Merge tag 'perf-core-for-mingo-3' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / arch / powerpc / kernel / fadump.c
1 /*
2 * Firmware Assisted dump: A robust mechanism to get reliable kernel crash
3 * dump with assistance from firmware. This approach does not use kexec,
4 * instead firmware assists in booting the kdump kernel while preserving
5 * memory contents. The most of the code implementation has been adapted
6 * from phyp assisted dump implementation written by Linas Vepstas and
7 * Manish Ahuja
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
22 *
23 * Copyright 2011 IBM Corporation
24 * Author: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
25 */
26
27 #undef DEBUG
28 #define pr_fmt(fmt) "fadump: " fmt
29
30 #include <linux/string.h>
31 #include <linux/memblock.h>
32 #include <linux/delay.h>
33 #include <linux/debugfs.h>
34 #include <linux/seq_file.h>
35 #include <linux/crash_dump.h>
36 #include <linux/kobject.h>
37 #include <linux/sysfs.h>
38
39 #include <asm/page.h>
40 #include <asm/prom.h>
41 #include <asm/rtas.h>
42 #include <asm/fadump.h>
43 #include <asm/debug.h>
44 #include <asm/setup.h>
45
46 static struct fw_dump fw_dump;
47 static struct fadump_mem_struct fdm;
48 static const struct fadump_mem_struct *fdm_active;
49
50 static DEFINE_MUTEX(fadump_mutex);
51 struct fad_crash_memory_ranges crash_memory_ranges[INIT_CRASHMEM_RANGES];
52 int crash_mem_ranges;
53
54 /* Scan the Firmware Assisted dump configuration details. */
55 int __init early_init_dt_scan_fw_dump(unsigned long node,
56 const char *uname, int depth, void *data)
57 {
58 const __be32 *sections;
59 int i, num_sections;
60 int size;
61 const __be32 *token;
62
63 if (depth != 1 || strcmp(uname, "rtas") != 0)
64 return 0;
65
66 /*
67 * Check if Firmware Assisted dump is supported. if yes, check
68 * if dump has been initiated on last reboot.
69 */
70 token = of_get_flat_dt_prop(node, "ibm,configure-kernel-dump", NULL);
71 if (!token)
72 return 1;
73
74 fw_dump.fadump_supported = 1;
75 fw_dump.ibm_configure_kernel_dump = be32_to_cpu(*token);
76
77 /*
78 * The 'ibm,kernel-dump' rtas node is present only if there is
79 * dump data waiting for us.
80 */
81 fdm_active = of_get_flat_dt_prop(node, "ibm,kernel-dump", NULL);
82 if (fdm_active)
83 fw_dump.dump_active = 1;
84
85 /* Get the sizes required to store dump data for the firmware provided
86 * dump sections.
87 * For each dump section type supported, a 32bit cell which defines
88 * the ID of a supported section followed by two 32 bit cells which
89 * gives teh size of the section in bytes.
90 */
91 sections = of_get_flat_dt_prop(node, "ibm,configure-kernel-dump-sizes",
92 &size);
93
94 if (!sections)
95 return 1;
96
97 num_sections = size / (3 * sizeof(u32));
98
99 for (i = 0; i < num_sections; i++, sections += 3) {
100 u32 type = (u32)of_read_number(sections, 1);
101
102 switch (type) {
103 case FADUMP_CPU_STATE_DATA:
104 fw_dump.cpu_state_data_size =
105 of_read_ulong(&sections[1], 2);
106 break;
107 case FADUMP_HPTE_REGION:
108 fw_dump.hpte_region_size =
109 of_read_ulong(&sections[1], 2);
110 break;
111 }
112 }
113
114 return 1;
115 }
116
117 int is_fadump_active(void)
118 {
119 return fw_dump.dump_active;
120 }
121
122 /* Print firmware assisted dump configurations for debugging purpose. */
123 static void fadump_show_config(void)
124 {
125 pr_debug("Support for firmware-assisted dump (fadump): %s\n",
126 (fw_dump.fadump_supported ? "present" : "no support"));
127
128 if (!fw_dump.fadump_supported)
129 return;
130
131 pr_debug("Fadump enabled : %s\n",
132 (fw_dump.fadump_enabled ? "yes" : "no"));
133 pr_debug("Dump Active : %s\n",
134 (fw_dump.dump_active ? "yes" : "no"));
135 pr_debug("Dump section sizes:\n");
136 pr_debug(" CPU state data size: %lx\n", fw_dump.cpu_state_data_size);
137 pr_debug(" HPTE region size : %lx\n", fw_dump.hpte_region_size);
138 pr_debug("Boot memory size : %lx\n", fw_dump.boot_memory_size);
139 }
140
141 static unsigned long init_fadump_mem_struct(struct fadump_mem_struct *fdm,
142 unsigned long addr)
143 {
144 if (!fdm)
145 return 0;
146
147 memset(fdm, 0, sizeof(struct fadump_mem_struct));
148 addr = addr & PAGE_MASK;
149
150 fdm->header.dump_format_version = cpu_to_be32(0x00000001);
151 fdm->header.dump_num_sections = cpu_to_be16(3);
152 fdm->header.dump_status_flag = 0;
153 fdm->header.offset_first_dump_section =
154 cpu_to_be32((u32)offsetof(struct fadump_mem_struct, cpu_state_data));
155
156 /*
157 * Fields for disk dump option.
158 * We are not using disk dump option, hence set these fields to 0.
