Merge branch 'timers-nohz-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / arch / powerpc / kernel / rtas-proc.c
1 /*
2 * Copyright (C) 2000 Tilmann Bitterberg
3 * (tilmann@bitterberg.de)
4 *
5 * RTAS (Runtime Abstraction Services) stuff
6 * Intention is to provide a clean user interface
7 * to use the RTAS.
8 *
9 * TODO:
10 * Split off a header file and maybe move it to a different
11 * location. Write Documentation on what the /proc/rtas/ entries
12 * actually do.
13 */
14
15 #include <linux/errno.h>
16 #include <linux/sched.h>
17 #include <linux/proc_fs.h>
18 #include <linux/stat.h>
19 #include <linux/ctype.h>
20 #include <linux/time.h>
21 #include <linux/string.h>
22 #include <linux/init.h>
23 #include <linux/seq_file.h>
24 #include <linux/bitops.h>
25 #include <linux/rtc.h>
26
27 #include <asm/uaccess.h>
28 #include <asm/processor.h>
29 #include <asm/io.h>
30 #include <asm/prom.h>
31 #include <asm/rtas.h>
32 #include <asm/machdep.h> /* for ppc_md */
33 #include <asm/time.h>
34
35 /* Token for Sensors */
36 #define KEY_SWITCH 0x0001
37 #define ENCLOSURE_SWITCH 0x0002
38 #define THERMAL_SENSOR 0x0003
39 #define LID_STATUS 0x0004
40 #define POWER_SOURCE 0x0005
41 #define BATTERY_VOLTAGE 0x0006
42 #define BATTERY_REMAINING 0x0007
43 #define BATTERY_PERCENTAGE 0x0008
44 #define EPOW_SENSOR 0x0009
45 #define BATTERY_CYCLESTATE 0x000a
46 #define BATTERY_CHARGING 0x000b
47
48 /* IBM specific sensors */
49 #define IBM_SURVEILLANCE 0x2328 /* 9000 */
50 #define IBM_FANRPM 0x2329 /* 9001 */
51 #define IBM_VOLTAGE 0x232a /* 9002 */
52 #define IBM_DRCONNECTOR 0x232b /* 9003 */
53 #define IBM_POWERSUPPLY 0x232c /* 9004 */
54
55 /* Status return values */
56 #define SENSOR_CRITICAL_HIGH 13
57 #define SENSOR_WARNING_HIGH 12
58 #define SENSOR_NORMAL 11
59 #define SENSOR_WARNING_LOW 10
60 #define SENSOR_CRITICAL_LOW 9
61 #define SENSOR_SUCCESS 0
62 #define SENSOR_HW_ERROR -1
63 #define SENSOR_BUSY -2
64 #define SENSOR_NOT_EXIST -3
65 #define SENSOR_DR_ENTITY -9000
66
67 /* Location Codes */
68 #define LOC_SCSI_DEV_ADDR 'A'
69 #define LOC_SCSI_DEV_LOC 'B'
70 #define LOC_CPU 'C'
71 #define LOC_DISKETTE 'D'
72 #define LOC_ETHERNET 'E'
73 #define LOC_FAN 'F'
74 #define LOC_GRAPHICS 'G'
75 /* reserved / not used 'H' */
76 #define LOC_IO_ADAPTER 'I'
77 /* reserved / not used 'J' */
78 #define LOC_KEYBOARD 'K'
79 #define LOC_LCD 'L'
80 #define LOC_MEMORY 'M'
81 #define LOC_NV_MEMORY 'N'
82 #define LOC_MOUSE 'O'
83 #define LOC_PLANAR 'P'
84 #define LOC_OTHER_IO 'Q'
85 #define LOC_PARALLEL 'R'
86 #define LOC_SERIAL 'S'
87 #define LOC_DEAD_RING 'T'
88 #define LOC_RACKMOUNTED 'U' /* for _u_nit is rack mounted */
89 #define LOC_VOLTAGE 'V'
90 #define LOC_SWITCH_ADAPTER 'W'
91 #define LOC_OTHER 'X'
92 #define LOC_FIRMWARE 'Y'
93 #define LOC_SCSI 'Z'
94
95 /* Tokens for indicators */
96 #define TONE_FREQUENCY 0x0001 /* 0 - 1000 (HZ)*/
97 #define TONE_VOLUME 0x0002 /* 0 - 100 (%) */
98 #define SYSTEM_POWER_STATE 0x0003
99 #define WARNING_LIGHT 0x0004
100 #define DISK_ACTIVITY_LIGHT 0x0005
101 #define HEX_DISPLAY_UNIT 0x0006
102 #define BATTERY_WARNING_TIME 0x0007
103 #define CONDITION_CYCLE_REQUEST 0x0008
104 #define SURVEILLANCE_INDICATOR 0x2328 /* 9000 */
105 #define DR_ACTION 0x2329 /* 9001 */
106 #define DR_INDICATOR 0x232a /* 9002 */
107 /* 9003 - 9004: Vendor specific */
108 /* 9006 - 9999: Vendor specific */
109
110 /* other */
111 #define MAX_SENSORS 17 /* I only know of 17 sensors */
