Merge tag 'pwm/for-4.8-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/thierry...
[deliverable/linux.git] / arch / parisc / kernel / firmware.c
1 /*
2 * arch/parisc/kernel/firmware.c - safe PDC access routines
3 *
4 * PDC == Processor Dependent Code
5 *
6 * See http://www.parisc-linux.org/documentation/index.html
7 * for documentation describing the entry points and calling
8 * conventions defined below.
9 *
10 * Copyright 1999 SuSE GmbH Nuernberg (Philipp Rumpf, prumpf@tux.org)
11 * Copyright 1999 The Puffin Group, (Alex deVries, David Kennedy)
12 * Copyright 2003 Grant Grundler <grundler parisc-linux org>
13 * Copyright 2003,2004 Ryan Bradetich <rbrad@parisc-linux.org>
14 * Copyright 2004,2006 Thibaut VARENE <varenet@parisc-linux.org>
15 *
16 * This program is free software; you can redistribute it and/or modify
17 * it under the terms of the GNU General Public License as published by
18 * the Free Software Foundation; either version 2 of the License, or
19 * (at your option) any later version.
20 *
21 */
22
23 /* I think it would be in everyone's best interest to follow this
24 * guidelines when writing PDC wrappers:
25 *
26 * - the name of the pdc wrapper should match one of the macros
27 * used for the first two arguments
28 * - don't use caps for random parts of the name
29 * - use the static PDC result buffers and "copyout" to structs
30 * supplied by the caller to encapsulate alignment restrictions
31 * - hold pdc_lock while in PDC or using static result buffers
32 * - use __pa() to convert virtual (kernel) pointers to physical
33 * ones.
34 * - the name of the struct used for pdc return values should equal
35 * one of the macros used for the first two arguments to the
36 * corresponding PDC call
37 * - keep the order of arguments
38 * - don't be smart (setting trailing NUL bytes for strings, return
39 * something useful even if the call failed) unless you are sure
40 * it's not going to affect functionality or performance
41 *
42 * Example:
43 * int pdc_cache_info(struct pdc_cache_info *cache_info )
44 * {
45 * int retval;
46 *
47 * spin_lock_irq(&pdc_lock);
48 * retval = mem_pdc_call(PDC_CACHE,PDC_CACHE_INFO,__pa(cache_info),0);
49 * convert_to_wide(pdc_result);
50 * memcpy(cache_info, pdc_result, sizeof(*cache_info));
51 * spin_unlock_irq(&pdc_lock);
52 *
53 * return retval;
54 * }
55 * prumpf 991016
56 */
57
58 #include <stdarg.h>
59
60 #include <linux/delay.h>
61 #include <linux/init.h>
62 #include <linux/kernel.h>
63 #include <linux/module.h>
64 #include <linux/string.h>
65 #include <linux/spinlock.h>
66
67 #include <asm/page.h>
68 #include <asm/pdc.h>
69 #include <asm/pdcpat.h>
70 #include <asm/processor.h> /* for boot_cpu_data */
71
72 static DEFINE_SPINLOCK(pdc_lock);
73 extern unsigned long pdc_result[NUM_PDC_RESULT];
74 extern unsigned long pdc_result2[NUM_PDC_RESULT];
75
76 #ifdef CONFIG_64BIT
77 #define WIDE_FIRMWARE 0x1
78 #define NARROW_FIRMWARE 0x2
79
80 /* Firmware needs to be initially set to narrow to determine the
81 * actual firmware width. */
82 int parisc_narrow_firmware __read_mostly = 1;
83 #endif
84
85 /* On most currently-supported platforms, IODC I/O calls are 32-bit calls
86 * and MEM_PDC calls are always the same width as the OS.
87 * Some PAT boxes may have 64-bit IODC I/O.
88 *
89 * Ryan Bradetich added the now obsolete CONFIG_PDC_NARROW to allow
90 * 64-bit kernels to run on systems with 32-bit MEM_PDC calls.
91 * This allowed wide kernels to run on Cxxx boxes.
92 * We now detect 32-bit-only PDC and dynamically switch to 32-bit mode
93 * when running a 64-bit kernel on such boxes (e.g. C200 or C360).
94 */
95
96 #ifdef CONFIG_64BIT
97 long real64_call(unsigned long function, ...);
98 #endif
99 long real32_call(unsigned long function, ...);
100
101 #ifdef CONFIG_64BIT
102 # define MEM_PDC (unsigned long)(PAGE0->mem_pdc_hi) << 32 | PAGE0->mem_pdc
103 # define mem_pdc_call(args...) unlikely(parisc_narrow_firmware) ? real32_call(MEM_PDC, args) : real64_call(MEM_PDC, args)
104 #else
105 # define MEM_PDC (unsigned long)PAGE0->mem_pdc
106 # define mem_pdc_call(args...) real32_call(MEM_PDC, args)
107 #endif
108
109
110 /**
111 * f_extend - Convert PDC addresses to kernel addresses.
112 * @address: Address returned from PDC.
113 *
114 * This function is used to convert PDC addresses into kernel addresses
115 * when the PDC address size and kernel address size are different.
116 */
117 static unsigned long f_extend(unsigned long address)
118 {
119 #ifdef CONFIG_64BIT
120 if(unlikely(parisc_narrow_firmware)) {
121 if((address & 0xff000000) == 0xf0000000)
122 return 0xf0f0f0f000000000UL | (u32)address;
123
124 if((address & 0xf0000000) == 0xf0000000)
125 return 0xffffffff00000000UL | (u32)address;
126 }
127 #endif
128 return address;
129 }
130
131 /**
132 * convert_to_wide - Convert the return buffer addresses into kernel addresses.
133 * @address: The return buffer from PDC.
134 *
135 * This function is used to convert the return buffer addresses retrieved from PDC
136 * into kernel addresses when the PDC address size and kernel address size are
137 * different.
138 */
139 static void convert_to_wide(unsigned long *addr)
140 {
141 #ifdef CONFIG_64BIT
142 int i;
143 unsigned int *p = (unsigned int *)addr;
144
145 if(unlikely(parisc_narrow_firmware)) {
146 for(i = 31; i >= 0; --i)
147 addr[i] = p[i];
148 }
149 #endif
150 }
151
152 #ifdef CONFIG_64BIT
153 void set_firmware_width_unlocked(void)
154 {
155 int ret;
156
157 ret = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES,
158 __pa(pdc_result), 0);
159 convert_to_wide(pdc_result);
160 if (pdc_result[0] != NARROW_FIRMWARE)
161 parisc_narrow_firmware = 0;
162 }
163
164 /**
165 * set_firmware_width - Determine if the firmware is wide or narrow.
166 *
167 * This function must be called before any pdc_* function that uses the
168 * convert_to_wide function.