159 */
160 fdm->header.dd_block_size = 0;
161 fdm->header.dd_block_offset = 0;
162 fdm->header.dd_num_blocks = 0;
163 fdm->header.dd_offset_disk_path = 0;
164
165 /* set 0 to disable an automatic dump-reboot. */
166 fdm->header.max_time_auto = 0;
167
168 /* Kernel dump sections */
169 /* cpu state data section. */
170 fdm->cpu_state_data.request_flag = cpu_to_be32(FADUMP_REQUEST_FLAG);
171 fdm->cpu_state_data.source_data_type = cpu_to_be16(FADUMP_CPU_STATE_DATA);
172 fdm->cpu_state_data.source_address = 0;
173 fdm->cpu_state_data.source_len = cpu_to_be64(fw_dump.cpu_state_data_size);
174 fdm->cpu_state_data.destination_address = cpu_to_be64(addr);
175 addr += fw_dump.cpu_state_data_size;
176
177 /* hpte region section */
178 fdm->hpte_region.request_flag = cpu_to_be32(FADUMP_REQUEST_FLAG);
179 fdm->hpte_region.source_data_type = cpu_to_be16(FADUMP_HPTE_REGION);
180 fdm->hpte_region.source_address = 0;
181 fdm->hpte_region.source_len = cpu_to_be64(fw_dump.hpte_region_size);
182 fdm->hpte_region.destination_address = cpu_to_be64(addr);
183 addr += fw_dump.hpte_region_size;
184
185 /* RMA region section */
186 fdm->rmr_region.request_flag = cpu_to_be32(FADUMP_REQUEST_FLAG);
187 fdm->rmr_region.source_data_type = cpu_to_be16(FADUMP_REAL_MODE_REGION);
188 fdm->rmr_region.source_address = cpu_to_be64(RMA_START);
189 fdm->rmr_region.source_len = cpu_to_be64(fw_dump.boot_memory_size);
190 fdm->rmr_region.destination_address = cpu_to_be64(addr);
191 addr += fw_dump.boot_memory_size;
192
193 return addr;
194 }
195
196 /**
197 * fadump_calculate_reserve_size(): reserve variable boot area 5% of System RAM
198 *
199 * Function to find the largest memory size we need to reserve during early
200 * boot process. This will be the size of the memory that is required for a
201 * kernel to boot successfully.
202 *
203 * This function has been taken from phyp-assisted dump feature implementation.
204 *
205 * returns larger of 256MB or 5% rounded down to multiples of 256MB.
206 *
207 * TODO: Come up with better approach to find out more accurate memory size
208 * that is required for a kernel to boot successfully.
209 *
210 */
211 static inline unsigned long fadump_calculate_reserve_size(void)
212 {
213 unsigned long size;
214
215 /*
216 * Check if the size is specified through fadump_reserve_mem= cmdline
217 * option. If yes, then use that.
218 */
219 if (fw_dump.reserve_bootvar)
220 return fw_dump.reserve_bootvar;
221
222 /* divide by 20 to get 5% of value */
223 size = memblock_end_of_DRAM() / 20;
224
225 /* round it down in multiples of 256 */
226 size = size & ~0x0FFFFFFFUL;
227
228 /* Truncate to memory_limit. We don't want to over reserve the memory.*/
229 if (memory_limit && size > memory_limit)
230 size = memory_limit;
231
232 return (size > MIN_BOOT_MEM ? size : MIN_BOOT_MEM);
233 }
234
235 /*
236 * Calculate the total memory size required to be reserved for
237 * firmware-assisted dump registration.
238 */
239 static unsigned long get_fadump_area_size(void)
240 {
241 unsigned long size = 0;
242
243 size += fw_dump.cpu_state_data_size;
244 size += fw_dump.hpte_region_size;
245 size += fw_dump.boot_memory_size;
246 size += sizeof(struct fadump_crash_info_header);
247 size += sizeof(struct elfhdr); /* ELF core header.*/
248 size += sizeof(struct elf_phdr); /* place holder for cpu notes */
249 /* Program headers for crash memory regions. */
250 size += sizeof(struct elf_phdr) * (memblock_num_regions(memory) + 2);
251
252 size = PAGE_ALIGN(size);
253 return size;
254 }
255
256 int __init fadump_reserve_mem(void)
257 {
258 unsigned long base, size, memory_boundary;
259
260 if (!fw_dump.fadump_enabled)
261 return 0;
262
263 if (!fw_dump.fadump_supported) {
264 printk(KERN_INFO "Firmware-assisted dump is not supported on"
265 " this hardware\n");
266 fw_dump.fadump_enabled = 0;
267 return 0;
268 }
269 /*
270 * Initialize boot memory size
271 * If dump is active then we have already calculated the size during
272 * first kernel.
273 */
274 if (fdm_active)
275 fw_dump.boot_memory_size = be64_to_cpu(fdm_active->rmr_region.source_len);
276 else
277 fw_dump.boot_memory_size = fadump_calculate_reserve_size();
278
279 /*
280 * Calculate the memory boundary.
281 * If memory_limit is less than actual memory boundary then reserve
282 * the memory for fadump beyond the memory_limit and adjust the
283 * memory_limit accordingly, so that the running kernel can run with
284 * specified memory_limit.
285 */
286 if (memory_limit && memory_limit < memblock_end_of_DRAM()) {
287 size = get_fadump_area_size();
288 if ((memory_limit + size) < memblock_end_of_DRAM())
289 memory_limit += size;
290 else
291 memory_limit = memblock_end_of_DRAM();
292 printk(KERN_INFO "Adjusted memory_limit for firmware-assisted"
293 " dump, now %#016llx\n", memory_limit);
294 }
295 if (memory_limit)
296 memory_boundary = memory_limit;
297 else
298 memory_boundary = memblock_end_of_DRAM();
299
300 if (fw_dump.dump_active) {
301 printk(KERN_INFO "Firmware-assisted dump is active.\n");
302 /*
303 * If last boot has crashed then reserve all the memory
304 * above boot_memory_size so that we don't touch it until
305 * dump is written to disk by userspace tool. This memory
306 * will be released for general use once the dump is saved.
