Merge branch 'timers-nohz-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / arch / powerpc / kernel / nvram_64.c
1 /*
2 * c 2001 PPC 64 Team, IBM Corp
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * /dev/nvram driver for PPC64
10 *
11 * This perhaps should live in drivers/char
12 *
13 * TODO: Split the /dev/nvram part (that one can use
14 * drivers/char/generic_nvram.c) from the arch & partition
15 * parsing code.
16 */
17
18 #include <linux/types.h>
19 #include <linux/errno.h>
20 #include <linux/fs.h>
21 #include <linux/miscdevice.h>
22 #include <linux/fcntl.h>
23 #include <linux/nvram.h>
24 #include <linux/init.h>
25 #include <linux/slab.h>
26 #include <linux/spinlock.h>
27 #include <linux/kmsg_dump.h>
28 #include <linux/pagemap.h>
29 #include <linux/pstore.h>
30 #include <linux/zlib.h>
31 #include <asm/uaccess.h>
32 #include <asm/nvram.h>
33 #include <asm/rtas.h>
34 #include <asm/prom.h>
35 #include <asm/machdep.h>
36
37 #undef DEBUG_NVRAM
38
39 #define NVRAM_HEADER_LEN sizeof(struct nvram_header)
40 #define NVRAM_BLOCK_LEN NVRAM_HEADER_LEN
41
42 /* If change this size, then change the size of NVNAME_LEN */
43 struct nvram_header {
44 unsigned char signature;
45 unsigned char checksum;
46 unsigned short length;
47 /* Terminating null required only for names < 12 chars. */
48 char name[12];
49 };
50
51 struct nvram_partition {
52 struct list_head partition;
53 struct nvram_header header;
54 unsigned int index;
55 };
56
57 static LIST_HEAD(nvram_partitions);
58
59 #ifdef CONFIG_PPC_PSERIES
60 struct nvram_os_partition rtas_log_partition = {
61 .name = "ibm,rtas-log",
62 .req_size = 2079,
63 .min_size = 1055,
64 .index = -1,
65 .os_partition = true
66 };
67 #endif
68
69 struct nvram_os_partition oops_log_partition = {
70 .name = "lnx,oops-log",
71 .req_size = 4000,
72 .min_size = 2000,
73 .index = -1,
74 .os_partition = true
75 };
76
77 static const char *nvram_os_partitions[] = {
78 #ifdef CONFIG_PPC_PSERIES
79 "ibm,rtas-log",
80 #endif
81 "lnx,oops-log",
82 NULL
83 };
84
85 static void oops_to_nvram(struct kmsg_dumper *dumper,
86 enum kmsg_dump_reason reason);
87
88 static struct kmsg_dumper nvram_kmsg_dumper = {
89 .dump = oops_to_nvram
90 };
91
92 /*
93 * For capturing and compressing an oops or panic report...
94
95 * big_oops_buf[] holds the uncompressed text we're capturing.
96 *
97 * oops_buf[] holds the compressed text, preceded by a oops header.
98 * oops header has u16 holding the version of oops header (to differentiate
99 * between old and new format header) followed by u16 holding the length of
100 * the compressed* text (*Or uncompressed, if compression fails.) and u64
101 * holding the timestamp. oops_buf[] gets written to NVRAM.
102 *
103 * oops_log_info points to the header. oops_data points to the compressed text.
104 *
105 * +- oops_buf
106 * | +- oops_data
107 * v v
108 * +-----------+-----------+-----------+------------------------+
109 * | version | length | timestamp | text |
110 * | (2 bytes) | (2 bytes) | (8 bytes) | (oops_data_sz bytes) |
111 * +-----------+-----------+-----------+------------------------+
112 * ^
113 * +- oops_log_info
114 *
115 * We preallocate these buffers during init to avoid kmalloc during oops/panic.
116 */
117 static size_t big_oops_buf_sz;
118 static char *big_oops_buf, *oops_buf;
119 static char *oops_data;
120 static size_t oops_data_sz;
121
122 /* Compression parameters */
123 #define COMPR_LEVEL 6
124 #define WINDOW_BITS 12
125 #define MEM_LEVEL 4
126 static struct z_stream_s stream;
127
128 #ifdef CONFIG_PSTORE
129 #ifdef CONFIG_PPC_POWERNV
130 static struct nvram_os_partition skiboot_partition = {
131 .name = "ibm,skiboot",
132 .index = -1,
133 .os_partition = false
134 };
135 #endif
136
137 #ifdef CONFIG_PPC_PSERIES
138 static struct nvram_os_partition of_config_partition = {
139 .name = "of-config",
140 .index = -1,
141 .os_partition = false
142 };
143 #endif
144
145 static struct nvram_os_partition common_partition = {
146 .name = "common",
147 .index = -1,
148 .os_partition = false
149 };
150
151 static enum pstore_type_id nvram_type_ids[] = {
152 PSTORE_TYPE_DMESG,
153 PSTORE_TYPE_PPC_COMMON,
154 -1,
155 -1,
156 -1
157 };
158 static int read_type;
159 #endif
160
161 /* nvram_write_os_partition
162 *
163 * We need to buffer the error logs into nvram to ensure that we have
164 * the failure information to decode. If we have a severe error there
165 * is no way to guarantee that the OS or the machine is in a state to
166 * get back to user land and write the error to disk. For example if
167 * the SCSI device driver causes a Machine Check by writing to a bad
168 * IO address, there is no way of guaranteeing that the device driver
169 * is in any state that is would also be able to write the error data
170 * captured to disk, thus we buffer it in NVRAM for analysis on the
171 * next boot.