112 #define MAX_LINELENGTH 256
113 #define SENSOR_PREFIX "ibm,sensor-"
114 #define cel_to_fahr(x) ((x*9/5)+32)
115
116 struct individual_sensor {
117 unsigned int token;
118 unsigned int quant;
119 };
120
121 struct rtas_sensors {
122 struct individual_sensor sensor[MAX_SENSORS];
123 unsigned int quant;
124 };
125
126 /* Globals */
127 static struct rtas_sensors sensors;
128 static struct device_node *rtas_node = NULL;
129 static unsigned long power_on_time = 0; /* Save the time the user set */
130 static char progress_led[MAX_LINELENGTH];
131
132 static unsigned long rtas_tone_frequency = 1000;
133 static unsigned long rtas_tone_volume = 0;
134
135 /* ****************************************************************** */
136 /* Declarations */
137 static int ppc_rtas_sensors_show(struct seq_file *m, void *v);
138 static int ppc_rtas_clock_show(struct seq_file *m, void *v);
139 static ssize_t ppc_rtas_clock_write(struct file *file,
140 const char __user *buf, size_t count, loff_t *ppos);
141 static int ppc_rtas_progress_show(struct seq_file *m, void *v);
142 static ssize_t ppc_rtas_progress_write(struct file *file,
143 const char __user *buf, size_t count, loff_t *ppos);
144 static int ppc_rtas_poweron_show(struct seq_file *m, void *v);
145 static ssize_t ppc_rtas_poweron_write(struct file *file,
146 const char __user *buf, size_t count, loff_t *ppos);
147
148 static ssize_t ppc_rtas_tone_freq_write(struct file *file,
149 const char __user *buf, size_t count, loff_t *ppos);
150 static int ppc_rtas_tone_freq_show(struct seq_file *m, void *v);
151 static ssize_t ppc_rtas_tone_volume_write(struct file *file,
152 const char __user *buf, size_t count, loff_t *ppos);
153 static int ppc_rtas_tone_volume_show(struct seq_file *m, void *v);
154 static int ppc_rtas_rmo_buf_show(struct seq_file *m, void *v);
155
156 static int sensors_open(struct inode *inode, struct file *file)
157 {
158 return single_open(file, ppc_rtas_sensors_show, NULL);
159 }
160
161 static const struct file_operations ppc_rtas_sensors_operations = {
162 .open = sensors_open,
163 .read = seq_read,
164 .llseek = seq_lseek,
165 .release = single_release,
166 };
167
168 static int poweron_open(struct inode *inode, struct file *file)
169 {
170 return single_open(file, ppc_rtas_poweron_show, NULL);
171 }
172
173 static const struct file_operations ppc_rtas_poweron_operations = {
174 .open = poweron_open,
175 .read = seq_read,
176 .llseek = seq_lseek,
177 .write = ppc_rtas_poweron_write,
178 .release = single_release,
179 };
180
181 static int progress_open(struct inode *inode, struct file *file)
182 {
183 return single_open(file, ppc_rtas_progress_show, NULL);
184 }
185
186 static const struct file_operations ppc_rtas_progress_operations = {
187 .open = progress_open,
188 .read = seq_read,
189 .llseek = seq_lseek,
190 .write = ppc_rtas_progress_write,
191 .release = single_release,
192 };
193
194 static int clock_open(struct inode *inode, struct file *file)
195 {
196 return single_open(file, ppc_rtas_clock_show, NULL);
197 }
198
199 static const struct file_operations ppc_rtas_clock_operations = {
200 .open = clock_open,
201 .read = seq_read,
202 .llseek = seq_lseek,
203 .write = ppc_rtas_clock_write,
204 .release = single_release,
205 };
206
207 static int tone_freq_open(struct inode *inode, struct file *file)
208 {
209 return single_open(file, ppc_rtas_tone_freq_show, NULL);
210 }
211
