powerpc: Save the TAR register earlier
[deliverable/linux.git] / arch / powerpc / kernel / process.c
1 /*
2 * Derived from "arch/i386/kernel/process.c"
3 * Copyright (C) 1995 Linus Torvalds
4 *
5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6 * Paul Mackerras (paulus@cs.anu.edu.au)
7 *
8 * PowerPC version
9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10 *
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
15 */
16
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/slab.h>
26 #include <linux/user.h>
27 #include <linux/elf.h>
28 #include <linux/init.h>
29 #include <linux/prctl.h>
30 #include <linux/init_task.h>
31 #include <linux/export.h>
32 #include <linux/kallsyms.h>
33 #include <linux/mqueue.h>
34 #include <linux/hardirq.h>
35 #include <linux/utsname.h>
36 #include <linux/ftrace.h>
37 #include <linux/kernel_stat.h>
38 #include <linux/personality.h>
39 #include <linux/random.h>
40 #include <linux/hw_breakpoint.h>
41
42 #include <asm/pgtable.h>
43 #include <asm/uaccess.h>
44 #include <asm/io.h>
45 #include <asm/processor.h>
46 #include <asm/mmu.h>
47 #include <asm/prom.h>
48 #include <asm/machdep.h>
49 #include <asm/time.h>
50 #include <asm/runlatch.h>
51 #include <asm/syscalls.h>
52 #include <asm/switch_to.h>
53 #include <asm/tm.h>
54 #include <asm/debug.h>
55 #ifdef CONFIG_PPC64
56 #include <asm/firmware.h>
57 #endif
58 #include <linux/kprobes.h>
59 #include <linux/kdebug.h>
60
61 /* Transactional Memory debug */
62 #ifdef TM_DEBUG_SW
63 #define TM_DEBUG(x...) printk(KERN_INFO x)
64 #else
65 #define TM_DEBUG(x...) do { } while(0)
66 #endif
67
68 extern unsigned long _get_SP(void);
69
70 #ifndef CONFIG_SMP
71 struct task_struct *last_task_used_math = NULL;
72 struct task_struct *last_task_used_altivec = NULL;
73 struct task_struct *last_task_used_vsx = NULL;
74 struct task_struct *last_task_used_spe = NULL;
75 #endif
76
77 /*
78 * Make sure the floating-point register state in the
79 * the thread_struct is up to date for task tsk.
80 */
81 void flush_fp_to_thread(struct task_struct *tsk)
82 {
83 if (tsk->thread.regs) {
84 /*
85 * We need to disable preemption here because if we didn't,
86 * another process could get scheduled after the regs->msr
87 * test but before we have finished saving the FP registers
88 * to the thread_struct. That process could take over the
89 * FPU, and then when we get scheduled again we would store
90 * bogus values for the remaining FP registers.
91 */
92 preempt_disable();
93 if (tsk->thread.regs->msr & MSR_FP) {
94 #ifdef CONFIG_SMP
95 /*
96 * This should only ever be called for current or
97 * for a stopped child process. Since we save away
98 * the FP register state on context switch on SMP,
99 * there is something wrong if a stopped child appears
100 * to still have its FP state in the CPU registers.
101 */
102 BUG_ON(tsk != current);
103 #endif
104 giveup_fpu(tsk);
105 }
106 preempt_enable();
107 }
108 }
109 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
110
111 void enable_kernel_fp(void)
112 {
113 WARN_ON(preemptible());
114
115 #ifdef CONFIG_SMP
116 if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
117 giveup_fpu(current);
118 else
119 giveup_fpu(NULL); /* just enables FP for kernel */
120 #else
121 giveup_fpu(last_task_used_math);
122 #endif /* CONFIG_SMP */
123 }
124 EXPORT_SYMBOL(enable_kernel_fp);
125
126 #ifdef CONFIG_ALTIVEC
127 void enable_kernel_altivec(void)
128 {
129 WARN_ON(preemptible());
130
131 #ifdef CONFIG_SMP
132 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
133 giveup_altivec(current);
134 else
135 giveup_altivec_notask();
136 #else
137 giveup_altivec(last_task_used_altivec);
138 #endif /* CONFIG_SMP */
139 }
140 EXPORT_SYMBOL(enable_kernel_altivec);
141
142 /*
143 * Make sure the VMX/Altivec register state in the
144 * the thread_struct is up to date for task tsk.
145 */
146 void flush_altivec_to_thread(struct task_struct *tsk)
147 {
148 if (tsk->thread.regs) {
149 preempt_disable();
150 if (tsk->thread.regs->msr & MSR_VEC) {
151 #ifdef CONFIG_SMP
152 BUG_ON(tsk != current);
153 #endif
154 giveup_altivec(tsk);
155 }
156 preempt_enable();
157 }
158 }
159 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
160 #endif /* CONFIG_ALTIVEC */
161
162 #ifdef CONFIG_VSX
163 #if 0
164 /* not currently used, but some crazy RAID module might want to later */
165 void enable_kernel_vsx(void)
166 {
167 WARN_ON(preemptible());
168
169 #ifdef CONFIG_SMP
170 if (current->thread.regs && (current->thread.regs->msr & MSR_VSX))
171 giveup_vsx(current);
172 else
173 giveup_vsx(NULL); /* just enable vsx for kernel - force */
174 #else
175 giveup_vsx(last_task_used_vsx);
176 #endif /* CONFIG_SMP */
177 }
178 EXPORT_SYMBOL(enable_kernel_vsx);
179 #endif
180
181 void giveup_vsx(struct task_struct *tsk)
182 {
183 giveup_fpu(tsk);
184 giveup_altivec(tsk);
185 __giveup_vsx(tsk);
186 }
187
188 void flush_vsx_to_thread(struct task_struct *tsk)
189 {
190 if (tsk->thread.regs) {
191 preempt_disable();
192 if (tsk->thread.regs->msr & MSR_VSX) {
193 #ifdef CONFIG_SMP
194 BUG_ON(tsk != current);
195 #endif
196 giveup_vsx(tsk);
197 }
198 preempt_enable();
199 }
200 }
201 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
202 #endif /* CONFIG_VSX */
203
204 #ifdef CONFIG_SPE
205
206 void enable_kernel_spe(void)
207 {
208 WARN_ON(preemptible());
209
210 #ifdef CONFIG_SMP
211 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
212 giveup_spe(current);
213 else
214 giveup_spe(NULL); /* just enable SPE for kernel - force */
215 #else
216 giveup_spe(last_task_used_spe);
217 #endif /* __SMP __ */
218 }
219 EXPORT_SYMBOL(enable_kernel_spe);
220
221 void flush_spe_to_thread(struct task_struct *tsk)
222 {
223 if (tsk->thread.regs) {
224 preempt_disable();
225 if (tsk->thread.regs->msr & MSR_SPE) {
226 #ifdef CONFIG_SMP
227 BUG_ON(tsk != current);
228 #endif
229 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
230 giveup_spe(tsk);
231 }
232 preempt_enable();
233 }
234 }
235 #endif /* CONFIG_SPE */
236
237 #ifndef CONFIG_SMP
238 /*
239 * If we are doing lazy switching of CPU state (FP, altivec or SPE),
240 * and the current task has some state, discard it.
