Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[deliverable/linux.git] / arch / powerpc / kernel / eeh_pe.c
1 /*
2 * The file intends to implement PE based on the information from
3 * platforms. Basically, there have 3 types of PEs: PHB/Bus/Device.
4 * All the PEs should be organized as hierarchy tree. The first level
5 * of the tree will be associated to existing PHBs since the particular
6 * PE is only meaningful in one PHB domain.
7 *
8 * Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2012.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 */
24
25 #include <linux/delay.h>
26 #include <linux/export.h>
27 #include <linux/gfp.h>
28 #include <linux/kernel.h>
29 #include <linux/pci.h>
30 #include <linux/string.h>
31
32 #include <asm/pci-bridge.h>
33 #include <asm/ppc-pci.h>
34
35 static int eeh_pe_aux_size = 0;
36 static LIST_HEAD(eeh_phb_pe);
37
38 /**
39 * eeh_set_pe_aux_size - Set PE auxillary data size
40 * @size: PE auxillary data size
41 *
42 * Set PE auxillary data size
43 */
44 void eeh_set_pe_aux_size(int size)
45 {
46 if (size < 0)
47 return;
48
49 eeh_pe_aux_size = size;
50 }
51
52 /**
53 * eeh_pe_alloc - Allocate PE
54 * @phb: PCI controller
55 * @type: PE type
56 *
57 * Allocate PE instance dynamically.
58 */
59 static struct eeh_pe *eeh_pe_alloc(struct pci_controller *phb, int type)
60 {
61 struct eeh_pe *pe;
62 size_t alloc_size;
63
64 alloc_size = sizeof(struct eeh_pe);
65 if (eeh_pe_aux_size) {
66 alloc_size = ALIGN(alloc_size, cache_line_size());
67 alloc_size += eeh_pe_aux_size;
68 }
69
70 /* Allocate PHB PE */
71 pe = kzalloc(alloc_size, GFP_KERNEL);
72 if (!pe) return NULL;
73
74 /* Initialize PHB PE */
75 pe->type = type;
76 pe->phb = phb;
77 INIT_LIST_HEAD(&pe->child_list);
78 INIT_LIST_HEAD(&pe->child);
79 INIT_LIST_HEAD(&pe->edevs);
80
81 pe->data = (void *)pe + ALIGN(sizeof(struct eeh_pe),
82 cache_line_size());
83 return pe;
84 }
85
86 /**
87 * eeh_phb_pe_create - Create PHB PE
88 * @phb: PCI controller
89 *
90 * The function should be called while the PHB is detected during
91 * system boot or PCI hotplug in order to create PHB PE.
92 */
93 int eeh_phb_pe_create(struct pci_controller *phb)
94 {
95 struct eeh_pe *pe;
96
97 /* Allocate PHB PE */
98 pe = eeh_pe_alloc(phb, EEH_PE_PHB);
99 if (!pe) {
100 pr_err("%s: out of memory!\n", __func__);
101 return -ENOMEM;
102 }
103
104 /* Put it into the list */
105 list_add_tail(&pe->child, &eeh_phb_pe);
106
107 pr_debug("EEH: Add PE for PHB#%d\n", phb->global_number);
108
109 return 0;
110 }
111
112 /**
113 * eeh_phb_pe_get - Retrieve PHB PE based on the given PHB
114 * @phb: PCI controller
115 *
116 * The overall PEs form hierarchy tree. The first layer of the
117 * hierarchy tree is composed of PHB PEs. The function is used
118 * to retrieve the corresponding PHB PE according to the given PHB.
119 */
120 struct eeh_pe *eeh_phb_pe_get(struct pci_controller *phb)
121 {
122 struct eeh_pe *pe;
123
124 list_for_each_entry(pe, &eeh_phb_pe, child) {
125 /*
126 * Actually, we needn't check the type since
127 * the PE for PHB has been determined when that
128 * was created.
