cpuinit
1852 build_r4000_tlbchange_handler_head(u32 **p, struct uasm_label **l,
1853 struct uasm_reloc **r)
1854 {
1855 struct work_registers wr = build_get_work_registers(p);
1856
1857 #ifdef CONFIG_64BIT
1858 build_get_pmde64(p, l, r, wr.r1, wr.r2); /* get pmd in ptr */
1859 #else
1860 build_get_pgde32(p, wr.r1, wr.r2); /* get pgd in ptr */
1861 #endif
1862
1863 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1864 /*
1865 * For huge tlb entries, pmd doesn't contain an address but
1866 * instead contains the tlb pte. Check the PAGE_HUGE bit and
1867 * see if we need to jump to huge tlb processing.
1868 */
1869 build_is_huge_pte(p, r, wr.r1, wr.r2, label_tlb_huge_update);
1870 #endif
1871
1872 UASM_i_MFC0(p, wr.r1, C0_BADVADDR);
1873 UASM_i_LW(p, wr.r2, 0, wr.r2);
1874 UASM_i_SRL(p, wr.r1, wr.r1, PAGE_SHIFT + PTE_ORDER - PTE_T_LOG2);
1875 uasm_i_andi(p, wr.r1, wr.r1, (PTRS_PER_PTE - 1) << PTE_T_LOG2);
1876 UASM_i_ADDU(p, wr.r2, wr.r2, wr.r1);
1877
1878 #ifdef CONFIG_SMP
1879 uasm_l_smp_pgtable_change(l, *p);
1880 #endif
1881 iPTE_LW(p, wr.r1, wr.r2); /* get even pte */
1882 if (!m4kc_tlbp_war())
1883 build_tlb_probe_entry(p);
1884 return wr;
1885 }
1886
1887 static void __cpuinit
1888 build_r4000_tlbchange_handler_tail(u32 **p, struct uasm_label **l,
1889 struct uasm_reloc **r, unsigned int tmp,
1890 unsigned int ptr)
1891 {
1892 uasm_i_ori(p, ptr, ptr, sizeof(pte_t));
1893 uasm_i_xori(p, ptr, ptr, sizeof(pte_t));
1894 build_update_entries(p, tmp, ptr);
1895 build_tlb_write_entry(p, l, r, tlb_indexed);
1896 uasm_l_leave(l, *p);
1897 build_restore_work_registers(p);
1898 uasm_i_eret(p); /* return from trap */
1899
1900 #ifdef CONFIG_64BIT
1901 build_get_pgd_vmalloc64(p, l, r, tmp, ptr, not_refill);
1902 #endif
1903 }
1904
1905 static void __cpuinit build_r4000_tlb_load_handler(void)
1906 {
1907 u32 *p = handle_tlbl;
1908 const int handle_tlbl_size = handle_tlbl_end - handle_tlbl;
1909 struct uasm_label *l = labels;
1910 struct uasm_reloc *r = relocs;
1911 struct work_registers wr;
1912
1913 memset(handle_tlbl, 0, handle_tlbl_size * sizeof(handle_tlbl[0]));
1914 memset(labels, 0, sizeof(labels));
1915 memset(relocs, 0, sizeof(relocs));
1916
1917 if (bcm1250_m3_war()) {
1918 unsigned int segbits = 44;
1919
1920 uasm_i_dmfc0(&p, K0, C0_BADVADDR);
1921 uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
1922 uasm_i_xor(&p, K0, K0, K1);
1923 uasm_i_dsrl_safe(&p, K1, K0, 62);
1924 uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
1925 uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
1926 uasm_i_or(&p, K0, K0, K1);
1927 uasm_il_bnez(&p, &r, K0, label_leave);
1928 /* No need for uasm_i_nop */
1929 }
1930
1931 wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
1932 build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
1933 if (m4kc_tlbp_war())
1934 build_tlb_probe_entry(&p);
1935
1936 if (cpu_has_rixi) {
1937 /*
1938 * If the page is not _PAGE_VALID, RI or XI could not
1939 * have triggered it. Skip the expensive test..