307 */
308 base = fw_dump.boot_memory_size;
309 size = memory_boundary - base;
310 memblock_reserve(base, size);
311 printk(KERN_INFO "Reserved %ldMB of memory at %ldMB "
312 "for saving crash dump\n",
313 (unsigned long)(size >> 20),
314 (unsigned long)(base >> 20));
315
316 fw_dump.fadumphdr_addr =
317 be64_to_cpu(fdm_active->rmr_region.destination_address) +
318 be64_to_cpu(fdm_active->rmr_region.source_len);
319 pr_debug("fadumphdr_addr = %p\n",
320 (void *) fw_dump.fadumphdr_addr);
321 } else {
322 /* Reserve the memory at the top of memory. */
323 size = get_fadump_area_size();
324 base = memory_boundary - size;
325 memblock_reserve(base, size);
326 printk(KERN_INFO "Reserved %ldMB of memory at %ldMB "
327 "for firmware-assisted dump\n",
328 (unsigned long)(size >> 20),
329 (unsigned long)(base >> 20));
330 }
331 fw_dump.reserve_dump_area_start = base;
332 fw_dump.reserve_dump_area_size = size;
333 return 1;
334 }
335
336 /* Look for fadump= cmdline option. */
337 static int __init early_fadump_param(char *p)
338 {
339 if (!p)
340 return 1;
341
342 if (strncmp(p, "on", 2) == 0)
343 fw_dump.fadump_enabled = 1;
344 else if (strncmp(p, "off", 3) == 0)
345 fw_dump.fadump_enabled = 0;
346
347 return 0;
348 }
349 early_param("fadump", early_fadump_param);
350
351 /* Look for fadump_reserve_mem= cmdline option */
352 static int __init early_fadump_reserve_mem(char *p)
353 {
354 if (p)
355 fw_dump.reserve_bootvar = memparse(p, &p);
356 return 0;
357 }
358 early_param("fadump_reserve_mem", early_fadump_reserve_mem);
359
360 static void register_fw_dump(struct fadump_mem_struct *fdm)
361 {
362 int rc;
363 unsigned int wait_time;
364
365 pr_debug("Registering for firmware-assisted kernel dump...\n");
366
367 /* TODO: Add upper time limit for the delay */
368 do {
369 rc = rtas_call(fw_dump.ibm_configure_kernel_dump, 3, 1, NULL,
370 FADUMP_REGISTER, fdm,
371 sizeof(struct fadump_mem_struct));
372
373 wait_time = rtas_busy_delay_time(rc);
374 if (wait_time)
375 mdelay(wait_time);
376
377 } while (wait_time);
378
379 switch (rc) {
380 case -1:
381 printk(KERN_ERR "Failed to register firmware-assisted kernel"
382 " dump. Hardware Error(%d).\n", rc);
383 break;
384 case -3:
385 printk(KERN_ERR "Failed to register firmware-assisted kernel"
386 " dump. Parameter Error(%d).\n", rc);
387 break;
388 case -9:
389 printk(KERN_ERR "firmware-assisted kernel dump is already "
390 " registered.");
391 fw_dump.dump_registered = 1;
392 break;
393 case 0:
394 printk(KERN_INFO "firmware-assisted kernel dump registration"
395 " is successful\n");
396 fw_dump.dump_registered = 1;
397 break;
398 }
399 }
400
401 void crash_fadump(struct pt_regs *regs, const char *str)
402 {
403 struct fadump_crash_info_header *fdh = NULL;
404
405 if (!fw_dump.dump_registered || !fw_dump.fadumphdr_addr)
406 return;
407
408 fdh = __va(fw_dump.fadumphdr_addr);
409 crashing_cpu = smp_processor_id();
410 fdh->crashing_cpu = crashing_cpu;
411 crash_save_vmcoreinfo();
412
413 if (regs)
414 fdh->regs = *regs;
415 else
416 ppc_save_regs(&fdh->regs);
417
418 fdh->online_mask = *cpu_online_mask;
419
420 /* Call ibm,os-term rtas call to trigger firmware assisted dump */
421 rtas_os_term((char *)str);
422 }
423
424 #define GPR_MASK 0xffffff0000000000
425 static inline int fadump_gpr_index(u64 id)
426 {
427 int i = -1;
428 char str[3];
429
430 if ((id & GPR_MASK) == REG_ID("GPR")) {
431 /* get the digits at the end */
432 id &= ~GPR_MASK;
433 id >>= 24;
434 str[2] = '\0';
435 str[1] = id & 0xff;
436 str[0] = (id >> 8) & 0xff;
437 sscanf(str, "%d", &i);
438 if (i > 31)
439 i = -1;
440 }
441 return i;
442 }
443
444 static inline void fadump_set_regval(struct pt_regs *regs, u64 reg_id,
445 u64 reg_val)
446 {
447 int i;
448
449 i = fadump_gpr_index(reg_id);
450 if (i >= 0)
451 regs->gpr[i] = (unsigned long)reg_val;
452 else if (reg_id == REG_ID("NIA"))
453 regs->nip = (unsigned long)reg_val;
454 else if (reg_id == REG_ID("MSR"))
455 regs->msr = (unsigned long)reg_val;
456 else if (reg_id == REG_ID("CTR"))
457 regs->ctr = (unsigned long)reg_val;
458 else if (reg_id == REG_ID("LR"))
459 regs->link = (unsigned long)reg_val;
460 else if (reg_id == REG_ID("XER"))
461 regs->xer = (unsigned long)reg_val;
462 else if (reg_id == REG_ID("CR"))
463 regs->ccr = (unsigned long)reg_val;
464 else if (reg_id == REG_ID("DAR"))
465 regs->dar = (unsigned long)reg_val;
466 else if (reg_id == REG_ID("DSISR"))
467 regs->dsisr = (unsigned long)reg_val;
468 }
469
470 static struct fadump_reg_entry*
471 fadump_read_registers(struct fadump_reg_entry *reg_entry, struct pt_regs *regs)
472 {
473 memset(regs, 0, sizeof(struct pt_regs));
474
475 while (be64_to_cpu(reg_entry->reg_id) != REG_ID("CPUEND")) {
476 fadump_set_regval(regs, be64_to_cpu(reg_entry->reg_id),
477 be64_to_cpu(reg_entry->reg_value));
478 reg_entry++;
479 }
480 reg_entry++;
481 return reg_entry;
482 }
483
484 static u32 *fadump_append_elf_note(u32 *buf, char *name, unsigned type,
485 void *data, size_t data_len)
486 {
487 struct elf_note note;
488
489 note.n_namesz = strlen(name) + 1;
490 note.n_descsz = data_len;
491 note.n_type = type;
492 memcpy(buf, &note, sizeof(note));
493 buf += (sizeof(note) + 3)/4;
494 memcpy(buf, name, note.n_namesz);
495 buf += (note.n_namesz + 3)/4;
496 memcpy(buf, data, note.n_descsz);
497 buf += (note.n_descsz + 3)/4;
498
499 return buf;
500 }
501
502 static void fadump_final_note(u32 *buf)
503 {
504 struct elf_note note;
505
506 note.n_namesz = 0;
507 note.n_descsz = 0;
508 note.n_type = 0;
509 memcpy(buf, &note, sizeof(note));
510 }
511
512 static u32 *fadump_regs_to_elf_notes(u32 *buf, struct pt_regs *regs)
513 {
514 struct elf_prstatus prstatus;
515
516 memset(&prstatus, 0, sizeof(prstatus));
517 /*
518 * FIXME: How do i get PID? Do I really need it?