172 *
173 * In NVRAM the partition containing the error log buffer will looks like:
174 * Header (in bytes):
175 * +-----------+----------+--------+------------+------------------+
176 * | signature | checksum | length | name | data |
177 * |0 |1 |2 3|4 15|16 length-1|
178 * +-----------+----------+--------+------------+------------------+
179 *
180 * The 'data' section would look like (in bytes):
181 * +--------------+------------+-----------------------------------+
182 * | event_logged | sequence # | error log |
183 * |0 3|4 7|8 error_log_size-1|
184 * +--------------+------------+-----------------------------------+
185 *
186 * event_logged: 0 if event has not been logged to syslog, 1 if it has
187 * sequence #: The unique sequence # for each event. (until it wraps)
188 * error log: The error log from event_scan
189 */
190 int nvram_write_os_partition(struct nvram_os_partition *part,
191 char *buff, int length,
192 unsigned int err_type,
193 unsigned int error_log_cnt)
194 {
195 int rc;
196 loff_t tmp_index;
197 struct err_log_info info;
198
199 if (part->index == -1)
200 return -ESPIPE;
201
202 if (length > part->size)
203 length = part->size;
204
205 info.error_type = cpu_to_be32(err_type);
206 info.seq_num = cpu_to_be32(error_log_cnt);
207
208 tmp_index = part->index;
209
210 rc = ppc_md.nvram_write((char *)&info, sizeof(struct err_log_info),
211 &tmp_index);
212 if (rc <= 0) {
213 pr_err("%s: Failed nvram_write (%d)\n", __func__, rc);
214 return rc;
215 }
216
217 rc = ppc_md.nvram_write(buff, length, &tmp_index);
218 if (rc <= 0) {
219 pr_err("%s: Failed nvram_write (%d)\n", __func__, rc);
220 return rc;
221 }
222
223 return 0;
224 }
225
226 /* nvram_read_partition
227 *
228 * Reads nvram partition for at most 'length'
229 */
230 int nvram_read_partition(struct nvram_os_partition *part, char *buff,
231 int length, unsigned int *err_type,
232 unsigned int *error_log_cnt)
233 {
234 int rc;
235 loff_t tmp_index;
236 struct err_log_info info;
237
238 if (part->index == -1)
239 return -1;
240
241 if (length > part->size)
242 length = part->size;
243
244 tmp_index = part->index;
245
246 if (part->os_partition) {
247 rc = ppc_md.nvram_read((char *)&info,
248 sizeof(struct err_log_info),
249 &tmp_index);
250 if (rc <= 0) {
251 pr_err("%s: Failed nvram_read (%d)\n", __func__, rc);
252 return rc;
253 }
254 }
255
256 rc = ppc_md.nvram_read(buff, length, &tmp_index);
257 if (rc <= 0) {
258 pr_err("%s: Failed nvram_read (%d)\n", __func__, rc);
259 return rc;
260 }
261
262 if (part->os_partition) {
263 *error_log_cnt = be32_to_cpu(info.seq_num);
264 *err_type = be32_to_cpu(info.error_type);
265 }
266
267 return 0;
268 }
269
270 /* nvram_init_os_partition
271 *
272 * This sets up a partition with an "OS" signature.
273 *
274 * The general strategy is the following:
275 * 1.) If a partition with the indicated name already exists...
276 * - If it's large enough, use it.
277 * - Otherwise, recycle it and keep going.
278 * 2.) Search for a free partition that is large enough.
279 * 3.) If there's not a free partition large enough, recycle any obsolete
280 * OS partitions and try again.
281 * 4.) Will first try getting a chunk that will satisfy the requested size.
282 * 5.) If a chunk of the requested size cannot be allocated, then try finding
283 * a chunk that will satisfy the minum needed.
284 *
285 * Returns 0 on success, else -1.