212 static const struct file_operations ppc_rtas_tone_freq_operations = {
213 .open = tone_freq_open,
214 .read = seq_read,
215 .llseek = seq_lseek,
216 .write = ppc_rtas_tone_freq_write,
217 .release = single_release,
218 };
219
220 static int tone_volume_open(struct inode *inode, struct file *file)
221 {
222 return single_open(file, ppc_rtas_tone_volume_show, NULL);
223 }
224
225 static const struct file_operations ppc_rtas_tone_volume_operations = {
226 .open = tone_volume_open,
227 .read = seq_read,
228 .llseek = seq_lseek,
229 .write = ppc_rtas_tone_volume_write,
230 .release = single_release,
231 };
232
233 static int rmo_buf_open(struct inode *inode, struct file *file)
234 {
235 return single_open(file, ppc_rtas_rmo_buf_show, NULL);
236 }
237
238 static const struct file_operations ppc_rtas_rmo_buf_ops = {
239 .open = rmo_buf_open,
240 .read = seq_read,
241 .llseek = seq_lseek,
242 .release = single_release,
243 };
244
245 static int ppc_rtas_find_all_sensors(void);
246 static void ppc_rtas_process_sensor(struct seq_file *m,
247 struct individual_sensor *s, int state, int error, const char *loc);
248 static char *ppc_rtas_process_error(int error);
249 static void get_location_code(struct seq_file *m,
250 struct individual_sensor *s, const char *loc);
251 static void check_location_string(struct seq_file *m, const char *c);
252 static void check_location(struct seq_file *m, const char *c);
253
254 static int __init proc_rtas_init(void)
255 {
256 if (!machine_is(pseries))
257 return -ENODEV;
258
259 rtas_node = of_find_node_by_name(NULL, "rtas");
260 if (rtas_node == NULL)
261 return -ENODEV;
262
263 proc_create("powerpc/rtas/progress", S_IRUGO|S_IWUSR, NULL,
264 &ppc_rtas_progress_operations);
265 proc_create("powerpc/rtas/clock", S_IRUGO|S_IWUSR, NULL,
266 &ppc_rtas_clock_operations);
267 proc_create("powerpc/rtas/poweron", S_IWUSR|S_IRUGO, NULL,
268 &ppc_rtas_poweron_operations);
269 proc_create("powerpc/rtas/sensors", S_IRUGO, NULL,
270 &ppc_rtas_sensors_operations);
271 proc_create("powerpc/rtas/frequency", S_IWUSR|S_IRUGO, NULL,
272 &ppc_rtas_tone_freq_operations);
273 proc_create("powerpc/rtas/volume", S_IWUSR|S_IRUGO, NULL,
274 &ppc_rtas_tone_volume_operations);
275 proc_create("powerpc/rtas/rmo_buffer", S_IRUSR, NULL,
276 &ppc_rtas_rmo_buf_ops);
277 return 0;
278 }
279
280 __initcall(proc_rtas_init);
281
282 static int parse_number(const char __user *p, size_t count, unsigned long *val)
283 {
284 char buf[40];
285 char *end;
286
287 if (count > 39)
288 return -EINVAL;
289
290 if (copy_from_user(buf, p, count))
291 return -EFAULT;
292
293 buf[count] = 0;
294
295 *val = simple_strtoul(buf, &end, 10);
296 if (*end && *end != '\n')
297 return -EINVAL;
298
299 return 0;
300 }
301
302 /* ****************************************************************** */
303 /* POWER-ON-TIME */
304 /* ****************************************************************** */
305 static ssize_t ppc_rtas_poweron_write(struct file *file,
306 const char __user *buf, size_t count, loff_t *ppos)
307 {
308 struct rtc_time tm;
309 unsigned long nowtime;
310 int error = parse_number(buf, count, &nowtime);
311 if (error)
312 return error;
313
314 power_on_time = nowtime; /* save the time */
315
316 to_tm(nowtime, &tm);
317
318 error = rtas_call(rtas_token("set-time-for-power-on"), 7, 1, NULL,
319 tm.tm_year, tm.tm_mon, tm.tm_mday,
320 tm.tm_hour, tm.tm_min, tm.tm_sec, 0 /* nano */);
321 if (error)