241 */
242 void discard_lazy_cpu_state(void)
243 {
244 preempt_disable();
245 if (last_task_used_math == current)
246 last_task_used_math = NULL;
247 #ifdef CONFIG_ALTIVEC
248 if (last_task_used_altivec == current)
249 last_task_used_altivec = NULL;
250 #endif /* CONFIG_ALTIVEC */
251 #ifdef CONFIG_VSX
252 if (last_task_used_vsx == current)
253 last_task_used_vsx = NULL;
254 #endif /* CONFIG_VSX */
255 #ifdef CONFIG_SPE
256 if (last_task_used_spe == current)
257 last_task_used_spe = NULL;
258 #endif
259 preempt_enable();
260 }
261 #endif /* CONFIG_SMP */
262
263 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
264 void do_send_trap(struct pt_regs *regs, unsigned long address,
265 unsigned long error_code, int signal_code, int breakpt)
266 {
267 siginfo_t info;
268
269 current->thread.trap_nr = signal_code;
270 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
271 11, SIGSEGV) == NOTIFY_STOP)
272 return;
273
274 /* Deliver the signal to userspace */
275 info.si_signo = SIGTRAP;
276 info.si_errno = breakpt; /* breakpoint or watchpoint id */
277 info.si_code = signal_code;
278 info.si_addr = (void __user *)address;
279 force_sig_info(SIGTRAP, &info, current);
280 }
281 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
282 void do_break (struct pt_regs *regs, unsigned long address,
283 unsigned long error_code)
284 {
285 siginfo_t info;
286
287 current->thread.trap_nr = TRAP_HWBKPT;
288 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
289 11, SIGSEGV) == NOTIFY_STOP)
290 return;
291
292 if (debugger_break_match(regs))
293 return;
294
295 /* Clear the breakpoint */
296 hw_breakpoint_disable();
297
298 /* Deliver the signal to userspace */
299 info.si_signo = SIGTRAP;
300 info.si_errno = 0;
301 info.si_code = TRAP_HWBKPT;
302 info.si_addr = (void __user *)address;
303 force_sig_info(SIGTRAP, &info, current);
304 }
305 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
306
307 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
308
309 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
310 /*
311 * Set the debug registers back to their default "safe" values.
312 */
313 static void set_debug_reg_defaults(struct thread_struct *thread)
314 {
315 thread->iac1 = thread->iac2 = 0;
316 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
317 thread->iac3 = thread->iac4 = 0;
318 #endif
319 thread->dac1 = thread->dac2 = 0;
320 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
321 thread->dvc1 = thread->dvc2 = 0;
322 #endif
323 thread->dbcr0 = 0;
324 #ifdef CONFIG_BOOKE
325 /*
326 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
327 */
328 thread->dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US | \
329 DBCR1_IAC3US | DBCR1_IAC4US;
330 /*
331 * Force Data Address Compare User/Supervisor bits to be User-only
332 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
333 */
334 thread->dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
335 #else
336 thread->dbcr1 = 0;
337 #endif
338 }
339
340 static void prime_debug_regs(struct thread_struct *thread)
341 {
342 /*
343 * We could have inherited MSR_DE from userspace, since
344 * it doesn't get cleared on exception entry. Make sure
345 * MSR_DE is clear before we enable any debug events.
346 */
347 mtmsr(mfmsr() & ~MSR_DE);
348
349 mtspr(SPRN_IAC1, thread->iac1);
350 mtspr(SPRN_IAC2, thread->iac2);
351 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
352 mtspr(SPRN_IAC3, thread->iac3);
353 mtspr(SPRN_IAC4, thread->iac4);
354 #endif
355 mtspr(SPRN_DAC1, thread->dac1);
356 mtspr(SPRN_DAC2, thread->dac2);
357 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
358 mtspr(SPRN_DVC1, thread->dvc1);
359 mtspr(SPRN_DVC2, thread->dvc2);
360 #endif
361 mtspr(SPRN_DBCR0, thread->dbcr0);
362 mtspr(SPRN_DBCR1, thread->dbcr1);
363 #ifdef CONFIG_BOOKE
364 mtspr(SPRN_DBCR2, thread->dbcr2);
365 #endif
366 }
367 /*
368 * Unless neither the old or new thread are making use of the
369 * debug registers, set the debug registers from the values
370 * stored in the new thread.