1940 */
1941 if (use_bbit_insns()) {
1942 uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
1943 label_tlbl_goaround1);
1944 } else {
1945 uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
1946 uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround1);
1947 }
1948 uasm_i_nop(&p);
1949
1950 uasm_i_tlbr(&p);
1951
1952 switch (current_cpu_type()) {
1953 default:
1954 if (cpu_has_mips_r2) {
1955 uasm_i_ehb(&p);
1956
1957 case CPU_CAVIUM_OCTEON:
1958 case CPU_CAVIUM_OCTEON_PLUS:
1959 case CPU_CAVIUM_OCTEON2:
1960 break;
1961 }
1962 }
1963
1964 /* Examine entrylo 0 or 1 based on ptr. */
1965 if (use_bbit_insns()) {
1966 uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
1967 } else {
1968 uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
1969 uasm_i_beqz(&p, wr.r3, 8);
1970 }
1971 /* load it in the delay slot*/
1972 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
1973 /* load it if ptr is odd */
1974 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
1975 /*
1976 * If the entryLo (now in wr.r3) is valid (bit 1), RI or
1977 * XI must have triggered it.
1978 */
1979 if (use_bbit_insns()) {
1980 uasm_il_bbit1(&p, &r, wr.r3, 1, label_nopage_tlbl);
1981 uasm_i_nop(&p);
1982 uasm_l_tlbl_goaround1(&l, p);
1983 } else {
1984 uasm_i_andi(&p, wr.r3, wr.r3, 2);
1985 uasm_il_bnez(&p, &r, wr.r3, label_nopage_tlbl);
1986 uasm_i_nop(&p);
1987 }
1988 uasm_l_tlbl_goaround1(&l, p);
1989 }
1990 build_make_valid(&p, &r, wr.r1, wr.r2);
1991 build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
1992
1993 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1994 /*
1995 * This is the entry point when build_r4000_tlbchange_handler_head
1996 * spots a huge page.
1997 */
1998 uasm_l_tlb_huge_update(&l, p);
1999 iPTE_LW(&p, wr.r1, wr.r2);
2000 build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
2001 build_tlb_probe_entry(&p);
2002
2003 if (cpu_has_rixi) {
2004 /*
2005 * If the page is not _PAGE_VALID, RI or XI could not
2006 * have triggered it. Skip the expensive test..
2007 */
2008 if (use_bbit_insns()) {
2009 uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
2010 label_tlbl_goaround2);
2011 } else {
2012 uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
2013 uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
2014 }
2015 uasm_i_nop(&p);
2016
2017 uasm_i_tlbr(&p);
2018
2019 switch (current_cpu_type()) {
2020 default:
2021 if (cpu_has_mips_r2) {
2022 uasm_i_ehb(&p);
2023
2024 case CPU_CAVIUM_OCTEON:
2025 case CPU_CAVIUM_OCTEON_PLUS:
2026 case CPU_CAVIUM_OCTEON2:
2027 break;
2028 }
2029 }
2030
2031 /* Examine entrylo 0 or 1 based on ptr. */
2032 if (use_bbit_insns()) {
2033 uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
2034 } else {
2035 uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
2036 uasm_i_beqz(&p, wr.r3, 8);
2037 }
2038 /* load it in the delay slot*/
2039 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
2040 /* load it if ptr is odd */
2041 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
2042 /*
2043 * If the entryLo (now in wr.r3) is valid (bit 1), RI or
2044 * XI must have triggered it.
2045 */
2046 if (use_bbit_insns()) {
2047 uasm_il_bbit0(&p, &r, wr.r3, 1, label_tlbl_goaround2);
2048 } else {
2049 uasm_i_andi(&p, wr.r3, wr.r3, 2);
2050 uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
2051 }
2052 if (PM_DEFAULT_MASK == 0)
2053 uasm_i_nop(&p);
2054 /*
2055 * We clobbered C0_PAGEMASK, restore it. On the other branch
2056 * it is restored in build_huge_tlb_write_entry.