322 printk(KERN_WARNING "error: setting poweron time returned: %s\n",
323 ppc_rtas_process_error(error));
324 return count;
325 }
326 /* ****************************************************************** */
327 static int ppc_rtas_poweron_show(struct seq_file *m, void *v)
328 {
329 if (power_on_time == 0)
330 seq_printf(m, "Power on time not set\n");
331 else
332 seq_printf(m, "%lu\n",power_on_time);
333 return 0;
334 }
335
336 /* ****************************************************************** */
337 /* PROGRESS */
338 /* ****************************************************************** */
339 static ssize_t ppc_rtas_progress_write(struct file *file,
340 const char __user *buf, size_t count, loff_t *ppos)
341 {
342 unsigned long hex;
343
344 if (count >= MAX_LINELENGTH)
345 count = MAX_LINELENGTH -1;
346 if (copy_from_user(progress_led, buf, count)) { /* save the string */
347 return -EFAULT;
348 }
349 progress_led[count] = 0;
350
351 /* Lets see if the user passed hexdigits */
352 hex = simple_strtoul(progress_led, NULL, 10);
353
354 rtas_progress ((char *)progress_led, hex);
355 return count;
356
357 /* clear the line */
358 /* rtas_progress(" ", 0xffff);*/
359 }
360 /* ****************************************************************** */
361 static int ppc_rtas_progress_show(struct seq_file *m, void *v)
362 {
363 if (progress_led[0])
364 seq_printf(m, "%s\n", progress_led);
365 return 0;
366 }
367
368 /* ****************************************************************** */
369 /* CLOCK */
370 /* ****************************************************************** */
371 static ssize_t ppc_rtas_clock_write(struct file *file,
372 const char __user *buf, size_t count, loff_t *ppos)
373 {
374 struct rtc_time tm;
375 unsigned long nowtime;
376 int error = parse_number(buf, count, &nowtime);
377 if (error)
378 return error;
379
380 to_tm(nowtime, &tm);
381 error = rtas_call(rtas_token("set-time-of-day"), 7, 1, NULL,
382 tm.tm_year, tm.tm_mon, tm.tm_mday,
383 tm.tm_hour, tm.tm_min, tm.tm_sec, 0);
384 if (error)
385 printk(KERN_WARNING "error: setting the clock returned: %s\n",
386 ppc_rtas_process_error(error));
387 return count;
388 }
389 /* ****************************************************************** */
390 static int ppc_rtas_clock_show(struct seq_file *m, void *v)
391 {
392 int ret[8];
393 int error = rtas_call(rtas_token("get-time-of-day"), 0, 8, ret);
394
395 if (error) {
396 printk(KERN_WARNING "error: reading the clock returned: %s\n",
397 ppc_rtas_process_error(error));
398 seq_printf(m, "0");
399 } else {
400 unsigned int year, mon, day, hour, min, sec;
401 year = ret[0]; mon = ret[1]; day = ret[2];
402 hour = ret[3]; min = ret[4]; sec = ret[5];
403 seq_printf(m, "%lu\n",
404 mktime(year, mon, day, hour, min, sec));
405 }
406 return 0;
407 }
408
409 /* ****************************************************************** */
410 /* SENSOR STUFF */
411 /* ****************************************************************** */
412 static int ppc_rtas_sensors_show(struct seq_file *m, void *v)
413 {
414 int i,j;
415 int state, error;
416 int get_sensor_state = rtas_token("get-sensor-state");
417
418 seq_printf(m, "RTAS (RunTime Abstraction Services) Sensor Information\n");
419 seq_printf(m, "Sensor\t\tValue\t\tCondition\tLocation\n");
420 seq_printf(m, "********************************************************\n");
421
422 if (ppc_rtas_find_all_sensors() != 0) {
423 seq_printf(m, "\nNo sensors are available\n");