286 */
287 int __init nvram_init_os_partition(struct nvram_os_partition *part)
288 {
289 loff_t p;
290 int size;
291
292 /* Look for ours */
293 p = nvram_find_partition(part->name, NVRAM_SIG_OS, &size);
294
295 /* Found one but too small, remove it */
296 if (p && size < part->min_size) {
297 pr_info("nvram: Found too small %s partition,"
298 " removing it...\n", part->name);
299 nvram_remove_partition(part->name, NVRAM_SIG_OS, NULL);
300 p = 0;
301 }
302
303 /* Create one if we didn't find */
304 if (!p) {
305 p = nvram_create_partition(part->name, NVRAM_SIG_OS,
306 part->req_size, part->min_size);
307 if (p == -ENOSPC) {
308 pr_info("nvram: No room to create %s partition, "
309 "deleting any obsolete OS partitions...\n",
310 part->name);
311 nvram_remove_partition(NULL, NVRAM_SIG_OS,
312 nvram_os_partitions);
313 p = nvram_create_partition(part->name, NVRAM_SIG_OS,
314 part->req_size, part->min_size);
315 }
316 }
317
318 if (p <= 0) {
319 pr_err("nvram: Failed to find or create %s"
320 " partition, err %d\n", part->name, (int)p);
321 return -1;
322 }
323
324 part->index = p;
325 part->size = nvram_get_partition_size(p) - sizeof(struct err_log_info);
326
327 return 0;
328 }
329
330 /* Derived from logfs_compress() */
331 static int nvram_compress(const void *in, void *out, size_t inlen,
332 size_t outlen)
333 {
334 int err, ret;
335
336 ret = -EIO;
337 err = zlib_deflateInit2(&stream, COMPR_LEVEL, Z_DEFLATED, WINDOW_BITS,
338 MEM_LEVEL, Z_DEFAULT_STRATEGY);
339 if (err != Z_OK)
340 goto error;
341
342 stream.next_in = in;
343 stream.avail_in = inlen;
344 stream.total_in = 0;
345 stream.next_out = out;
346 stream.avail_out = outlen;
347 stream.total_out = 0;
348
349 err = zlib_deflate(&stream, Z_FINISH);
350 if (err != Z_STREAM_END)
351 goto error;
352
353 err = zlib_deflateEnd(&stream);
354 if (err != Z_OK)
355 goto error;
356
357 if (stream.total_out >= stream.total_in)
358 goto error;
359
360 ret = stream.total_out;
361 error:
362 return ret;
363 }
364
365 /* Compress the text from big_oops_buf into oops_buf. */
366 static int zip_oops(size_t text_len)
367 {
368 struct oops_log_info *oops_hdr = (struct oops_log_info *)oops_buf;
369 int zipped_len = nvram_compress(big_oops_buf, oops_data, text_len,
370 oops_data_sz);
371 if (zipped_len < 0) {
372 pr_err("nvram: compression failed; returned %d\n", zipped_len);
373 pr_err("nvram: logging uncompressed oops/panic report\n");
374 return -1;
375 }
376 oops_hdr->version = cpu_to_be16(OOPS_HDR_VERSION);
377 oops_hdr->report_length = cpu_to_be16(zipped_len);
378 oops_hdr->timestamp = cpu_to_be64(ktime_get_real_seconds());
379 return 0;
380 }
381
382 #ifdef CONFIG_PSTORE
383 static int nvram_pstore_open(struct pstore_info *psi)
384 {
385 /* Reset the iterator to start reading partitions again */
386 read_type = -1;
387 return 0;
388 }
389
390 /**
391 * nvram_pstore_write - pstore write callback for nvram
392 * @type: Type of message logged
393 * @reason: reason behind dump (oops/panic)
394 * @id: identifier to indicate the write performed
395 * @part: pstore writes data to registered buffer in parts,
396 * part number will indicate the same.
397 * @count: Indicates oops count
398 * @compressed: Flag to indicate the log is compressed
399 * @size: number of bytes written to the registered buffer
400 * @psi: registered pstore_info structure
401 *
402 * Called by pstore_dump() when an oops or panic report is logged in the
403 * printk buffer.
404 * Returns 0 on successful write.
405 */
406 static int nvram_pstore_write(enum pstore_type_id type,
407 enum kmsg_dump_reason reason,
408 u64 *id, unsigned int part, int count,
409 bool compressed, size_t size,
410 struct pstore_info *psi)
411 {
412 int rc;
413 unsigned int err_type = ERR_TYPE_KERNEL_PANIC;
414 struct oops_log_info *oops_hdr = (struct oops_log_info *) oops_buf;
415
416 /* part 1 has the recent messages from printk buffer */
417 if (part > 1 || (type != PSTORE_TYPE_DMESG))
418 return -1;
419
420 if (clobbering_unread_rtas_event())
421 return -1;
422
423 oops_hdr->version = cpu_to_be16(OOPS_HDR_VERSION);
424 oops_hdr->report_length = cpu_to_be16(size);
425 oops_hdr->timestamp = cpu_to_be64(ktime_get_real_seconds());
426
427 if (compressed)
428 err_type = ERR_TYPE_KERNEL_PANIC_GZ;
429
430 rc = nvram_write_os_partition(&oops_log_partition, oops_buf,
431 (int) (sizeof(*oops_hdr) + size), err_type, count);
432
433 if (rc != 0)
434 return rc;
435
436 *id = part;
437 return 0;
438 }
439
440 /*
441 * Reads the oops/panic report, rtas, of-config and common partition.
442 * Returns the length of the data we read from each partition.
443 * Returns 0 if we've been called before.