169 */
170 void set_firmware_width(void)
171 {
172 unsigned long flags;
173 spin_lock_irqsave(&pdc_lock, flags);
174 set_firmware_width_unlocked();
175 spin_unlock_irqrestore(&pdc_lock, flags);
176 }
177 #else
178 void set_firmware_width_unlocked(void)
179 {
180 return;
181 }
182
183 void set_firmware_width(void)
184 {
185 return;
186 }
187 #endif /*CONFIG_64BIT*/
188
189 /**
190 * pdc_emergency_unlock - Unlock the linux pdc lock
191 *
192 * This call unlocks the linux pdc lock in case we need some PDC functions
193 * (like pdc_add_valid) during kernel stack dump.
194 */
195 void pdc_emergency_unlock(void)
196 {
197 /* Spinlock DEBUG code freaks out if we unconditionally unlock */
198 if (spin_is_locked(&pdc_lock))
199 spin_unlock(&pdc_lock);
200 }
201
202
203 /**
204 * pdc_add_valid - Verify address can be accessed without causing a HPMC.
205 * @address: Address to be verified.
206 *
207 * This PDC call attempts to read from the specified address and verifies
208 * if the address is valid.
209 *
210 * The return value is PDC_OK (0) in case accessing this address is valid.
211 */
212 int pdc_add_valid(unsigned long address)
213 {
214 int retval;
215 unsigned long flags;
216
217 spin_lock_irqsave(&pdc_lock, flags);
218 retval = mem_pdc_call(PDC_ADD_VALID, PDC_ADD_VALID_VERIFY, address);
219 spin_unlock_irqrestore(&pdc_lock, flags);
220
221 return retval;
222 }
223 EXPORT_SYMBOL(pdc_add_valid);
224
225 /**
226 * pdc_chassis_info - Return chassis information.
227 * @result: The return buffer.
228 * @chassis_info: The memory buffer address.
229 * @len: The size of the memory buffer address.
230 *
231 * An HVERSION dependent call for returning the chassis information.
232 */
233 int __init pdc_chassis_info(struct pdc_chassis_info *chassis_info, void *led_info, unsigned long len)
234 {
235 int retval;
236 unsigned long flags;
237
238 spin_lock_irqsave(&pdc_lock, flags);
239 memcpy(&pdc_result, chassis_info, sizeof(*chassis_info));
240 memcpy(&pdc_result2, led_info, len);
241 retval = mem_pdc_call(PDC_CHASSIS, PDC_RETURN_CHASSIS_INFO,
242 __pa(pdc_result), __pa(pdc_result2), len);
243 memcpy(chassis_info, pdc_result, sizeof(*chassis_info));
244 memcpy(led_info, pdc_result2, len);
245 spin_unlock_irqrestore(&pdc_lock, flags);
246
247 return retval;
248 }
249
250 /**
251 * pdc_pat_chassis_send_log - Sends a PDC PAT CHASSIS log message.
252 * @retval: -1 on error, 0 on success. Other value are PDC errors
253 *
254 * Must be correctly formatted or expect system crash
255 */
256 #ifdef CONFIG_64BIT
257 int pdc_pat_chassis_send_log(unsigned long state, unsigned long data)
258 {
259 int retval = 0;
260 unsigned long flags;
261
262 if (!is_pdc_pat())
263 return -1;
264
265 spin_lock_irqsave(&pdc_lock, flags);
266 retval = mem_pdc_call(PDC_PAT_CHASSIS_LOG, PDC_PAT_CHASSIS_WRITE_LOG, __pa(&state), __pa(&data));
267 spin_unlock_irqrestore(&pdc_lock, flags);
268
269 return retval;
270 }
271 #endif
272
273 /**
274 * pdc_chassis_disp - Updates chassis code
275 * @retval: -1 on error, 0 on success
276 */
277 int pdc_chassis_disp(unsigned long disp)
278 {
279 int retval = 0;
280 unsigned long flags;
281
282 spin_lock_irqsave(&pdc_lock, flags);
283 retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_DISP, disp);
284 spin_unlock_irqrestore(&pdc_lock, flags);
285
286 return retval;
287 }
288
289 /**
290 * pdc_chassis_warn - Fetches chassis warnings
291 * @retval: -1 on error, 0 on success
292 */
293 int pdc_chassis_warn(unsigned long *warn)
294 {
295 int retval = 0;
296 unsigned long flags;
297
298 spin_lock_irqsave(&pdc_lock, flags);
299 retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_WARN, __pa(pdc_result));
300 *warn = pdc_result[0];
301 spin_unlock_irqrestore(&pdc_lock, flags);
302
303 return retval;
304 }
305
306 int pdc_coproc_cfg_unlocked(struct pdc_coproc_cfg *pdc_coproc_info)
307 {
308 int ret;
309
310 ret = mem_pdc_call(PDC_COPROC, PDC_COPROC_CFG, __pa(pdc_result));
311 convert_to_wide(pdc_result);
312 pdc_coproc_info->ccr_functional = pdc_result[0];
313 pdc_coproc_info->ccr_present = pdc_result[1];
314 pdc_coproc_info->revision = pdc_result[17];
315 pdc_coproc_info->model = pdc_result[18];
316
317 return ret;
318 }
319
320 /**
321 * pdc_coproc_cfg - To identify coprocessors attached to the processor.
322 * @pdc_coproc_info: Return buffer address.
323 *
324 * This PDC call returns the presence and status of all the coprocessors
325 * attached to the processor.
326 */
327 int pdc_coproc_cfg(struct pdc_coproc_cfg *pdc_coproc_info)
328 {
329 int ret;
330 unsigned long flags;
331
332 spin_lock_irqsave(&pdc_lock, flags);
333 ret = pdc_coproc_cfg_unlocked(pdc_coproc_info);
334 spin_unlock_irqrestore(&pdc_lock, flags);
335
336 return ret;
337 }
338
339 /**
340 * pdc_iodc_read - Read data from the modules IODC.
341 * @actcnt: The actual number of bytes.
342 * @hpa: The HPA of the module for the iodc read.
343 * @index: The iodc entry point.
344 * @iodc_data: A buffer memory for the iodc options.
345 * @iodc_data_size: Size of the memory buffer.
346 *
347 * This PDC call reads from the IODC of the module specified by the hpa
348 * argument.
349 */
350 int pdc_iodc_read(unsigned long *actcnt, unsigned long hpa, unsigned int index,
351 void *iodc_data, unsigned int iodc_data_size)
352 {
353 int retval;
354 unsigned long flags;
355
356 spin_lock_irqsave(&pdc_lock, flags);
357 retval = mem_pdc_call(PDC_IODC, PDC_IODC_READ, __pa(pdc_result), hpa,
358 index, __pa(pdc_result2), iodc_data_size);
359 convert_to_wide(pdc_result);
360 *actcnt = pdc_result[0];
361 memcpy(iodc_data, pdc_result2, iodc_data_size);
362 spin_unlock_irqrestore(&pdc_lock, flags);
363
364 return retval;
365 }
366 EXPORT_SYMBOL(pdc_iodc_read);
367
368 /**
369 * pdc_system_map_find_mods - Locate unarchitected modules.
370 * @pdc_mod_info: Return buffer address.
