powerpc: Introduce asm-prototypes.h
[deliverable/linux.git] / arch / powerpc / kernel / traps.c
1 /*
2 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
3 * Copyright 2007-2010 Freescale Semiconductor, Inc.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License
7 * as published by the Free Software Foundation; either version
8 * 2 of the License, or (at your option) any later version.
9 *
10 * Modified by Cort Dougan (cort@cs.nmt.edu)
11 * and Paul Mackerras (paulus@samba.org)
12 */
13
14 /*
15 * This file handles the architecture-dependent parts of hardware exceptions
16 */
17
18 #include <linux/errno.h>
19 #include <linux/sched.h>
20 #include <linux/kernel.h>
21 #include <linux/mm.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/user.h>
26 #include <linux/interrupt.h>
27 #include <linux/init.h>
28 #include <linux/module.h>
29 #include <linux/prctl.h>
30 #include <linux/delay.h>
31 #include <linux/kprobes.h>
32 #include <linux/kexec.h>
33 #include <linux/backlight.h>
34 #include <linux/bug.h>
35 #include <linux/kdebug.h>
36 #include <linux/debugfs.h>
37 #include <linux/ratelimit.h>
38 #include <linux/context_tracking.h>
39
40 #include <asm/emulated_ops.h>
41 #include <asm/pgtable.h>
42 #include <asm/uaccess.h>
43 #include <asm/io.h>
44 #include <asm/machdep.h>
45 #include <asm/rtas.h>
46 #include <asm/pmc.h>
47 #include <asm/reg.h>
48 #ifdef CONFIG_PMAC_BACKLIGHT
49 #include <asm/backlight.h>
50 #endif
51 #ifdef CONFIG_PPC64
52 #include <asm/firmware.h>
53 #include <asm/processor.h>
54 #include <asm/tm.h>
55 #endif
56 #include <asm/kexec.h>
57 #include <asm/ppc-opcode.h>
58 #include <asm/rio.h>
59 #include <asm/fadump.h>
60 #include <asm/switch_to.h>
61 #include <asm/tm.h>
62 #include <asm/debug.h>
63 #include <asm/asm-prototypes.h>
64 #include <sysdev/fsl_pci.h>
65
66 #if defined(CONFIG_DEBUGGER) || defined(CONFIG_KEXEC)
67 int (*__debugger)(struct pt_regs *regs) __read_mostly;
68 int (*__debugger_ipi)(struct pt_regs *regs) __read_mostly;
69 int (*__debugger_bpt)(struct pt_regs *regs) __read_mostly;
70 int (*__debugger_sstep)(struct pt_regs *regs) __read_mostly;
71 int (*__debugger_iabr_match)(struct pt_regs *regs) __read_mostly;
72 int (*__debugger_break_match)(struct pt_regs *regs) __read_mostly;
73 int (*__debugger_fault_handler)(struct pt_regs *regs) __read_mostly;
74
75 EXPORT_SYMBOL(__debugger);
76 EXPORT_SYMBOL(__debugger_ipi);
77 EXPORT_SYMBOL(__debugger_bpt);
78 EXPORT_SYMBOL(__debugger_sstep);
79 EXPORT_SYMBOL(__debugger_iabr_match);
80 EXPORT_SYMBOL(__debugger_break_match);
81 EXPORT_SYMBOL(__debugger_fault_handler);
82 #endif
83
84 /* Transactional Memory trap debug */
85 #ifdef TM_DEBUG_SW
86 #define TM_DEBUG(x...) printk(KERN_INFO x)
87 #else
88 #define TM_DEBUG(x...) do { } while(0)
89 #endif
90
91 /*
92 * Trap & Exception support
93 */
94
95 #ifdef CONFIG_PMAC_BACKLIGHT
96 static void pmac_backlight_unblank(void)
97 {
98 mutex_lock(&pmac_backlight_mutex);
99 if (pmac_backlight) {
100 struct backlight_properties *props;
101
102 props = &pmac_backlight->props;
103 props->brightness = props->max_brightness;
104 props->power = FB_BLANK_UNBLANK;
105 backlight_update_status(pmac_backlight);
106 }
107 mutex_unlock(&pmac_backlight_mutex);
108 }
109 #else
110 static inline void pmac_backlight_unblank(void) { }
111 #endif
112
113 static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED;
114 static int die_owner = -1;
115 static unsigned int die_nest_count;
116 static int die_counter;
117
118 static unsigned __kprobes long oops_begin(struct pt_regs *regs)
119 {
120 int cpu;
121 unsigned long flags;
122
123 if (debugger(regs))
124 return 1;
125
126 oops_enter();
127
128 /* racy, but better than risking deadlock. */
129 raw_local_irq_save(flags);
130 cpu = smp_processor_id();
131 if (!arch_spin_trylock(&die_lock)) {
132 if (cpu == die_owner)
133 /* nested oops. should stop eventually */;
134 else
135 arch_spin_lock(&die_lock);
136 }
137 die_nest_count++;
138 die_owner = cpu;
139 console_verbose();
140 bust_spinlocks(1);
141 if (machine_is(powermac))
142 pmac_backlight_unblank();
143 return flags;
144 }
145
146 static void __kprobes oops_end(unsigned long flags, struct pt_regs *regs,
147 int signr)
148 {
149 bust_spinlocks(0);
150 die_owner = -1;
151 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
152 die_nest_count--;
153 oops_exit();
154 printk("\n");
155 if (!die_nest_count)
156 /* Nest count reaches zero, release the lock. */
157 arch_spin_unlock(&die_lock);
158 raw_local_irq_restore(flags);
159
160 crash_fadump(regs, "die oops");
161
162 /*
163 * A system reset (0x100) is a request to dump, so we always send
164 * it through the crashdump code.
165 */
166 if (kexec_should_crash(current) || (TRAP(regs) == 0x100)) {
167 crash_kexec(regs);
168
169 /*
170 * We aren't the primary crash CPU. We need to send it
171 * to a holding pattern to avoid it ending up in the panic
172 * code.
173 */
174 crash_kexec_secondary(regs);
175 }
176
177 if (!signr)
178 return;
179
180 /*
181 * While our oops output is serialised by a spinlock, output
182 * from panic() called below can race and corrupt it. If we
183 * know we are going to panic, delay for 1 second so we have a
184 * chance to get clean backtraces from all CPUs that are oopsing.