129 */
130 if ((pe->type & EEH_PE_PHB) && pe->phb == phb)
131 return pe;
132 }
133
134 return NULL;
135 }
136
137 /**
138 * eeh_pe_next - Retrieve the next PE in the tree
139 * @pe: current PE
140 * @root: root PE
141 *
142 * The function is used to retrieve the next PE in the
143 * hierarchy PE tree.
144 */
145 static struct eeh_pe *eeh_pe_next(struct eeh_pe *pe,
146 struct eeh_pe *root)
147 {
148 struct list_head *next = pe->child_list.next;
149
150 if (next == &pe->child_list) {
151 while (1) {
152 if (pe == root)
153 return NULL;
154 next = pe->child.next;
155 if (next != &pe->parent->child_list)
156 break;
157 pe = pe->parent;
158 }
159 }
160
161 return list_entry(next, struct eeh_pe, child);
162 }
163
164 /**
165 * eeh_pe_traverse - Traverse PEs in the specified PHB
166 * @root: root PE
167 * @fn: callback
168 * @flag: extra parameter to callback
169 *
170 * The function is used to traverse the specified PE and its
171 * child PEs. The traversing is to be terminated once the
172 * callback returns something other than NULL, or no more PEs
173 * to be traversed.
174 */
175 void *eeh_pe_traverse(struct eeh_pe *root,
176 eeh_traverse_func fn, void *flag)
177 {
178 struct eeh_pe *pe;
179 void *ret;
180
181 for (pe = root; pe; pe = eeh_pe_next(pe, root)) {
182 ret = fn(pe, flag);
183 if (ret) return ret;
184 }
185
186 return NULL;
187 }
188
189 /**
190 * eeh_pe_dev_traverse - Traverse the devices from the PE
191 * @root: EEH PE
192 * @fn: function callback
193 * @flag: extra parameter to callback
194 *
195 * The function is used to traverse the devices of the specified
196 * PE and its child PEs.
197 */
198 void *eeh_pe_dev_traverse(struct eeh_pe *root,
199 eeh_traverse_func fn, void *flag)
200 {
201 struct eeh_pe *pe;
202 struct eeh_dev *edev, *tmp;
203 void *ret;
204
205 if (!root) {
206 pr_warn("%s: Invalid PE %p\n",
207 __func__, root);
208 return NULL;
209 }
210
211 /* Traverse root PE */
212 for (pe = root; pe; pe = eeh_pe_next(pe, root)) {
213 eeh_pe_for_each_dev(pe, edev, tmp) {
214 ret = fn(edev, flag);
215 if (ret)
216 return ret;
217 }
218 }
219
220 return NULL;
221 }
222
223 /**
224 * __eeh_pe_get - Check the PE address
225 * @data: EEH PE
226 * @flag: EEH device
227 *
228 * For one particular PE, it can be identified by PE address
229 * or tranditional BDF address. BDF address is composed of
230 * Bus/Device/Function number. The extra data referred by flag
231 * indicates which type of address should be used.
232 */
233 static void *__eeh_pe_get(void *data, void *flag)
234 {
235 struct eeh_pe *pe = (struct eeh_pe *)data;
236 struct eeh_dev *edev = (struct eeh_dev *)flag;
237
238 /* Unexpected PHB PE */
239 if (pe->type & EEH_PE_PHB)
240 return NULL;
241
242 /*
243 * We prefer PE address. For most cases, we should
244 * have non-zero PE address
245 */
246 if (eeh_has_flag(EEH_VALID_PE_ZERO)) {
247 if (edev->pe_config_addr == pe->addr)
248 return pe;
249 } else {
250 if (edev->pe_config_addr &&
251 (edev->pe_config_addr == pe->addr))
252 return pe;
253 }
254
255 /* Try BDF address */
256 if (edev->config_addr &&
257 (edev->config_addr == pe->config_addr))
258 return pe;
259
260 return NULL;
261 }
262
263 /**
264 * eeh_pe_get - Search PE based on the given address
265 * @edev: EEH device
266 *
267 * Search the corresponding PE based on the specified address which
268 * is included in the eeh device. The function is used to check if
269 * the associated PE has been created against the PE address. It's
270 * notable that the PE address has 2 format: traditional PE address
271 * which is composed of PCI bus/device/function number, or unified
272 * PE address.
