Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/hid
[deliverable/linux.git] / arch / powerpc / include / asm / io.h
1 #ifndef _ASM_POWERPC_IO_H
2 #define _ASM_POWERPC_IO_H
3 #ifdef __KERNEL__
4
5 #define ARCH_HAS_IOREMAP_WC
6
7 /*
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14 /* Check of existence of legacy devices */
15 extern int check_legacy_ioport(unsigned long base_port);
16 #define I8042_DATA_REG 0x60
17 #define FDC_BASE 0x3f0
18
19 #if defined(CONFIG_PPC64) && defined(CONFIG_PCI)
20 extern struct pci_dev *isa_bridge_pcidev;
21 /*
22 * has legacy ISA devices ?
23 */
24 #define arch_has_dev_port() (isa_bridge_pcidev != NULL)
25 #endif
26
27 #include <linux/device.h>
28 #include <linux/io.h>
29
30 #include <linux/compiler.h>
31 #include <asm/page.h>
32 #include <asm/byteorder.h>
33 #include <asm/synch.h>
34 #include <asm/delay.h>
35 #include <asm/mmu.h>
36
37 #include <asm-generic/iomap.h>
38
39 #ifdef CONFIG_PPC64
40 #include <asm/paca.h>
41 #endif
42
43 #define SIO_CONFIG_RA 0x398
44 #define SIO_CONFIG_RD 0x399
45
46 #define SLOW_DOWN_IO
47
48 /* 32 bits uses slightly different variables for the various IO
49 * bases. Most of this file only uses _IO_BASE though which we
50 * define properly based on the platform
51 */
52 #ifndef CONFIG_PCI
53 #define _IO_BASE 0
54 #define _ISA_MEM_BASE 0
55 #define PCI_DRAM_OFFSET 0
56 #elif defined(CONFIG_PPC32)
57 #define _IO_BASE isa_io_base
58 #define _ISA_MEM_BASE isa_mem_base
59 #define PCI_DRAM_OFFSET pci_dram_offset
60 #else
61 #define _IO_BASE pci_io_base
62 #define _ISA_MEM_BASE isa_mem_base
63 #define PCI_DRAM_OFFSET 0
64 #endif
65
66 extern unsigned long isa_io_base;
67 extern unsigned long pci_io_base;
68 extern unsigned long pci_dram_offset;
69
70 extern resource_size_t isa_mem_base;
71
72 #if defined(CONFIG_PPC32) && defined(CONFIG_PPC_INDIRECT_IO)
73 #error CONFIG_PPC_INDIRECT_IO is not yet supported on 32 bits
74 #endif
75
76 /*
77 *
78 * Low level MMIO accessors
79 *
80 * This provides the non-bus specific accessors to MMIO. Those are PowerPC
81 * specific and thus shouldn't be used in generic code. The accessors
82 * provided here are:
83 *
84 * in_8, in_le16, in_be16, in_le32, in_be32, in_le64, in_be64
85 * out_8, out_le16, out_be16, out_le32, out_be32, out_le64, out_be64
86 * _insb, _insw_ns, _insl_ns, _outsb, _outsw_ns, _outsl_ns
87 *
88 * Those operate directly on a kernel virtual address. Note that the prototype
89 * for the out_* accessors has the arguments in opposite order from the usual
90 * linux PCI accessors. Unlike those, they take the address first and the value
91 * next.
92 *
93 * Note: I might drop the _ns suffix on the stream operations soon as it is
94 * simply normal for stream operations to not swap in the first place.