371 */
372 static void switch_booke_debug_regs(struct thread_struct *new_thread)
373 {
374 if ((current->thread.dbcr0 & DBCR0_IDM)
375 || (new_thread->dbcr0 & DBCR0_IDM))
376 prime_debug_regs(new_thread);
377 }
378 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
379 #ifndef CONFIG_HAVE_HW_BREAKPOINT
380 static void set_debug_reg_defaults(struct thread_struct *thread)
381 {
382 thread->hw_brk.address = 0;
383 thread->hw_brk.type = 0;
384 set_breakpoint(&thread->hw_brk);
385 }
386 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
387 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
388
389 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
390 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
391 {
392 mtspr(SPRN_DAC1, dabr);
393 #ifdef CONFIG_PPC_47x
394 isync();
395 #endif
396 return 0;
397 }
398 #elif defined(CONFIG_PPC_BOOK3S)
399 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
400 {
401 mtspr(SPRN_DABR, dabr);
402 if (cpu_has_feature(CPU_FTR_DABRX))
403 mtspr(SPRN_DABRX, dabrx);
404 return 0;
405 }
406 #else
407 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
408 {
409 return -EINVAL;
410 }
411 #endif
412
413 static inline int set_dabr(struct arch_hw_breakpoint *brk)
414 {
415 unsigned long dabr, dabrx;
416
417 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
418 dabrx = ((brk->type >> 3) & 0x7);
419
420 if (ppc_md.set_dabr)
421 return ppc_md.set_dabr(dabr, dabrx);
422
423 return __set_dabr(dabr, dabrx);
424 }
425
426 static inline int set_dawr(struct arch_hw_breakpoint *brk)
427 {
428 unsigned long dawr, dawrx, mrd;
429
430 dawr = brk->address;
431
432 dawrx = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
433 << (63 - 58); //* read/write bits */
434 dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
435 << (63 - 59); //* translate */
436 dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
437 >> 3; //* PRIM bits */
438 /* dawr length is stored in field MDR bits 48:53. Matches range in
439 doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
440 0b111111=64DW.
441 brk->len is in bytes.
442 This aligns up to double word size, shifts and does the bias.
443 */
444 mrd = ((brk->len + 7) >> 3) - 1;
445 dawrx |= (mrd & 0x3f) << (63 - 53);
446
447 if (ppc_md.set_dawr)
448 return ppc_md.set_dawr(dawr, dawrx);
449 mtspr(SPRN_DAWR, dawr);
450 mtspr(SPRN_DAWRX, dawrx);
451 return 0;
452 }
453
454 int set_breakpoint(struct arch_hw_breakpoint *brk)
455 {
456 __get_cpu_var(current_brk) = *brk;
457
458 if (cpu_has_feature(CPU_FTR_DAWR))
459 return set_dawr(brk);
460
461 return set_dabr(brk);
462 }
463
464 #ifdef CONFIG_PPC64
465 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
466 #endif
467
468 static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
469 struct arch_hw_breakpoint *b)
470 {
471 if (a->address != b->address)
472 return false;
473 if (a->type != b->type)
474 return false;
475 if (a->len != b->len)
476 return false;
477 return true;
478 }
479 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
480 static inline void tm_reclaim_task(struct task_struct *tsk)
481 {
482 /* We have to work out if we're switching from/to a task that's in the
483 * middle of a transaction.
484 *
485 * In switching we need to maintain a 2nd register state as
486 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the
487 * checkpointed (tbegin) state in ckpt_regs and saves the transactional
488 * (current) FPRs into oldtask->thread.transact_fpr[].
489 *
490 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
491 */
492 struct thread_struct *thr = &tsk->thread;
493
494 if (!thr->regs)
495 return;
496
497 if (!MSR_TM_ACTIVE(thr->regs->msr))
498 goto out_and_saveregs;
499
500 /* Stash the original thread MSR, as giveup_fpu et al will
501 * modify it. We hold onto it to see whether the task used
502 * FP & vector regs.
503 */
504 thr->tm_orig_msr = thr->regs->msr;
505
506 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
507 "ccr=%lx, msr=%lx, trap=%lx)\n",
508 tsk->pid, thr->regs->nip,
509 thr->regs->ccr, thr->regs->msr,
510 thr->regs->trap);
511
512 tm_reclaim(thr, thr->regs->msr, TM_CAUSE_RESCHED);
513
514 TM_DEBUG("--- tm_reclaim on pid %d complete\n",
515 tsk->pid);
516
517 out_and_saveregs:
518 /* Always save the regs here, even if a transaction's not active.
519 * This context-switches a thread's TM info SPRs. We do it here to
520 * be consistent with the restore path (in recheckpoint) which
521 * cannot happen later in _switch().
522 */
523 tm_save_sprs(thr);
524 }
525
526 static inline void tm_recheckpoint_new_task(struct task_struct *new)
527 {
528 unsigned long msr;
529
530 if (!cpu_has_feature(CPU_FTR_TM))
531 return;
532
533 /* Recheckpoint the registers of the thread we're about to switch to.
534 *
535 * If the task was using FP, we non-lazily reload both the original and
536 * the speculative FP register states. This is because the kernel
537 * doesn't see if/when a TM rollback occurs, so if we take an FP
538 * unavoidable later, we are unable to determine which set of FP regs
539 * need to be restored.
540 */
541 if (!new->thread.regs)
542 return;
543
544 /* The TM SPRs are restored here, so that TEXASR.FS can be set
545 * before the trecheckpoint and no explosion occurs.