185 */
186 if (in_interrupt() || panic_on_oops || !current->pid ||
187 is_global_init(current)) {
188 mdelay(MSEC_PER_SEC);
189 }
190
191 if (in_interrupt())
192 panic("Fatal exception in interrupt");
193 if (panic_on_oops)
194 panic("Fatal exception");
195 do_exit(signr);
196 }
197
198 static int __kprobes __die(const char *str, struct pt_regs *regs, long err)
199 {
200 printk("Oops: %s, sig: %ld [#%d]\n", str, err, ++die_counter);
201 #ifdef CONFIG_PREEMPT
202 printk("PREEMPT ");
203 #endif
204 #ifdef CONFIG_SMP
205 printk("SMP NR_CPUS=%d ", NR_CPUS);
206 #endif
207 if (debug_pagealloc_enabled())
208 printk("DEBUG_PAGEALLOC ");
209 #ifdef CONFIG_NUMA
210 printk("NUMA ");
211 #endif
212 printk("%s\n", ppc_md.name ? ppc_md.name : "");
213
214 if (notify_die(DIE_OOPS, str, regs, err, 255, SIGSEGV) == NOTIFY_STOP)
215 return 1;
216
217 print_modules();
218 show_regs(regs);
219
220 return 0;
221 }
222
223 void die(const char *str, struct pt_regs *regs, long err)
224 {
225 unsigned long flags = oops_begin(regs);
226
227 if (__die(str, regs, err))
228 err = 0;
229 oops_end(flags, regs, err);
230 }
231
232 void user_single_step_siginfo(struct task_struct *tsk,
233 struct pt_regs *regs, siginfo_t *info)
234 {
235 memset(info, 0, sizeof(*info));
236 info->si_signo = SIGTRAP;
237 info->si_code = TRAP_TRACE;
238 info->si_addr = (void __user *)regs->nip;
239 }
240
241 void _exception(int signr, struct pt_regs *regs, int code, unsigned long addr)
242 {
243 siginfo_t info;
244 const char fmt32[] = KERN_INFO "%s[%d]: unhandled signal %d " \
245 "at %08lx nip %08lx lr %08lx code %x\n";
246 const char fmt64[] = KERN_INFO "%s[%d]: unhandled signal %d " \
247 "at %016lx nip %016lx lr %016lx code %x\n";
248
249 if (!user_mode(regs)) {
250 die("Exception in kernel mode", regs, signr);
251 return;
252 }
253
254 if (show_unhandled_signals && unhandled_signal(current, signr)) {
255 printk_ratelimited(regs->msr & MSR_64BIT ? fmt64 : fmt32,
256 current->comm, current->pid, signr,
257 addr, regs->nip, regs->link, code);
258 }
259
260 if (arch_irqs_disabled() && !arch_irq_disabled_regs(regs))
261 local_irq_enable();
262
263 current->thread.trap_nr = code;
264 memset(&info, 0, sizeof(info));
265 info.si_signo = signr;
266 info.si_code = code;
267 info.si_addr = (void __user *) addr;
268 force_sig_info(signr, &info, current);
269 }
270
271 #ifdef CONFIG_PPC64
272 void system_reset_exception(struct pt_regs *regs)
273 {
274 /* See if any machine dependent calls */
275 if (ppc_md.system_reset_exception) {
276 if (ppc_md.system_reset_exception(regs))
277 return;
278 }
279
280 die("System Reset", regs, SIGABRT);
281
282 /* Must die if the interrupt is not recoverable */
283 if (!(regs->msr & MSR_RI))
284 panic("Unrecoverable System Reset");
285
286 /* What should we do here? We could issue a shutdown or hard reset. */
287 }
288
289 /*
290 * This function is called in real mode. Strictly no printk's please.
291 *
292 * regs->nip and regs->msr contains srr0 and ssr1.
293 */
294 long machine_check_early(struct pt_regs *regs)
295 {
296 long handled = 0;
297
298 __this_cpu_inc(irq_stat.mce_exceptions);
299
300 add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);
301
302 if (cur_cpu_spec && cur_cpu_spec->machine_check_early)
303 handled = cur_cpu_spec->machine_check_early(regs);
304 return handled;
305 }
306
307 long hmi_exception_realmode(struct pt_regs *regs)
308 {
309 __this_cpu_inc(irq_stat.hmi_exceptions);
310
311 if (ppc_md.hmi_exception_early)
312 ppc_md.hmi_exception_early(regs);
313
314 return 0;
315 }
316
317 #endif
318
319 /*
320 * I/O accesses can cause machine checks on powermacs.
321 * Check if the NIP corresponds to the address of a sync
322 * instruction for which there is an entry in the exception
323 * table.
324 * Note that the 601 only takes a machine check on TEA
325 * (transfer error ack) signal assertion, and does not
326 * set any of the top 16 bits of SRR1.
327 * -- paulus.
328 */
329 static inline int check_io_access(struct pt_regs *regs)
330 {
331 #ifdef CONFIG_PPC32
332 unsigned long msr = regs->msr;
333 const struct exception_table_entry *entry;
334 unsigned int *nip = (unsigned int *)regs->nip;
335
336 if (((msr & 0xffff0000) == 0 || (msr & (0x80000 | 0x40000)))
337 && (entry = search_exception_tables(regs->nip)) != NULL) {
338 /*
339 * Check that it's a sync instruction, or somewhere
340 * in the twi; isync; nop sequence that inb/inw/inl uses.
341 * As the address is in the exception table
342 * we should be able to read the instr there.
343 * For the debug message, we look at the preceding
344 * load or store.
345 */
346 if (*nip == 0x60000000) /* nop */
347 nip -= 2;
348 else if (*nip == 0x4c00012c) /* isync */
349 --nip;
350 if (*nip == 0x7c0004ac || (*nip >> 26) == 3) {
351 /* sync or twi */
352 unsigned int rb;
353
354 --nip;
355 rb = (*nip >> 11) & 0x1f;
356 printk(KERN_DEBUG "%s bad port %lx at %p\n",
357 (*nip & 0x100)? "OUT to": "IN from",
358 regs->gpr[rb] - _IO_BASE, nip);
359 regs->msr |= MSR_RI;
360 regs->nip = entry->fixup;