95 *
96 */
97
98 #ifdef CONFIG_PPC64
99 #define IO_SET_SYNC_FLAG() do { local_paca->io_sync = 1; } while(0)
100 #else
101 #define IO_SET_SYNC_FLAG()
102 #endif
103
104 /* gcc 4.0 and older doesn't have 'Z' constraint */
105 #if __GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ == 0)
106 #define DEF_MMIO_IN_LE(name, size, insn) \
107 static inline u##size name(const volatile u##size __iomem *addr) \
108 { \
109 u##size ret; \
110 __asm__ __volatile__("sync;"#insn" %0,0,%1;twi 0,%0,0;isync" \
111 : "=r" (ret) : "r" (addr), "m" (*addr) : "memory"); \
112 return ret; \
113 }
114
115 #define DEF_MMIO_OUT_LE(name, size, insn) \
116 static inline void name(volatile u##size __iomem *addr, u##size val) \
117 { \
118 __asm__ __volatile__("sync;"#insn" %1,0,%2" \
119 : "=m" (*addr) : "r" (val), "r" (addr) : "memory"); \
120 IO_SET_SYNC_FLAG(); \
121 }
122 #else /* newer gcc */
123 #define DEF_MMIO_IN_LE(name, size, insn) \
124 static inline u##size name(const volatile u##size __iomem *addr) \
125 { \
126 u##size ret; \
127 __asm__ __volatile__("sync;"#insn" %0,%y1;twi 0,%0,0;isync" \
128 : "=r" (ret) : "Z" (*addr) : "memory"); \
129 return ret; \
130 }
131
132 #define DEF_MMIO_OUT_LE(name, size, insn) \
133 static inline void name(volatile u##size __iomem *addr, u##size val) \
134 { \
135 __asm__ __volatile__("sync;"#insn" %1,%y0" \
136 : "=Z" (*addr) : "r" (val) : "memory"); \
137 IO_SET_SYNC_FLAG(); \
138 }
139 #endif
140
141 #define DEF_MMIO_IN_BE(name, size, insn) \
142 static inline u##size name(const volatile u##size __iomem *addr) \
143 { \
144 u##size ret; \
145 __asm__ __volatile__("sync;"#insn"%U1%X1 %0,%1;twi 0,%0,0;isync"\
146 : "=r" (ret) : "m" (*addr) : "memory"); \
147 return ret; \
148 }
149
150 #define DEF_MMIO_OUT_BE(name, size, insn) \
151 static inline void name(volatile u##size __iomem *addr, u##size val) \
152 { \
153 __asm__ __volatile__("sync;"#insn"%U0%X0 %1,%0" \
154 : "=m" (*addr) : "r" (val) : "memory"); \
155 IO_SET_SYNC_FLAG(); \
156 }
157
158
159 DEF_MMIO_IN_BE(in_8, 8, lbz);
160 DEF_MMIO_IN_BE(in_be16, 16, lhz);
161 DEF_MMIO_IN_BE(in_be32, 32, lwz);
162 DEF_MMIO_IN_LE(in_le16, 16, lhbrx);
163 DEF_MMIO_IN_LE(in_le32, 32, lwbrx);
164
165 DEF_MMIO_OUT_BE(out_8, 8, stb);
166 DEF_MMIO_OUT_BE(out_be16, 16, sth);
167 DEF_MMIO_OUT_BE(out_be32, 32, stw);
168 DEF_MMIO_OUT_LE(out_le16, 16, sthbrx);
169 DEF_MMIO_OUT_LE(out_le32, 32, stwbrx);
170
171 #ifdef __powerpc64__
172 DEF_MMIO_OUT_BE(out_be64, 64, std);
173 DEF_MMIO_IN_BE(in_be64, 64, ld);
174
175 /* There is no asm instructions for 64 bits reverse loads and stores */
176 static inline u64 in_le64(const volatile u64 __iomem *addr)
177 {
178 return swab64(in_be64(addr));
179 }
180
181 static inline void out_le64(volatile u64 __iomem *addr, u64 val)
182 {
183 out_be64(addr, swab64(val));
184 }
185 #endif /* __powerpc64__ */
186
187 /*
188 * Low level IO stream instructions are defined out of line for now
189 */
190 extern void _insb(const volatile u8 __iomem *addr, void *buf, long count);
191 extern void _outsb(volatile u8 __iomem *addr,const void *buf,long count);
192 extern void _insw_ns(const volatile u16 __iomem *addr, void *buf, long count);
193 extern void _outsw_ns(volatile u16 __iomem *addr, const void *buf, long count);
194 extern void _insl_ns(const volatile u32 __iomem *addr, void *buf, long count);
195 extern void _outsl_ns(volatile u32 __iomem *addr, const void *buf, long count);
196
197 /* The _ns naming is historical and will be removed. For now, just #define
198 * the non _ns equivalent names
199 */
200 #define _insw _insw_ns
201 #define _insl _insl_ns
202 #define _outsw _outsw_ns
203 #define _outsl _outsl_ns
204
205
206 /*
207 * memset_io, memcpy_toio, memcpy_fromio base implementations are out of line
208 */
209
210 extern void _memset_io(volatile void __iomem *addr, int c, unsigned long n);
211 extern void _memcpy_fromio(void *dest, const volatile void __iomem *src,
212 unsigned long n);
213 extern void _memcpy_toio(volatile void __iomem *dest, const void *src,
214 unsigned long n);
215
216 /*
217 *
218 * PCI and standard ISA accessors
219 *
220 * Those are globally defined linux accessors for devices on PCI or ISA
221 * busses. They follow the Linux defined semantics. The current implementation
222 * for PowerPC is as close as possible to the x86 version of these, and thus
223 * provides fairly heavy weight barriers for the non-raw versions
224 *
225 * In addition, they support a hook mechanism when CONFIG_PPC_INDIRECT_IO
226 * allowing the platform to provide its own implementation of some or all
227 * of the accessors.