371 * @mod_path: pointer to dev path structure.
372 * @mod_index: fixed address module index.
373 *
374 * To locate and identify modules which reside at fixed I/O addresses, which
375 * do not self-identify via architected bus walks.
376 */
377 int pdc_system_map_find_mods(struct pdc_system_map_mod_info *pdc_mod_info,
378 struct pdc_module_path *mod_path, long mod_index)
379 {
380 int retval;
381 unsigned long flags;
382
383 spin_lock_irqsave(&pdc_lock, flags);
384 retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_MODULE, __pa(pdc_result),
385 __pa(pdc_result2), mod_index);
386 convert_to_wide(pdc_result);
387 memcpy(pdc_mod_info, pdc_result, sizeof(*pdc_mod_info));
388 memcpy(mod_path, pdc_result2, sizeof(*mod_path));
389 spin_unlock_irqrestore(&pdc_lock, flags);
390
391 pdc_mod_info->mod_addr = f_extend(pdc_mod_info->mod_addr);
392 return retval;
393 }
394
395 /**
396 * pdc_system_map_find_addrs - Retrieve additional address ranges.
397 * @pdc_addr_info: Return buffer address.
398 * @mod_index: Fixed address module index.
399 * @addr_index: Address range index.
400 *
401 * Retrieve additional information about subsequent address ranges for modules
402 * with multiple address ranges.
403 */
404 int pdc_system_map_find_addrs(struct pdc_system_map_addr_info *pdc_addr_info,
405 long mod_index, long addr_index)
406 {
407 int retval;
408 unsigned long flags;
409
410 spin_lock_irqsave(&pdc_lock, flags);
411 retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_ADDRESS, __pa(pdc_result),
412 mod_index, addr_index);
413 convert_to_wide(pdc_result);
414 memcpy(pdc_addr_info, pdc_result, sizeof(*pdc_addr_info));
415 spin_unlock_irqrestore(&pdc_lock, flags);
416
417 pdc_addr_info->mod_addr = f_extend(pdc_addr_info->mod_addr);
418 return retval;
419 }
420
421 /**
422 * pdc_model_info - Return model information about the processor.
423 * @model: The return buffer.
424 *
425 * Returns the version numbers, identifiers, and capabilities from the processor module.
426 */
427 int pdc_model_info(struct pdc_model *model)
428 {
429 int retval;
430 unsigned long flags;
431
432 spin_lock_irqsave(&pdc_lock, flags);
433 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_INFO, __pa(pdc_result), 0);
434 convert_to_wide(pdc_result);
435 memcpy(model, pdc_result, sizeof(*model));
436 spin_unlock_irqrestore(&pdc_lock, flags);
437
438 return retval;
439 }
440
441 /**
442 * pdc_model_sysmodel - Get the system model name.
443 * @name: A char array of at least 81 characters.
444 *
445 * Get system model name from PDC ROM (e.g. 9000/715 or 9000/778/B160L).
446 * Using OS_ID_HPUX will return the equivalent of the 'modelname' command
447 * on HP/UX.
448 */
449 int pdc_model_sysmodel(char *name)
450 {
451 int retval;
452 unsigned long flags;
453
454 spin_lock_irqsave(&pdc_lock, flags);
455 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_SYSMODEL, __pa(pdc_result),
456 OS_ID_HPUX, __pa(name));
457 convert_to_wide(pdc_result);
458
459 if (retval == PDC_OK) {
460 name[pdc_result[0]] = '\0'; /* add trailing '\0' */
461 } else {
462 name[0] = 0;
463 }
464 spin_unlock_irqrestore(&pdc_lock, flags);
465
466 return retval;
467 }
468
469 /**
470 * pdc_model_versions - Identify the version number of each processor.
471 * @cpu_id: The return buffer.
472 * @id: The id of the processor to check.
473 *
474 * Returns the version number for each processor component.
475 *
476 * This comment was here before, but I do not know what it means :( -RB
477 * id: 0 = cpu revision, 1 = boot-rom-version
478 */
479 int pdc_model_versions(unsigned long *versions, int id)
480 {
481 int retval;
482 unsigned long flags;
483
484 spin_lock_irqsave(&pdc_lock, flags);
485 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_VERSIONS, __pa(pdc_result), id);
486 convert_to_wide(pdc_result);
487 *versions = pdc_result[0];
488 spin_unlock_irqrestore(&pdc_lock, flags);
489
490 return retval;
491 }
492
493 /**
494 * pdc_model_cpuid - Returns the CPU_ID.
495 * @cpu_id: The return buffer.
496 *
497 * Returns the CPU_ID value which uniquely identifies the cpu portion of
498 * the processor module.
499 */
500 int pdc_model_cpuid(unsigned long *cpu_id)
501 {
502 int retval;
503 unsigned long flags;
504
505 spin_lock_irqsave(&pdc_lock, flags);
506 pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
507 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CPU_ID, __pa(pdc_result), 0);
508 convert_to_wide(pdc_result);
509 *cpu_id = pdc_result[0];
510 spin_unlock_irqrestore(&pdc_lock, flags);
511
512 return retval;
513 }
514
515 /**
516 * pdc_model_capabilities - Returns the platform capabilities.
517 * @capabilities: The return buffer.
518 *
519 * Returns information about platform support for 32- and/or 64-bit
520 * OSes, IO-PDIR coherency, and virtual aliasing.
521 */
522 int pdc_model_capabilities(unsigned long *capabilities)
523 {
524 int retval;
525 unsigned long flags;
526
527 spin_lock_irqsave(&pdc_lock, flags);
528 pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
529 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, __pa(pdc_result), 0);
530 convert_to_wide(pdc_result);
531 if (retval == PDC_OK) {
532 *capabilities = pdc_result[0];
533 } else {
534 *capabilities = PDC_MODEL_OS32;
535 }
536 spin_unlock_irqrestore(&pdc_lock, flags);
537
538 return retval;
539 }
540
541 /**
542 * pdc_cache_info - Return cache and TLB information.
543 * @cache_info: The return buffer.
544 *
545 * Returns information about the processor's cache and TLB.
546 */
547 int pdc_cache_info(struct pdc_cache_info *cache_info)
548 {
549 int retval;
550 unsigned long flags;
551
552 spin_lock_irqsave(&pdc_lock, flags);
553 retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_INFO, __pa(pdc_result), 0);
554 convert_to_wide(pdc_result);
555 memcpy(cache_info, pdc_result, sizeof(*cache_info));
556 spin_unlock_irqrestore(&pdc_lock, flags);
557
558 return retval;
559 }
560
561 /**
562 * pdc_spaceid_bits - Return whether Space ID hashing is turned on.
563 * @space_bits: Should be 0, if not, bad mojo!
564 *
565 * Returns information about Space ID hashing.