546 */
547 tm_restore_sprs(&new->thread);
548
549 if (!MSR_TM_ACTIVE(new->thread.regs->msr))
550 return;
551 msr = new->thread.tm_orig_msr;
552 /* Recheckpoint to restore original checkpointed register state. */
553 TM_DEBUG("*** tm_recheckpoint of pid %d "
554 "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
555 new->pid, new->thread.regs->msr, msr);
556
557 /* This loads the checkpointed FP/VEC state, if used */
558 tm_recheckpoint(&new->thread, msr);
559
560 /* This loads the speculative FP/VEC state, if used */
561 if (msr & MSR_FP) {
562 do_load_up_transact_fpu(&new->thread);
563 new->thread.regs->msr |=
564 (MSR_FP | new->thread.fpexc_mode);
565 }
566 #ifdef CONFIG_ALTIVEC
567 if (msr & MSR_VEC) {
568 do_load_up_transact_altivec(&new->thread);
569 new->thread.regs->msr |= MSR_VEC;
570 }
571 #endif
572 /* We may as well turn on VSX too since all the state is restored now */
573 if (msr & MSR_VSX)
574 new->thread.regs->msr |= MSR_VSX;
575
576 TM_DEBUG("*** tm_recheckpoint of pid %d complete "
577 "(kernel msr 0x%lx)\n",
578 new->pid, mfmsr());
579 }
580
581 static inline void __switch_to_tm(struct task_struct *prev)
582 {
583 if (cpu_has_feature(CPU_FTR_TM)) {
584 tm_enable();
585 tm_reclaim_task(prev);
586 }
587 }
588 #else
589 #define tm_recheckpoint_new_task(new)
590 #define __switch_to_tm(prev)
591 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
592
593 struct task_struct *__switch_to(struct task_struct *prev,
594 struct task_struct *new)
595 {
596 struct thread_struct *new_thread, *old_thread;
597 unsigned long flags;
598 struct task_struct *last;
599 #ifdef CONFIG_PPC_BOOK3S_64
600 struct ppc64_tlb_batch *batch;
601 #endif
602
603 /* Back up the TAR across context switches.
604 * Note that the TAR is not available for use in the kernel. (To
605 * provide this, the TAR should be backed up/restored on exception
606 * entry/exit instead, and be in pt_regs. FIXME, this should be in
607 * pt_regs anyway (for debug).)
608 * Save the TAR here before we do treclaim/trecheckpoint as these
609 * will change the TAR.
610 */
611 save_tar(&prev->thread);
612
613 __switch_to_tm(prev);
614
615 #ifdef CONFIG_SMP
616 /* avoid complexity of lazy save/restore of fpu
617 * by just saving it every time we switch out if
618 * this task used the fpu during the last quantum.
619 *
620 * If it tries to use the fpu again, it'll trap and
621 * reload its fp regs. So we don't have to do a restore
622 * every switch, just a save.
623 * -- Cort
624 */
625 if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
626 giveup_fpu(prev);
627 #ifdef CONFIG_ALTIVEC
628 /*
629 * If the previous thread used altivec in the last quantum
630 * (thus changing altivec regs) then save them.
631 * We used to check the VRSAVE register but not all apps
632 * set it, so we don't rely on it now (and in fact we need
633 * to save & restore VSCR even if VRSAVE == 0). -- paulus
634 *
635 * On SMP we always save/restore altivec regs just to avoid the
636 * complexity of changing processors.
637 * -- Cort
638 */
639 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
640 giveup_altivec(prev);
641 #endif /* CONFIG_ALTIVEC */
642 #ifdef CONFIG_VSX
643 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VSX))
644 /* VMX and FPU registers are already save here */
645 __giveup_vsx(prev);
646 #endif /* CONFIG_VSX */
647 #ifdef CONFIG_SPE
648 /*
649 * If the previous thread used spe in the last quantum
650 * (thus changing spe regs) then save them.
651 *
652 * On SMP we always save/restore spe regs just to avoid the
653 * complexity of changing processors.
654 */
655 if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
656 giveup_spe(prev);
657 #endif /* CONFIG_SPE */
658
659 #else /* CONFIG_SMP */
660 #ifdef CONFIG_ALTIVEC
661 /* Avoid the trap. On smp this this never happens since
662 * we don't set last_task_used_altivec -- Cort
663 */
664 if (new->thread.regs && last_task_used_altivec == new)
665 new->thread.regs->msr |= MSR_VEC;
666 #endif /* CONFIG_ALTIVEC */
667 #ifdef CONFIG_VSX
668 if (new->thread.regs && last_task_used_vsx == new)
669 new->thread.regs->msr |= MSR_VSX;
670 #endif /* CONFIG_VSX */
671 #ifdef CONFIG_SPE
672 /* Avoid the trap. On smp this this never happens since
673 * we don't set last_task_used_spe
674 */
675 if (new->thread.regs && last_task_used_spe == new)
676 new->thread.regs->msr |= MSR_SPE;
677 #endif /* CONFIG_SPE */
678
679 #endif /* CONFIG_SMP */
680
681 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
682 switch_booke_debug_regs(&new->thread);
683 #else
684 /*
685 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
686 * schedule DABR
687 */
688 #ifndef CONFIG_HAVE_HW_BREAKPOINT
689 if (unlikely(hw_brk_match(&__get_cpu_var(current_brk), &new->thread.hw_brk)))
690 set_breakpoint(&new->thread.hw_brk);
691 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
692 #endif
693
694
695 new_thread = &new->thread;
696 old_thread = &current->thread;
697
698 #ifdef CONFIG_PPC64
699 /*
700 * Collect processor utilization data per process
701 */
702 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
703 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
704 long unsigned start_tb, current_tb;
705 start_tb = old_thread->start_tb;
706 cu->current_tb = current_tb = mfspr(SPRN_PURR);
707 old_thread->accum_tb += (current_tb - start_tb);
708 new_thread->start_tb = current_tb;
709 }
710 #endif /* CONFIG_PPC64 */
711
712 #ifdef CONFIG_PPC_BOOK3S_64
713 batch = &__get_cpu_var(ppc64_tlb_batch);
714 if (batch->active) {
715 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
716 if (batch->index)
717 __flush_tlb_pending(batch);
718 batch->active = 0;
719 }
720 #endif /* CONFIG_PPC_BOOK3S_64 */
721
722 local_irq_save(flags);
723
724 /*
725 * We can't take a PMU exception inside _switch() since there is a
726 * window where the kernel stack SLB and the kernel stack are out
727 * of sync. Hard disable here.