444 */
445 static ssize_t nvram_pstore_read(u64 *id, enum pstore_type_id *type,
446 int *count, struct timespec *time, char **buf,
447 bool *compressed, struct pstore_info *psi)
448 {
449 struct oops_log_info *oops_hdr;
450 unsigned int err_type, id_no, size = 0;
451 struct nvram_os_partition *part = NULL;
452 char *buff = NULL;
453 int sig = 0;
454 loff_t p;
455
456 read_type++;
457
458 switch (nvram_type_ids[read_type]) {
459 case PSTORE_TYPE_DMESG:
460 part = &oops_log_partition;
461 *type = PSTORE_TYPE_DMESG;
462 break;
463 case PSTORE_TYPE_PPC_COMMON:
464 sig = NVRAM_SIG_SYS;
465 part = &common_partition;
466 *type = PSTORE_TYPE_PPC_COMMON;
467 *id = PSTORE_TYPE_PPC_COMMON;
468 time->tv_sec = 0;
469 time->tv_nsec = 0;
470 break;
471 #ifdef CONFIG_PPC_PSERIES
472 case PSTORE_TYPE_PPC_RTAS:
473 part = &rtas_log_partition;
474 *type = PSTORE_TYPE_PPC_RTAS;
475 time->tv_sec = last_rtas_event;
476 time->tv_nsec = 0;
477 break;
478 case PSTORE_TYPE_PPC_OF:
479 sig = NVRAM_SIG_OF;
480 part = &of_config_partition;
481 *type = PSTORE_TYPE_PPC_OF;
482 *id = PSTORE_TYPE_PPC_OF;
483 time->tv_sec = 0;
484 time->tv_nsec = 0;
485 break;
486 #endif
487 #ifdef CONFIG_PPC_POWERNV
488 case PSTORE_TYPE_PPC_OPAL:
489 sig = NVRAM_SIG_FW;
490 part = &skiboot_partition;
491 *type = PSTORE_TYPE_PPC_OPAL;
492 *id = PSTORE_TYPE_PPC_OPAL;
493 time->tv_sec = 0;
494 time->tv_nsec = 0;
495 break;
496 #endif
497 default:
498 return 0;
499 }
500
501 if (!part->os_partition) {
502 p = nvram_find_partition(part->name, sig, &size);
503 if (p <= 0) {
504 pr_err("nvram: Failed to find partition %s, "
505 "err %d\n", part->name, (int)p);
506 return 0;
507 }
508 part->index = p;
509 part->size = size;
510 }
511
512 buff = kmalloc(part->size, GFP_KERNEL);
513
514 if (!buff)
515 return -ENOMEM;
516
517 if (nvram_read_partition(part, buff, part->size, &err_type, &id_no)) {
518 kfree(buff);
519 return 0;
520 }
521
522 *count = 0;
523
524 if (part->os_partition)
525 *id = id_no;
526
527 if (nvram_type_ids[read_type] == PSTORE_TYPE_DMESG) {
528 size_t length, hdr_size;
529
530 oops_hdr = (struct oops_log_info *)buff;
531 if (be16_to_cpu(oops_hdr->version) < OOPS_HDR_VERSION) {
532 /* Old format oops header had 2-byte record size */
533 hdr_size = sizeof(u16);
534 length = be16_to_cpu(oops_hdr->version);
535 time->tv_sec = 0;
536 time->tv_nsec = 0;
537 } else {
538 hdr_size = sizeof(*oops_hdr);
539 length = be16_to_cpu(oops_hdr->report_length);
540 time->tv_sec = be64_to_cpu(oops_hdr->timestamp);
541 time->tv_nsec = 0;
542 }
543 *buf = kmemdup(buff + hdr_size, length, GFP_KERNEL);
544 if (*buf == NULL)
545 return -ENOMEM;
546 kfree(buff);
547
548 if (err_type == ERR_TYPE_KERNEL_PANIC_GZ)
549 *compressed = true;
550 else
551 *compressed = false;
552 return length;
553 }
554
555 *buf = buff;
556 return part->size;
557 }
558
559 static struct pstore_info nvram_pstore_info = {
560 .owner = THIS_MODULE,
561 .name = "nvram",
562 .open = nvram_pstore_open,
563 .read = nvram_pstore_read,
564 .write = nvram_pstore_write,
565 };
566
567 static int nvram_pstore_init(void)
568 {
569 int rc = 0;
570
571 if (machine_is(pseries)) {
572 nvram_type_ids[2] = PSTORE_TYPE_PPC_RTAS;
573 nvram_type_ids[3] = PSTORE_TYPE_PPC_OF;
574 } else
575 nvram_type_ids[2] = PSTORE_TYPE_PPC_OPAL;
576
577 nvram_pstore_info.buf = oops_data;
578 nvram_pstore_info.bufsize = oops_data_sz;
579
580 spin_lock_init(&nvram_pstore_info.buf_lock);
581
582 rc = pstore_register(&nvram_pstore_info);
583 if (rc && (rc != -EPERM))
584 /* Print error only when pstore.backend == nvram */
585 pr_err("nvram: pstore_register() failed, returned %d. "
586 "Defaults to kmsg_dump\n", rc);
587
588 return rc;
589 }
590 #else
591 static int nvram_pstore_init(void)
592 {
593 return -1;
594 }
595 #endif
596
597 void __init nvram_init_oops_partition(int rtas_partition_exists)
598 {
599 int rc;
600
601 rc = nvram_init_os_partition(&oops_log_partition);
602 if (rc != 0) {
603 #ifdef CONFIG_PPC_PSERIES
604 if (!rtas_partition_exists) {
605 pr_err("nvram: Failed to initialize oops partition!");
606 return;
607 }
608 pr_notice("nvram: Using %s partition to log both"
609 " RTAS errors and oops/panic reports\n",
610 rtas_log_partition.name);
611 memcpy(&oops_log_partition, &rtas_log_partition,
612 sizeof(rtas_log_partition));
613 #else
614 pr_err("nvram: Failed to initialize oops partition!");
615 return;
616 #endif
617 }
618 oops_buf = kmalloc(oops_log_partition.size, GFP_KERNEL);
619 if (!oops_buf) {
620 pr_err("nvram: No memory for %s partition\n",
621 oops_log_partition.name);
622 return;
623 }
624 oops_data = oops_buf + sizeof(struct oops_log_info);
625 oops_data_sz = oops_log_partition.size - sizeof(struct oops_log_info);
626
627 rc = nvram_pstore_init();
628
629 if (!rc)
630 return;
631
632 /*
633 * Figure compression (preceded by elimination of each line's <n>
634 * severity prefix) will reduce the oops/panic report to at most
635 * 45% of its original size.