519 * prstatus.pr_pid = ????
520 */
521 elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
522 buf = fadump_append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
523 &prstatus, sizeof(prstatus));
524 return buf;
525 }
526
527 static void fadump_update_elfcore_header(char *bufp)
528 {
529 struct elfhdr *elf;
530 struct elf_phdr *phdr;
531
532 elf = (struct elfhdr *)bufp;
533 bufp += sizeof(struct elfhdr);
534
535 /* First note is a place holder for cpu notes info. */
536 phdr = (struct elf_phdr *)bufp;
537
538 if (phdr->p_type == PT_NOTE) {
539 phdr->p_paddr = fw_dump.cpu_notes_buf;
540 phdr->p_offset = phdr->p_paddr;
541 phdr->p_filesz = fw_dump.cpu_notes_buf_size;
542 phdr->p_memsz = fw_dump.cpu_notes_buf_size;
543 }
544 return;
545 }
546
547 static void *fadump_cpu_notes_buf_alloc(unsigned long size)
548 {
549 void *vaddr;
550 struct page *page;
551 unsigned long order, count, i;
552
553 order = get_order(size);
554 vaddr = (void *)__get_free_pages(GFP_KERNEL|__GFP_ZERO, order);
555 if (!vaddr)
556 return NULL;
557
558 count = 1 << order;
559 page = virt_to_page(vaddr);
560 for (i = 0; i < count; i++)
561 SetPageReserved(page + i);
562 return vaddr;
563 }
564
565 static void fadump_cpu_notes_buf_free(unsigned long vaddr, unsigned long size)
566 {
567 struct page *page;
568 unsigned long order, count, i;
569
570 order = get_order(size);
571 count = 1 << order;
572 page = virt_to_page(vaddr);
573 for (i = 0; i < count; i++)
574 ClearPageReserved(page + i);
575 __free_pages(page, order);
576 }
577
578 /*
579 * Read CPU state dump data and convert it into ELF notes.
580 * The CPU dump starts with magic number "REGSAVE". NumCpusOffset should be
581 * used to access the data to allow for additional fields to be added without
582 * affecting compatibility. Each list of registers for a CPU starts with
583 * "CPUSTRT" and ends with "CPUEND". Each register entry is of 16 bytes,
584 * 8 Byte ASCII identifier and 8 Byte register value. The register entry
585 * with identifier "CPUSTRT" and "CPUEND" contains 4 byte cpu id as part
586 * of register value. For more details refer to PAPR document.
587 *
588 * Only for the crashing cpu we ignore the CPU dump data and get exact
589 * state from fadump crash info structure populated by first kernel at the
590 * time of crash.
591 */
592 static int __init fadump_build_cpu_notes(const struct fadump_mem_struct *fdm)
593 {
594 struct fadump_reg_save_area_header *reg_header;
595 struct fadump_reg_entry *reg_entry;
596 struct fadump_crash_info_header *fdh = NULL;
597 void *vaddr;
598 unsigned long addr;
599 u32 num_cpus, *note_buf;
600 struct pt_regs regs;
601 int i, rc = 0, cpu = 0;
602
603 if (!fdm->cpu_state_data.bytes_dumped)
604 return -EINVAL;
605
606 addr = be64_to_cpu(fdm->cpu_state_data.destination_address);
607 vaddr = __va(addr);
608
609 reg_header = vaddr;
610 if (be64_to_cpu(reg_header->magic_number) != REGSAVE_AREA_MAGIC) {
611 printk(KERN_ERR "Unable to read register save area.\n");
612 return -ENOENT;
613 }
614 pr_debug("--------CPU State Data------------\n");
615 pr_debug("Magic Number: %llx\n", be64_to_cpu(reg_header->magic_number));
616 pr_debug("NumCpuOffset: %x\n", be32_to_cpu(reg_header->num_cpu_offset));
617
618 vaddr += be32_to_cpu(reg_header->num_cpu_offset);
619 num_cpus = be32_to_cpu(*((__be32 *)(vaddr)));
620 pr_debug("NumCpus : %u\n", num_cpus);
621 vaddr += sizeof(u32);
622 reg_entry = (struct fadump_reg_entry *)vaddr;
623
624 /* Allocate buffer to hold cpu crash notes. */
625 fw_dump.cpu_notes_buf_size = num_cpus * sizeof(note_buf_t);
626 fw_dump.cpu_notes_buf_size = PAGE_ALIGN(fw_dump.cpu_notes_buf_size);
627 note_buf = fadump_cpu_notes_buf_alloc(fw_dump.cpu_notes_buf_size);
628 if (!note_buf) {
629 printk(KERN_ERR "Failed to allocate 0x%lx bytes for "
630 "cpu notes buffer\n", fw_dump.cpu_notes_buf_size);
631 return -ENOMEM;
632 }
633 fw_dump.cpu_notes_buf = __pa(note_buf);
634
635 pr_debug("Allocated buffer for cpu notes of size %ld at %p\n",
636 (num_cpus * sizeof(note_buf_t)), note_buf);
637
638 if (fw_dump.fadumphdr_addr)
639 fdh = __va(fw_dump.fadumphdr_addr);
640
641 for (i = 0; i < num_cpus; i++) {
642 if (be64_to_cpu(reg_entry->reg_id) != REG_ID("CPUSTRT")) {
643 printk(KERN_ERR "Unable to read CPU state data\n");
644 rc = -ENOENT;
645 goto error_out;
646 }
647 /* Lower 4 bytes of reg_value contains logical cpu id */
648 cpu = be64_to_cpu(reg_entry->reg_value) & FADUMP_CPU_ID_MASK;
649 if (fdh && !cpumask_test_cpu(cpu, &fdh->online_mask)) {
650 SKIP_TO_NEXT_CPU(reg_entry);
651 continue;
652 }
653 pr_debug("Reading register data for cpu %d...\n", cpu);
654 if (fdh && fdh->crashing_cpu == cpu) {
655 regs = fdh->regs;
656 note_buf = fadump_regs_to_elf_notes(note_buf, &regs);
657 SKIP_TO_NEXT_CPU(reg_entry);
658 } else {
659 reg_entry++;
660 reg_entry = fadump_read_registers(reg_entry, &regs);
661 note_buf = fadump_regs_to_elf_notes(note_buf, &regs);
662 }
663 }
664 fadump_final_note(note_buf);
665
666 if (fdh) {
667 pr_debug("Updating elfcore header (%llx) with cpu notes\n",
668 fdh->elfcorehdr_addr);
669 fadump_update_elfcore_header((char *)__va(fdh->elfcorehdr_addr));
670 }
671 return 0;
672
673 error_out:
674 fadump_cpu_notes_buf_free((unsigned long)__va(fw_dump.cpu_notes_buf),
675 fw_dump.cpu_notes_buf_size);
676 fw_dump.cpu_notes_buf = 0;
677 fw_dump.cpu_notes_buf_size = 0;
678 return rc;
679
680 }
681
682 /*
683 * Validate and process the dump data stored by firmware before exporting
684 * it through '/proc/vmcore'.