728 */
729 hard_irq_disable();
730
731 tm_recheckpoint_new_task(new);
732
733 last = _switch(old_thread, new_thread);
734
735 #ifdef CONFIG_PPC_BOOK3S_64
736 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
737 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
738 batch = &__get_cpu_var(ppc64_tlb_batch);
739 batch->active = 1;
740 }
741 #endif /* CONFIG_PPC_BOOK3S_64 */
742
743 local_irq_restore(flags);
744
745 return last;
746 }
747
748 static int instructions_to_print = 16;
749
750 static void show_instructions(struct pt_regs *regs)
751 {
752 int i;
753 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
754 sizeof(int));
755
756 printk("Instruction dump:");
757
758 for (i = 0; i < instructions_to_print; i++) {
759 int instr;
760
761 if (!(i % 8))
762 printk("\n");
763
764 #if !defined(CONFIG_BOOKE)
765 /* If executing with the IMMU off, adjust pc rather
766 * than print XXXXXXXX.
767 */
768 if (!(regs->msr & MSR_IR))
769 pc = (unsigned long)phys_to_virt(pc);
770 #endif
771
772 /* We use __get_user here *only* to avoid an OOPS on a
773 * bad address because the pc *should* only be a
774 * kernel address.
775 */
776 if (!__kernel_text_address(pc) ||
777 __get_user(instr, (unsigned int __user *)pc)) {
778 printk(KERN_CONT "XXXXXXXX ");
779 } else {
780 if (regs->nip == pc)
781 printk(KERN_CONT "<%08x> ", instr);
782 else
783 printk(KERN_CONT "%08x ", instr);
784 }
785
786 pc += sizeof(int);
787 }
788
789 printk("\n");
790 }
791
792 static struct regbit {
793 unsigned long bit;
794 const char *name;
795 } msr_bits[] = {
796 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
797 {MSR_SF, "SF"},
798 {MSR_HV, "HV"},
799 #endif
800 {MSR_VEC, "VEC"},
801 {MSR_VSX, "VSX"},
802 #ifdef CONFIG_BOOKE
803 {MSR_CE, "CE"},
804 #endif
805 {MSR_EE, "EE"},
806 {MSR_PR, "PR"},
807 {MSR_FP, "FP"},
808 {MSR_ME, "ME"},
809 #ifdef CONFIG_BOOKE
810 {MSR_DE, "DE"},
811 #else
812 {MSR_SE, "SE"},
813 {MSR_BE, "BE"},
814 #endif
815 {MSR_IR, "IR"},
816 {MSR_DR, "DR"},
817 {MSR_PMM, "PMM"},
818 #ifndef CONFIG_BOOKE
819 {MSR_RI, "RI"},
820 {MSR_LE, "LE"},
821 #endif
822 {0, NULL}
823 };
824
825 static void printbits(unsigned long val, struct regbit *bits)
826 {
827 const char *sep = "";
828
829 printk("<");
830 for (; bits->bit; ++bits)
831 if (val & bits->bit) {
832 printk("%s%s", sep, bits->name);
833 sep = ",";
834 }
835 printk(">");
836 }
837
838 #ifdef CONFIG_PPC64
839 #define REG "%016lx"
840 #define REGS_PER_LINE 4
841 #define LAST_VOLATILE 13
842 #else
843 #define REG "%08lx"
844 #define REGS_PER_LINE 8
845 #define LAST_VOLATILE 12
846 #endif
847
848 void show_regs(struct pt_regs * regs)
849 {
850 int i, trap;
851
852 show_regs_print_info(KERN_DEFAULT);
853
854 printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
855 regs->nip, regs->link, regs->ctr);
856 printk("REGS: %p TRAP: %04lx %s (%s)\n",
857 regs, regs->trap, print_tainted(), init_utsname()->release);
858 printk("MSR: "REG" ", regs->msr);
859 printbits(regs->msr, msr_bits);
860 printk(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer);
861 #ifdef CONFIG_PPC64
862 printk("SOFTE: %ld\n", regs->softe);
863 #endif
864 trap = TRAP(regs);
865 if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
866 printk("CFAR: "REG"\n", regs->orig_gpr3);
867 if (trap == 0x300 || trap == 0x600)
868 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
869 printk("DEAR: "REG", ESR: "REG"\n", regs->dar, regs->dsisr);
870 #else
871 printk("DAR: "REG", DSISR: %08lx\n", regs->dar, regs->dsisr);
872 #endif
873
874 for (i = 0; i < 32; i++) {
875 if ((i % REGS_PER_LINE) == 0)
876 printk("\nGPR%02d: ", i);
877 printk(REG " ", regs->gpr[i]);
878 if (i == LAST_VOLATILE && !FULL_REGS(regs))
879 break;
880 }
881 printk("\n");
882 #ifdef CONFIG_KALLSYMS
883 /*
884 * Lookup NIP late so we have the best change of getting the
885 * above info out without failing
886 */
887 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
888 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
889 #endif
890 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
891 printk("PACATMSCRATCH [%llx]\n", get_paca()->tm_scratch);
892 #endif
893 show_stack(current, (unsigned long *) regs->gpr[1]);
894 if (!user_mode(regs))
895 show_instructions(regs);
896 }
897
898 void exit_thread(void)
899 {
900 discard_lazy_cpu_state();
901 }
902
903 void flush_thread(void)
904 {
905 discard_lazy_cpu_state();
906
907 #ifdef CONFIG_HAVE_HW_BREAKPOINT
908 flush_ptrace_hw_breakpoint(current);
909 #else /* CONFIG_HAVE_HW_BREAKPOINT */
910 set_debug_reg_defaults(&current->thread);
911 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
912 }
913
914 void
915 release_thread(struct task_struct *t)
916 {
917 }
918
919 /*
920 * this gets called so that we can store coprocessor state into memory and
921 * copy the current task into the new thread.
922 */
923 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
924 {
925 flush_fp_to_thread(src);
926 flush_altivec_to_thread(src);
927 flush_vsx_to_thread(src);
928 flush_spe_to_thread(src);
929
930 *dst = *src;
931
932 clear_task_ebb(dst);
933
934 return 0;
935 }
936
937 /*
938 * Copy a thread..