2057 */
2058 build_restore_pagemask(&p, &r, wr.r3, label_nopage_tlbl, 0);
2059
2060 uasm_l_tlbl_goaround2(&l, p);
2061 }
2062 uasm_i_ori(&p, wr.r1, wr.r1, (_PAGE_ACCESSED | _PAGE_VALID));
2063 build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
2064 #endif
2065
2066 uasm_l_nopage_tlbl(&l, p);
2067 build_restore_work_registers(&p);
2068 #ifdef CONFIG_CPU_MICROMIPS
2069 if ((unsigned long)tlb_do_page_fault_0 & 1) {
2070 uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_0));
2071 uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_0));
2072 uasm_i_jr(&p, K0);
2073 } else
2074 #endif
2075 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
2076 uasm_i_nop(&p);
2077
2078 if (p >= handle_tlbl_end)
2079 panic("TLB load handler fastpath space exceeded");
2080
2081 uasm_resolve_relocs(relocs, labels);
2082 pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
2083 (unsigned int)(p - handle_tlbl));
2084
2085 dump_handler("r4000_tlb_load", handle_tlbl, handle_tlbl_size);
2086 }
2087
2088 static void __cpuinit build_r4000_tlb_store_handler(void)
2089 {
2090 u32 *p = handle_tlbs;
2091 const int handle_tlbs_size = handle_tlbs_end - handle_tlbs;
2092 struct uasm_label *l = labels;
2093 struct uasm_reloc *r = relocs;
2094 struct work_registers wr;
2095
2096 memset(handle_tlbs, 0, handle_tlbs_size * sizeof(handle_tlbs[0]));
2097 memset(labels, 0, sizeof(labels));
2098 memset(relocs, 0, sizeof(relocs));
2099
2100 wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2101 build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
2102 if (m4kc_tlbp_war())
2103 build_tlb_probe_entry(&p);
2104 build_make_write(&p, &r, wr.r1, wr.r2);
2105 build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2106
2107 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2108 /*
2109 * This is the entry point when
2110 * build_r4000_tlbchange_handler_head spots a huge page.
2111 */
2112 uasm_l_tlb_huge_update(&l, p);
2113 iPTE_LW(&p, wr.r1, wr.r2);
2114 build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
2115 build_tlb_probe_entry(&p);
2116 uasm_i_ori(&p, wr.r1, wr.r1,
2117 _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
2118 build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
2119 #endif
2120
2121 uasm_l_nopage_tlbs(&l, p);
2122 build_restore_work_registers(&p);
2123 #ifdef CONFIG_CPU_MICROMIPS
2124 if ((unsigned long)tlb_do_page_fault_1 & 1) {
2125 uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_1));
2126 uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_1));
2127 uasm_i_jr(&p, K0);
2128 } else
2129 #endif
2130 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2131 uasm_i_nop(&p);
2132
2133 if (p >= handle_tlbs_end)
2134 panic("TLB store handler fastpath space exceeded");
2135
2136 uasm_resolve_relocs(relocs, labels);
2137 pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
2138 (unsigned int)(p - handle_tlbs));
2139
2140 dump_handler("r4000_tlb_store", handle_tlbs, handle_tlbs_size);
2141 }
2142
2143 static void __cpuinit build_r4000_tlb_modify_handler(void)
2144 {
2145 u32 *p = handle_tlbm;
2146 const int handle_tlbm_size = handle_tlbm_end - handle_tlbm;
2147 struct uasm_label *l = labels;
2148 struct uasm_reloc *r = relocs;
2149 struct work_registers wr;
2150
2151 memset(handle_tlbm, 0, handle_tlbm_size * sizeof(handle_tlbm[0]));
2152 memset(labels, 0, sizeof(labels));
2153 memset(relocs, 0, sizeof(relocs));
2154
2155 wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2156 build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm);
2157 if (m4kc_tlbp_war())
2158 build_tlb_probe_entry(&p);
2159 /* Present and writable bits set, set accessed and dirty bits. */
2160 build_make_write(&p, &r, wr.r1, wr.r2);
2161 build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2162
2163 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2164 /*
2165 * This is the entry point when
2166 * build_r4000_tlbchange_handler_head spots a huge page.