636 */
637 big_oops_buf_sz = (oops_data_sz * 100) / 45;
638 big_oops_buf = kmalloc(big_oops_buf_sz, GFP_KERNEL);
639 if (big_oops_buf) {
640 stream.workspace = kmalloc(zlib_deflate_workspacesize(
641 WINDOW_BITS, MEM_LEVEL), GFP_KERNEL);
642 if (!stream.workspace) {
643 pr_err("nvram: No memory for compression workspace; "
644 "skipping compression of %s partition data\n",
645 oops_log_partition.name);
646 kfree(big_oops_buf);
647 big_oops_buf = NULL;
648 }
649 } else {
650 pr_err("No memory for uncompressed %s data; "
651 "skipping compression\n", oops_log_partition.name);
652 stream.workspace = NULL;
653 }
654
655 rc = kmsg_dump_register(&nvram_kmsg_dumper);
656 if (rc != 0) {
657 pr_err("nvram: kmsg_dump_register() failed; returned %d\n", rc);
658 kfree(oops_buf);
659 kfree(big_oops_buf);
660 kfree(stream.workspace);
661 }
662 }
663
664 /*
665 * This is our kmsg_dump callback, called after an oops or panic report
666 * has been written to the printk buffer. We want to capture as much
667 * of the printk buffer as possible. First, capture as much as we can
668 * that we think will compress sufficiently to fit in the lnx,oops-log
669 * partition. If that's too much, go back and capture uncompressed text.
670 */
671 static void oops_to_nvram(struct kmsg_dumper *dumper,
672 enum kmsg_dump_reason reason)
673 {
674 struct oops_log_info *oops_hdr = (struct oops_log_info *)oops_buf;
675 static unsigned int oops_count = 0;
676 static bool panicking = false;
677 static DEFINE_SPINLOCK(lock);
678 unsigned long flags;
679 size_t text_len;
680 unsigned int err_type = ERR_TYPE_KERNEL_PANIC_GZ;
681 int rc = -1;
682
683 switch (reason) {
684 case KMSG_DUMP_RESTART:
685 case KMSG_DUMP_HALT:
686 case KMSG_DUMP_POWEROFF:
687 /* These are almost always orderly shutdowns. */
688 return;
689 case KMSG_DUMP_OOPS:
690 break;
691 case KMSG_DUMP_PANIC:
692 panicking = true;
693 break;
694 case KMSG_DUMP_EMERG:
695 if (panicking)
696 /* Panic report already captured. */
697 return;
698 break;
699 default:
700 pr_err("%s: ignoring unrecognized KMSG_DUMP_* reason %d\n",
701 __func__, (int) reason);
702 return;
703 }
704
705 if (clobbering_unread_rtas_event())
706 return;
707
708 if (!spin_trylock_irqsave(&lock, flags))
709 return;
710
711 if (big_oops_buf) {
712 kmsg_dump_get_buffer(dumper, false,
713 big_oops_buf, big_oops_buf_sz, &text_len);
714 rc = zip_oops(text_len);
715 }
716 if (rc != 0) {
717 kmsg_dump_rewind(dumper);
718 kmsg_dump_get_buffer(dumper, false,
719 oops_data, oops_data_sz, &text_len);
720 err_type = ERR_TYPE_KERNEL_PANIC;
721 oops_hdr->version = cpu_to_be16(OOPS_HDR_VERSION);
722 oops_hdr->report_length = cpu_to_be16(text_len);
723 oops_hdr->timestamp = cpu_to_be64(ktime_get_real_seconds());
724 }
725
726 (void) nvram_write_os_partition(&oops_log_partition, oops_buf,
727 (int) (sizeof(*oops_hdr) + text_len), err_type,
728 ++oops_count);
729
730 spin_unlock_irqrestore(&lock, flags);
731 }
732
733 static loff_t dev_nvram_llseek(struct file *file, loff_t offset, int origin)
734 {
735 if (ppc_md.nvram_size == NULL)
736 return -ENODEV;
737 return generic_file_llseek_size(file, offset, origin, MAX_LFS_FILESIZE,
738 ppc_md.nvram_size());
739 }
740
741
742 static ssize_t dev_nvram_read(struct file *file, char __user *buf,
743 size_t count, loff_t *ppos)
744 {
745 ssize_t ret;
746 char *tmp = NULL;
747 ssize_t size;
748
749 if (!ppc_md.nvram_size) {
750 ret = -ENODEV;
751 goto out;
752 }
753
754 size = ppc_md.nvram_size();
755 if (size < 0) {
756 ret = size;
757 goto out;
758 }
759
760 if (*ppos >= size) {
761 ret = 0;
762 goto out;
763 }
764
765 count = min_t(size_t, count, size - *ppos);
766 count = min(count, PAGE_SIZE);
767
768 tmp = kmalloc(count, GFP_KERNEL);
769 if (!tmp) {
770 ret = -ENOMEM;
771 goto out;
772 }
773
774 ret = ppc_md.nvram_read(tmp, count, ppos);
775 if (ret <= 0)
776 goto out;
777
778 if (copy_to_user(buf, tmp, ret))
779 ret = -EFAULT;
780
781 out:
782 kfree(tmp);
783 return ret;
784
785 }
786
787 static ssize_t dev_nvram_write(struct file *file, const char __user *buf,
788 size_t count, loff_t *ppos)
789 {
790 ssize_t ret;