361 return 1;
362 }
363 }
364 #endif /* CONFIG_PPC32 */
365 return 0;
366 }
367
368 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
369 /* On 4xx, the reason for the machine check or program exception
370 is in the ESR. */
371 #define get_reason(regs) ((regs)->dsisr)
372 #ifndef CONFIG_FSL_BOOKE
373 #define get_mc_reason(regs) ((regs)->dsisr)
374 #else
375 #define get_mc_reason(regs) (mfspr(SPRN_MCSR))
376 #endif
377 #define REASON_FP ESR_FP
378 #define REASON_ILLEGAL (ESR_PIL | ESR_PUO)
379 #define REASON_PRIVILEGED ESR_PPR
380 #define REASON_TRAP ESR_PTR
381
382 /* single-step stuff */
383 #define single_stepping(regs) (current->thread.debug.dbcr0 & DBCR0_IC)
384 #define clear_single_step(regs) (current->thread.debug.dbcr0 &= ~DBCR0_IC)
385
386 #else
387 /* On non-4xx, the reason for the machine check or program
388 exception is in the MSR. */
389 #define get_reason(regs) ((regs)->msr)
390 #define get_mc_reason(regs) ((regs)->msr)
391 #define REASON_TM 0x200000
392 #define REASON_FP 0x100000
393 #define REASON_ILLEGAL 0x80000
394 #define REASON_PRIVILEGED 0x40000
395 #define REASON_TRAP 0x20000
396
397 #define single_stepping(regs) ((regs)->msr & MSR_SE)
398 #define clear_single_step(regs) ((regs)->msr &= ~MSR_SE)
399 #endif
400
401 #if defined(CONFIG_4xx)
402 int machine_check_4xx(struct pt_regs *regs)
403 {
404 unsigned long reason = get_mc_reason(regs);
405
406 if (reason & ESR_IMCP) {
407 printk("Instruction");
408 mtspr(SPRN_ESR, reason & ~ESR_IMCP);
409 } else
410 printk("Data");
411 printk(" machine check in kernel mode.\n");
412
413 return 0;
414 }
415
416 int machine_check_440A(struct pt_regs *regs)
417 {
418 unsigned long reason = get_mc_reason(regs);
419
420 printk("Machine check in kernel mode.\n");
421 if (reason & ESR_IMCP){
422 printk("Instruction Synchronous Machine Check exception\n");
423 mtspr(SPRN_ESR, reason & ~ESR_IMCP);
424 }
425 else {
426 u32 mcsr = mfspr(SPRN_MCSR);
427 if (mcsr & MCSR_IB)
428 printk("Instruction Read PLB Error\n");
429 if (mcsr & MCSR_DRB)
430 printk("Data Read PLB Error\n");
431 if (mcsr & MCSR_DWB)
432 printk("Data Write PLB Error\n");
433 if (mcsr & MCSR_TLBP)
434 printk("TLB Parity Error\n");
435 if (mcsr & MCSR_ICP){
436 flush_instruction_cache();
437 printk("I-Cache Parity Error\n");
438 }
439 if (mcsr & MCSR_DCSP)
440 printk("D-Cache Search Parity Error\n");
441 if (mcsr & MCSR_DCFP)
442 printk("D-Cache Flush Parity Error\n");
443 if (mcsr & MCSR_IMPE)
444 printk("Machine Check exception is imprecise\n");
445
446 /* Clear MCSR */
447 mtspr(SPRN_MCSR, mcsr);
448 }
449 return 0;
450 }
451
452 int machine_check_47x(struct pt_regs *regs)
453 {
454 unsigned long reason = get_mc_reason(regs);
455 u32 mcsr;
456
457 printk(KERN_ERR "Machine check in kernel mode.\n");
458 if (reason & ESR_IMCP) {
459 printk(KERN_ERR
460 "Instruction Synchronous Machine Check exception\n");
461 mtspr(SPRN_ESR, reason & ~ESR_IMCP);
462 return 0;
463 }
464 mcsr = mfspr(SPRN_MCSR);
465 if (mcsr & MCSR_IB)
466 printk(KERN_ERR "Instruction Read PLB Error\n");
467 if (mcsr & MCSR_DRB)
468 printk(KERN_ERR "Data Read PLB Error\n");
469 if (mcsr & MCSR_DWB)
470 printk(KERN_ERR "Data Write PLB Error\n");
471 if (mcsr & MCSR_TLBP)
472 printk(KERN_ERR "TLB Parity Error\n");
473 if (mcsr & MCSR_ICP) {
474 flush_instruction_cache();
475 printk(KERN_ERR "I-Cache Parity Error\n");
476 }
477 if (mcsr & MCSR_DCSP)
478 printk(KERN_ERR "D-Cache Search Parity Error\n");
479 if (mcsr & PPC47x_MCSR_GPR)
480 printk(KERN_ERR "GPR Parity Error\n");
481 if (mcsr & PPC47x_MCSR_FPR)
482 printk(KERN_ERR "FPR Parity Error\n");
483 if (mcsr & PPC47x_MCSR_IPR)
484 printk(KERN_ERR "Machine Check exception is imprecise\n");
485
486 /* Clear MCSR */
487 mtspr(SPRN_MCSR, mcsr);
488
489 return 0;
490 }
491 #elif defined(CONFIG_E500)
492 int machine_check_e500mc(struct pt_regs *regs)
493 {
494 unsigned long mcsr = mfspr(SPRN_MCSR);
495 unsigned long reason = mcsr;
496 int recoverable = 1;
497
498 if (reason & MCSR_LD) {
499 recoverable = fsl_rio_mcheck_exception(regs);
500 if (recoverable == 1)
501 goto silent_out;
502 }
503
504 printk("Machine check in kernel mode.\n");
505 printk("Caused by (from MCSR=%lx): ", reason);
506
507 if (reason & MCSR_MCP)
508 printk("Machine Check Signal\n");
509
510 if (reason & MCSR_ICPERR) {
511 printk("Instruction Cache Parity Error\n");
512
513 /*
514 * This is recoverable by invalidating the i-cache.
515 */
516 mtspr(SPRN_L1CSR1, mfspr(SPRN_L1CSR1) | L1CSR1_ICFI);
517 while (mfspr(SPRN_L1CSR1) & L1CSR1_ICFI)
518 ;
519
520 /*
521 * This will generally be accompanied by an instruction
522 * fetch error report -- only treat MCSR_IF as fatal
523 * if it wasn't due to an L1 parity error.
524 */
525 reason &= ~MCSR_IF;
526 }
527
528 if (reason & MCSR_DCPERR_MC) {
529 printk("Data Cache Parity Error\n");
530
531 /*
532 * In write shadow mode we auto-recover from the error, but it
533 * may still get logged and cause a machine check. We should
534 * only treat the non-write shadow case as non-recoverable.