228 */
229
230 /*
231 * Include the EEH definitions when EEH is enabled only so they don't get
232 * in the way when building for 32 bits
233 */
234 #ifdef CONFIG_EEH
235 #include <asm/eeh.h>
236 #endif
237
238 /* Shortcut to the MMIO argument pointer */
239 #define PCI_IO_ADDR volatile void __iomem *
240
241 /* Indirect IO address tokens:
242 *
243 * When CONFIG_PPC_INDIRECT_IO is set, the platform can provide hooks
244 * on all IOs. (Note that this is all 64 bits only for now)
245 *
246 * To help platforms who may need to differenciate MMIO addresses in
247 * their hooks, a bitfield is reserved for use by the platform near the
248 * top of MMIO addresses (not PIO, those have to cope the hard way).
249 *
250 * This bit field is 12 bits and is at the top of the IO virtual
251 * addresses PCI_IO_INDIRECT_TOKEN_MASK.
252 *
253 * The kernel virtual space is thus:
254 *
255 * 0xD000000000000000 : vmalloc
256 * 0xD000080000000000 : PCI PHB IO space
257 * 0xD000080080000000 : ioremap
258 * 0xD0000fffffffffff : end of ioremap region
259 *
260 * Since the top 4 bits are reserved as the region ID, we use thus
261 * the next 12 bits and keep 4 bits available for the future if the
262 * virtual address space is ever to be extended.
263 *
264 * The direct IO mapping operations will then mask off those bits
265 * before doing the actual access, though that only happen when
266 * CONFIG_PPC_INDIRECT_IO is set, thus be careful when you use that
267 * mechanism
268 */
269
270 #ifdef CONFIG_PPC_INDIRECT_IO
271 #define PCI_IO_IND_TOKEN_MASK 0x0fff000000000000ul
272 #define PCI_IO_IND_TOKEN_SHIFT 48
273 #define PCI_FIX_ADDR(addr) \
274 ((PCI_IO_ADDR)(((unsigned long)(addr)) & ~PCI_IO_IND_TOKEN_MASK))
275 #define PCI_GET_ADDR_TOKEN(addr) \
276 (((unsigned long)(addr) & PCI_IO_IND_TOKEN_MASK) >> \
277 PCI_IO_IND_TOKEN_SHIFT)
278 #define PCI_SET_ADDR_TOKEN(addr, token) \
279 do { \
280 unsigned long __a = (unsigned long)(addr); \
281 __a &= ~PCI_IO_IND_TOKEN_MASK; \
282 __a |= ((unsigned long)(token)) << PCI_IO_IND_TOKEN_SHIFT; \
283 (addr) = (void __iomem *)__a; \
284 } while(0)
285 #else
286 #define PCI_FIX_ADDR(addr) (addr)
287 #endif
288
289
290 /*
291 * Non ordered and non-swapping "raw" accessors
292 */
293
294 static inline unsigned char __raw_readb(const volatile void __iomem *addr)
295 {
296 return *(volatile unsigned char __force *)PCI_FIX_ADDR(addr);
297 }
298 static inline unsigned short __raw_readw(const volatile void __iomem *addr)
299 {
300 return *(volatile unsigned short __force *)PCI_FIX_ADDR(addr);
301 }
302 static inline unsigned int __raw_readl(const volatile void __iomem *addr)
303 {
304 return *(volatile unsigned int __force *)PCI_FIX_ADDR(addr);
305 }
306 static inline void __raw_writeb(unsigned char v, volatile void __iomem *addr)
307 {
308 *(volatile unsigned char __force *)PCI_FIX_ADDR(addr) = v;
309 }
310 static inline void __raw_writew(unsigned short v, volatile void __iomem *addr)
311 {
312 *(volatile unsigned short __force *)PCI_FIX_ADDR(addr) = v;
313 }
314 static inline void __raw_writel(unsigned int v, volatile void __iomem *addr)
315 {
316 *(volatile unsigned int __force *)PCI_FIX_ADDR(addr) = v;
317 }
318
319 #ifdef __powerpc64__
320 static inline unsigned long __raw_readq(const volatile void __iomem *addr)
321 {
322 return *(volatile unsigned long __force *)PCI_FIX_ADDR(addr);
323 }
324 static inline void __raw_writeq(unsigned long v, volatile void __iomem *addr)
325 {
326 *(volatile unsigned long __force *)PCI_FIX_ADDR(addr) = v;
327 }
328 #endif /* __powerpc64__ */
329
330 /*
331 *
332 * PCI PIO and MMIO accessors.