685 */
686 static int __init process_fadump(const struct fadump_mem_struct *fdm_active)
687 {
688 struct fadump_crash_info_header *fdh;
689 int rc = 0;
690
691 if (!fdm_active || !fw_dump.fadumphdr_addr)
692 return -EINVAL;
693
694 /* Check if the dump data is valid. */
695 if ((be16_to_cpu(fdm_active->header.dump_status_flag) == FADUMP_ERROR_FLAG) ||
696 (fdm_active->cpu_state_data.error_flags != 0) ||
697 (fdm_active->rmr_region.error_flags != 0)) {
698 printk(KERN_ERR "Dump taken by platform is not valid\n");
699 return -EINVAL;
700 }
701 if ((fdm_active->rmr_region.bytes_dumped !=
702 fdm_active->rmr_region.source_len) ||
703 !fdm_active->cpu_state_data.bytes_dumped) {
704 printk(KERN_ERR "Dump taken by platform is incomplete\n");
705 return -EINVAL;
706 }
707
708 /* Validate the fadump crash info header */
709 fdh = __va(fw_dump.fadumphdr_addr);
710 if (fdh->magic_number != FADUMP_CRASH_INFO_MAGIC) {
711 printk(KERN_ERR "Crash info header is not valid.\n");
712 return -EINVAL;
713 }
714
715 rc = fadump_build_cpu_notes(fdm_active);
716 if (rc)
717 return rc;
718
719 /*
720 * We are done validating dump info and elfcore header is now ready
721 * to be exported. set elfcorehdr_addr so that vmcore module will
722 * export the elfcore header through '/proc/vmcore'.
723 */
724 elfcorehdr_addr = fdh->elfcorehdr_addr;
725
726 return 0;
727 }
728
729 static inline void fadump_add_crash_memory(unsigned long long base,
730 unsigned long long end)
731 {
732 if (base == end)
733 return;
734
735 pr_debug("crash_memory_range[%d] [%#016llx-%#016llx], %#llx bytes\n",
736 crash_mem_ranges, base, end - 1, (end - base));
737 crash_memory_ranges[crash_mem_ranges].base = base;
738 crash_memory_ranges[crash_mem_ranges].size = end - base;
739 crash_mem_ranges++;
740 }
741
742 static void fadump_exclude_reserved_area(unsigned long long start,
743 unsigned long long end)
744 {
745 unsigned long long ra_start, ra_end;
746
747 ra_start = fw_dump.reserve_dump_area_start;
748 ra_end = ra_start + fw_dump.reserve_dump_area_size;
749
750 if ((ra_start < end) && (ra_end > start)) {
751 if ((start < ra_start) && (end > ra_end)) {
752 fadump_add_crash_memory(start, ra_start);
753 fadump_add_crash_memory(ra_end, end);
754 } else if (start < ra_start) {
755 fadump_add_crash_memory(start, ra_start);
756 } else if (ra_end < end) {
757 fadump_add_crash_memory(ra_end, end);
758 }
759 } else
760 fadump_add_crash_memory(start, end);
761 }
762
763 static int fadump_init_elfcore_header(char *bufp)
764 {
765 struct elfhdr *elf;
766
767 elf = (struct elfhdr *) bufp;
768 bufp += sizeof(struct elfhdr);
769 memcpy(elf->e_ident, ELFMAG, SELFMAG);
770 elf->e_ident[EI_CLASS] = ELF_CLASS;
771 elf->e_ident[EI_DATA] = ELF_DATA;
772 elf->e_ident[EI_VERSION] = EV_CURRENT;
773 elf->e_ident[EI_OSABI] = ELF_OSABI;
774 memset(elf->e_ident+EI_PAD, 0, EI_NIDENT-EI_PAD);
775 elf->e_type = ET_CORE;
776 elf->e_machine = ELF_ARCH;
777 elf->e_version = EV_CURRENT;
778 elf->e_entry = 0;
779 elf->e_phoff = sizeof(struct elfhdr);
780 elf->e_shoff = 0;
781 elf->e_flags = ELF_CORE_EFLAGS;
782 elf->e_ehsize = sizeof(struct elfhdr);
783 elf->e_phentsize = sizeof(struct elf_phdr);
784 elf->e_phnum = 0;
785 elf->e_shentsize = 0;
786 elf->e_shnum = 0;
787 elf->e_shstrndx = 0;
788
789 return 0;
790 }
791
792 /*
793 * Traverse through memblock structure and setup crash memory ranges. These
794 * ranges will be used create PT_LOAD program headers in elfcore header.
795 */
796 static void fadump_setup_crash_memory_ranges(void)
797 {
798 struct memblock_region *reg;
799 unsigned long long start, end;
800
801 pr_debug("Setup crash memory ranges.\n");
802 crash_mem_ranges = 0;
803 /*
804 * add the first memory chunk (RMA_START through boot_memory_size) as
805 * a separate memory chunk. The reason is, at the time crash firmware
806 * will move the content of this memory chunk to different location
807 * specified during fadump registration. We need to create a separate
808 * program header for this chunk with the correct offset.