535 */
536 if (!(mfspr(SPRN_L1CSR2) & L1CSR2_DCWS))
537 recoverable = 0;
538 }
539
540 if (reason & MCSR_L2MMU_MHIT) {
541 printk("Hit on multiple TLB entries\n");
542 recoverable = 0;
543 }
544
545 if (reason & MCSR_NMI)
546 printk("Non-maskable interrupt\n");
547
548 if (reason & MCSR_IF) {
549 printk("Instruction Fetch Error Report\n");
550 recoverable = 0;
551 }
552
553 if (reason & MCSR_LD) {
554 printk("Load Error Report\n");
555 recoverable = 0;
556 }
557
558 if (reason & MCSR_ST) {
559 printk("Store Error Report\n");
560 recoverable = 0;
561 }
562
563 if (reason & MCSR_LDG) {
564 printk("Guarded Load Error Report\n");
565 recoverable = 0;
566 }
567
568 if (reason & MCSR_TLBSYNC)
569 printk("Simultaneous tlbsync operations\n");
570
571 if (reason & MCSR_BSL2_ERR) {
572 printk("Level 2 Cache Error\n");
573 recoverable = 0;
574 }
575
576 if (reason & MCSR_MAV) {
577 u64 addr;
578
579 addr = mfspr(SPRN_MCAR);
580 addr |= (u64)mfspr(SPRN_MCARU) << 32;
581
582 printk("Machine Check %s Address: %#llx\n",
583 reason & MCSR_MEA ? "Effective" : "Physical", addr);
584 }
585
586 silent_out:
587 mtspr(SPRN_MCSR, mcsr);
588 return mfspr(SPRN_MCSR) == 0 && recoverable;
589 }
590
591 int machine_check_e500(struct pt_regs *regs)
592 {
593 unsigned long reason = get_mc_reason(regs);
594
595 if (reason & MCSR_BUS_RBERR) {
596 if (fsl_rio_mcheck_exception(regs))
597 return 1;
598 if (fsl_pci_mcheck_exception(regs))
599 return 1;
600 }
601
602 printk("Machine check in kernel mode.\n");
603 printk("Caused by (from MCSR=%lx): ", reason);
604
605 if (reason & MCSR_MCP)
606 printk("Machine Check Signal\n");
607 if (reason & MCSR_ICPERR)
608 printk("Instruction Cache Parity Error\n");
609 if (reason & MCSR_DCP_PERR)
610 printk("Data Cache Push Parity Error\n");
611 if (reason & MCSR_DCPERR)
612 printk("Data Cache Parity Error\n");
613 if (reason & MCSR_BUS_IAERR)
614 printk("Bus - Instruction Address Error\n");
615 if (reason & MCSR_BUS_RAERR)
616 printk("Bus - Read Address Error\n");
617 if (reason & MCSR_BUS_WAERR)
618 printk("Bus - Write Address Error\n");
619 if (reason & MCSR_BUS_IBERR)
620 printk("Bus - Instruction Data Error\n");
621 if (reason & MCSR_BUS_RBERR)
622 printk("Bus - Read Data Bus Error\n");
623 if (reason & MCSR_BUS_WBERR)
624 printk("Bus - Write Data Bus Error\n");
625 if (reason & MCSR_BUS_IPERR)
626 printk("Bus - Instruction Parity Error\n");
627 if (reason & MCSR_BUS_RPERR)
628 printk("Bus - Read Parity Error\n");
629
630 return 0;
631 }
632
633 int machine_check_generic(struct pt_regs *regs)
634 {
635 return 0;
636 }
637 #elif defined(CONFIG_E200)
638 int machine_check_e200(struct pt_regs *regs)
639 {
640 unsigned long reason = get_mc_reason(regs);
641
642 printk("Machine check in kernel mode.\n");
643 printk("Caused by (from MCSR=%lx): ", reason);
644
645 if (reason & MCSR_MCP)
646 printk("Machine Check Signal\n");
647 if (reason & MCSR_CP_PERR)
648 printk("Cache Push Parity Error\n");
649 if (reason & MCSR_CPERR)
650 printk("Cache Parity Error\n");
651 if (reason & MCSR_EXCP_ERR)
652 printk("ISI, ITLB, or Bus Error on first instruction fetch for an exception handler\n");
653 if (reason & MCSR_BUS_IRERR)
654 printk("Bus - Read Bus Error on instruction fetch\n");
655 if (reason & MCSR_BUS_DRERR)
656 printk("Bus - Read Bus Error on data load\n");
657 if (reason & MCSR_BUS_WRERR)
658 printk("Bus - Write Bus Error on buffered store or cache line push\n");
659
660 return 0;
661 }
662 #else
663 int machine_check_generic(struct pt_regs *regs)
664 {
665 unsigned long reason = get_mc_reason(regs);
666
667 printk("Machine check in kernel mode.\n");
668 printk("Caused by (from SRR1=%lx): ", reason);
669 switch (reason & 0x601F0000) {
670 case 0x80000:
671 printk("Machine check signal\n");
672 break;
673 case 0: /* for 601 */
674 case 0x40000:
675 case 0x140000: /* 7450 MSS error and TEA */
676 printk("Transfer error ack signal\n");
677 break;
678 case 0x20000:
679 printk("Data parity error signal\n");
680 break;
681 case 0x10000:
682 printk("Address parity error signal\n");
683 break;
684 case 0x20000000:
685 printk("L1 Data Cache error\n");
686 break;
687 case 0x40000000:
688 printk("L1 Instruction Cache error\n");
689 break;
690 case 0x00100000:
691 printk("L2 data cache parity error\n");
692 break;
693 default:
694 printk("Unknown values in msr\n");
695 }
696 return 0;
697 }
698 #endif /* everything else */
699
700 void machine_check_exception(struct pt_regs *regs)
701 {
702 enum ctx_state prev_state = exception_enter();
703 int recover = 0;
704
705 __this_cpu_inc(irq_stat.mce_exceptions);
706
707 /* See if any machine dependent calls. In theory, we would want
708 * to call the CPU first, and call the ppc_md. one if the CPU
709 * one returns a positive number. However there is existing code
710 * that assumes the board gets a first chance, so let's keep it
711 * that way for now and fix things later. --BenH.
712 */
713 if (ppc_md.machine_check_exception)
714 recover = ppc_md.machine_check_exception(regs);
715 else if (cur_cpu_spec->machine_check)
716 recover = cur_cpu_spec->machine_check(regs);
717
718 if (recover > 0)
719 goto bail;
720
721 #if defined(CONFIG_8xx) && defined(CONFIG_PCI)
722 /* the qspan pci read routines can cause machine checks -- Cort
723 *
724 * yuck !!! that totally needs to go away ! There are better ways
725 * to deal with that than having a wart in the mcheck handler.
726 * -- BenH
727 */
728 bad_page_fault(regs, regs->dar, SIGBUS);
729 goto bail;
730 #endif
731
732 if (debugger_fault_handler(regs))
733 goto bail;
734
735 if (check_io_access(regs))
736 goto bail;
737
738 die("Machine check", regs, SIGBUS);
739
740 /* Must die if the interrupt is not recoverable */
741 if (!(regs->msr & MSR_RI))
742 panic("Unrecoverable Machine check");
743
744 bail:
745 exception_exit(prev_state);
746 }
747
748 void SMIException(struct pt_regs *regs)
749 {
750 die("System Management Interrupt", regs, SIGABRT);
751 }
752
753 void handle_hmi_exception(struct pt_regs *regs)
754 {
755 struct pt_regs *old_regs;
756
757 old_regs = set_irq_regs(regs);
758 irq_enter();
759
760 if (ppc_md.handle_hmi_exception)
761 ppc_md.handle_hmi_exception(regs);
762
763 irq_exit();
764 set_irq_regs(old_regs);
765 }
766
767 void unknown_exception(struct pt_regs *regs)
768 {
769 enum ctx_state prev_state = exception_enter();
770
771 printk("Bad trap at PC: %lx, SR: %lx, vector=%lx\n",
772 regs->nip, regs->msr, regs->trap);
773
774 _exception(SIGTRAP, regs, 0, 0);
775
776 exception_exit(prev_state);
777 }
778
779 void instruction_breakpoint_exception(struct pt_regs *regs)
780 {
781 enum ctx_state prev_state = exception_enter();
782
783 if (notify_die(DIE_IABR_MATCH, "iabr_match", regs, 5,
784 5, SIGTRAP) == NOTIFY_STOP)
785 goto bail;
786 if (debugger_iabr_match(regs))
787 goto bail;
788 _exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
789
790 bail:
791 exception_exit(prev_state);
792 }
793
794 void RunModeException(struct pt_regs *regs)
795 {
796 _exception(SIGTRAP, regs, 0, 0);
797 }
798
799 void __kprobes single_step_exception(struct pt_regs *regs)
800 {
801 enum ctx_state prev_state = exception_enter();
802
803 clear_single_step(regs);
804
805 if (notify_die(DIE_SSTEP, "single_step", regs, 5,
806 5, SIGTRAP) == NOTIFY_STOP)
807 goto bail;
808 if (debugger_sstep(regs))
809 goto bail;
810
811 _exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
812
813 bail:
814 exception_exit(prev_state);
815 }
816
817 /*
818 * After we have successfully emulated an instruction, we have to
819 * check if the instruction was being single-stepped, and if so,
820 * pretend we got a single-step exception. This was pointed out
821 * by Kumar Gala. -- paulus
822 */
823 static void emulate_single_step(struct pt_regs *regs)
824 {
825 if (single_stepping(regs))
826 single_step_exception(regs);
827 }
828
829 static inline int __parse_fpscr(unsigned long fpscr)
830 {
831 int ret = 0;
832
833 /* Invalid operation */
834 if ((fpscr & FPSCR_VE) && (fpscr & FPSCR_VX))
835 ret = FPE_FLTINV;
836
837 /* Overflow */
838 else if ((fpscr & FPSCR_OE) && (fpscr & FPSCR_OX))
839 ret = FPE_FLTOVF;
840
841 /* Underflow */
842 else if ((fpscr & FPSCR_UE) && (fpscr & FPSCR_UX))
843 ret = FPE_FLTUND;
844
845 /* Divide by zero */
846 else if ((fpscr & FPSCR_ZE) && (fpscr & FPSCR_ZX))
847 ret = FPE_FLTDIV;
848
849 /* Inexact result */
850 else if ((fpscr & FPSCR_XE) && (fpscr & FPSCR_XX))
851 ret = FPE_FLTRES;
852
853 return ret;
854 }
855
856 static void parse_fpe(struct pt_regs *regs)
857 {
858 int code = 0;
859
860 flush_fp_to_thread(current);
861
862 code = __parse_fpscr(current->thread.fp_state.fpscr);
863
864 _exception(SIGFPE, regs, code, regs->nip);
865 }
866
867 /*
868 * Illegal instruction emulation support. Originally written to
869 * provide the PVR to user applications using the mfspr rd, PVR.