333 *
334 *
335 * On 32 bits, PIO operations have a recovery mechanism in case they trigger
336 * machine checks (which they occasionally do when probing non existing
337 * IO ports on some platforms, like PowerMac and 8xx).
338 * I always found it to be of dubious reliability and I am tempted to get
339 * rid of it one of these days. So if you think it's important to keep it,
340 * please voice up asap. We never had it for 64 bits and I do not intend
341 * to port it over
342 */
343
344 #ifdef CONFIG_PPC32
345
346 #define __do_in_asm(name, op) \
347 static inline unsigned int name(unsigned int port) \
348 { \
349 unsigned int x; \
350 __asm__ __volatile__( \
351 "sync\n" \
352 "0:" op " %0,0,%1\n" \
353 "1: twi 0,%0,0\n" \
354 "2: isync\n" \
355 "3: nop\n" \
356 "4:\n" \
357 ".section .fixup,\"ax\"\n" \
358 "5: li %0,-1\n" \
359 " b 4b\n" \
360 ".previous\n" \
361 ".section __ex_table,\"a\"\n" \
362 " .align 2\n" \
363 " .long 0b,5b\n" \
364 " .long 1b,5b\n" \
365 " .long 2b,5b\n" \
366 " .long 3b,5b\n" \
367 ".previous" \
368 : "=&r" (x) \
369 : "r" (port + _IO_BASE) \
370 : "memory"); \
371 return x; \
372 }
373
374 #define __do_out_asm(name, op) \
375 static inline void name(unsigned int val, unsigned int port) \
376 { \
377 __asm__ __volatile__( \
378 "sync\n" \
379 "0:" op " %0,0,%1\n" \
380 "1: sync\n" \
381 "2:\n" \
382 ".section __ex_table,\"a\"\n" \
383 " .align 2\n" \
384 " .long 0b,2b\n" \
385 " .long 1b,2b\n" \
386 ".previous" \
387 : : "r" (val), "r" (port + _IO_BASE) \
388 : "memory"); \
389 }
390
391 __do_in_asm(_rec_inb, "lbzx")
392 __do_in_asm(_rec_inw, "lhbrx")
393 __do_in_asm(_rec_inl, "lwbrx")
394 __do_out_asm(_rec_outb, "stbx")
395 __do_out_asm(_rec_outw, "sthbrx")
396 __do_out_asm(_rec_outl, "stwbrx")
397
398 #endif /* CONFIG_PPC32 */
399
400 /* The "__do_*" operations below provide the actual "base" implementation
401 * for each of the defined accessors. Some of them use the out_* functions
402 * directly, some of them still use EEH, though we might change that in the
403 * future. Those macros below provide the necessary argument swapping and
404 * handling of the IO base for PIO.
405 *
406 * They are themselves used by the macros that define the actual accessors
407 * and can be used by the hooks if any.