273 */
274 struct eeh_pe *eeh_pe_get(struct eeh_dev *edev)
275 {
276 struct eeh_pe *root = eeh_phb_pe_get(edev->phb);
277 struct eeh_pe *pe;
278
279 pe = eeh_pe_traverse(root, __eeh_pe_get, edev);
280
281 return pe;
282 }
283
284 /**
285 * eeh_pe_get_parent - Retrieve the parent PE
286 * @edev: EEH device
287 *
288 * The whole PEs existing in the system are organized as hierarchy
289 * tree. The function is used to retrieve the parent PE according
290 * to the parent EEH device.
291 */
292 static struct eeh_pe *eeh_pe_get_parent(struct eeh_dev *edev)
293 {
294 struct device_node *dn;
295 struct eeh_dev *parent;
296
297 /*
298 * It might have the case for the indirect parent
299 * EEH device already having associated PE, but
300 * the direct parent EEH device doesn't have yet.
301 */
302 dn = edev->dn->parent;
303 while (dn) {
304 /* We're poking out of PCI territory */
305 if (!PCI_DN(dn)) return NULL;
306
307 parent = of_node_to_eeh_dev(dn);
308 /* We're poking out of PCI territory */
309 if (!parent) return NULL;
310
311 if (parent->pe)
312 return parent->pe;
313
314 dn = dn->parent;
315 }
316
317 return NULL;
318 }
319
320 /**
321 * eeh_add_to_parent_pe - Add EEH device to parent PE
322 * @edev: EEH device
323 *
324 * Add EEH device to the parent PE. If the parent PE already
325 * exists, the PE type will be changed to EEH_PE_BUS. Otherwise,
326 * we have to create new PE to hold the EEH device and the new
327 * PE will be linked to its parent PE as well.
328 */
329 int eeh_add_to_parent_pe(struct eeh_dev *edev)
330 {
331 struct eeh_pe *pe, *parent;
332
333 /*
334 * Search the PE has been existing or not according
335 * to the PE address. If that has been existing, the
336 * PE should be composed of PCI bus and its subordinate
337 * components.
338 */
339 pe = eeh_pe_get(edev);
340 if (pe && !(pe->type & EEH_PE_INVALID)) {
341 if (!edev->pe_config_addr) {
342 pr_err("%s: PE with addr 0x%x already exists\n",
343 __func__, edev->config_addr);
344 return -EEXIST;
345 }
346
347 /* Mark the PE as type of PCI bus */
348 pe->type = EEH_PE_BUS;
349 edev->pe = pe;
350
351 /* Put the edev to PE */
352 list_add_tail(&edev->list, &pe->edevs);
353 pr_debug("EEH: Add %s to Bus PE#%x\n",
354 edev->dn->full_name, pe->addr);
355
356 return 0;
357 } else if (pe && (pe->type & EEH_PE_INVALID)) {
358 list_add_tail(&edev->list, &pe->edevs);
359 edev->pe = pe;
360 /*
361 * We're running to here because of PCI hotplug caused by
362 * EEH recovery. We need clear EEH_PE_INVALID until the top.