870 * Return non-zero if we can't emulate, or -EFAULT if the associated
871 * memory access caused an access fault. Return zero on success.
872 *
873 * There are a couple of ways to do this, either "decode" the instruction
874 * or directly match lots of bits. In this case, matching lots of
875 * bits is faster and easier.
876 *
877 */
878 static int emulate_string_inst(struct pt_regs *regs, u32 instword)
879 {
880 u8 rT = (instword >> 21) & 0x1f;
881 u8 rA = (instword >> 16) & 0x1f;
882 u8 NB_RB = (instword >> 11) & 0x1f;
883 u32 num_bytes;
884 unsigned long EA;
885 int pos = 0;
886
887 /* Early out if we are an invalid form of lswx */
888 if ((instword & PPC_INST_STRING_MASK) == PPC_INST_LSWX)
889 if ((rT == rA) || (rT == NB_RB))
890 return -EINVAL;
891
892 EA = (rA == 0) ? 0 : regs->gpr[rA];
893
894 switch (instword & PPC_INST_STRING_MASK) {
895 case PPC_INST_LSWX:
896 case PPC_INST_STSWX:
897 EA += NB_RB;
898 num_bytes = regs->xer & 0x7f;
899 break;
900 case PPC_INST_LSWI:
901 case PPC_INST_STSWI:
902 num_bytes = (NB_RB == 0) ? 32 : NB_RB;
903 break;
904 default:
905 return -EINVAL;
906 }
907
908 while (num_bytes != 0)
909 {
910 u8 val;
911 u32 shift = 8 * (3 - (pos & 0x3));
912
913 /* if process is 32-bit, clear upper 32 bits of EA */
914 if ((regs->msr & MSR_64BIT) == 0)
915 EA &= 0xFFFFFFFF;
916
917 switch ((instword & PPC_INST_STRING_MASK)) {
918 case PPC_INST_LSWX:
919 case PPC_INST_LSWI:
920 if (get_user(val, (u8 __user *)EA))
921 return -EFAULT;
922 /* first time updating this reg,
923 * zero it out */
924 if (pos == 0)
925 regs->gpr[rT] = 0;
926 regs->gpr[rT] |= val << shift;
927 break;
928 case PPC_INST_STSWI:
929 case PPC_INST_STSWX:
930 val = regs->gpr[rT] >> shift;
931 if (put_user(val, (u8 __user *)EA))
932 return -EFAULT;
933 break;
934 }
935 /* move EA to next address */
936 EA += 1;
937 num_bytes--;
938
939 /* manage our position within the register */
940 if (++pos == 4) {
941 pos = 0;
942 if (++rT == 32)
943 rT = 0;
944 }
945 }
946
947 return 0;
948 }
949
950 static int emulate_popcntb_inst(struct pt_regs *regs, u32 instword)
951 {
952 u32 ra,rs;
953 unsigned long tmp;
954
955 ra = (instword >> 16) & 0x1f;
956 rs = (instword >> 21) & 0x1f;
957
958 tmp = regs->gpr[rs];
959 tmp = tmp - ((tmp >> 1) & 0x5555555555555555ULL);
960 tmp = (tmp & 0x3333333333333333ULL) + ((tmp >> 2) & 0x3333333333333333ULL);
961 tmp = (tmp + (tmp >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
962 regs->gpr[ra] = tmp;
963
964 return 0;
965 }
966
967 static int emulate_isel(struct pt_regs *regs, u32 instword)
968 {
969 u8 rT = (instword >> 21) & 0x1f;
970 u8 rA = (instword >> 16) & 0x1f;
971 u8 rB = (instword >> 11) & 0x1f;
972 u8 BC = (instword >> 6) & 0x1f;
973 u8 bit;
974 unsigned long tmp;
975
976 tmp = (rA == 0) ? 0 : regs->gpr[rA];
977 bit = (regs->ccr >> (31 - BC)) & 0x1;
978
979 regs->gpr[rT] = bit ? tmp : regs->gpr[rB];
980
981 return 0;
982 }
983
984 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
985 static inline bool tm_abort_check(struct pt_regs *regs, int cause)
986 {
987 /* If we're emulating a load/store in an active transaction, we cannot
988 * emulate it as the kernel operates in transaction suspended context.
989 * We need to abort the transaction. This creates a persistent TM
990 * abort so tell the user what caused it with a new code.