809 */
810 fadump_add_crash_memory(RMA_START, fw_dump.boot_memory_size);
811
812 for_each_memblock(memory, reg) {
813 start = (unsigned long long)reg->base;
814 end = start + (unsigned long long)reg->size;
815 if (start == RMA_START && end >= fw_dump.boot_memory_size)
816 start = fw_dump.boot_memory_size;
817
818 /* add this range excluding the reserved dump area. */
819 fadump_exclude_reserved_area(start, end);
820 }
821 }
822
823 /*
824 * If the given physical address falls within the boot memory region then
825 * return the relocated address that points to the dump region reserved
826 * for saving initial boot memory contents.
827 */
828 static inline unsigned long fadump_relocate(unsigned long paddr)
829 {
830 if (paddr > RMA_START && paddr < fw_dump.boot_memory_size)
831 return be64_to_cpu(fdm.rmr_region.destination_address) + paddr;
832 else
833 return paddr;
834 }
835
836 static int fadump_create_elfcore_headers(char *bufp)
837 {
838 struct elfhdr *elf;
839 struct elf_phdr *phdr;
840 int i;
841
842 fadump_init_elfcore_header(bufp);
843 elf = (struct elfhdr *)bufp;
844 bufp += sizeof(struct elfhdr);
845
846 /*
847 * setup ELF PT_NOTE, place holder for cpu notes info. The notes info
848 * will be populated during second kernel boot after crash. Hence
849 * this PT_NOTE will always be the first elf note.
850 *
851 * NOTE: Any new ELF note addition should be placed after this note.
852 */
853 phdr = (struct elf_phdr *)bufp;
854 bufp += sizeof(struct elf_phdr);
855 phdr->p_type = PT_NOTE;
856 phdr->p_flags = 0;
857 phdr->p_vaddr = 0;
858 phdr->p_align = 0;
859
860 phdr->p_offset = 0;
861 phdr->p_paddr = 0;
862 phdr->p_filesz = 0;
863 phdr->p_memsz = 0;
864
865 (elf->e_phnum)++;
866
867 /* setup ELF PT_NOTE for vmcoreinfo */
868 phdr = (struct elf_phdr *)bufp;
869 bufp += sizeof(struct elf_phdr);
870 phdr->p_type = PT_NOTE;
871 phdr->p_flags = 0;
872 phdr->p_vaddr = 0;
873 phdr->p_align = 0;
874
875 phdr->p_paddr = fadump_relocate(paddr_vmcoreinfo_note());
876 phdr->p_offset = phdr->p_paddr;
877 phdr->p_memsz = vmcoreinfo_max_size;
878 phdr->p_filesz = vmcoreinfo_max_size;
879
880 /* Increment number of program headers. */
881 (elf->e_phnum)++;
882
883 /* setup PT_LOAD sections. */
884
885 for (i = 0; i < crash_mem_ranges; i++) {
886 unsigned long long mbase, msize;
887 mbase = crash_memory_ranges[i].base;
888 msize = crash_memory_ranges[i].size;
889
890 if (!msize)
891 continue;
892
893 phdr = (struct elf_phdr *)bufp;
894 bufp += sizeof(struct elf_phdr);
895 phdr->p_type = PT_LOAD;
896 phdr->p_flags = PF_R|PF_W|PF_X;
897 phdr->p_offset = mbase;
898
899 if (mbase == RMA_START) {
900 /*
901 * The entire RMA region will be moved by firmware
902 * to the specified destination_address. Hence set
903 * the correct offset.
904 */
905 phdr->p_offset = be64_to_cpu(fdm.rmr_region.destination_address);
906 }
907
908 phdr->p_paddr = mbase;
909 phdr->p_vaddr = (unsigned long)__va(mbase);
910 phdr->p_filesz = msize;
911 phdr->p_memsz = msize;
912 phdr->p_align = 0;
913
914 /* Increment number of program headers. */
915 (elf->e_phnum)++;
916 }
917 return 0;
918 }
919
920 static unsigned long init_fadump_header(unsigned long addr)
921 {
922 struct fadump_crash_info_header *fdh;
923
924 if (!addr)
925 return 0;
926
927 fw_dump.fadumphdr_addr = addr;
928 fdh = __va(addr);
929 addr += sizeof(struct fadump_crash_info_header);
930
931 memset(fdh, 0, sizeof(struct fadump_crash_info_header));
932 fdh->magic_number = FADUMP_CRASH_INFO_MAGIC;
933 fdh->elfcorehdr_addr = addr;
934 /* We will set the crashing cpu id in crash_fadump() during crash. */
935 fdh->crashing_cpu = CPU_UNKNOWN;
936
937 return addr;
938 }
939
940 static void register_fadump(void)
941 {
942 unsigned long addr;
943 void *vaddr;
944
945 /*
946 * If no memory is reserved then we can not register for firmware-
947 * assisted dump.
948 */
949 if (!fw_dump.reserve_dump_area_size)
950 return;
951
952 fadump_setup_crash_memory_ranges();
953
954 addr = be64_to_cpu(fdm.rmr_region.destination_address) + be64_to_cpu(fdm.rmr_region.source_len);
955 /* Initialize fadump crash info header. */
956 addr = init_fadump_header(addr);
957 vaddr = __va(addr);
958
959 pr_debug("Creating ELF core headers at %#016lx\n", addr);
960 fadump_create_elfcore_headers(vaddr);
961
962 /* register the future kernel dump with firmware. */
963 register_fw_dump(&fdm);
964 }
965
966 static int fadump_unregister_dump(struct fadump_mem_struct *fdm)
967 {
968 int rc = 0;
969 unsigned int wait_time;
970
971 pr_debug("Un-register firmware-assisted dump\n");
972
973 /* TODO: Add upper time limit for the delay */
974 do {
975 rc = rtas_call(fw_dump.ibm_configure_kernel_dump, 3, 1, NULL,
976 FADUMP_UNREGISTER, fdm,
977 sizeof(struct fadump_mem_struct));
978
979 wait_time = rtas_busy_delay_time(rc);
980 if (wait_time)
981 mdelay(wait_time);
982 } while (wait_time);
983
984 if (rc) {
985 printk(KERN_ERR "Failed to un-register firmware-assisted dump."