791 char *tmp = NULL;
792 ssize_t size;
793
794 ret = -ENODEV;
795 if (!ppc_md.nvram_size)
796 goto out;
797
798 ret = 0;
799 size = ppc_md.nvram_size();
800 if (*ppos >= size || size < 0)
801 goto out;
802
803 count = min_t(size_t, count, size - *ppos);
804 count = min(count, PAGE_SIZE);
805
806 ret = -ENOMEM;
807 tmp = kmalloc(count, GFP_KERNEL);
808 if (!tmp)
809 goto out;
810
811 ret = -EFAULT;
812 if (copy_from_user(tmp, buf, count))
813 goto out;
814
815 ret = ppc_md.nvram_write(tmp, count, ppos);
816
817 out:
818 kfree(tmp);
819 return ret;
820
821 }
822
823 static long dev_nvram_ioctl(struct file *file, unsigned int cmd,
824 unsigned long arg)
825 {
826 switch(cmd) {
827 #ifdef CONFIG_PPC_PMAC
828 case OBSOLETE_PMAC_NVRAM_GET_OFFSET:
829 printk(KERN_WARNING "nvram: Using obsolete PMAC_NVRAM_GET_OFFSET ioctl\n");
830 case IOC_NVRAM_GET_OFFSET: {
831 int part, offset;
832
833 if (!machine_is(powermac))
834 return -EINVAL;
835 if (copy_from_user(&part, (void __user*)arg, sizeof(part)) != 0)
836 return -EFAULT;
837 if (part < pmac_nvram_OF || part > pmac_nvram_NR)
838 return -EINVAL;
839 offset = pmac_get_partition(part);
840 if (offset < 0)
841 return offset;
842 if (copy_to_user((void __user*)arg, &offset, sizeof(offset)) != 0)
843 return -EFAULT;
844 return 0;
845 }
846 #endif /* CONFIG_PPC_PMAC */
847 default:
848 return -EINVAL;
849 }
850 }
851
852 const struct file_operations nvram_fops = {
853 .owner = THIS_MODULE,
854 .llseek = dev_nvram_llseek,
855 .read = dev_nvram_read,
856 .write = dev_nvram_write,
857 .unlocked_ioctl = dev_nvram_ioctl,
858 };
859
860 static struct miscdevice nvram_dev = {
861 NVRAM_MINOR,
862 "nvram",
863 &nvram_fops
864 };
865
866
867 #ifdef DEBUG_NVRAM
868 static void __init nvram_print_partitions(char * label)
869 {
870 struct nvram_partition * tmp_part;
871
872 printk(KERN_WARNING "--------%s---------\n", label);
873 printk(KERN_WARNING "indx\t\tsig\tchks\tlen\tname\n");
874 list_for_each_entry(tmp_part, &nvram_partitions, partition) {
875 printk(KERN_WARNING "%4d \t%02x\t%02x\t%d\t%12.12s\n",
876 tmp_part->index, tmp_part->header.signature,
877 tmp_part->header.checksum, tmp_part->header.length,
878 tmp_part->header.name);
879 }
880 }
881 #endif
882
883
884 static int __init nvram_write_header(struct nvram_partition * part)
885 {
886 loff_t tmp_index;
887 int rc;
888 struct nvram_header phead;
889
890 memcpy(&phead, &part->header, NVRAM_HEADER_LEN);
891 phead.length = cpu_to_be16(phead.length);
892
893 tmp_index = part->index;
894 rc = ppc_md.nvram_write((char *)&phead, NVRAM_HEADER_LEN, &tmp_index);
895
896 return rc;
897 }
898
899
900 static unsigned char __init nvram_checksum(struct nvram_header *p)
901 {
902 unsigned int c_sum, c_sum2;
903 unsigned short *sp = (unsigned short *)p->name; /* assume 6 shorts */
904 c_sum = p->signature + p->length + sp[0] + sp[1] + sp[2] + sp[3] + sp[4] + sp[5];
905
906 /* The sum may have spilled into the 3rd byte. Fold it back. */
907 c_sum = ((c_sum & 0xffff) + (c_sum >> 16)) & 0xffff;
908 /* The sum cannot exceed 2 bytes. Fold it into a checksum */
909 c_sum2 = (c_sum >> 8) + (c_sum << 8);
910 c_sum = ((c_sum + c_sum2) >> 8) & 0xff;
911 return c_sum;
912 }
913
914 /*
915 * Per the criteria passed via nvram_remove_partition(), should this
916 * partition be removed? 1=remove, 0=keep
917 */
918 static int nvram_can_remove_partition(struct nvram_partition *part,
919 const char *name, int sig, const char *exceptions[])
920 {
921 if (part->header.signature != sig)
922 return 0;
923 if (name) {
924 if (strncmp(name, part->header.name, 12))
925 return 0;
926 } else if (exceptions) {
927 const char **except;
928 for (except = exceptions; *except; except++) {
929 if (!strncmp(*except, part->header.name, 12))
930 return 0;
931 }
932 }
933 return 1;
934 }
935
936 /**
937 * nvram_remove_partition - Remove one or more partitions in nvram
938 * @name: name of the partition to remove, or NULL for a
939 * signature only match
940 * @sig: signature of the partition(s) to remove
941 * @exceptions: When removing all partitions with a matching signature,
942 * leave these alone.