991 */
992 if (MSR_TM_TRANSACTIONAL(regs->msr)) {
993 tm_enable();
994 tm_abort(cause);
995 return true;
996 }
997 return false;
998 }
999 #else
1000 static inline bool tm_abort_check(struct pt_regs *regs, int reason)
1001 {
1002 return false;
1003 }
1004 #endif
1005
1006 static int emulate_instruction(struct pt_regs *regs)
1007 {
1008 u32 instword;
1009 u32 rd;
1010
1011 if (!user_mode(regs))
1012 return -EINVAL;
1013 CHECK_FULL_REGS(regs);
1014
1015 if (get_user(instword, (u32 __user *)(regs->nip)))
1016 return -EFAULT;
1017
1018 /* Emulate the mfspr rD, PVR. */
1019 if ((instword & PPC_INST_MFSPR_PVR_MASK) == PPC_INST_MFSPR_PVR) {
1020 PPC_WARN_EMULATED(mfpvr, regs);
1021 rd = (instword >> 21) & 0x1f;
1022 regs->gpr[rd] = mfspr(SPRN_PVR);
1023 return 0;
1024 }
1025
1026 /* Emulating the dcba insn is just a no-op. */
1027 if ((instword & PPC_INST_DCBA_MASK) == PPC_INST_DCBA) {
1028 PPC_WARN_EMULATED(dcba, regs);
1029 return 0;
1030 }
1031
1032 /* Emulate the mcrxr insn. */
1033 if ((instword & PPC_INST_MCRXR_MASK) == PPC_INST_MCRXR) {
1034 int shift = (instword >> 21) & 0x1c;
1035 unsigned long msk = 0xf0000000UL >> shift;
1036
1037 PPC_WARN_EMULATED(mcrxr, regs);
1038 regs->ccr = (regs->ccr & ~msk) | ((regs->xer >> shift) & msk);
1039 regs->xer &= ~0xf0000000UL;
1040 return 0;
1041 }
1042
1043 /* Emulate load/store string insn. */
1044 if ((instword & PPC_INST_STRING_GEN_MASK) == PPC_INST_STRING) {
1045 if (tm_abort_check(regs,
1046 TM_CAUSE_EMULATE | TM_CAUSE_PERSISTENT))
1047 return -EINVAL;
1048 PPC_WARN_EMULATED(string, regs);
1049 return emulate_string_inst(regs, instword);
1050 }
1051
1052 /* Emulate the popcntb (Population Count Bytes) instruction. */
1053 if ((instword & PPC_INST_POPCNTB_MASK) == PPC_INST_POPCNTB) {
1054 PPC_WARN_EMULATED(popcntb, regs);
1055 return emulate_popcntb_inst(regs, instword);
1056 }
1057
1058 /* Emulate isel (Integer Select) instruction */
1059 if ((instword & PPC_INST_ISEL_MASK) == PPC_INST_ISEL) {
1060 PPC_WARN_EMULATED(isel, regs);
1061 return emulate_isel(regs, instword);
1062 }
1063
1064 /* Emulate sync instruction variants */
1065 if ((instword & PPC_INST_SYNC_MASK) == PPC_INST_SYNC) {
1066 PPC_WARN_EMULATED(sync, regs);
1067 asm volatile("sync");
1068 return 0;
1069 }
1070
1071 #ifdef CONFIG_PPC64
1072 /* Emulate the mfspr rD, DSCR. */
1073 if ((((instword & PPC_INST_MFSPR_DSCR_USER_MASK) ==
1074 PPC_INST_MFSPR_DSCR_USER) ||
1075 ((instword & PPC_INST_MFSPR_DSCR_MASK) ==
1076 PPC_INST_MFSPR_DSCR)) &&
1077 cpu_has_feature(CPU_FTR_DSCR)) {
1078 PPC_WARN_EMULATED(mfdscr, regs);
1079 rd = (instword >> 21) & 0x1f;
1080 regs->gpr[rd] = mfspr(SPRN_DSCR);
1081 return 0;
1082 }
1083 /* Emulate the mtspr DSCR, rD. */
1084 if ((((instword & PPC_INST_MTSPR_DSCR_USER_MASK) ==
1085 PPC_INST_MTSPR_DSCR_USER) ||
1086 ((instword & PPC_INST_MTSPR_DSCR_MASK) ==
1087 PPC_INST_MTSPR_DSCR)) &&
1088 cpu_has_feature(CPU_FTR_DSCR)) {
1089 PPC_WARN_EMULATED(mtdscr, regs);
1090 rd = (instword >> 21) & 0x1f;
1091 current->thread.dscr = regs->gpr[rd];
1092 current->thread.dscr_inherit = 1;
1093 mtspr(SPRN_DSCR, current->thread.dscr);
1094 return 0;
1095 }
1096 #endif
1097
1098 return -EINVAL;
1099 }
1100
1101 int is_valid_bugaddr(unsigned long addr)
1102 {
1103 return is_kernel_addr(addr);
1104 }
1105
1106 #ifdef CONFIG_MATH_EMULATION
1107 static int emulate_math(struct pt_regs *regs)
1108 {
1109 int ret;
1110 extern int do_mathemu(struct pt_regs *regs);
1111
1112 ret = do_mathemu(regs);
1113 if (ret >= 0)
1114 PPC_WARN_EMULATED(math, regs);
1115
1116 switch (ret) {
1117 case 0:
1118 emulate_single_step(regs);
1119 return 0;
1120 case 1: {
1121 int code = 0;
1122 code = __parse_fpscr(current->thread.fp_state.fpscr);
1123 _exception(SIGFPE, regs, code, regs->nip);
1124 return 0;
1125 }
1126 case -EFAULT:
1127 _exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1128 return 0;
1129 }
1130
1131 return -1;
1132 }
1133 #else
1134 static inline int emulate_math(struct pt_regs *regs) { return -1; }
1135 #endif
1136
1137 void __kprobes program_check_exception(struct pt_regs *regs)
1138 {
1139 enum ctx_state prev_state = exception_enter();
1140 unsigned int reason = get_reason(regs);
1141
1142 /* We can now get here via a FP Unavailable exception if the core
1143 * has no FPU, in that case the reason flags will be 0 */
1144
1145 if (reason & REASON_FP) {
1146 /* IEEE FP exception */
1147 parse_fpe(regs);
1148 goto bail;
1149 }
1150 if (reason & REASON_TRAP) {
1151 unsigned long bugaddr;
1152 /* Debugger is first in line to stop recursive faults in
1153 * rcu_lock, notify_die, or atomic_notifier_call_chain */
1154 if (debugger_bpt(regs))
1155 goto bail;
1156
1157 /* trap exception */
1158 if (notify_die(DIE_BPT, "breakpoint", regs, 5, 5, SIGTRAP)
1159 == NOTIFY_STOP)
1160 goto bail;
1161
1162 bugaddr = regs->nip;
1163 /*
1164 * Fixup bugaddr for BUG_ON() in real mode
1165 */
1166 if (!is_kernel_addr(bugaddr) && !(regs->msr & MSR_IR))
1167 bugaddr += PAGE_OFFSET;
1168
1169 if (!(regs->msr & MSR_PR) && /* not user-mode */
1170 report_bug(bugaddr, regs) == BUG_TRAP_TYPE_WARN) {
1171 regs->nip += 4;
1172 goto bail;
1173 }
1174 _exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
1175 goto bail;
1176 }
1177 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1178 if (reason & REASON_TM) {
1179 /* This is a TM "Bad Thing Exception" program check.
1180 * This occurs when:
1181 * - An rfid/hrfid/mtmsrd attempts to cause an illegal
1182 * transition in TM states.
1183 * - A trechkpt is attempted when transactional.
1184 * - A treclaim is attempted when non transactional.
1185 * - A tend is illegally attempted.
1186 * - writing a TM SPR when transactional.