939 */
940 extern unsigned long dscr_default; /* defined in arch/powerpc/kernel/sysfs.c */
941
942 int copy_thread(unsigned long clone_flags, unsigned long usp,
943 unsigned long arg, struct task_struct *p)
944 {
945 struct pt_regs *childregs, *kregs;
946 extern void ret_from_fork(void);
947 extern void ret_from_kernel_thread(void);
948 void (*f)(void);
949 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
950
951 /* Copy registers */
952 sp -= sizeof(struct pt_regs);
953 childregs = (struct pt_regs *) sp;
954 if (unlikely(p->flags & PF_KTHREAD)) {
955 struct thread_info *ti = (void *)task_stack_page(p);
956 memset(childregs, 0, sizeof(struct pt_regs));
957 childregs->gpr[1] = sp + sizeof(struct pt_regs);
958 childregs->gpr[14] = usp; /* function */
959 #ifdef CONFIG_PPC64
960 clear_tsk_thread_flag(p, TIF_32BIT);
961 childregs->softe = 1;
962 #endif
963 childregs->gpr[15] = arg;
964 p->thread.regs = NULL; /* no user register state */
965 ti->flags |= _TIF_RESTOREALL;
966 f = ret_from_kernel_thread;
967 } else {
968 struct pt_regs *regs = current_pt_regs();
969 CHECK_FULL_REGS(regs);
970 *childregs = *regs;
971 if (usp)
972 childregs->gpr[1] = usp;
973 p->thread.regs = childregs;
974 childregs->gpr[3] = 0; /* Result from fork() */
975 if (clone_flags & CLONE_SETTLS) {
976 #ifdef CONFIG_PPC64
977 if (!is_32bit_task())
978 childregs->gpr[13] = childregs->gpr[6];
979 else
980 #endif
981 childregs->gpr[2] = childregs->gpr[6];
982 }
983
984 f = ret_from_fork;
985 }
986 sp -= STACK_FRAME_OVERHEAD;
987
988 /*
989 * The way this works is that at some point in the future
990 * some task will call _switch to switch to the new task.
991 * That will pop off the stack frame created below and start
992 * the new task running at ret_from_fork. The new task will
993 * do some house keeping and then return from the fork or clone
994 * system call, using the stack frame created above.
995 */
996 ((unsigned long *)sp)[0] = 0;
997 sp -= sizeof(struct pt_regs);
998 kregs = (struct pt_regs *) sp;
999 sp -= STACK_FRAME_OVERHEAD;
1000 p->thread.ksp = sp;
1001 p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
1002 _ALIGN_UP(sizeof(struct thread_info), 16);
1003
1004 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1005 p->thread.ptrace_bps[0] = NULL;
1006 #endif
1007
1008 #ifdef CONFIG_PPC_STD_MMU_64
1009 if (mmu_has_feature(MMU_FTR_SLB)) {
1010 unsigned long sp_vsid;
1011 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1012
1013 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1014 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1015 << SLB_VSID_SHIFT_1T;
1016 else
1017 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1018 << SLB_VSID_SHIFT;
1019 sp_vsid |= SLB_VSID_KERNEL | llp;
1020 p->thread.ksp_vsid = sp_vsid;
1021 }
1022 #endif /* CONFIG_PPC_STD_MMU_64 */
1023 #ifdef CONFIG_PPC64
1024 if (cpu_has_feature(CPU_FTR_DSCR)) {
1025 p->thread.dscr_inherit = current->thread.dscr_inherit;
1026 p->thread.dscr = current->thread.dscr;
1027 }
1028 if (cpu_has_feature(CPU_FTR_HAS_PPR))
1029 p->thread.ppr = INIT_PPR;
1030 #endif
1031 /*
1032 * The PPC64 ABI makes use of a TOC to contain function
1033 * pointers. The function (ret_from_except) is actually a pointer
1034 * to the TOC entry. The first entry is a pointer to the actual
1035 * function.
1036 */
1037 #ifdef CONFIG_PPC64
1038 kregs->nip = *((unsigned long *)f);
1039 #else
1040 kregs->nip = (unsigned long)f;
1041 #endif
1042 return 0;
1043 }
1044
1045 /*
1046 * Set up a thread for executing a new program
1047 */
1048 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1049 {
1050 #ifdef CONFIG_PPC64
1051 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1052 #endif
1053
1054 /*
1055 * If we exec out of a kernel thread then thread.regs will not be
1056 * set. Do it now.
1057 */
1058 if (!current->thread.regs) {
1059 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1060 current->thread.regs = regs - 1;
1061 }
1062
1063 memset(regs->gpr, 0, sizeof(regs->gpr));
1064 regs->ctr = 0;
1065 regs->link = 0;
1066 regs->xer = 0;
1067 regs->ccr = 0;
1068 regs->gpr[1] = sp;
1069
1070 /*
1071 * We have just cleared all the nonvolatile GPRs, so make
1072 * FULL_REGS(regs) return true. This is necessary to allow
1073 * ptrace to examine the thread immediately after exec.
1074 */
1075 regs->trap &= ~1UL;
1076
1077 #ifdef CONFIG_PPC32
1078 regs->mq = 0;
1079 regs->nip = start;
1080 regs->msr = MSR_USER;
1081 #else
1082 if (!is_32bit_task()) {
1083 unsigned long entry, toc;
1084
1085 /* start is a relocated pointer to the function descriptor for
1086 * the elf _start routine. The first entry in the function
1087 * descriptor is the entry address of _start and the second
1088 * entry is the TOC value we need to use.
1089 */
1090 __get_user(entry, (unsigned long __user *)start);
1091 __get_user(toc, (unsigned long __user *)start+1);
1092
1093 /* Check whether the e_entry function descriptor entries
1094 * need to be relocated before we can use them.