408 *
409 * Note that PIO operations are always defined in terms of their corresonding
410 * MMIO operations. That allows platforms like iSeries who want to modify the
411 * behaviour of both to only hook on the MMIO version and get both. It's also
412 * possible to hook directly at the toplevel PIO operation if they have to
413 * be handled differently
414 */
415 #define __do_writeb(val, addr) out_8(PCI_FIX_ADDR(addr), val)
416 #define __do_writew(val, addr) out_le16(PCI_FIX_ADDR(addr), val)
417 #define __do_writel(val, addr) out_le32(PCI_FIX_ADDR(addr), val)
418 #define __do_writeq(val, addr) out_le64(PCI_FIX_ADDR(addr), val)
419 #define __do_writew_be(val, addr) out_be16(PCI_FIX_ADDR(addr), val)
420 #define __do_writel_be(val, addr) out_be32(PCI_FIX_ADDR(addr), val)
421 #define __do_writeq_be(val, addr) out_be64(PCI_FIX_ADDR(addr), val)
422
423 #ifdef CONFIG_EEH
424 #define __do_readb(addr) eeh_readb(PCI_FIX_ADDR(addr))
425 #define __do_readw(addr) eeh_readw(PCI_FIX_ADDR(addr))
426 #define __do_readl(addr) eeh_readl(PCI_FIX_ADDR(addr))
427 #define __do_readq(addr) eeh_readq(PCI_FIX_ADDR(addr))
428 #define __do_readw_be(addr) eeh_readw_be(PCI_FIX_ADDR(addr))
429 #define __do_readl_be(addr) eeh_readl_be(PCI_FIX_ADDR(addr))
430 #define __do_readq_be(addr) eeh_readq_be(PCI_FIX_ADDR(addr))
431 #else /* CONFIG_EEH */
432 #define __do_readb(addr) in_8(PCI_FIX_ADDR(addr))
433 #define __do_readw(addr) in_le16(PCI_FIX_ADDR(addr))
434 #define __do_readl(addr) in_le32(PCI_FIX_ADDR(addr))
435 #define __do_readq(addr) in_le64(PCI_FIX_ADDR(addr))
436 #define __do_readw_be(addr) in_be16(PCI_FIX_ADDR(addr))
437 #define __do_readl_be(addr) in_be32(PCI_FIX_ADDR(addr))
438 #define __do_readq_be(addr) in_be64(PCI_FIX_ADDR(addr))
439 #endif /* !defined(CONFIG_EEH) */
440
441 #ifdef CONFIG_PPC32
442 #define __do_outb(val, port) _rec_outb(val, port)
443 #define __do_outw(val, port) _rec_outw(val, port)
444 #define __do_outl(val, port) _rec_outl(val, port)
445 #define __do_inb(port) _rec_inb(port)
446 #define __do_inw(port) _rec_inw(port)
447 #define __do_inl(port) _rec_inl(port)
448 #else /* CONFIG_PPC32 */
449 #define __do_outb(val, port) writeb(val,(PCI_IO_ADDR)_IO_BASE+port);
450 #define __do_outw(val, port) writew(val,(PCI_IO_ADDR)_IO_BASE+port);
451 #define __do_outl(val, port) writel(val,(PCI_IO_ADDR)_IO_BASE+port);
452 #define __do_inb(port) readb((PCI_IO_ADDR)_IO_BASE + port);
453 #define __do_inw(port) readw((PCI_IO_ADDR)_IO_BASE + port);
454 #define __do_inl(port) readl((PCI_IO_ADDR)_IO_BASE + port);
455 #endif /* !CONFIG_PPC32 */
456
457 #ifdef CONFIG_EEH
458 #define __do_readsb(a, b, n) eeh_readsb(PCI_FIX_ADDR(a), (b), (n))
459 #define __do_readsw(a, b, n) eeh_readsw(PCI_FIX_ADDR(a), (b), (n))
460 #define __do_readsl(a, b, n) eeh_readsl(PCI_FIX_ADDR(a), (b), (n))
461 #else /* CONFIG_EEH */
462 #define __do_readsb(a, b, n) _insb(PCI_FIX_ADDR(a), (b), (n))
463 #define __do_readsw(a, b, n) _insw(PCI_FIX_ADDR(a), (b), (n))
464 #define __do_readsl(a, b, n) _insl(PCI_FIX_ADDR(a), (b), (n))
465 #endif /* !CONFIG_EEH */
466 #define __do_writesb(a, b, n) _outsb(PCI_FIX_ADDR(a),(b),(n))
467 #define __do_writesw(a, b, n) _outsw(PCI_FIX_ADDR(a),(b),(n))
468 #define __do_writesl(a, b, n) _outsl(PCI_FIX_ADDR(a),(b),(n))
469
470 #define __do_insb(p, b, n) readsb((PCI_IO_ADDR)_IO_BASE+(p), (b), (n))
471 #define __do_insw(p, b, n) readsw((PCI_IO_ADDR)_IO_BASE+(p), (b), (n))
472 #define __do_insl(p, b, n) readsl((PCI_IO_ADDR)_IO_BASE+(p), (b), (n))