986 " unexpected error(%d).\n", rc);
987 return rc;
988 }
989 fw_dump.dump_registered = 0;
990 return 0;
991 }
992
993 static int fadump_invalidate_dump(struct fadump_mem_struct *fdm)
994 {
995 int rc = 0;
996 unsigned int wait_time;
997
998 pr_debug("Invalidating firmware-assisted dump registration\n");
999
1000 /* TODO: Add upper time limit for the delay */
1001 do {
1002 rc = rtas_call(fw_dump.ibm_configure_kernel_dump, 3, 1, NULL,
1003 FADUMP_INVALIDATE, fdm,
1004 sizeof(struct fadump_mem_struct));
1005
1006 wait_time = rtas_busy_delay_time(rc);
1007 if (wait_time)
1008 mdelay(wait_time);
1009 } while (wait_time);
1010
1011 if (rc) {
1012 printk(KERN_ERR "Failed to invalidate firmware-assisted dump "
1013 "rgistration. unexpected error(%d).\n", rc);
1014 return rc;
1015 }
1016 fw_dump.dump_active = 0;
1017 fdm_active = NULL;
1018 return 0;
1019 }
1020
1021 void fadump_cleanup(void)
1022 {
1023 /* Invalidate the registration only if dump is active. */
1024 if (fw_dump.dump_active) {
1025 init_fadump_mem_struct(&fdm,
1026 be64_to_cpu(fdm_active->cpu_state_data.destination_address));
1027 fadump_invalidate_dump(&fdm);
1028 }
1029 }
1030
1031 /*
1032 * Release the memory that was reserved in early boot to preserve the memory
1033 * contents. The released memory will be available for general use.
1034 */
1035 static void fadump_release_memory(unsigned long begin, unsigned long end)
1036 {
1037 unsigned long addr;
1038 unsigned long ra_start, ra_end;
1039
1040 ra_start = fw_dump.reserve_dump_area_start;
1041 ra_end = ra_start + fw_dump.reserve_dump_area_size;
1042
1043 for (addr = begin; addr < end; addr += PAGE_SIZE) {
1044 /*
1045 * exclude the dump reserve area. Will reuse it for next
1046 * fadump registration.
1047 */
1048 if (addr <= ra_end && ((addr + PAGE_SIZE) > ra_start))
1049 continue;
1050
1051 free_reserved_page(pfn_to_page(addr >> PAGE_SHIFT));
1052 }
1053 }
1054
1055 static void fadump_invalidate_release_mem(void)
1056 {
1057 unsigned long reserved_area_start, reserved_area_end;
1058 unsigned long destination_address;
1059
1060 mutex_lock(&fadump_mutex);
1061 if (!fw_dump.dump_active) {
1062 mutex_unlock(&fadump_mutex);
1063 return;
1064 }
1065
1066 destination_address = be64_to_cpu(fdm_active->cpu_state_data.destination_address);
1067 fadump_cleanup();
1068 mutex_unlock(&fadump_mutex);
1069
1070 /*
1071 * Save the current reserved memory bounds we will require them
1072 * later for releasing the memory for general use.
1073 */
1074 reserved_area_start = fw_dump.reserve_dump_area_start;
1075 reserved_area_end = reserved_area_start +
1076 fw_dump.reserve_dump_area_size;
1077 /*
1078 * Setup reserve_dump_area_start and its size so that we can
1079 * reuse this reserved memory for Re-registration.
1080 */
1081 fw_dump.reserve_dump_area_start = destination_address;
1082 fw_dump.reserve_dump_area_size = get_fadump_area_size();
1083
1084 fadump_release_memory(reserved_area_start, reserved_area_end);
1085 if (fw_dump.cpu_notes_buf) {
1086 fadump_cpu_notes_buf_free(
1087 (unsigned long)__va(fw_dump.cpu_notes_buf),
1088 fw_dump.cpu_notes_buf_size);
1089 fw_dump.cpu_notes_buf = 0;
1090 fw_dump.cpu_notes_buf_size = 0;
1091 }
1092 /* Initialize the kernel dump memory structure for FAD registration. */
1093 init_fadump_mem_struct(&fdm, fw_dump.reserve_dump_area_start);
1094 }
1095
1096 static ssize_t fadump_release_memory_store(struct kobject *kobj,
1097 struct kobj_attribute *attr,
1098 const char *buf, size_t count)
1099 {
1100 if (!fw_dump.dump_active)
1101 return -EPERM;
1102
1103 if (buf[0] == '1') {
1104 /*
1105 * Take away the '/proc/vmcore'. We are releasing the dump
1106 * memory, hence it will not be valid anymore.
1107 */
1108 vmcore_cleanup();
1109 fadump_invalidate_release_mem();
1110
1111 } else
1112 return -EINVAL;
1113 return count;
1114 }
1115
1116 static ssize_t fadump_enabled_show(struct kobject *kobj,
1117 struct kobj_attribute *attr,
1118 char *buf)
1119 {
1120 return sprintf(buf, "%d\n", fw_dump.fadump_enabled);
1121 }
1122
1123 static ssize_t fadump_register_show(struct kobject *kobj,
1124 struct kobj_attribute *attr,
1125 char *buf)
1126 {
1127 return sprintf(buf, "%d\n", fw_dump.dump_registered);
1128 }
1129
1130 static ssize_t fadump_register_store(struct kobject *kobj,
1131 struct kobj_attribute *attr,
1132 const char *buf, size_t count)
1133 {
1134 int ret = 0;
1135
1136 if (!fw_dump.fadump_enabled || fdm_active)
1137 return -EPERM;
1138
1139 mutex_lock(&fadump_mutex);
1140
1141 switch (buf[0]) {
1142 case '0':
1143 if (fw_dump.dump_registered == 0) {
1144 ret = -EINVAL;
1145 goto unlock_out;
1146 }
1147 /* Un-register Firmware-assisted dump */
1148 fadump_unregister_dump(&fdm);
1149 break;
1150 case '1':
1151 if (fw_dump.dump_registered == 1) {
1152 ret = -EINVAL;
1153 goto unlock_out;
1154 }
1155 /* Register Firmware-assisted dump */
1156 register_fadump();
1157 break;
1158 default:
1159 ret = -EINVAL;
1160 break;
1161 }
1162
1163 unlock_out:
1164 mutex_unlock(&fadump_mutex);