566 */
567 int pdc_spaceid_bits(unsigned long *space_bits)
568 {
569 int retval;
570 unsigned long flags;
571
572 spin_lock_irqsave(&pdc_lock, flags);
573 pdc_result[0] = 0;
574 retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_RET_SPID, __pa(pdc_result), 0);
575 convert_to_wide(pdc_result);
576 *space_bits = pdc_result[0];
577 spin_unlock_irqrestore(&pdc_lock, flags);
578
579 return retval;
580 }
581
582 #ifndef CONFIG_PA20
583 /**
584 * pdc_btlb_info - Return block TLB information.
585 * @btlb: The return buffer.
586 *
587 * Returns information about the hardware Block TLB.
588 */
589 int pdc_btlb_info(struct pdc_btlb_info *btlb)
590 {
591 int retval;
592 unsigned long flags;
593
594 spin_lock_irqsave(&pdc_lock, flags);
595 retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_INFO, __pa(pdc_result), 0);
596 memcpy(btlb, pdc_result, sizeof(*btlb));
597 spin_unlock_irqrestore(&pdc_lock, flags);
598
599 if(retval < 0) {
600 btlb->max_size = 0;
601 }
602 return retval;
603 }
604
605 /**
606 * pdc_mem_map_hpa - Find fixed module information.
607 * @address: The return buffer
608 * @mod_path: pointer to dev path structure.
609 *
610 * This call was developed for S700 workstations to allow the kernel to find
611 * the I/O devices (Core I/O). In the future (Kittyhawk and beyond) this
612 * call will be replaced (on workstations) by the architected PDC_SYSTEM_MAP
613 * call.
614 *
615 * This call is supported by all existing S700 workstations (up to Gecko).
616 */
617 int pdc_mem_map_hpa(struct pdc_memory_map *address,
618 struct pdc_module_path *mod_path)
619 {
620 int retval;
621 unsigned long flags;
622
623 spin_lock_irqsave(&pdc_lock, flags);
624 memcpy(pdc_result2, mod_path, sizeof(*mod_path));
625 retval = mem_pdc_call(PDC_MEM_MAP, PDC_MEM_MAP_HPA, __pa(pdc_result),
626 __pa(pdc_result2));
627 memcpy(address, pdc_result, sizeof(*address));
628 spin_unlock_irqrestore(&pdc_lock, flags);
629
630 return retval;
631 }
632 #endif /* !CONFIG_PA20 */
633
634 /**
635 * pdc_lan_station_id - Get the LAN address.
636 * @lan_addr: The return buffer.
637 * @hpa: The network device HPA.
638 *
639 * Get the LAN station address when it is not directly available from the LAN hardware.
640 */
641 int pdc_lan_station_id(char *lan_addr, unsigned long hpa)
642 {
643 int retval;
644 unsigned long flags;
645
646 spin_lock_irqsave(&pdc_lock, flags);
647 retval = mem_pdc_call(PDC_LAN_STATION_ID, PDC_LAN_STATION_ID_READ,
648 __pa(pdc_result), hpa);
649 if (retval < 0) {
650 /* FIXME: else read MAC from NVRAM */
651 memset(lan_addr, 0, PDC_LAN_STATION_ID_SIZE);
652 } else {
653 memcpy(lan_addr, pdc_result, PDC_LAN_STATION_ID_SIZE);
654 }
655 spin_unlock_irqrestore(&pdc_lock, flags);
656
657 return retval;
658 }
659 EXPORT_SYMBOL(pdc_lan_station_id);
660
661 /**
662 * pdc_stable_read - Read data from Stable Storage.
663 * @staddr: Stable Storage address to access.
664 * @memaddr: The memory address where Stable Storage data shall be copied.
665 * @count: number of bytes to transfer. count is multiple of 4.
666 *
667 * This PDC call reads from the Stable Storage address supplied in staddr
668 * and copies count bytes to the memory address memaddr.
669 * The call will fail if staddr+count > PDC_STABLE size.
670 */
671 int pdc_stable_read(unsigned long staddr, void *memaddr, unsigned long count)
672 {
673 int retval;
674 unsigned long flags;
675
676 spin_lock_irqsave(&pdc_lock, flags);
677 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_READ, staddr,
678 __pa(pdc_result), count);
679 convert_to_wide(pdc_result);
680 memcpy(memaddr, pdc_result, count);
681 spin_unlock_irqrestore(&pdc_lock, flags);
682
683 return retval;
684 }
685 EXPORT_SYMBOL(pdc_stable_read);
686
687 /**
688 * pdc_stable_write - Write data to Stable Storage.
689 * @staddr: Stable Storage address to access.
690 * @memaddr: The memory address where Stable Storage data shall be read from.
691 * @count: number of bytes to transfer. count is multiple of 4.
692 *
693 * This PDC call reads count bytes from the supplied memaddr address,
694 * and copies count bytes to the Stable Storage address staddr.
695 * The call will fail if staddr+count > PDC_STABLE size.
696 */
697 int pdc_stable_write(unsigned long staddr, void *memaddr, unsigned long count)
698 {
699 int retval;
700 unsigned long flags;
701
702 spin_lock_irqsave(&pdc_lock, flags);
703 memcpy(pdc_result, memaddr, count);
704 convert_to_wide(pdc_result);
705 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_WRITE, staddr,
706 __pa(pdc_result), count);
707 spin_unlock_irqrestore(&pdc_lock, flags);
708
709 return retval;
710 }
711 EXPORT_SYMBOL(pdc_stable_write);
712
713 /**
714 * pdc_stable_get_size - Get Stable Storage size in bytes.
715 * @size: pointer where the size will be stored.
716 *
717 * This PDC call returns the number of bytes in the processor's Stable
718 * Storage, which is the number of contiguous bytes implemented in Stable
719 * Storage starting from staddr=0. size in an unsigned 64-bit integer
720 * which is a multiple of four.
721 */
722 int pdc_stable_get_size(unsigned long *size)
723 {
724 int retval;
725 unsigned long flags;
726
727 spin_lock_irqsave(&pdc_lock, flags);
728 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_RETURN_SIZE, __pa(pdc_result));
729 *size = pdc_result[0];
730 spin_unlock_irqrestore(&pdc_lock, flags);
731
732 return retval;
733 }
734 EXPORT_SYMBOL(pdc_stable_get_size);
735
736 /**
737 * pdc_stable_verify_contents - Checks that Stable Storage contents are valid.
738 *
739 * This PDC call is meant to be used to check the integrity of the current
740 * contents of Stable Storage.
741 */
742 int pdc_stable_verify_contents(void)
743 {
744 int retval;
745 unsigned long flags;
746
747 spin_lock_irqsave(&pdc_lock, flags);
748 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_VERIFY_CONTENTS);
749 spin_unlock_irqrestore(&pdc_lock, flags);
750
751 return retval;
752 }
753 EXPORT_SYMBOL(pdc_stable_verify_contents);
754
755 /**
756 * pdc_stable_initialize - Sets Stable Storage contents to zero and initialize
757 * the validity indicator.
758 *
759 * This PDC call will erase all contents of Stable Storage. Use with care!