473 #define __do_outsb(p, b, n) writesb((PCI_IO_ADDR)_IO_BASE+(p),(b),(n))
474 #define __do_outsw(p, b, n) writesw((PCI_IO_ADDR)_IO_BASE+(p),(b),(n))
475 #define __do_outsl(p, b, n) writesl((PCI_IO_ADDR)_IO_BASE+(p),(b),(n))
476
477 #define __do_memset_io(addr, c, n) \
478 _memset_io(PCI_FIX_ADDR(addr), c, n)
479 #define __do_memcpy_toio(dst, src, n) \
480 _memcpy_toio(PCI_FIX_ADDR(dst), src, n)
481
482 #ifdef CONFIG_EEH
483 #define __do_memcpy_fromio(dst, src, n) \
484 eeh_memcpy_fromio(dst, PCI_FIX_ADDR(src), n)
485 #else /* CONFIG_EEH */
486 #define __do_memcpy_fromio(dst, src, n) \
487 _memcpy_fromio(dst,PCI_FIX_ADDR(src),n)
488 #endif /* !CONFIG_EEH */
489
490 #ifdef CONFIG_PPC_INDIRECT_PIO
491 #define DEF_PCI_HOOK_pio(x) x
492 #else
493 #define DEF_PCI_HOOK_pio(x) NULL
494 #endif
495
496 #ifdef CONFIG_PPC_INDIRECT_MMIO
497 #define DEF_PCI_HOOK_mem(x) x
498 #else
499 #define DEF_PCI_HOOK_mem(x) NULL
500 #endif
501
502 /* Structure containing all the hooks */
503 extern struct ppc_pci_io {
504
505 #define DEF_PCI_AC_RET(name, ret, at, al, space, aa) ret (*name) at;
506 #define DEF_PCI_AC_NORET(name, at, al, space, aa) void (*name) at;
507
508 #include <asm/io-defs.h>
509
510 #undef DEF_PCI_AC_RET
511 #undef DEF_PCI_AC_NORET
512
513 } ppc_pci_io;
514
515 /* The inline wrappers */
516 #define DEF_PCI_AC_RET(name, ret, at, al, space, aa) \
517 static inline ret name at \
518 { \
519 if (DEF_PCI_HOOK_##space(ppc_pci_io.name) != NULL) \
520 return ppc_pci_io.name al; \
521 return __do_##name al; \
522 }
523
524 #define DEF_PCI_AC_NORET(name, at, al, space, aa) \
525 static inline void name at \
526 { \
527 if (DEF_PCI_HOOK_##space(ppc_pci_io.name) != NULL) \
528 ppc_pci_io.name al; \
529 else \
530 __do_##name al; \
531 }
532
533 #include <asm/io-defs.h>
534
535 #undef DEF_PCI_AC_RET
536 #undef DEF_PCI_AC_NORET
537
538 /* Some drivers check for the presence of readq & writeq with
539 * a #ifdef, so we make them happy here.
540 */
541 #ifdef __powerpc64__
542 #define readq readq
543 #define writeq writeq
544 #endif
545
546 /*
547 * Convert a physical pointer to a virtual kernel pointer for /dev/mem
548 * access
549 */
550 #define xlate_dev_mem_ptr(p) __va(p)
551
552 /*
553 * Convert a virtual cached pointer to an uncached pointer
554 */
555 #define xlate_dev_kmem_ptr(p) p
556
557 /*
558 * We don't do relaxed operations yet, at least not with this semantic
559 */
560 #define readb_relaxed(addr) readb(addr)
561 #define readw_relaxed(addr) readw(addr)
562 #define readl_relaxed(addr) readl(addr)
563 #define readq_relaxed(addr) readq(addr)
564
565 #ifdef CONFIG_PPC32
566 #define mmiowb()
567 #else
568 /*
569 * Enforce synchronisation of stores vs. spin_unlock
570 * (this does it explicitly, though our implementation of spin_unlock
571 * does it implicitely too)
572 */
573 static inline void mmiowb(void)
574 {
575 unsigned long tmp;
576
577 __asm__ __volatile__("sync; li %0,0; stb %0,%1(13)"
578 : "=&r" (tmp) : "i" (offsetof(struct paca_struct, io_sync))
579 : "memory");
580 }
581 #endif /* !CONFIG_PPC32 */
582
583 static inline void iosync(void)
584 {
585 __asm__ __volatile__ ("sync" : : : "memory");
586 }
587
588 /* Enforce in-order execution of data I/O.
589 * No distinction between read/write on PPC; use eieio for all three.
590 * Those are fairly week though. They don't provide a barrier between
591 * MMIO and cacheable storage nor do they provide a barrier vs. locks,
592 * they only provide barriers between 2 __raw MMIO operations and
593 * possibly break write combining.