363 */
364 parent = pe;
365 while (parent) {
366 if (!(parent->type & EEH_PE_INVALID))
367 break;
368 parent->type &= ~(EEH_PE_INVALID | EEH_PE_KEEP);
369 parent = parent->parent;
370 }
371 pr_debug("EEH: Add %s to Device PE#%x, Parent PE#%x\n",
372 edev->dn->full_name, pe->addr, pe->parent->addr);
373
374 return 0;
375 }
376
377 /* Create a new EEH PE */
378 pe = eeh_pe_alloc(edev->phb, EEH_PE_DEVICE);
379 if (!pe) {
380 pr_err("%s: out of memory!\n", __func__);
381 return -ENOMEM;
382 }
383 pe->addr = edev->pe_config_addr;
384 pe->config_addr = edev->config_addr;
385
386 /*
387 * Put the new EEH PE into hierarchy tree. If the parent
388 * can't be found, the newly created PE will be attached
389 * to PHB directly. Otherwise, we have to associate the
390 * PE with its parent.
391 */
392 parent = eeh_pe_get_parent(edev);
393 if (!parent) {
394 parent = eeh_phb_pe_get(edev->phb);
395 if (!parent) {
396 pr_err("%s: No PHB PE is found (PHB Domain=%d)\n",
397 __func__, edev->phb->global_number);
398 edev->pe = NULL;
399 kfree(pe);
400 return -EEXIST;
401 }
402 }
403 pe->parent = parent;
404
405 /*
406 * Put the newly created PE into the child list and
407 * link the EEH device accordingly.
408 */
409 list_add_tail(&pe->child, &parent->child_list);
410 list_add_tail(&edev->list, &pe->edevs);
411 edev->pe = pe;
412 pr_debug("EEH: Add %s to Device PE#%x, Parent PE#%x\n",
413 edev->dn->full_name, pe->addr, pe->parent->addr);
414
415 return 0;
416 }
417
418 /**
419 * eeh_rmv_from_parent_pe - Remove one EEH device from the associated PE
420 * @edev: EEH device
421 *
422 * The PE hierarchy tree might be changed when doing PCI hotplug.
423 * Also, the PCI devices or buses could be removed from the system
424 * during EEH recovery. So we have to call the function remove the
425 * corresponding PE accordingly if necessary.
426 */
427 int eeh_rmv_from_parent_pe(struct eeh_dev *edev)
428 {
429 struct eeh_pe *pe, *parent, *child;
430 int cnt;
431
432 if (!edev->pe) {
433 pr_debug("%s: No PE found for EEH device %s\n",
434 __func__, edev->dn->full_name);
435 return -EEXIST;
436 }
437
438 /* Remove the EEH device */
439 pe = eeh_dev_to_pe(edev);
440 edev->pe = NULL;
441 list_del(&edev->list);
442
443 /*
444 * Check if the parent PE includes any EEH devices.
445 * If not, we should delete that. Also, we should
446 * delete the parent PE if it doesn't have associated
447 * child PEs and EEH devices.
448 */
449 while (1) {
450 parent = pe->parent;
451 if (pe->type & EEH_PE_PHB)
452 break;
453
454 if (!(pe->state & EEH_PE_KEEP)) {
455 if (list_empty(&pe->edevs) &&
456 list_empty(&pe->child_list)) {
457 list_del(&pe->child);
458 kfree(pe);
459 } else {
460 break;
461 }
462 } else {
463 if (list_empty(&pe->edevs)) {
464 cnt = 0;
465 list_for_each_entry(child, &pe->child_list, child) {
466 if (!(child->type & EEH_PE_INVALID)) {
467 cnt++;
468 break;
469 }
470 }
471
472 if (!cnt)
473 pe->type |= EEH_PE_INVALID;
474 else
475 break;
476 }
477 }
478
479 pe = parent;
480 }
481
482 return 0;
483 }
484
485 /**
486 * eeh_pe_update_time_stamp - Update PE's frozen time stamp
487 * @pe: EEH PE
488 *
489 * We have time stamp for each PE to trace its time of getting
490 * frozen in last hour. The function should be called to update
491 * the time stamp on first error of the specific PE. On the other
492 * handle, we needn't account for errors happened in last hour.