424 return 0;
425 }
426
427 for (i=0; i<sensors.quant; i++) {
428 struct individual_sensor *p = &sensors.sensor[i];
429 char rstr[64];
430 const char *loc;
431 int llen, offs;
432
433 sprintf (rstr, SENSOR_PREFIX"%04d", p->token);
434 loc = of_get_property(rtas_node, rstr, &llen);
435
436 /* A sensor may have multiple instances */
437 for (j = 0, offs = 0; j <= p->quant; j++) {
438 error = rtas_call(get_sensor_state, 2, 2, &state,
439 p->token, j);
440
441 ppc_rtas_process_sensor(m, p, state, error, loc);
442 seq_putc(m, '\n');
443 if (loc) {
444 offs += strlen(loc) + 1;
445 loc += strlen(loc) + 1;
446 if (offs >= llen)
447 loc = NULL;
448 }
449 }
450 }
451 return 0;
452 }
453
454 /* ****************************************************************** */
455
456 static int ppc_rtas_find_all_sensors(void)
457 {
458 const unsigned int *utmp;
459 int len, i;
460
461 utmp = of_get_property(rtas_node, "rtas-sensors", &len);
462 if (utmp == NULL) {
463 printk (KERN_ERR "error: could not get rtas-sensors\n");
464 return 1;
465 }
466
467 sensors.quant = len / 8; /* int + int */
468
469 for (i=0; i<sensors.quant; i++) {
470 sensors.sensor[i].token = *utmp++;
471 sensors.sensor[i].quant = *utmp++;
472 }
473 return 0;
474 }
475
476 /* ****************************************************************** */
477 /*
478 * Builds a string of what rtas returned
479 */
480 static char *ppc_rtas_process_error(int error)
481 {
482 switch (error) {
483 case SENSOR_CRITICAL_HIGH:
484 return "(critical high)";
485 case SENSOR_WARNING_HIGH:
486 return "(warning high)";
487 case SENSOR_NORMAL:
488 return "(normal)";
489 case SENSOR_WARNING_LOW:
490 return "(warning low)";
491 case SENSOR_CRITICAL_LOW:
492 return "(critical low)";
493 case SENSOR_SUCCESS:
494 return "(read ok)";
495 case SENSOR_HW_ERROR:
496 return "(hardware error)";
497 case SENSOR_BUSY:
498 return "(busy)";
499 case SENSOR_NOT_EXIST:
500 return "(non existent)";
501 case SENSOR_DR_ENTITY:
502 return "(dr entity removed)";
503 default:
504 return "(UNKNOWN)";
505 }
506 }
507
508 /* ****************************************************************** */
509 /*
510 * Builds a string out of what the sensor said
511 */
512
513 static void ppc_rtas_process_sensor(struct seq_file *m,
514 struct individual_sensor *s, int state, int error, const char *loc)
515 {
516 /* Defined return vales */
517 const char * key_switch[] = { "Off\t", "Normal\t", "Secure\t",
518 "Maintenance" };
519 const char * enclosure_switch[] = { "Closed", "Open" };
520 const char * lid_status[] = { " ", "Open", "Closed" };
521 const char * power_source[] = { "AC\t", "Battery",
522 "AC & Battery" };
523 const char * battery_remaining[] = { "Very Low", "Low", "Mid", "High" };
524 const char * epow_sensor[] = {
525 "EPOW Reset", "Cooling warning", "Power warning",
526 "System shutdown", "System halt", "EPOW main enclosure",
527 "EPOW power off" };
528 const char * battery_cyclestate[] = { "None", "In progress",
529 "Requested" };
530 const char * battery_charging[] = { "Charging", "Discharching",
531 "No current flow" };
532 const char * ibm_drconnector[] = { "Empty", "Present", "Unusable",
533 "Exchange" };
534
535 int have_strings = 0;
536 int num_states = 0;
537 int temperature = 0;
538 int unknown = 0;
539
540 /* What kind of sensor do we have here? */
541
542 switch (s->token) {
543 case KEY_SWITCH:
544 seq_printf(m, "Key switch:\t");