594 */
595 #define iobarrier_rw() eieio()
596 #define iobarrier_r() eieio()
597 #define iobarrier_w() eieio()
598
599
600 /*
601 * output pause versions need a delay at least for the
602 * w83c105 ide controller in a p610.
603 */
604 #define inb_p(port) inb(port)
605 #define outb_p(val, port) (udelay(1), outb((val), (port)))
606 #define inw_p(port) inw(port)
607 #define outw_p(val, port) (udelay(1), outw((val), (port)))
608 #define inl_p(port) inl(port)
609 #define outl_p(val, port) (udelay(1), outl((val), (port)))
610
611
612 #define IO_SPACE_LIMIT ~(0UL)
613
614
615 /**
616 * ioremap - map bus memory into CPU space
617 * @address: bus address of the memory
618 * @size: size of the resource to map
619 *
620 * ioremap performs a platform specific sequence of operations to
621 * make bus memory CPU accessible via the readb/readw/readl/writeb/
622 * writew/writel functions and the other mmio helpers. The returned
623 * address is not guaranteed to be usable directly as a virtual
624 * address.
625 *
626 * We provide a few variations of it:
627 *
628 * * ioremap is the standard one and provides non-cacheable guarded mappings
629 * and can be hooked by the platform via ppc_md
630 *
631 * * ioremap_prot allows to specify the page flags as an argument and can
632 * also be hooked by the platform via ppc_md.
633 *
634 * * ioremap_nocache is identical to ioremap
635 *
636 * * ioremap_wc enables write combining
637 *
638 * * iounmap undoes such a mapping and can be hooked
639 *
640 * * __ioremap_at (and the pending __iounmap_at) are low level functions to
641 * create hand-made mappings for use only by the PCI code and cannot
642 * currently be hooked. Must be page aligned.
643 *
644 * * __ioremap is the low level implementation used by ioremap and
645 * ioremap_prot and cannot be hooked (but can be used by a hook on one
646 * of the previous ones)
647 *
648 * * __ioremap_caller is the same as above but takes an explicit caller
649 * reference rather than using __builtin_return_address(0)
650 *
651 * * __iounmap, is the low level implementation used by iounmap and cannot
652 * be hooked (but can be used by a hook on iounmap)
653 *
654 */
655 extern void __iomem *ioremap(phys_addr_t address, unsigned long size);
656 extern void __iomem *ioremap_prot(phys_addr_t address, unsigned long size,
657 unsigned long flags);
658 extern void __iomem *ioremap_wc(phys_addr_t address, unsigned long size);
659 #define ioremap_nocache(addr, size) ioremap((addr), (size))
660
661 extern void iounmap(volatile void __iomem *addr);
662
663 extern void __iomem *__ioremap(phys_addr_t, unsigned long size,
664 unsigned long flags);
665 extern void __iomem *__ioremap_caller(phys_addr_t, unsigned long size,
666 unsigned long flags, void *caller);
667
668 extern void __iounmap(volatile void __iomem *addr);
669
670 extern void __iomem * __ioremap_at(phys_addr_t pa, void *ea,
671 unsigned long size, unsigned long flags);
672 extern void __iounmap_at(void *ea, unsigned long size);
673
674 /*
675 * When CONFIG_PPC_INDIRECT_IO is set, we use the generic iomap implementation
676 * which needs some additional definitions here. They basically allow PIO
677 * space overall to be 1GB. This will work as long as we never try to use
678 * iomap to map MMIO below 1GB which should be fine on ppc64
679 */
680 #define HAVE_ARCH_PIO_SIZE 1
681 #define PIO_OFFSET 0x00000000UL
682 #define PIO_MASK (FULL_IO_SIZE - 1)
683 #define PIO_RESERVED (FULL_IO_SIZE)
684
685 #define mmio_read16be(addr) readw_be(addr)
686 #define mmio_read32be(addr) readl_be(addr)
687 #define mmio_write16be(val, addr) writew_be(val, addr)
688 #define mmio_write32be(val, addr) writel_be(val, addr)
689 #define mmio_insb(addr, dst, count) readsb(addr, dst, count)
690 #define mmio_insw(addr, dst, count) readsw(addr, dst, count)
691 #define mmio_insl(addr, dst, count) readsl(addr, dst, count)
692 #define mmio_outsb(addr, src, count) writesb(addr, src, count)
693 #define mmio_outsw(addr, src, count) writesw(addr, src, count)
694 #define mmio_outsl(addr, src, count) writesl(addr, src, count)
695
696 /**
697 * virt_to_phys - map virtual addresses to physical
698 * @address: address to remap
699 *
700 * The returned physical address is the physical (CPU) mapping for
701 * the memory address given. It is only valid to use this function on
702 * addresses directly mapped or allocated via kmalloc.