493 */
494 void eeh_pe_update_time_stamp(struct eeh_pe *pe)
495 {
496 struct timeval tstamp;
497
498 if (!pe) return;
499
500 if (pe->freeze_count <= 0) {
501 pe->freeze_count = 0;
502 do_gettimeofday(&pe->tstamp);
503 } else {
504 do_gettimeofday(&tstamp);
505 if (tstamp.tv_sec - pe->tstamp.tv_sec > 3600) {
506 pe->tstamp = tstamp;
507 pe->freeze_count = 0;
508 }
509 }
510 }
511
512 /**
513 * __eeh_pe_state_mark - Mark the state for the PE
514 * @data: EEH PE
515 * @flag: state
516 *
517 * The function is used to mark the indicated state for the given
518 * PE. Also, the associated PCI devices will be put into IO frozen
519 * state as well.
520 */
521 static void *__eeh_pe_state_mark(void *data, void *flag)
522 {
523 struct eeh_pe *pe = (struct eeh_pe *)data;
524 int state = *((int *)flag);
525 struct eeh_dev *edev, *tmp;
526 struct pci_dev *pdev;
527
528 /* Keep the state of permanently removed PE intact */
529 if (pe->state & EEH_PE_REMOVED)
530 return NULL;
531
532 pe->state |= state;
533
534 /* Offline PCI devices if applicable */
535 if (!(state & EEH_PE_ISOLATED))
536 return NULL;
537
538 eeh_pe_for_each_dev(pe, edev, tmp) {
539 pdev = eeh_dev_to_pci_dev(edev);
540 if (pdev)
541 pdev->error_state = pci_channel_io_frozen;
542 }
543
544 /* Block PCI config access if required */
545 if (pe->state & EEH_PE_CFG_RESTRICTED)
546 pe->state |= EEH_PE_CFG_BLOCKED;
547
548 return NULL;
549 }
550
551 /**
552 * eeh_pe_state_mark - Mark specified state for PE and its associated device
553 * @pe: EEH PE
554 *
555 * EEH error affects the current PE and its child PEs. The function
556 * is used to mark appropriate state for the affected PEs and the
557 * associated devices.
558 */
559 void eeh_pe_state_mark(struct eeh_pe *pe, int state)
560 {
561 eeh_pe_traverse(pe, __eeh_pe_state_mark, &state);
562 }
563
564 static void *__eeh_pe_dev_mode_mark(void *data, void *flag)
565 {
566 struct eeh_dev *edev = data;
567 int mode = *((int *)flag);
568
569 edev->mode |= mode;
570
571 return NULL;
572 }
573
574 /**
575 * eeh_pe_dev_state_mark - Mark state for all device under the PE
576 * @pe: EEH PE
577 *
578 * Mark specific state for all child devices of the PE.
579 */
580 void eeh_pe_dev_mode_mark(struct eeh_pe *pe, int mode)
581 {
582 eeh_pe_dev_traverse(pe, __eeh_pe_dev_mode_mark, &mode);
583 }
584
585 /**
586 * __eeh_pe_state_clear - Clear state for the PE
587 * @data: EEH PE
588 * @flag: state
589 *
590 * The function is used to clear the indicated state from the
591 * given PE. Besides, we also clear the check count of the PE
592 * as well.
593 */
594 static void *__eeh_pe_state_clear(void *data, void *flag)
595 {
596 struct eeh_pe *pe = (struct eeh_pe *)data;
597 int state = *((int *)flag);
598 struct eeh_dev *edev, *tmp;
599 struct pci_dev *pdev;
600
601 /* Keep the state of permanently removed PE intact */
602 if (pe->state & EEH_PE_REMOVED)
603 return NULL;
604
605 pe->state &= ~state;
606
607 /*
608 * Special treatment on clearing isolated state. Clear
609 * check count since last isolation and put all affected
610 * devices to normal state.