545 num_states = sizeof(key_switch) / sizeof(char *);
546 if (state < num_states) {
547 seq_printf(m, "%s\t", key_switch[state]);
548 have_strings = 1;
549 }
550 break;
551 case ENCLOSURE_SWITCH:
552 seq_printf(m, "Enclosure switch:\t");
553 num_states = sizeof(enclosure_switch) / sizeof(char *);
554 if (state < num_states) {
555 seq_printf(m, "%s\t",
556 enclosure_switch[state]);
557 have_strings = 1;
558 }
559 break;
560 case THERMAL_SENSOR:
561 seq_printf(m, "Temp. (C/F):\t");
562 temperature = 1;
563 break;
564 case LID_STATUS:
565 seq_printf(m, "Lid status:\t");
566 num_states = sizeof(lid_status) / sizeof(char *);
567 if (state < num_states) {
568 seq_printf(m, "%s\t", lid_status[state]);
569 have_strings = 1;
570 }
571 break;
572 case POWER_SOURCE:
573 seq_printf(m, "Power source:\t");
574 num_states = sizeof(power_source) / sizeof(char *);
575 if (state < num_states) {
576 seq_printf(m, "%s\t",
577 power_source[state]);
578 have_strings = 1;
579 }
580 break;
581 case BATTERY_VOLTAGE:
582 seq_printf(m, "Battery voltage:\t");
583 break;
584 case BATTERY_REMAINING:
585 seq_printf(m, "Battery remaining:\t");
586 num_states = sizeof(battery_remaining) / sizeof(char *);
587 if (state < num_states)
588 {
589 seq_printf(m, "%s\t",
590 battery_remaining[state]);
591 have_strings = 1;
592 }
593 break;
594 case BATTERY_PERCENTAGE:
595 seq_printf(m, "Battery percentage:\t");
596 break;
597 case EPOW_SENSOR:
598 seq_printf(m, "EPOW Sensor:\t");
599 num_states = sizeof(epow_sensor) / sizeof(char *);
600 if (state < num_states) {
601 seq_printf(m, "%s\t", epow_sensor[state]);
602 have_strings = 1;
603 }
604 break;
605 case BATTERY_CYCLESTATE:
606 seq_printf(m, "Battery cyclestate:\t");
607 num_states = sizeof(battery_cyclestate) /
608 sizeof(char *);
609 if (state < num_states) {
610 seq_printf(m, "%s\t",
611 battery_cyclestate[state]);
612 have_strings = 1;
613 }
614 break;
615 case BATTERY_CHARGING:
616 seq_printf(m, "Battery Charging:\t");
617 num_states = sizeof(battery_charging) / sizeof(char *);
618 if (state < num_states) {
619 seq_printf(m, "%s\t",
620 battery_charging[state]);
621 have_strings = 1;
622 }
623 break;
624 case IBM_SURVEILLANCE:
625 seq_printf(m, "Surveillance:\t");
626 break;
627 case IBM_FANRPM:
628 seq_printf(m, "Fan (rpm):\t");
629 break;
630 case IBM_VOLTAGE:
631 seq_printf(m, "Voltage (mv):\t");
632 break;
633 case IBM_DRCONNECTOR:
634 seq_printf(m, "DR connector:\t");
635 num_states = sizeof(ibm_drconnector) / sizeof(char *);
636 if (state < num_states) {
637 seq_printf(m, "%s\t",
638 ibm_drconnector[state]);
639 have_strings = 1;
640 }
641 break;
642 case IBM_POWERSUPPLY:
643 seq_printf(m, "Powersupply:\t");
644 break;
645 default:
646 seq_printf(m, "Unknown sensor (type %d), ignoring it\n",
647 s->token);
648 unknown = 1;
649 have_strings = 1;
650 break;
651 }
652 if (have_strings == 0) {
653 if (temperature) {
654 seq_printf(m, "%4d /%4d\t", state, cel_to_fahr(state));
655 } else
656 seq_printf(m, "%10d\t", state);
657 }
658 if (unknown == 0) {
659 seq_printf(m, "%s\t", ppc_rtas_process_error(error));
660 get_location_code(m, s, loc);
661 }
662 }
663
664 /* ****************************************************************** */
665
666 static void check_location(struct seq_file *m, const char *c)
667 {
668 switch (c[0]) {
669 case LOC_PLANAR:
670 seq_printf(m, "Planar #%c", c[1]);
671 break;
672 case LOC_CPU:
673 seq_printf(m, "CPU #%c", c[1]);
674 break;