1095 */
1096 if (load_addr != 0) {
1097 entry += load_addr;
1098 toc += load_addr;
1099 }
1100 regs->nip = entry;
1101 regs->gpr[2] = toc;
1102 regs->msr = MSR_USER64;
1103 } else {
1104 regs->nip = start;
1105 regs->gpr[2] = 0;
1106 regs->msr = MSR_USER32;
1107 }
1108 #endif
1109 discard_lazy_cpu_state();
1110 #ifdef CONFIG_VSX
1111 current->thread.used_vsr = 0;
1112 #endif
1113 memset(current->thread.fpr, 0, sizeof(current->thread.fpr));
1114 current->thread.fpscr.val = 0;
1115 #ifdef CONFIG_ALTIVEC
1116 memset(current->thread.vr, 0, sizeof(current->thread.vr));
1117 memset(&current->thread.vscr, 0, sizeof(current->thread.vscr));
1118 current->thread.vscr.u[3] = 0x00010000; /* Java mode disabled */
1119 current->thread.vrsave = 0;
1120 current->thread.used_vr = 0;
1121 #endif /* CONFIG_ALTIVEC */
1122 #ifdef CONFIG_SPE
1123 memset(current->thread.evr, 0, sizeof(current->thread.evr));
1124 current->thread.acc = 0;
1125 current->thread.spefscr = 0;
1126 current->thread.used_spe = 0;
1127 #endif /* CONFIG_SPE */
1128 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1129 if (cpu_has_feature(CPU_FTR_TM))
1130 regs->msr |= MSR_TM;
1131 current->thread.tm_tfhar = 0;
1132 current->thread.tm_texasr = 0;
1133 current->thread.tm_tfiar = 0;
1134 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1135 }
1136
1137 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1138 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1139
1140 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1141 {
1142 struct pt_regs *regs = tsk->thread.regs;
1143
1144 /* This is a bit hairy. If we are an SPE enabled processor
1145 * (have embedded fp) we store the IEEE exception enable flags in
1146 * fpexc_mode. fpexc_mode is also used for setting FP exception
1147 * mode (asyn, precise, disabled) for 'Classic' FP. */
1148 if (val & PR_FP_EXC_SW_ENABLE) {
1149 #ifdef CONFIG_SPE
1150 if (cpu_has_feature(CPU_FTR_SPE)) {
1151 tsk->thread.fpexc_mode = val &
1152 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1153 return 0;
1154 } else {
1155 return -EINVAL;
1156 }
1157 #else
1158 return -EINVAL;
1159 #endif
1160 }
1161
1162 /* on a CONFIG_SPE this does not hurt us. The bits that
1163 * __pack_fe01 use do not overlap with bits used for
1164 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
1165 * on CONFIG_SPE implementations are reserved so writing to
1166 * them does not change anything */
1167 if (val > PR_FP_EXC_PRECISE)
1168 return -EINVAL;
1169 tsk->thread.fpexc_mode = __pack_fe01(val);
1170 if (regs != NULL && (regs->msr & MSR_FP) != 0)
1171 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1172 | tsk->thread.fpexc_mode;
1173 return 0;
1174 }
1175
1176 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1177 {
1178 unsigned int val;
1179
1180 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1181 #ifdef CONFIG_SPE
1182 if (cpu_has_feature(CPU_FTR_SPE))
1183 val = tsk->thread.fpexc_mode;
1184 else
1185 return -EINVAL;
1186 #else
1187 return -EINVAL;
1188 #endif
1189 else
1190 val = __unpack_fe01(tsk->thread.fpexc_mode);
1191 return put_user(val, (unsigned int __user *) adr);
1192 }
1193
1194 int set_endian(struct task_struct *tsk, unsigned int val)
1195 {
1196 struct pt_regs *regs = tsk->thread.regs;
1197
1198 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1199 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1200 return -EINVAL;
1201
1202 if (regs == NULL)
1203 return -EINVAL;
1204
1205 if (val == PR_ENDIAN_BIG)
1206 regs->msr &= ~MSR_LE;
1207 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1208 regs->msr |= MSR_LE;
1209 else
1210 return -EINVAL;
1211
1212 return 0;
1213 }
1214
1215 int get_endian(struct task_struct *tsk, unsigned long adr)
1216 {
1217 struct pt_regs *regs = tsk->thread.regs;
1218 unsigned int val;
1219
1220 if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1221 !cpu_has_feature(CPU_FTR_REAL_LE))
1222 return -EINVAL;
1223
1224 if (regs == NULL)
1225 return -EINVAL;
1226
1227 if (regs->msr & MSR_LE) {
1228 if (cpu_has_feature(CPU_FTR_REAL_LE))
1229 val = PR_ENDIAN_LITTLE;
1230 else
1231 val = PR_ENDIAN_PPC_LITTLE;
1232 } else
1233 val = PR_ENDIAN_BIG;
1234
1235 return put_user(val, (unsigned int __user *)adr);
1236 }
1237
1238 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1239 {
1240 tsk->thread.align_ctl = val;
1241 return 0;
1242 }
1243
1244 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1245 {
1246 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1247 }
1248
1249 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1250 unsigned long nbytes)
1251 {
1252 unsigned long stack_page;
1253 unsigned long cpu = task_cpu(p);
1254
1255 /*
1256 * Avoid crashing if the stack has overflowed and corrupted
1257 * task_cpu(p), which is in the thread_info struct.