611 */
612 if (!(state & EEH_PE_ISOLATED))
613 return NULL;
614
615 pe->check_count = 0;
616 eeh_pe_for_each_dev(pe, edev, tmp) {
617 pdev = eeh_dev_to_pci_dev(edev);
618 if (!pdev)
619 continue;
620
621 pdev->error_state = pci_channel_io_normal;
622 }
623
624 /* Unblock PCI config access if required */
625 if (pe->state & EEH_PE_CFG_RESTRICTED)
626 pe->state &= ~EEH_PE_CFG_BLOCKED;
627
628 return NULL;
629 }
630
631 /**
632 * eeh_pe_state_clear - Clear state for the PE and its children
633 * @pe: PE
634 * @state: state to be cleared
635 *
636 * When the PE and its children has been recovered from error,
637 * we need clear the error state for that. The function is used
638 * for the purpose.
639 */
640 void eeh_pe_state_clear(struct eeh_pe *pe, int state)
641 {
642 eeh_pe_traverse(pe, __eeh_pe_state_clear, &state);
643 }
644
645 /*
646 * Some PCI bridges (e.g. PLX bridges) have primary/secondary
647 * buses assigned explicitly by firmware, and we probably have
648 * lost that after reset. So we have to delay the check until
649 * the PCI-CFG registers have been restored for the parent
650 * bridge.
651 *
652 * Don't use normal PCI-CFG accessors, which probably has been
653 * blocked on normal path during the stage. So we need utilize
654 * eeh operations, which is always permitted.
655 */
656 static void eeh_bridge_check_link(struct eeh_dev *edev,
657 struct device_node *dn)
658 {
659 int cap;
660 uint32_t val;
661 int timeout = 0;
662
663 /*
664 * We only check root port and downstream ports of
665 * PCIe switches
666 */
667 if (!(edev->mode & (EEH_DEV_ROOT_PORT | EEH_DEV_DS_PORT)))
668 return;
669
670 pr_debug("%s: Check PCIe link for %04x:%02x:%02x.%01x ...\n",
671 __func__, edev->phb->global_number,
672 edev->config_addr >> 8,
673 PCI_SLOT(edev->config_addr & 0xFF),
674 PCI_FUNC(edev->config_addr & 0xFF));
675
676 /* Check slot status */
677 cap = edev->pcie_cap;
678 eeh_ops->read_config(dn, cap + PCI_EXP_SLTSTA, 2, &val);
679 if (!(val & PCI_EXP_SLTSTA_PDS)) {
680 pr_debug(" No card in the slot (0x%04x) !\n", val);
681 return;
682 }
683
684 /* Check power status if we have the capability */
685 eeh_ops->read_config(dn, cap + PCI_EXP_SLTCAP, 2, &val);
686 if (val & PCI_EXP_SLTCAP_PCP) {
687 eeh_ops->read_config(dn, cap + PCI_EXP_SLTCTL, 2, &val);
688 if (val & PCI_EXP_SLTCTL_PCC) {
689 pr_debug(" In power-off state, power it on ...\n");
690 val &= ~(PCI_EXP_SLTCTL_PCC | PCI_EXP_SLTCTL_PIC);
691 val |= (0x0100 & PCI_EXP_SLTCTL_PIC);
692 eeh_ops->write_config(dn, cap + PCI_EXP_SLTCTL, 2, val);
693 msleep(2 * 1000);
694 }
695 }
696
697 /* Enable link */
698 eeh_ops->read_config(dn, cap + PCI_EXP_LNKCTL, 2, &val);
699 val &= ~PCI_EXP_LNKCTL_LD;
700 eeh_ops->write_config(dn, cap + PCI_EXP_LNKCTL, 2, val);
701
702 /* Check link */
703 eeh_ops->read_config(dn, cap + PCI_EXP_LNKCAP, 4, &val);
704 if (!(val & PCI_EXP_LNKCAP_DLLLARC)) {
705 pr_debug(" No link reporting capability (0x%08x) \n", val);