760 */
761 int pdc_stable_initialize(void)
762 {
763 int retval;
764 unsigned long flags;
765
766 spin_lock_irqsave(&pdc_lock, flags);
767 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_INITIALIZE);
768 spin_unlock_irqrestore(&pdc_lock, flags);
769
770 return retval;
771 }
772 EXPORT_SYMBOL(pdc_stable_initialize);
773
774 /**
775 * pdc_get_initiator - Get the SCSI Interface Card params (SCSI ID, SDTR, SE or LVD)
776 * @hwpath: fully bc.mod style path to the device.
777 * @initiator: the array to return the result into
778 *
779 * Get the SCSI operational parameters from PDC.
780 * Needed since HPUX never used BIOS or symbios card NVRAM.
781 * Most ncr/sym cards won't have an entry and just use whatever
782 * capabilities of the card are (eg Ultra, LVD). But there are
783 * several cases where it's useful:
784 * o set SCSI id for Multi-initiator clusters,
785 * o cable too long (ie SE scsi 10Mhz won't support 6m length),
786 * o bus width exported is less than what the interface chip supports.
787 */
788 int pdc_get_initiator(struct hardware_path *hwpath, struct pdc_initiator *initiator)
789 {
790 int retval;
791 unsigned long flags;
792
793 spin_lock_irqsave(&pdc_lock, flags);
794
795 /* BCJ-XXXX series boxes. E.G. "9000/785/C3000" */
796 #define IS_SPROCKETS() (strlen(boot_cpu_data.pdc.sys_model_name) == 14 && \
797 strncmp(boot_cpu_data.pdc.sys_model_name, "9000/785", 8) == 0)
798
799 retval = mem_pdc_call(PDC_INITIATOR, PDC_GET_INITIATOR,
800 __pa(pdc_result), __pa(hwpath));
801 if (retval < PDC_OK)
802 goto out;
803
804 if (pdc_result[0] < 16) {
805 initiator->host_id = pdc_result[0];
806 } else {
807 initiator->host_id = -1;
808 }
809
810 /*
811 * Sprockets and Piranha return 20 or 40 (MT/s). Prelude returns
812 * 1, 2, 5 or 10 for 5, 10, 20 or 40 MT/s, respectively
813 */
814 switch (pdc_result[1]) {
815 case 1: initiator->factor = 50; break;
816 case 2: initiator->factor = 25; break;
817 case 5: initiator->factor = 12; break;
818 case 25: initiator->factor = 10; break;
819 case 20: initiator->factor = 12; break;
820 case 40: initiator->factor = 10; break;
821 default: initiator->factor = -1; break;
822 }
823
824 if (IS_SPROCKETS()) {
825 initiator->width = pdc_result[4];
826 initiator->mode = pdc_result[5];
827 } else {
828 initiator->width = -1;
829 initiator->mode = -1;
830 }
831
832 out:
833 spin_unlock_irqrestore(&pdc_lock, flags);
834
835 return (retval >= PDC_OK);
836 }
837 EXPORT_SYMBOL(pdc_get_initiator);
838
839
840 /**
841 * pdc_pci_irt_size - Get the number of entries in the interrupt routing table.
842 * @num_entries: The return value.
843 * @hpa: The HPA for the device.
844 *
845 * This PDC function returns the number of entries in the specified cell's
846 * interrupt table.
847 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
848 */
849 int pdc_pci_irt_size(unsigned long *num_entries, unsigned long hpa)
850 {
851 int retval;
852 unsigned long flags;
853
854 spin_lock_irqsave(&pdc_lock, flags);
855 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL_SIZE,
856 __pa(pdc_result), hpa);
857 convert_to_wide(pdc_result);
858 *num_entries = pdc_result[0];
859 spin_unlock_irqrestore(&pdc_lock, flags);
860
861 return retval;
862 }
863
864 /**
865 * pdc_pci_irt - Get the PCI interrupt routing table.
866 * @num_entries: The number of entries in the table.
867 * @hpa: The Hard Physical Address of the device.
868 * @tbl:
869 *
870 * Get the PCI interrupt routing table for the device at the given HPA.
871 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
872 */
873 int pdc_pci_irt(unsigned long num_entries, unsigned long hpa, void *tbl)
874 {
875 int retval;
876 unsigned long flags;
877
878 BUG_ON((unsigned long)tbl & 0x7);
879
880 spin_lock_irqsave(&pdc_lock, flags);
881 pdc_result[0] = num_entries;
882 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL,
883 __pa(pdc_result), hpa, __pa(tbl));
884 spin_unlock_irqrestore(&pdc_lock, flags);
885
886 return retval;
887 }
888
889
890 #if 0 /* UNTEST CODE - left here in case someone needs it */
891
892 /**
893 * pdc_pci_config_read - read PCI config space.
894 * @hpa token from PDC to indicate which PCI device
895 * @pci_addr configuration space address to read from
896 *
897 * Read PCI Configuration space *before* linux PCI subsystem is running.
898 */
899 unsigned int pdc_pci_config_read(void *hpa, unsigned long cfg_addr)
900 {
901 int retval;
902 unsigned long flags;
903
904 spin_lock_irqsave(&pdc_lock, flags);
905 pdc_result[0] = 0;
906 pdc_result[1] = 0;
907 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_READ_CONFIG,
908 __pa(pdc_result), hpa, cfg_addr&~3UL, 4UL);
909 spin_unlock_irqrestore(&pdc_lock, flags);
910
911 return retval ? ~0 : (unsigned int) pdc_result[0];
912 }
913
914
915 /**
916 * pdc_pci_config_write - read PCI config space.
917 * @hpa token from PDC to indicate which PCI device
918 * @pci_addr configuration space address to write
919 * @val value we want in the 32-bit register
920 *
921 * Write PCI Configuration space *before* linux PCI subsystem is running.
922 */
923 void pdc_pci_config_write(void *hpa, unsigned long cfg_addr, unsigned int val)
924 {
925 int retval;
926 unsigned long flags;
927
928 spin_lock_irqsave(&pdc_lock, flags);
929 pdc_result[0] = 0;
930 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_WRITE_CONFIG,
931 __pa(pdc_result), hpa,
932 cfg_addr&~3UL, 4UL, (unsigned long) val);
933 spin_unlock_irqrestore(&pdc_lock, flags);
934
935 return retval;
936 }
937 #endif /* UNTESTED CODE */
938
939 /**
940 * pdc_tod_read - Read the Time-Of-Day clock.
941 * @tod: The return buffer:
942 *
943 * Read the Time-Of-Day clock
944 */
945 int pdc_tod_read(struct pdc_tod *tod)
946 {
947 int retval;
948 unsigned long flags;
949
950 spin_lock_irqsave(&pdc_lock, flags);
951 retval = mem_pdc_call(PDC_TOD, PDC_TOD_READ, __pa(pdc_result), 0);
952 convert_to_wide(pdc_result);
953 memcpy(tod, pdc_result, sizeof(*tod));
954 spin_unlock_irqrestore(&pdc_lock, flags);
955
956 return retval;
957 }
958 EXPORT_SYMBOL(pdc_tod_read);
959
960 /**
961 * pdc_tod_set - Set the Time-Of-Day clock.