1258 */
1259 if (cpu < NR_CPUS && cpu_possible(cpu)) {
1260 stack_page = (unsigned long) hardirq_ctx[cpu];
1261 if (sp >= stack_page + sizeof(struct thread_struct)
1262 && sp <= stack_page + THREAD_SIZE - nbytes)
1263 return 1;
1264
1265 stack_page = (unsigned long) softirq_ctx[cpu];
1266 if (sp >= stack_page + sizeof(struct thread_struct)
1267 && sp <= stack_page + THREAD_SIZE - nbytes)
1268 return 1;
1269 }
1270 return 0;
1271 }
1272
1273 int validate_sp(unsigned long sp, struct task_struct *p,
1274 unsigned long nbytes)
1275 {
1276 unsigned long stack_page = (unsigned long)task_stack_page(p);
1277
1278 if (sp >= stack_page + sizeof(struct thread_struct)
1279 && sp <= stack_page + THREAD_SIZE - nbytes)
1280 return 1;
1281
1282 return valid_irq_stack(sp, p, nbytes);
1283 }
1284
1285 EXPORT_SYMBOL(validate_sp);
1286
1287 unsigned long get_wchan(struct task_struct *p)
1288 {
1289 unsigned long ip, sp;
1290 int count = 0;
1291
1292 if (!p || p == current || p->state == TASK_RUNNING)
1293 return 0;
1294
1295 sp = p->thread.ksp;
1296 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1297 return 0;
1298
1299 do {
1300 sp = *(unsigned long *)sp;
1301 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1302 return 0;
1303 if (count > 0) {
1304 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1305 if (!in_sched_functions(ip))
1306 return ip;
1307 }
1308 } while (count++ < 16);
1309 return 0;
1310 }
1311
1312 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1313
1314 void show_stack(struct task_struct *tsk, unsigned long *stack)
1315 {
1316 unsigned long sp, ip, lr, newsp;
1317 int count = 0;
1318 int firstframe = 1;
1319 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1320 int curr_frame = current->curr_ret_stack;
1321 extern void return_to_handler(void);
1322 unsigned long rth = (unsigned long)return_to_handler;
1323 unsigned long mrth = -1;
1324 #ifdef CONFIG_PPC64
1325 extern void mod_return_to_handler(void);
1326 rth = *(unsigned long *)rth;
1327 mrth = (unsigned long)mod_return_to_handler;
1328 mrth = *(unsigned long *)mrth;
1329 #endif
1330 #endif
1331
1332 sp = (unsigned long) stack;
1333 if (tsk == NULL)
1334 tsk = current;
1335 if (sp == 0) {
1336 if (tsk == current)
1337 asm("mr %0,1" : "=r" (sp));
1338 else
1339 sp = tsk->thread.ksp;
1340 }
1341
1342 lr = 0;
1343 printk("Call Trace:\n");
1344 do {
1345 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1346 return;
1347
1348 stack = (unsigned long *) sp;
1349 newsp = stack[0];
1350 ip = stack[STACK_FRAME_LR_SAVE];
1351 if (!firstframe || ip != lr) {
1352 printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1353 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1354 if ((ip == rth || ip == mrth) && curr_frame >= 0) {
1355 printk(" (%pS)",
1356 (void *)current->ret_stack[curr_frame].ret);
1357 curr_frame--;
1358 }
1359 #endif
1360 if (firstframe)
1361 printk(" (unreliable)");
1362 printk("\n");
1363 }
1364 firstframe = 0;
1365
1366 /*
1367 * See if this is an exception frame.
1368 * We look for the "regshere" marker in the current frame.
1369 */
1370 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1371 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1372 struct pt_regs *regs = (struct pt_regs *)
1373 (sp + STACK_FRAME_OVERHEAD);
1374 lr = regs->link;
1375 printk("--- Exception: %lx at %pS\n LR = %pS\n",
1376 regs->trap, (void *)regs->nip, (void *)lr);
1377 firstframe = 1;
1378 }
1379
1380 sp = newsp;
1381 } while (count++ < kstack_depth_to_print);
1382 }
1383
1384 #ifdef CONFIG_PPC64
1385 /* Called with hard IRQs off */
1386 void notrace __ppc64_runlatch_on(void)
1387 {
1388 struct thread_info *ti = current_thread_info();
1389 unsigned long ctrl;
1390
1391 ctrl = mfspr(SPRN_CTRLF);
1392 ctrl |= CTRL_RUNLATCH;
1393 mtspr(SPRN_CTRLT, ctrl);
1394
1395 ti->local_flags |= _TLF_RUNLATCH;
1396 }
1397
1398 /* Called with hard IRQs off */
1399 void notrace __ppc64_runlatch_off(void)
1400 {
1401 struct thread_info *ti = current_thread_info();
1402 unsigned long ctrl;
1403
1404 ti->local_flags &= ~_TLF_RUNLATCH;
1405
1406 ctrl = mfspr(SPRN_CTRLF);
1407 ctrl &= ~CTRL_RUNLATCH;
1408 mtspr(SPRN_CTRLT, ctrl);
1409 }
1410 #endif /* CONFIG_PPC64 */
1411
1412 unsigned long arch_align_stack(unsigned long sp)
1413 {
1414 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1415 sp -= get_random_int() & ~PAGE_MASK;
1416 return sp & ~0xf;
1417 }
1418
1419 static inline unsigned long brk_rnd(void)
1420 {
1421 unsigned long rnd = 0;
1422
1423 /* 8MB for 32bit, 1GB for 64bit */
1424 if (is_32bit_task())
1425 rnd = (long)(get_random_int() % (1<<(23-PAGE_SHIFT)));
1426 else
1427 rnd = (long)(get_random_int() % (1<<(30-PAGE_SHIFT)));
1428
1429 return rnd << PAGE_SHIFT;
1430 }
1431
1432 unsigned long arch_randomize_brk(struct mm_struct *mm)
1433 {
1434 unsigned long base = mm->brk;
1435 unsigned long ret;
1436
1437 #ifdef CONFIG_PPC_STD_MMU_64
1438 /*
1439 * If we are using 1TB segments and we are allowed to randomise
1440 * the heap, we can put it above 1TB so it is backed by a 1TB
1441 * segment. Otherwise the heap will be in the bottom 1TB
1442 * which always uses 256MB segments and this may result in a
1443 * performance penalty.
1444 */
1445 if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
1446 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
1447 #endif
1448
1449 ret = PAGE_ALIGN(base + brk_rnd());
1450
1451 if (ret < mm->brk)
1452 return mm->brk;
1453
1454 return ret;
1455 }
1456
1457 unsigned long randomize_et_dyn(unsigned long base)
1458 {
1459 unsigned long ret = PAGE_ALIGN(base + brk_rnd());
1460
1461 if (ret < base)
1462 return base;
1463
1464 return ret;
1465 }
This page took 0.123017 seconds and 5 git commands to generate.