943 */
944
945 int __init nvram_remove_partition(const char *name, int sig,
946 const char *exceptions[])
947 {
948 struct nvram_partition *part, *prev, *tmp;
949 int rc;
950
951 list_for_each_entry(part, &nvram_partitions, partition) {
952 if (!nvram_can_remove_partition(part, name, sig, exceptions))
953 continue;
954
955 /* Make partition a free partition */
956 part->header.signature = NVRAM_SIG_FREE;
957 strncpy(part->header.name, "wwwwwwwwwwww", 12);
958 part->header.checksum = nvram_checksum(&part->header);
959 rc = nvram_write_header(part);
960 if (rc <= 0) {
961 printk(KERN_ERR "nvram_remove_partition: nvram_write failed (%d)\n", rc);
962 return rc;
963 }
964 }
965
966 /* Merge contiguous ones */
967 prev = NULL;
968 list_for_each_entry_safe(part, tmp, &nvram_partitions, partition) {
969 if (part->header.signature != NVRAM_SIG_FREE) {
970 prev = NULL;
971 continue;
972 }
973 if (prev) {
974 prev->header.length += part->header.length;
975 prev->header.checksum = nvram_checksum(&part->header);
976 rc = nvram_write_header(part);
977 if (rc <= 0) {
978 printk(KERN_ERR "nvram_remove_partition: nvram_write failed (%d)\n", rc);
979 return rc;
980 }
981 list_del(&part->partition);
982 kfree(part);
983 } else
984 prev = part;
985 }
986
987 return 0;
988 }
989
990 /**
991 * nvram_create_partition - Create a partition in nvram
992 * @name: name of the partition to create
993 * @sig: signature of the partition to create
994 * @req_size: size of data to allocate in bytes
995 * @min_size: minimum acceptable size (0 means req_size)
996 *
997 * Returns a negative error code or a positive nvram index
998 * of the beginning of the data area of the newly created
999 * partition. If you provided a min_size smaller than req_size
1000 * you need to query for the actual size yourself after the
1001 * call using nvram_partition_get_size().
1002 */
1003 loff_t __init nvram_create_partition(const char *name, int sig,
1004 int req_size, int min_size)
1005 {
1006 struct nvram_partition *part;
1007 struct nvram_partition *new_part;
1008 struct nvram_partition *free_part = NULL;
1009 static char nv_init_vals[16];
1010 loff_t tmp_index;
1011 long size = 0;
1012 int rc;
1013
1014 /* Convert sizes from bytes to blocks */
1015 req_size = _ALIGN_UP(req_size, NVRAM_BLOCK_LEN) / NVRAM_BLOCK_LEN;
1016 min_size = _ALIGN_UP(min_size, NVRAM_BLOCK_LEN) / NVRAM_BLOCK_LEN;
1017
1018 /* If no minimum size specified, make it the same as the
1019 * requested size
1020 */
1021 if (min_size == 0)
1022 min_size = req_size;
1023 if (min_size > req_size)
1024 return -EINVAL;
1025
1026 /* Now add one block to each for the header */
1027 req_size += 1;
1028 min_size += 1;
1029
1030 /* Find a free partition that will give us the maximum needed size
1031 If can't find one that will give us the minimum size needed */
1032 list_for_each_entry(part, &nvram_partitions, partition) {
1033 if (part->header.signature != NVRAM_SIG_FREE)
1034 continue;
1035
1036 if (part->header.length >= req_size) {
1037 size = req_size;
1038 free_part = part;
1039 break;
1040 }
1041 if (part->header.length > size &&
1042 part->header.length >= min_size) {
1043 size = part->header.length;
1044 free_part = part;
1045 }
1046 }
1047 if (!size)
1048 return -ENOSPC;
1049
1050 /* Create our OS partition */
1051 new_part = kmalloc(sizeof(*new_part), GFP_KERNEL);
1052 if (!new_part) {
1053 pr_err("%s: kmalloc failed\n", __func__);
1054 return -ENOMEM;
1055 }
1056
1057 new_part->index = free_part->index;
1058 new_part->header.signature = sig;
1059 new_part->header.length = size;
1060 strncpy(new_part->header.name, name, 12);
1061 new_part->header.checksum = nvram_checksum(&new_part->header);
1062
1063 rc = nvram_write_header(new_part);
1064 if (rc <= 0) {
1065 pr_err("%s: nvram_write_header failed (%d)\n", __func__, rc);
1066 kfree(new_part);
1067 return rc;
1068 }
1069 list_add_tail(&new_part->partition, &free_part->partition);
1070
1071 /* Adjust or remove the partition we stole the space from */
1072 if (free_part->header.length > size) {
1073 free_part->index += size * NVRAM_BLOCK_LEN;
1074 free_part->header.length -= size;
1075 free_part->header.checksum = nvram_checksum(&free_part->header);
1076 rc = nvram_write_header(free_part);
1077 if (rc <= 0) {
1078 pr_err("%s: nvram_write_header failed (%d)\n",
1079 __func__, rc);
1080 return rc;
1081 }
1082 } else {
1083 list_del(&free_part->partition);
1084 kfree(free_part);
1085 }
1086
1087 /* Clear the new partition */
1088 for (tmp_index = new_part->index + NVRAM_HEADER_LEN;
1089 tmp_index < ((size - 1) * NVRAM_BLOCK_LEN);
1090 tmp_index += NVRAM_BLOCK_LEN) {
1091 rc = ppc_md.nvram_write(nv_init_vals, NVRAM_BLOCK_LEN, &tmp_index);
1092 if (rc <= 0) {
1093 pr_err("%s: nvram_write failed (%d)\n",
1094 __func__, rc);
1095 return rc;
1096 }
1097 }
1098
1099 return new_part->index + NVRAM_HEADER_LEN;
1100 }
1101
1102 /**
1103 * nvram_get_partition_size - Get the data size of an nvram partition
1104 * @data_index: This is the offset of the start of the data of
1105 * the partition. The same value that is returned by
1106 * nvram_create_partition().