706 msleep(1000);
707 return;
708 }
709
710 /* Wait the link is up until timeout (5s) */
711 timeout = 0;
712 while (timeout < 5000) {
713 msleep(20);
714 timeout += 20;
715
716 eeh_ops->read_config(dn, cap + PCI_EXP_LNKSTA, 2, &val);
717 if (val & PCI_EXP_LNKSTA_DLLLA)
718 break;
719 }
720
721 if (val & PCI_EXP_LNKSTA_DLLLA)
722 pr_debug(" Link up (%s)\n",
723 (val & PCI_EXP_LNKSTA_CLS_2_5GB) ? "2.5GB" : "5GB");
724 else
725 pr_debug(" Link not ready (0x%04x)\n", val);
726 }
727
728 #define BYTE_SWAP(OFF) (8*((OFF)/4)+3-(OFF))
729 #define SAVED_BYTE(OFF) (((u8 *)(edev->config_space))[BYTE_SWAP(OFF)])
730
731 static void eeh_restore_bridge_bars(struct eeh_dev *edev,
732 struct device_node *dn)
733 {
734 int i;
735
736 /*
737 * Device BARs: 0x10 - 0x18
738 * Bus numbers and windows: 0x18 - 0x30
739 */
740 for (i = 4; i < 13; i++)
741 eeh_ops->write_config(dn, i*4, 4, edev->config_space[i]);
742 /* Rom: 0x38 */
743 eeh_ops->write_config(dn, 14*4, 4, edev->config_space[14]);
744
745 /* Cache line & Latency timer: 0xC 0xD */
746 eeh_ops->write_config(dn, PCI_CACHE_LINE_SIZE, 1,
747 SAVED_BYTE(PCI_CACHE_LINE_SIZE));
748 eeh_ops->write_config(dn, PCI_LATENCY_TIMER, 1,
749 SAVED_BYTE(PCI_LATENCY_TIMER));
750 /* Max latency, min grant, interrupt ping and line: 0x3C */
751 eeh_ops->write_config(dn, 15*4, 4, edev->config_space[15]);
752
753 /* PCI Command: 0x4 */
754 eeh_ops->write_config(dn, PCI_COMMAND, 4, edev->config_space[1]);
755
756 /* Check the PCIe link is ready */
757 eeh_bridge_check_link(edev, dn);
758 }
759
760 static void eeh_restore_device_bars(struct eeh_dev *edev,
761 struct device_node *dn)
762 {
763 int i;
764 u32 cmd;
765
766 for (i = 4; i < 10; i++)
767 eeh_ops->write_config(dn, i*4, 4, edev->config_space[i]);
768 /* 12 == Expansion ROM Address */
769 eeh_ops->write_config(dn, 12*4, 4, edev->config_space[12]);
770
771 eeh_ops->write_config(dn, PCI_CACHE_LINE_SIZE, 1,
772 SAVED_BYTE(PCI_CACHE_LINE_SIZE));
773 eeh_ops->write_config(dn, PCI_LATENCY_TIMER, 1,
774 SAVED_BYTE(PCI_LATENCY_TIMER));
775
776 /* max latency, min grant, interrupt pin and line */
777 eeh_ops->write_config(dn, 15*4, 4, edev->config_space[15]);
778
779 /*
780 * Restore PERR & SERR bits, some devices require it,
781 * don't touch the other command bits
782 */
783 eeh_ops->read_config(dn, PCI_COMMAND, 4, &cmd);
784 if (edev->config_space[1] & PCI_COMMAND_PARITY)
785 cmd |= PCI_COMMAND_PARITY;
786 else
787 cmd &= ~PCI_COMMAND_PARITY;
788 if (edev->config_space[1] & PCI_COMMAND_SERR)
789 cmd |= PCI_COMMAND_SERR;
790 else
791 cmd &= ~PCI_COMMAND_SERR;
792 eeh_ops->write_config(dn, PCI_COMMAND, 4, cmd);
793 }
794
795 /**
796 * eeh_restore_one_device_bars - Restore the Base Address Registers for one device
797 * @data: EEH device
798 * @flag: Unused
799 *
800 * Loads the PCI configuration space base address registers,
801 * the expansion ROM base address, the latency timer, and etc.