962 * @sec: The number of seconds since epoch.
963 * @usec: The number of micro seconds.
964 *
965 * Set the Time-Of-Day clock.
966 */
967 int pdc_tod_set(unsigned long sec, unsigned long usec)
968 {
969 int retval;
970 unsigned long flags;
971
972 spin_lock_irqsave(&pdc_lock, flags);
973 retval = mem_pdc_call(PDC_TOD, PDC_TOD_WRITE, sec, usec);
974 spin_unlock_irqrestore(&pdc_lock, flags);
975
976 return retval;
977 }
978 EXPORT_SYMBOL(pdc_tod_set);
979
980 #ifdef CONFIG_64BIT
981 int pdc_mem_mem_table(struct pdc_memory_table_raddr *r_addr,
982 struct pdc_memory_table *tbl, unsigned long entries)
983 {
984 int retval;
985 unsigned long flags;
986
987 spin_lock_irqsave(&pdc_lock, flags);
988 retval = mem_pdc_call(PDC_MEM, PDC_MEM_TABLE, __pa(pdc_result), __pa(pdc_result2), entries);
989 convert_to_wide(pdc_result);
990 memcpy(r_addr, pdc_result, sizeof(*r_addr));
991 memcpy(tbl, pdc_result2, entries * sizeof(*tbl));
992 spin_unlock_irqrestore(&pdc_lock, flags);
993
994 return retval;
995 }
996 #endif /* CONFIG_64BIT */
997
998 /* FIXME: Is this pdc used? I could not find type reference to ftc_bitmap
999 * so I guessed at unsigned long. Someone who knows what this does, can fix
1000 * it later. :)
1001 */
1002 int pdc_do_firm_test_reset(unsigned long ftc_bitmap)
1003 {
1004 int retval;
1005 unsigned long flags;
1006
1007 spin_lock_irqsave(&pdc_lock, flags);
1008 retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_FIRM_TEST_RESET,
1009 PDC_FIRM_TEST_MAGIC, ftc_bitmap);
1010 spin_unlock_irqrestore(&pdc_lock, flags);
1011
1012 return retval;
1013 }
1014
1015 /*
1016 * pdc_do_reset - Reset the system.
1017 *
1018 * Reset the system.
1019 */
1020 int pdc_do_reset(void)
1021 {
1022 int retval;
1023 unsigned long flags;
1024
1025 spin_lock_irqsave(&pdc_lock, flags);
1026 retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_RESET);
1027 spin_unlock_irqrestore(&pdc_lock, flags);
1028
1029 return retval;
1030 }
1031
1032 /*
1033 * pdc_soft_power_info - Enable soft power switch.
1034 * @power_reg: address of soft power register
1035 *
1036 * Return the absolute address of the soft power switch register
1037 */
1038 int __init pdc_soft_power_info(unsigned long *power_reg)
1039 {
1040 int retval;
1041 unsigned long flags;
1042
1043 *power_reg = (unsigned long) (-1);
1044
1045 spin_lock_irqsave(&pdc_lock, flags);
1046 retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_INFO, __pa(pdc_result), 0);
1047 if (retval == PDC_OK) {
1048 convert_to_wide(pdc_result);
1049 *power_reg = f_extend(pdc_result[0]);
1050 }
1051 spin_unlock_irqrestore(&pdc_lock, flags);
1052
1053 return retval;
1054 }
1055
1056 /*
1057 * pdc_soft_power_button - Control the soft power button behaviour
1058 * @sw_control: 0 for hardware control, 1 for software control
1059 *
1060 *
1061 * This PDC function places the soft power button under software or
1062 * hardware control.
1063 * Under software control the OS may control to when to allow to shut
1064 * down the system. Under hardware control pressing the power button
1065 * powers off the system immediately.
1066 */
1067 int pdc_soft_power_button(int sw_control)
1068 {
1069 int retval;
1070 unsigned long flags;
1071
1072 spin_lock_irqsave(&pdc_lock, flags);
1073 retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_ENABLE, __pa(pdc_result), sw_control);
1074 spin_unlock_irqrestore(&pdc_lock, flags);
1075
1076 return retval;
1077 }
1078
1079 /*
1080 * pdc_io_reset - Hack to avoid overlapping range registers of Bridges devices.
1081 * Primarily a problem on T600 (which parisc-linux doesn't support) but
1082 * who knows what other platform firmware might do with this OS "hook".
1083 */
1084 void pdc_io_reset(void)
1085 {
1086 unsigned long flags;
1087
1088 spin_lock_irqsave(&pdc_lock, flags);
1089 mem_pdc_call(PDC_IO, PDC_IO_RESET, 0);
1090 spin_unlock_irqrestore(&pdc_lock, flags);
1091 }
1092
1093 /*
1094 * pdc_io_reset_devices - Hack to Stop USB controller
1095 *
1096 * If PDC used the usb controller, the usb controller
1097 * is still running and will crash the machines during iommu
1098 * setup, because of still running DMA. This PDC call
1099 * stops the USB controller.
1100 * Normally called after calling pdc_io_reset().
1101 */
1102 void pdc_io_reset_devices(void)
1103 {
1104 unsigned long flags;
1105
1106 spin_lock_irqsave(&pdc_lock, flags);
1107 mem_pdc_call(PDC_IO, PDC_IO_RESET_DEVICES, 0);
1108 spin_unlock_irqrestore(&pdc_lock, flags);
1109 }
1110
1111 /* locked by pdc_console_lock */
1112 static int __attribute__((aligned(8))) iodc_retbuf[32];
1113 static char __attribute__((aligned(64))) iodc_dbuf[4096];
1114
1115 /**
1116 * pdc_iodc_print - Console print using IODC.
1117 * @str: the string to output.
1118 * @count: length of str
1119 *
1120 * Note that only these special chars are architected for console IODC io:
1121 * BEL, BS, CR, and LF. Others are passed through.
1122 * Since the HP console requires CR+LF to perform a 'newline', we translate
1123 * "\n" to "\r\n".
1124 */
1125 int pdc_iodc_print(const unsigned char *str, unsigned count)
1126 {
1127 unsigned int i;
1128 unsigned long flags;
1129
1130 for (i = 0; i < count;) {
1131 switch(str[i]) {
1132 case '\n':
1133 iodc_dbuf[i+0] = '\r';
1134 iodc_dbuf[i+1] = '\n';
1135 i += 2;
1136 goto print;
1137 default:
1138 iodc_dbuf[i] = str[i];
1139 i++;
1140 break;
1141 }
1142 }
1143
1144 print:
1145 spin_lock_irqsave(&pdc_lock, flags);
1146 real32_call(PAGE0->mem_cons.iodc_io,
1147 (unsigned long)PAGE0->mem_cons.hpa, ENTRY_IO_COUT,
1148 PAGE0->mem_cons.spa, __pa(PAGE0->mem_cons.dp.layers),
1149 __pa(iodc_retbuf), 0, __pa(iodc_dbuf), i, 0);
1150 spin_unlock_irqrestore(&pdc_lock, flags);
1151
1152 return i;
1153 }
1154
1155 /**
1156 * pdc_iodc_getc - Read a character (non-blocking) from the PDC console.