1107 */
1108 int nvram_get_partition_size(loff_t data_index)
1109 {
1110 struct nvram_partition *part;
1111
1112 list_for_each_entry(part, &nvram_partitions, partition) {
1113 if (part->index + NVRAM_HEADER_LEN == data_index)
1114 return (part->header.length - 1) * NVRAM_BLOCK_LEN;
1115 }
1116 return -1;
1117 }
1118
1119
1120 /**
1121 * nvram_find_partition - Find an nvram partition by signature and name
1122 * @name: Name of the partition or NULL for any name
1123 * @sig: Signature to test against
1124 * @out_size: if non-NULL, returns the size of the data part of the partition
1125 */
1126 loff_t nvram_find_partition(const char *name, int sig, int *out_size)
1127 {
1128 struct nvram_partition *p;
1129
1130 list_for_each_entry(p, &nvram_partitions, partition) {
1131 if (p->header.signature == sig &&
1132 (!name || !strncmp(p->header.name, name, 12))) {
1133 if (out_size)
1134 *out_size = (p->header.length - 1) *
1135 NVRAM_BLOCK_LEN;
1136 return p->index + NVRAM_HEADER_LEN;
1137 }
1138 }
1139 return 0;
1140 }
1141
1142 int __init nvram_scan_partitions(void)
1143 {
1144 loff_t cur_index = 0;
1145 struct nvram_header phead;
1146 struct nvram_partition * tmp_part;
1147 unsigned char c_sum;
1148 char * header;
1149 int total_size;
1150 int err;
1151
1152 if (ppc_md.nvram_size == NULL || ppc_md.nvram_size() <= 0)
1153 return -ENODEV;
1154 total_size = ppc_md.nvram_size();
1155
1156 header = kmalloc(NVRAM_HEADER_LEN, GFP_KERNEL);
1157 if (!header) {
1158 printk(KERN_ERR "nvram_scan_partitions: Failed kmalloc\n");
1159 return -ENOMEM;
1160 }
1161
1162 while (cur_index < total_size) {
1163
1164 err = ppc_md.nvram_read(header, NVRAM_HEADER_LEN, &cur_index);
1165 if (err != NVRAM_HEADER_LEN) {
1166 printk(KERN_ERR "nvram_scan_partitions: Error parsing "
1167 "nvram partitions\n");
1168 goto out;
1169 }
1170
1171 cur_index -= NVRAM_HEADER_LEN; /* nvram_read will advance us */
1172
1173 memcpy(&phead, header, NVRAM_HEADER_LEN);
1174
1175 phead.length = be16_to_cpu(phead.length);
1176
1177 err = 0;
1178 c_sum = nvram_checksum(&phead);
1179 if (c_sum != phead.checksum) {
1180 printk(KERN_WARNING "WARNING: nvram partition checksum"
1181 " was %02x, should be %02x!\n",
1182 phead.checksum, c_sum);
1183 printk(KERN_WARNING "Terminating nvram partition scan\n");
1184 goto out;
1185 }
1186 if (!phead.length) {
1187 printk(KERN_WARNING "WARNING: nvram corruption "
1188 "detected: 0-length partition\n");
1189 goto out;
1190 }
1191 tmp_part = kmalloc(sizeof(struct nvram_partition), GFP_KERNEL);
1192 err = -ENOMEM;
1193 if (!tmp_part) {
1194 printk(KERN_ERR "nvram_scan_partitions: kmalloc failed\n");
1195 goto out;
1196 }
1197
1198 memcpy(&tmp_part->header, &phead, NVRAM_HEADER_LEN);
1199 tmp_part->index = cur_index;
1200 list_add_tail(&tmp_part->partition, &nvram_partitions);
1201
1202 cur_index += phead.length * NVRAM_BLOCK_LEN;
1203 }
1204 err = 0;
1205
1206 #ifdef DEBUG_NVRAM
1207 nvram_print_partitions("NVRAM Partitions");
1208 #endif
1209
1210 out:
1211 kfree(header);
1212 return err;
1213 }
1214
1215 static int __init nvram_init(void)
1216 {
1217 int rc;
1218
1219 BUILD_BUG_ON(NVRAM_BLOCK_LEN != 16);
1220
1221 if (ppc_md.nvram_size == NULL || ppc_md.nvram_size() <= 0)
1222 return -ENODEV;
1223
1224 rc = misc_register(&nvram_dev);
1225 if (rc != 0) {
1226 printk(KERN_ERR "nvram_init: failed to register device\n");
1227 return rc;
1228 }
1229
1230 return rc;
1231 }
1232 device_initcall(nvram_init);
This page took 0.055275 seconds and 5 git commands to generate.