675 case LOC_FAN:
676 seq_printf(m, "Fan #%c", c[1]);
677 break;
678 case LOC_RACKMOUNTED:
679 seq_printf(m, "Rack #%c", c[1]);
680 break;
681 case LOC_VOLTAGE:
682 seq_printf(m, "Voltage #%c", c[1]);
683 break;
684 case LOC_LCD:
685 seq_printf(m, "LCD #%c", c[1]);
686 break;
687 case '.':
688 seq_printf(m, "- %c", c[1]);
689 break;
690 default:
691 seq_printf(m, "Unknown location");
692 break;
693 }
694 }
695
696
697 /* ****************************************************************** */
698 /*
699 * Format:
700 * ${LETTER}${NUMBER}[[-/]${LETTER}${NUMBER} [ ... ] ]
701 * the '.' may be an abbrevation
702 */
703 static void check_location_string(struct seq_file *m, const char *c)
704 {
705 while (*c) {
706 if (isalpha(*c) || *c == '.')
707 check_location(m, c);
708 else if (*c == '/' || *c == '-')
709 seq_printf(m, " at ");
710 c++;
711 }
712 }
713
714
715 /* ****************************************************************** */
716
717 static void get_location_code(struct seq_file *m, struct individual_sensor *s,
718 const char *loc)
719 {
720 if (!loc || !*loc) {
721 seq_printf(m, "---");/* does not have a location */
722 } else {
723 check_location_string(m, loc);
724 }
725 seq_putc(m, ' ');
726 }
727 /* ****************************************************************** */
728 /* INDICATORS - Tone Frequency */
729 /* ****************************************************************** */
730 static ssize_t ppc_rtas_tone_freq_write(struct file *file,
731 const char __user *buf, size_t count, loff_t *ppos)
732 {
733 unsigned long freq;
734 int error = parse_number(buf, count, &freq);
735 if (error)
736 return error;
737
738 rtas_tone_frequency = freq; /* save it for later */
739 error = rtas_call(rtas_token("set-indicator"), 3, 1, NULL,
740 TONE_FREQUENCY, 0, freq);
741 if (error)
742 printk(KERN_WARNING "error: setting tone frequency returned: %s\n",
743 ppc_rtas_process_error(error));
744 return count;
745 }
746 /* ****************************************************************** */
747 static int ppc_rtas_tone_freq_show(struct seq_file *m, void *v)
748 {
749 seq_printf(m, "%lu\n", rtas_tone_frequency);
750 return 0;
751 }
752 /* ****************************************************************** */
753 /* INDICATORS - Tone Volume */
754 /* ****************************************************************** */
755 static ssize_t ppc_rtas_tone_volume_write(struct file *file,
756 const char __user *buf, size_t count, loff_t *ppos)
757 {
758 unsigned long volume;
759 int error = parse_number(buf, count, &volume);
760 if (error)
761 return error;
762
763 if (volume > 100)
764 volume = 100;
765
766 rtas_tone_volume = volume; /* save it for later */
767 error = rtas_call(rtas_token("set-indicator"), 3, 1, NULL,
768 TONE_VOLUME, 0, volume);
769 if (error)
770 printk(KERN_WARNING "error: setting tone volume returned: %s\n",
771 ppc_rtas_process_error(error));
772 return count;
773 }
774 /* ****************************************************************** */
775 static int ppc_rtas_tone_volume_show(struct seq_file *m, void *v)
776 {
777 seq_printf(m, "%lu\n", rtas_tone_volume);
778 return 0;
779 }
780
781 #define RMO_READ_BUF_MAX 30
782
783 /* RTAS Userspace access */
784 static int ppc_rtas_rmo_buf_show(struct seq_file *m, void *v)
785 {
786 seq_printf(m, "%016lx %x\n", rtas_rmo_buf, RTAS_RMOBUF_MAX);
787 return 0;
788 }
This page took 0.081224 seconds and 5 git commands to generate.