1187 */
1188 if (!user_mode(regs) &&
1189 report_bug(regs->nip, regs) == BUG_TRAP_TYPE_WARN) {
1190 regs->nip += 4;
1191 goto bail;
1192 }
1193 /* If usermode caused this, it's done something illegal and
1194 * gets a SIGILL slap on the wrist. We call it an illegal
1195 * operand to distinguish from the instruction just being bad
1196 * (e.g. executing a 'tend' on a CPU without TM!); it's an
1197 * illegal /placement/ of a valid instruction.
1198 */
1199 if (user_mode(regs)) {
1200 _exception(SIGILL, regs, ILL_ILLOPN, regs->nip);
1201 goto bail;
1202 } else {
1203 printk(KERN_EMERG "Unexpected TM Bad Thing exception "
1204 "at %lx (msr 0x%x)\n", regs->nip, reason);
1205 die("Unrecoverable exception", regs, SIGABRT);
1206 }
1207 }
1208 #endif
1209
1210 /*
1211 * If we took the program check in the kernel skip down to sending a
1212 * SIGILL. The subsequent cases all relate to emulating instructions
1213 * which we should only do for userspace. We also do not want to enable
1214 * interrupts for kernel faults because that might lead to further
1215 * faults, and loose the context of the original exception.
1216 */
1217 if (!user_mode(regs))
1218 goto sigill;
1219
1220 /* We restore the interrupt state now */
1221 if (!arch_irq_disabled_regs(regs))
1222 local_irq_enable();
1223
1224 /* (reason & REASON_ILLEGAL) would be the obvious thing here,
1225 * but there seems to be a hardware bug on the 405GP (RevD)
1226 * that means ESR is sometimes set incorrectly - either to
1227 * ESR_DST (!?) or 0. In the process of chasing this with the
1228 * hardware people - not sure if it can happen on any illegal
1229 * instruction or only on FP instructions, whether there is a
1230 * pattern to occurrences etc. -dgibson 31/Mar/2003
1231 */
1232 if (!emulate_math(regs))
1233 goto bail;
1234
1235 /* Try to emulate it if we should. */
1236 if (reason & (REASON_ILLEGAL | REASON_PRIVILEGED)) {
1237 switch (emulate_instruction(regs)) {
1238 case 0:
1239 regs->nip += 4;
1240 emulate_single_step(regs);
1241 goto bail;
1242 case -EFAULT:
1243 _exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1244 goto bail;
1245 }
1246 }
1247
1248 sigill:
1249 if (reason & REASON_PRIVILEGED)
1250 _exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1251 else
1252 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1253
1254 bail:
1255 exception_exit(prev_state);
1256 }
1257
1258 /*
1259 * This occurs when running in hypervisor mode on POWER6 or later
1260 * and an illegal instruction is encountered.
1261 */
1262 void __kprobes emulation_assist_interrupt(struct pt_regs *regs)
1263 {
1264 regs->msr |= REASON_ILLEGAL;
1265 program_check_exception(regs);
1266 }
1267
1268 void alignment_exception(struct pt_regs *regs)
1269 {
1270 enum ctx_state prev_state = exception_enter();
1271 int sig, code, fixed = 0;
1272
1273 /* We restore the interrupt state now */
1274 if (!arch_irq_disabled_regs(regs))
1275 local_irq_enable();
1276
1277 if (tm_abort_check(regs, TM_CAUSE_ALIGNMENT | TM_CAUSE_PERSISTENT))
1278 goto bail;
1279
1280 /* we don't implement logging of alignment exceptions */
1281 if (!(current->thread.align_ctl & PR_UNALIGN_SIGBUS))
1282 fixed = fix_alignment(regs);
1283
1284 if (fixed == 1) {
1285 regs->nip += 4; /* skip over emulated instruction */
1286 emulate_single_step(regs);
1287 goto bail;
1288 }
1289
1290 /* Operand address was bad */
1291 if (fixed == -EFAULT) {
1292 sig = SIGSEGV;
1293 code = SEGV_ACCERR;
1294 } else {
1295 sig = SIGBUS;
1296 code = BUS_ADRALN;
1297 }
1298 if (user_mode(regs))
1299 _exception(sig, regs, code, regs->dar);
1300 else
1301 bad_page_fault(regs, regs->dar, sig);
1302
1303 bail:
1304 exception_exit(prev_state);
1305 }
1306
1307 void StackOverflow(struct pt_regs *regs)
1308 {
1309 printk(KERN_CRIT "Kernel stack overflow in process %p, r1=%lx\n",
1310 current, regs->gpr[1]);
1311 debugger(regs);
1312 show_regs(regs);
1313 panic("kernel stack overflow");
1314 }
1315
1316 void nonrecoverable_exception(struct pt_regs *regs)
1317 {
1318 printk(KERN_ERR "Non-recoverable exception at PC=%lx MSR=%lx\n",
1319 regs->nip, regs->msr);
1320 debugger(regs);
1321 die("nonrecoverable exception", regs, SIGKILL);
1322 }
1323
1324 void kernel_fp_unavailable_exception(struct pt_regs *regs)
1325 {
1326 enum ctx_state prev_state = exception_enter();
1327
1328 printk(KERN_EMERG "Unrecoverable FP Unavailable Exception "
1329 "%lx at %lx\n", regs->trap, regs->nip);
1330 die("Unrecoverable FP Unavailable Exception", regs, SIGABRT);
1331
1332 exception_exit(prev_state);
1333 }
1334
1335 void altivec_unavailable_exception(struct pt_regs *regs)
1336 {
1337 enum ctx_state prev_state = exception_enter();
1338
1339 if (user_mode(regs)) {
1340 /* A user program has executed an altivec instruction,
1341 but this kernel doesn't support altivec. */
1342 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1343 goto bail;
1344 }
1345
1346 printk(KERN_EMERG "Unrecoverable VMX/Altivec Unavailable Exception "
1347 "%lx at %lx\n", regs->trap, regs->nip);
1348 die("Unrecoverable VMX/Altivec Unavailable Exception", regs, SIGABRT);
1349
1350 bail:
1351 exception_exit(prev_state);
1352 }
1353
1354 void vsx_unavailable_exception(struct pt_regs *regs)
1355 {
1356 if (user_mode(regs)) {
1357 /* A user program has executed an vsx instruction,
1358 but this kernel doesn't support vsx. */
1359 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1360 return;
1361 }
1362
1363 printk(KERN_EMERG "Unrecoverable VSX Unavailable Exception "
1364 "%lx at %lx\n", regs->trap, regs->nip);
1365 die("Unrecoverable VSX Unavailable Exception", regs, SIGABRT);
1366 }
1367
1368 #ifdef CONFIG_PPC64
1369 void facility_unavailable_exception(struct pt_regs *regs)
1370 {
1371 static char *facility_strings[] = {
1372 [FSCR_FP_LG] = "FPU",
1373 [FSCR_VECVSX_LG] = "VMX/VSX",
1374 [FSCR_DSCR_LG] = "DSCR",
1375 [FSCR_PM_LG] = "PMU SPRs",
1376 [FSCR_BHRB_LG] = "BHRB",
1377 [FSCR_TM_LG] = "TM",
1378 [FSCR_EBB_LG] = "EBB",
1379 [FSCR_TAR_LG] = "TAR",
1380 };
1381 char *facility = "unknown";
1382 u64 value;
1383 u32 instword, rd;
1384 u8 status;
1385 bool hv;
1386
1387 hv = (regs->trap == 0xf80);
1388 if (hv)
1389 value = mfspr(SPRN_HFSCR);
1390 else
1391 value = mfspr(SPRN_FSCR);
1392
1393 status = value >> 56;
1394 if (status == FSCR_DSCR_LG) {
1395 /*
1396 * User is accessing the DSCR register using the problem
1397 * state only SPR number (0x03) either through a mfspr or
1398 * a mtspr instruction. If it is a write attempt through
1399 * a mtspr, then we set the inherit bit. This also allows
1400 * the user to write or read the register directly in the
1401 * future by setting via the FSCR DSCR bit. But in case it
1402 * is a read DSCR attempt through a mfspr instruction, we
1403 * just emulate the instruction instead. This code path will
1404 * always emulate all the mfspr instructions till the user
1405 * has attempted at least one mtspr instruction. This way it
1406 * preserves the same behaviour when the user is accessing
1407 * the DSCR through privilege level only SPR number (0x11)
1408 * which is emulated through illegal instruction exception.