802 * from the saved values in the device node.
803 */
804 static void *eeh_restore_one_device_bars(void *data, void *flag)
805 {
806 struct eeh_dev *edev = (struct eeh_dev *)data;
807 struct device_node *dn = eeh_dev_to_of_node(edev);
808
809 /* Do special restore for bridges */
810 if (edev->mode & EEH_DEV_BRIDGE)
811 eeh_restore_bridge_bars(edev, dn);
812 else
813 eeh_restore_device_bars(edev, dn);
814
815 if (eeh_ops->restore_config)
816 eeh_ops->restore_config(dn);
817
818 return NULL;
819 }
820
821 /**
822 * eeh_pe_restore_bars - Restore the PCI config space info
823 * @pe: EEH PE
824 *
825 * This routine performs a recursive walk to the children
826 * of this device as well.
827 */
828 void eeh_pe_restore_bars(struct eeh_pe *pe)
829 {
830 /*
831 * We needn't take the EEH lock since eeh_pe_dev_traverse()
832 * will take that.
833 */
834 eeh_pe_dev_traverse(pe, eeh_restore_one_device_bars, NULL);
835 }
836
837 /**
838 * eeh_pe_loc_get - Retrieve location code binding to the given PE
839 * @pe: EEH PE
840 *
841 * Retrieve the location code of the given PE. If the primary PE bus
842 * is root bus, we will grab location code from PHB device tree node
843 * or root port. Otherwise, the upstream bridge's device tree node
844 * of the primary PE bus will be checked for the location code.
845 */
846 const char *eeh_pe_loc_get(struct eeh_pe *pe)
847 {
848 struct pci_bus *bus = eeh_pe_bus_get(pe);
849 struct device_node *dn = pci_bus_to_OF_node(bus);
850 const char *loc = NULL;
851
852 if (!dn)
853 goto out;
854
855 /* PHB PE or root PE ? */
856 if (pci_is_root_bus(bus)) {
857 loc = of_get_property(dn, "ibm,loc-code", NULL);
858 if (!loc)
859 loc = of_get_property(dn, "ibm,io-base-loc-code", NULL);
860 if (loc)
861 goto out;
862
863 /* Check the root port */
864 dn = dn->child;
865 if (!dn)
866 goto out;
867 }
868
869 loc = of_get_property(dn, "ibm,loc-code", NULL);
870 if (!loc)
871 loc = of_get_property(dn, "ibm,slot-location-code", NULL);
872
873 out:
874 return loc ? loc : "N/A";
875 }
876
877 /**
878 * eeh_pe_bus_get - Retrieve PCI bus according to the given PE
879 * @pe: EEH PE
880 *
881 * Retrieve the PCI bus according to the given PE. Basically,
882 * there're 3 types of PEs: PHB/Bus/Device. For PHB PE, the
883 * primary PCI bus will be retrieved. The parent bus will be
884 * returned for BUS PE. However, we don't have associated PCI
885 * bus for DEVICE PE.
886 */
887 struct pci_bus *eeh_pe_bus_get(struct eeh_pe *pe)
888 {
889 struct pci_bus *bus = NULL;
890 struct eeh_dev *edev;
891 struct pci_dev *pdev;
892
893 if (pe->type & EEH_PE_PHB) {
894 bus = pe->phb->bus;
895 } else if (pe->type & EEH_PE_BUS ||
896 pe->type & EEH_PE_DEVICE) {
897 if (pe->bus) {
898 bus = pe->bus;
899 goto out;
900 }
901
902 edev = list_first_entry(&pe->edevs, struct eeh_dev, list);
903 pdev = eeh_dev_to_pci_dev(edev);
904 if (pdev)
905 bus = pdev->bus;
906 }
907
908 out:
909 return bus;
910 }
This page took 0.059658 seconds and 6 git commands to generate.