1157 *
1158 * Read a character (non-blocking) from the PDC console, returns -1 if
1159 * key is not present.
1160 */
1161 int pdc_iodc_getc(void)
1162 {
1163 int ch;
1164 int status;
1165 unsigned long flags;
1166
1167 /* Bail if no console input device. */
1168 if (!PAGE0->mem_kbd.iodc_io)
1169 return 0;
1170
1171 /* wait for a keyboard (rs232)-input */
1172 spin_lock_irqsave(&pdc_lock, flags);
1173 real32_call(PAGE0->mem_kbd.iodc_io,
1174 (unsigned long)PAGE0->mem_kbd.hpa, ENTRY_IO_CIN,
1175 PAGE0->mem_kbd.spa, __pa(PAGE0->mem_kbd.dp.layers),
1176 __pa(iodc_retbuf), 0, __pa(iodc_dbuf), 1, 0);
1177
1178 ch = *iodc_dbuf;
1179 status = *iodc_retbuf;
1180 spin_unlock_irqrestore(&pdc_lock, flags);
1181
1182 if (status == 0)
1183 return -1;
1184
1185 return ch;
1186 }
1187
1188 int pdc_sti_call(unsigned long func, unsigned long flags,
1189 unsigned long inptr, unsigned long outputr,
1190 unsigned long glob_cfg)
1191 {
1192 int retval;
1193 unsigned long irqflags;
1194
1195 spin_lock_irqsave(&pdc_lock, irqflags);
1196 retval = real32_call(func, flags, inptr, outputr, glob_cfg);
1197 spin_unlock_irqrestore(&pdc_lock, irqflags);
1198
1199 return retval;
1200 }
1201 EXPORT_SYMBOL(pdc_sti_call);
1202
1203 #ifdef CONFIG_64BIT
1204 /**
1205 * pdc_pat_cell_get_number - Returns the cell number.
1206 * @cell_info: The return buffer.
1207 *
1208 * This PDC call returns the cell number of the cell from which the call
1209 * is made.
1210 */
1211 int pdc_pat_cell_get_number(struct pdc_pat_cell_num *cell_info)
1212 {
1213 int retval;
1214 unsigned long flags;
1215
1216 spin_lock_irqsave(&pdc_lock, flags);
1217 retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_NUMBER, __pa(pdc_result));
1218 memcpy(cell_info, pdc_result, sizeof(*cell_info));
1219 spin_unlock_irqrestore(&pdc_lock, flags);
1220
1221 return retval;
1222 }
1223
1224 /**
1225 * pdc_pat_cell_module - Retrieve the cell's module information.
1226 * @actcnt: The number of bytes written to mem_addr.
1227 * @ploc: The physical location.
1228 * @mod: The module index.
1229 * @view_type: The view of the address type.
1230 * @mem_addr: The return buffer.
1231 *
1232 * This PDC call returns information about each module attached to the cell
1233 * at the specified location.
1234 */
1235 int pdc_pat_cell_module(unsigned long *actcnt, unsigned long ploc, unsigned long mod,
1236 unsigned long view_type, void *mem_addr)
1237 {
1238 int retval;
1239 unsigned long flags;
1240 static struct pdc_pat_cell_mod_maddr_block result __attribute__ ((aligned (8)));
1241
1242 spin_lock_irqsave(&pdc_lock, flags);
1243 retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_MODULE, __pa(pdc_result),
1244 ploc, mod, view_type, __pa(&result));
1245 if(!retval) {
1246 *actcnt = pdc_result[0];
1247 memcpy(mem_addr, &result, *actcnt);
1248 }
1249 spin_unlock_irqrestore(&pdc_lock, flags);
1250
1251 return retval;
1252 }
1253
1254 /**
1255 * pdc_pat_cpu_get_number - Retrieve the cpu number.
1256 * @cpu_info: The return buffer.
1257 * @hpa: The Hard Physical Address of the CPU.
1258 *
1259 * Retrieve the cpu number for the cpu at the specified HPA.
1260 */
1261 int pdc_pat_cpu_get_number(struct pdc_pat_cpu_num *cpu_info, void *hpa)
1262 {
1263 int retval;
1264 unsigned long flags;
1265
1266 spin_lock_irqsave(&pdc_lock, flags);
1267 retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_NUMBER,
1268 __pa(&pdc_result), hpa);
1269 memcpy(cpu_info, pdc_result, sizeof(*cpu_info));
1270 spin_unlock_irqrestore(&pdc_lock, flags);
1271
1272 return retval;
1273 }
1274
1275 /**
1276 * pdc_pat_get_irt_size - Retrieve the number of entries in the cell's interrupt table.
1277 * @num_entries: The return value.
1278 * @cell_num: The target cell.
1279 *
1280 * This PDC function returns the number of entries in the specified cell's
1281 * interrupt table.
1282 */
1283 int pdc_pat_get_irt_size(unsigned long *num_entries, unsigned long cell_num)
1284 {
1285 int retval;
1286 unsigned long flags;
1287
1288 spin_lock_irqsave(&pdc_lock, flags);
1289 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE_SIZE,
1290 __pa(pdc_result), cell_num);
1291 *num_entries = pdc_result[0];
1292 spin_unlock_irqrestore(&pdc_lock, flags);
1293
1294 return retval;
1295 }
1296
1297 /**
1298 * pdc_pat_get_irt - Retrieve the cell's interrupt table.
1299 * @r_addr: The return buffer.
1300 * @cell_num: The target cell.
1301 *
1302 * This PDC function returns the actual interrupt table for the specified cell.
1303 */
1304 int pdc_pat_get_irt(void *r_addr, unsigned long cell_num)
1305 {
1306 int retval;
1307 unsigned long flags;
1308
1309 spin_lock_irqsave(&pdc_lock, flags);
1310 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE,
1311 __pa(r_addr), cell_num);
1312 spin_unlock_irqrestore(&pdc_lock, flags);
1313
1314 return retval;
1315 }
1316
1317 /**
1318 * pdc_pat_pd_get_addr_map - Retrieve information about memory address ranges.
1319 * @actlen: The return buffer.
1320 * @mem_addr: Pointer to the memory buffer.
1321 * @count: The number of bytes to read from the buffer.
1322 * @offset: The offset with respect to the beginning of the buffer.