1165 return ret < 0 ? ret : count;
1166 }
1167
1168 static int fadump_region_show(struct seq_file *m, void *private)
1169 {
1170 const struct fadump_mem_struct *fdm_ptr;
1171
1172 if (!fw_dump.fadump_enabled)
1173 return 0;
1174
1175 mutex_lock(&fadump_mutex);
1176 if (fdm_active)
1177 fdm_ptr = fdm_active;
1178 else {
1179 mutex_unlock(&fadump_mutex);
1180 fdm_ptr = &fdm;
1181 }
1182
1183 seq_printf(m,
1184 "CPU : [%#016llx-%#016llx] %#llx bytes, "
1185 "Dumped: %#llx\n",
1186 be64_to_cpu(fdm_ptr->cpu_state_data.destination_address),
1187 be64_to_cpu(fdm_ptr->cpu_state_data.destination_address) +
1188 be64_to_cpu(fdm_ptr->cpu_state_data.source_len) - 1,
1189 be64_to_cpu(fdm_ptr->cpu_state_data.source_len),
1190 be64_to_cpu(fdm_ptr->cpu_state_data.bytes_dumped));
1191 seq_printf(m,
1192 "HPTE: [%#016llx-%#016llx] %#llx bytes, "
1193 "Dumped: %#llx\n",
1194 be64_to_cpu(fdm_ptr->hpte_region.destination_address),
1195 be64_to_cpu(fdm_ptr->hpte_region.destination_address) +
1196 be64_to_cpu(fdm_ptr->hpte_region.source_len) - 1,
1197 be64_to_cpu(fdm_ptr->hpte_region.source_len),
1198 be64_to_cpu(fdm_ptr->hpte_region.bytes_dumped));
1199 seq_printf(m,
1200 "DUMP: [%#016llx-%#016llx] %#llx bytes, "
1201 "Dumped: %#llx\n",
1202 be64_to_cpu(fdm_ptr->rmr_region.destination_address),
1203 be64_to_cpu(fdm_ptr->rmr_region.destination_address) +
1204 be64_to_cpu(fdm_ptr->rmr_region.source_len) - 1,
1205 be64_to_cpu(fdm_ptr->rmr_region.source_len),
1206 be64_to_cpu(fdm_ptr->rmr_region.bytes_dumped));
1207
1208 if (!fdm_active ||
1209 (fw_dump.reserve_dump_area_start ==
1210 be64_to_cpu(fdm_ptr->cpu_state_data.destination_address)))
1211 goto out;
1212
1213 /* Dump is active. Show reserved memory region. */
1214 seq_printf(m,
1215 " : [%#016llx-%#016llx] %#llx bytes, "
1216 "Dumped: %#llx\n",
1217 (unsigned long long)fw_dump.reserve_dump_area_start,
1218 be64_to_cpu(fdm_ptr->cpu_state_data.destination_address) - 1,
1219 be64_to_cpu(fdm_ptr->cpu_state_data.destination_address) -
1220 fw_dump.reserve_dump_area_start,
1221 be64_to_cpu(fdm_ptr->cpu_state_data.destination_address) -
1222 fw_dump.reserve_dump_area_start);
1223 out:
1224 if (fdm_active)
1225 mutex_unlock(&fadump_mutex);
1226 return 0;
1227 }
1228
1229 static struct kobj_attribute fadump_release_attr = __ATTR(fadump_release_mem,
1230 0200, NULL,
1231 fadump_release_memory_store);
1232 static struct kobj_attribute fadump_attr = __ATTR(fadump_enabled,
1233 0444, fadump_enabled_show,
1234 NULL);
1235 static struct kobj_attribute fadump_register_attr = __ATTR(fadump_registered,
1236 0644, fadump_register_show,
1237 fadump_register_store);
1238
1239 static int fadump_region_open(struct inode *inode, struct file *file)
1240 {
1241 return single_open(file, fadump_region_show, inode->i_private);
1242 }
1243
1244 static const struct file_operations fadump_region_fops = {
1245 .open = fadump_region_open,
1246 .read = seq_read,
1247 .llseek = seq_lseek,
1248 .release = single_release,
1249 };
1250
1251 static void fadump_init_files(void)
1252 {
1253 struct dentry *debugfs_file;
1254 int rc = 0;
1255
1256 rc = sysfs_create_file(kernel_kobj, &fadump_attr.attr);
1257 if (rc)
1258 printk(KERN_ERR "fadump: unable to create sysfs file"
1259 " fadump_enabled (%d)\n", rc);
1260
1261 rc = sysfs_create_file(kernel_kobj, &fadump_register_attr.attr);
1262 if (rc)
1263 printk(KERN_ERR "fadump: unable to create sysfs file"
1264 " fadump_registered (%d)\n", rc);
1265
1266 debugfs_file = debugfs_create_file("fadump_region", 0444,
1267 powerpc_debugfs_root, NULL,
1268 &fadump_region_fops);
1269 if (!debugfs_file)
1270 printk(KERN_ERR "fadump: unable to create debugfs file"
1271 " fadump_region\n");
1272
1273 if (fw_dump.dump_active) {
1274 rc = sysfs_create_file(kernel_kobj, &fadump_release_attr.attr);
1275 if (rc)
1276 printk(KERN_ERR "fadump: unable to create sysfs file"
1277 " fadump_release_mem (%d)\n", rc);
1278 }
1279 return;
1280 }
1281
1282 /*
1283 * Prepare for firmware-assisted dump.
1284 */
1285 int __init setup_fadump(void)
1286 {
1287 if (!fw_dump.fadump_enabled)
1288 return 0;
1289
1290 if (!fw_dump.fadump_supported) {
1291 printk(KERN_ERR "Firmware-assisted dump is not supported on"
1292 " this hardware\n");
1293 return 0;
1294 }
1295
1296 fadump_show_config();
1297 /*
1298 * If dump data is available then see if it is valid and prepare for
1299 * saving it to the disk.
1300 */
1301 if (fw_dump.dump_active) {
1302 /*
1303 * if dump process fails then invalidate the registration
1304 * and release memory before proceeding for re-registration.
1305 */
1306 if (process_fadump(fdm_active) < 0)
1307 fadump_invalidate_release_mem();
1308 }
1309 /* Initialize the kernel dump memory structure for FAD registration. */
1310 else if (fw_dump.reserve_dump_area_size)
1311 init_fadump_mem_struct(&fdm, fw_dump.reserve_dump_area_start);
1312 fadump_init_files();
1313
1314 return 1;
1315 }
1316 subsys_initcall(setup_fadump);
This page took 0.060268 seconds and 6 git commands to generate.