2167 */
2168 uasm_l_tlb_huge_update(&l, p);
2169 iPTE_LW(&p, wr.r1, wr.r2);
2170 build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm);
2171 build_tlb_probe_entry(&p);
2172 uasm_i_ori(&p, wr.r1, wr.r1,
2173 _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
2174 build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
2175 #endif
2176
2177 uasm_l_nopage_tlbm(&l, p);
2178 build_restore_work_registers(&p);
2179 #ifdef CONFIG_CPU_MICROMIPS
2180 if ((unsigned long)tlb_do_page_fault_1 & 1) {
2181 uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_1));
2182 uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_1));
2183 uasm_i_jr(&p, K0);
2184 } else
2185 #endif
2186 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2187 uasm_i_nop(&p);
2188
2189 if (p >= handle_tlbm_end)
2190 panic("TLB modify handler fastpath space exceeded");
2191
2192 uasm_resolve_relocs(relocs, labels);
2193 pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
2194 (unsigned int)(p - handle_tlbm));
2195
2196 dump_handler("r4000_tlb_modify", handle_tlbm, handle_tlbm_size);
2197 }
2198
2199 static void __cpuinit flush_tlb_handlers(void)
2200 {
2201 local_flush_icache_range((unsigned long)handle_tlbl,
2202 (unsigned long)handle_tlbl_end);
2203 local_flush_icache_range((unsigned long)handle_tlbs,
2204 (unsigned long)handle_tlbs_end);
2205 local_flush_icache_range((unsigned long)handle_tlbm,
2206 (unsigned long)handle_tlbm_end);
2207 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
2208 local_flush_icache_range((unsigned long)tlbmiss_handler_setup_pgd,
2209 (unsigned long)tlbmiss_handler_setup_pgd_end);
2210 #endif
2211 }
2212
2213 void __cpuinit build_tlb_refill_handler(void)
2214 {
2215 /*
2216 * The refill handler is generated per-CPU, multi-node systems
2217 * may have local storage for it. The other handlers are only
2218 * needed once.
2219 */
2220 static int run_once = 0;
2221
2222 output_pgtable_bits_defines();
2223
2224 #ifdef CONFIG_64BIT
2225 check_for_high_segbits = current_cpu_data.vmbits > (PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
2226 #endif
2227
2228 switch (current_cpu_type()) {
2229 case CPU_R2000:
2230 case CPU_R3000:
2231 case CPU_R3000A:
2232 case CPU_R3081E:
2233 case CPU_TX3912:
2234 case CPU_TX3922:
2235 case CPU_TX3927:
2236 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
2237 if (cpu_has_local_ebase)
2238 build_r3000_tlb_refill_handler();
2239 if (!run_once) {
2240 if (!cpu_has_local_ebase)
2241 build_r3000_tlb_refill_handler();
2242 build_r3000_tlb_load_handler();
2243 build_r3000_tlb_store_handler();
2244 build_r3000_tlb_modify_handler();
2245 flush_tlb_handlers();
2246 run_once++;
2247 }
2248 #else
2249 panic("No R3000 TLB refill handler");
2250 #endif
2251 break;
2252
2253 case CPU_R6000:
2254 case CPU_R6000A:
2255 panic("No R6000 TLB refill handler yet");
2256 break;
2257
2258 case CPU_R8000:
2259 panic("No R8000 TLB refill handler yet");
2260 break;
2261
2262 default:
2263 if (!run_once) {
2264 scratch_reg = allocate_kscratch();
2265 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
2266 build_r4000_setup_pgd();
2267 #endif
2268 build_r4000_tlb_load_handler();
2269 build_r4000_tlb_store_handler();
2270 build_r4000_tlb_modify_handler();
2271 if (!cpu_has_local_ebase)
2272 build_r4000_tlb_refill_handler();
2273 flush_tlb_handlers();
2274 run_once++;
2275 }
2276 if (cpu_has_local_ebase)
2277 build_r4000_tlb_refill_handler();
2278 }
2279 }
This page took 0.091947 seconds and 5 git commands to generate.