703 *
704 * This function does not give bus mappings for DMA transfers. In
705 * almost all conceivable cases a device driver should not be using
706 * this function
707 */
708 static inline unsigned long virt_to_phys(volatile void * address)
709 {
710 return __pa((unsigned long)address);
711 }
712
713 /**
714 * phys_to_virt - map physical address to virtual
715 * @address: address to remap
716 *
717 * The returned virtual address is a current CPU mapping for
718 * the memory address given. It is only valid to use this function on
719 * addresses that have a kernel mapping
720 *
721 * This function does not handle bus mappings for DMA transfers. In
722 * almost all conceivable cases a device driver should not be using
723 * this function
724 */
725 static inline void * phys_to_virt(unsigned long address)
726 {
727 return (void *)__va(address);
728 }
729
730 /*
731 * Change "struct page" to physical address.
732 */
733 #define page_to_phys(page) ((phys_addr_t)page_to_pfn(page) << PAGE_SHIFT)
734
735 /*
736 * 32 bits still uses virt_to_bus() for it's implementation of DMA
737 * mappings se we have to keep it defined here. We also have some old
738 * drivers (shame shame shame) that use bus_to_virt() and haven't been
739 * fixed yet so I need to define it here.
740 */
741 #ifdef CONFIG_PPC32
742
743 static inline unsigned long virt_to_bus(volatile void * address)
744 {
745 if (address == NULL)
746 return 0;
747 return __pa(address) + PCI_DRAM_OFFSET;
748 }
749
750 static inline void * bus_to_virt(unsigned long address)
751 {
752 if (address == 0)
753 return NULL;
754 return __va(address - PCI_DRAM_OFFSET);
755 }
756
757 #define page_to_bus(page) (page_to_phys(page) + PCI_DRAM_OFFSET)
758
759 #endif /* CONFIG_PPC32 */
760
761 /* access ports */
762 #define setbits32(_addr, _v) out_be32((_addr), in_be32(_addr) | (_v))
763 #define clrbits32(_addr, _v) out_be32((_addr), in_be32(_addr) & ~(_v))
764
765 #define setbits16(_addr, _v) out_be16((_addr), in_be16(_addr) | (_v))
766 #define clrbits16(_addr, _v) out_be16((_addr), in_be16(_addr) & ~(_v))
767
768 #define setbits8(_addr, _v) out_8((_addr), in_8(_addr) | (_v))
769 #define clrbits8(_addr, _v) out_8((_addr), in_8(_addr) & ~(_v))
770
771 /* Clear and set bits in one shot. These macros can be used to clear and
772 * set multiple bits in a register using a single read-modify-write. These
773 * macros can also be used to set a multiple-bit bit pattern using a mask,
774 * by specifying the mask in the 'clear' parameter and the new bit pattern
775 * in the 'set' parameter.
776 */
777
778 #define clrsetbits(type, addr, clear, set) \
779 out_##type((addr), (in_##type(addr) & ~(clear)) | (set))
780
781 #ifdef __powerpc64__
782 #define clrsetbits_be64(addr, clear, set) clrsetbits(be64, addr, clear, set)
783 #define clrsetbits_le64(addr, clear, set) clrsetbits(le64, addr, clear, set)
784 #endif
785
786 #define clrsetbits_be32(addr, clear, set) clrsetbits(be32, addr, clear, set)
787 #define clrsetbits_le32(addr, clear, set) clrsetbits(le32, addr, clear, set)
788
789 #define clrsetbits_be16(addr, clear, set) clrsetbits(be16, addr, clear, set)
790 #define clrsetbits_le16(addr, clear, set) clrsetbits(le16, addr, clear, set)
791
792 #define clrsetbits_8(addr, clear, set) clrsetbits(8, addr, clear, set)
793
794 void __iomem *devm_ioremap_prot(struct device *dev, resource_size_t offset,
795 size_t size, unsigned long flags);
796
797 #endif /* __KERNEL__ */
798
799 #endif /* _ASM_POWERPC_IO_H */
This page took 0.09114 seconds and 5 git commands to generate.