1323 *
1324 */
1325 int pdc_pat_pd_get_addr_map(unsigned long *actual_len, void *mem_addr,
1326 unsigned long count, unsigned long offset)
1327 {
1328 int retval;
1329 unsigned long flags;
1330
1331 spin_lock_irqsave(&pdc_lock, flags);
1332 retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_ADDR_MAP, __pa(pdc_result),
1333 __pa(pdc_result2), count, offset);
1334 *actual_len = pdc_result[0];
1335 memcpy(mem_addr, pdc_result2, *actual_len);
1336 spin_unlock_irqrestore(&pdc_lock, flags);
1337
1338 return retval;
1339 }
1340
1341 /**
1342 * pdc_pat_io_pci_cfg_read - Read PCI configuration space.
1343 * @pci_addr: PCI configuration space address for which the read request is being made.
1344 * @pci_size: Size of read in bytes. Valid values are 1, 2, and 4.
1345 * @mem_addr: Pointer to return memory buffer.
1346 *
1347 */
1348 int pdc_pat_io_pci_cfg_read(unsigned long pci_addr, int pci_size, u32 *mem_addr)
1349 {
1350 int retval;
1351 unsigned long flags;
1352
1353 spin_lock_irqsave(&pdc_lock, flags);
1354 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_READ,
1355 __pa(pdc_result), pci_addr, pci_size);
1356 switch(pci_size) {
1357 case 1: *(u8 *) mem_addr = (u8) pdc_result[0]; break;
1358 case 2: *(u16 *)mem_addr = (u16) pdc_result[0]; break;
1359 case 4: *(u32 *)mem_addr = (u32) pdc_result[0]; break;
1360 }
1361 spin_unlock_irqrestore(&pdc_lock, flags);
1362
1363 return retval;
1364 }
1365
1366 /**
1367 * pdc_pat_io_pci_cfg_write - Retrieve information about memory address ranges.
1368 * @pci_addr: PCI configuration space address for which the write request is being made.
1369 * @pci_size: Size of write in bytes. Valid values are 1, 2, and 4.
1370 * @value: Pointer to 1, 2, or 4 byte value in low order end of argument to be
1371 * written to PCI Config space.
1372 *
1373 */
1374 int pdc_pat_io_pci_cfg_write(unsigned long pci_addr, int pci_size, u32 val)
1375 {
1376 int retval;
1377 unsigned long flags;
1378
1379 spin_lock_irqsave(&pdc_lock, flags);
1380 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_WRITE,
1381 pci_addr, pci_size, val);
1382 spin_unlock_irqrestore(&pdc_lock, flags);
1383
1384 return retval;
1385 }
1386 #endif /* CONFIG_64BIT */
1387
1388
1389 /***************** 32-bit real-mode calls ***********/
1390 /* The struct below is used
1391 * to overlay real_stack (real2.S), preparing a 32-bit call frame.
1392 * real32_call_asm() then uses this stack in narrow real mode
1393 */
1394
1395 struct narrow_stack {
1396 /* use int, not long which is 64 bits */
1397 unsigned int arg13;
1398 unsigned int arg12;
1399 unsigned int arg11;
1400 unsigned int arg10;
1401 unsigned int arg9;
1402 unsigned int arg8;
1403 unsigned int arg7;
1404 unsigned int arg6;
1405 unsigned int arg5;
1406 unsigned int arg4;
1407 unsigned int arg3;
1408 unsigned int arg2;
1409 unsigned int arg1;
1410 unsigned int arg0;
1411 unsigned int frame_marker[8];
1412 unsigned int sp;
1413 /* in reality, there's nearly 8k of stack after this */
1414 };
1415
1416 long real32_call(unsigned long fn, ...)
1417 {
1418 va_list args;
1419 extern struct narrow_stack real_stack;
1420 extern unsigned long real32_call_asm(unsigned int *,
1421 unsigned int *,
1422 unsigned int);
1423
1424 va_start(args, fn);
1425 real_stack.arg0 = va_arg(args, unsigned int);
1426 real_stack.arg1 = va_arg(args, unsigned int);
1427 real_stack.arg2 = va_arg(args, unsigned int);
1428 real_stack.arg3 = va_arg(args, unsigned int);
1429 real_stack.arg4 = va_arg(args, unsigned int);
1430 real_stack.arg5 = va_arg(args, unsigned int);
1431 real_stack.arg6 = va_arg(args, unsigned int);
1432 real_stack.arg7 = va_arg(args, unsigned int);
1433 real_stack.arg8 = va_arg(args, unsigned int);
1434 real_stack.arg9 = va_arg(args, unsigned int);
1435 real_stack.arg10 = va_arg(args, unsigned int);
1436 real_stack.arg11 = va_arg(args, unsigned int);
1437 real_stack.arg12 = va_arg(args, unsigned int);
1438 real_stack.arg13 = va_arg(args, unsigned int);
1439 va_end(args);
1440
1441 return real32_call_asm(&real_stack.sp, &real_stack.arg0, fn);
1442 }
1443
1444 #ifdef CONFIG_64BIT
1445 /***************** 64-bit real-mode calls ***********/
1446
1447 struct wide_stack {
1448 unsigned long arg0;
1449 unsigned long arg1;
1450 unsigned long arg2;
1451 unsigned long arg3;
1452 unsigned long arg4;
1453 unsigned long arg5;
1454 unsigned long arg6;
1455 unsigned long arg7;
1456 unsigned long arg8;
1457 unsigned long arg9;
1458 unsigned long arg10;
1459 unsigned long arg11;
1460 unsigned long arg12;
1461 unsigned long arg13;
1462 unsigned long frame_marker[2]; /* rp, previous sp */
1463 unsigned long sp;
1464 /* in reality, there's nearly 8k of stack after this */
1465 };
1466
1467 long real64_call(unsigned long fn, ...)
1468 {
1469 va_list args;
1470 extern struct wide_stack real64_stack;
1471 extern unsigned long real64_call_asm(unsigned long *,
1472 unsigned long *,
1473 unsigned long);
1474
1475 va_start(args, fn);
1476 real64_stack.arg0 = va_arg(args, unsigned long);
1477 real64_stack.arg1 = va_arg(args, unsigned long);
1478 real64_stack.arg2 = va_arg(args, unsigned long);
1479 real64_stack.arg3 = va_arg(args, unsigned long);
1480 real64_stack.arg4 = va_arg(args, unsigned long);
1481 real64_stack.arg5 = va_arg(args, unsigned long);
1482 real64_stack.arg6 = va_arg(args, unsigned long);
1483 real64_stack.arg7 = va_arg(args, unsigned long);
1484 real64_stack.arg8 = va_arg(args, unsigned long);
1485 real64_stack.arg9 = va_arg(args, unsigned long);
1486 real64_stack.arg10 = va_arg(args, unsigned long);
1487 real64_stack.arg11 = va_arg(args, unsigned long);
1488 real64_stack.arg12 = va_arg(args, unsigned long);
1489 real64_stack.arg13 = va_arg(args, unsigned long);
1490 va_end(args);
1491
1492 return real64_call_asm(&real64_stack.sp, &real64_stack.arg0, fn);
1493 }
1494
1495 #endif /* CONFIG_64BIT */
1496
This page took 0.063635 seconds and 5 git commands to generate.