1409 * We always leave HFSCR DSCR set.
1410 */
1411 if (get_user(instword, (u32 __user *)(regs->nip))) {
1412 pr_err("Failed to fetch the user instruction\n");
1413 return;
1414 }
1415
1416 /* Write into DSCR (mtspr 0x03, RS) */
1417 if ((instword & PPC_INST_MTSPR_DSCR_USER_MASK)
1418 == PPC_INST_MTSPR_DSCR_USER) {
1419 rd = (instword >> 21) & 0x1f;
1420 current->thread.dscr = regs->gpr[rd];
1421 current->thread.dscr_inherit = 1;
1422 mtspr(SPRN_FSCR, value | FSCR_DSCR);
1423 }
1424
1425 /* Read from DSCR (mfspr RT, 0x03) */
1426 if ((instword & PPC_INST_MFSPR_DSCR_USER_MASK)
1427 == PPC_INST_MFSPR_DSCR_USER) {
1428 if (emulate_instruction(regs)) {
1429 pr_err("DSCR based mfspr emulation failed\n");
1430 return;
1431 }
1432 regs->nip += 4;
1433 emulate_single_step(regs);
1434 }
1435 return;
1436 }
1437
1438 if ((status < ARRAY_SIZE(facility_strings)) &&
1439 facility_strings[status])
1440 facility = facility_strings[status];
1441
1442 /* We restore the interrupt state now */
1443 if (!arch_irq_disabled_regs(regs))
1444 local_irq_enable();
1445
1446 pr_err_ratelimited(
1447 "%sFacility '%s' unavailable, exception at 0x%lx, MSR=%lx\n",
1448 hv ? "Hypervisor " : "", facility, regs->nip, regs->msr);
1449
1450 if (user_mode(regs)) {
1451 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1452 return;
1453 }
1454
1455 die("Unexpected facility unavailable exception", regs, SIGABRT);
1456 }
1457 #endif
1458
1459 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1460
1461 void fp_unavailable_tm(struct pt_regs *regs)
1462 {
1463 /* Note: This does not handle any kind of FP laziness. */
1464
1465 TM_DEBUG("FP Unavailable trap whilst transactional at 0x%lx, MSR=%lx\n",
1466 regs->nip, regs->msr);
1467
1468 /* We can only have got here if the task started using FP after
1469 * beginning the transaction. So, the transactional regs are just a
1470 * copy of the checkpointed ones. But, we still need to recheckpoint
1471 * as we're enabling FP for the process; it will return, abort the
1472 * transaction, and probably retry but now with FP enabled. So the
1473 * checkpointed FP registers need to be loaded.
1474 */
1475 tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1476 /* Reclaim didn't save out any FPRs to transact_fprs. */
1477
1478 /* Enable FP for the task: */
1479 regs->msr |= (MSR_FP | current->thread.fpexc_mode);
1480
1481 /* This loads and recheckpoints the FP registers from
1482 * thread.fpr[]. They will remain in registers after the
1483 * checkpoint so we don't need to reload them after.
1484 * If VMX is in use, the VRs now hold checkpointed values,
1485 * so we don't want to load the VRs from the thread_struct.
1486 */
1487 tm_recheckpoint(&current->thread, MSR_FP);
1488
1489 /* If VMX is in use, get the transactional values back */
1490 if (regs->msr & MSR_VEC) {
1491 do_load_up_transact_altivec(&current->thread);
1492 /* At this point all the VSX state is loaded, so enable it */
1493 regs->msr |= MSR_VSX;
1494 }
1495 }
1496
1497 void altivec_unavailable_tm(struct pt_regs *regs)
1498 {
1499 /* See the comments in fp_unavailable_tm(). This function operates
1500 * the same way.
1501 */
1502
1503 TM_DEBUG("Vector Unavailable trap whilst transactional at 0x%lx,"
1504 "MSR=%lx\n",
1505 regs->nip, regs->msr);
1506 tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1507 regs->msr |= MSR_VEC;
1508 tm_recheckpoint(&current->thread, MSR_VEC);
1509 current->thread.used_vr = 1;
1510
1511 if (regs->msr & MSR_FP) {
1512 do_load_up_transact_fpu(&current->thread);
1513 regs->msr |= MSR_VSX;
1514 }
1515 }
1516
1517 void vsx_unavailable_tm(struct pt_regs *regs)
1518 {
1519 unsigned long orig_msr = regs->msr;
1520
1521 /* See the comments in fp_unavailable_tm(). This works similarly,
1522 * though we're loading both FP and VEC registers in here.
1523 *
1524 * If FP isn't in use, load FP regs. If VEC isn't in use, load VEC
1525 * regs. Either way, set MSR_VSX.
1526 */
1527
1528 TM_DEBUG("VSX Unavailable trap whilst transactional at 0x%lx,"
1529 "MSR=%lx\n",
1530 regs->nip, regs->msr);
1531
1532 current->thread.used_vsr = 1;
1533
1534 /* If FP and VMX are already loaded, we have all the state we need */
1535 if ((orig_msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC)) {
1536 regs->msr |= MSR_VSX;
1537 return;
1538 }
1539
1540 /* This reclaims FP and/or VR regs if they're already enabled */
1541 tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1542
1543 regs->msr |= MSR_VEC | MSR_FP | current->thread.fpexc_mode |
1544 MSR_VSX;
1545
1546 /* This loads & recheckpoints FP and VRs; but we have
1547 * to be sure not to overwrite previously-valid state.
1548 */
1549 tm_recheckpoint(&current->thread, regs->msr & ~orig_msr);
1550
1551 if (orig_msr & MSR_FP)
1552 do_load_up_transact_fpu(&current->thread);
1553 if (orig_msr & MSR_VEC)
1554 do_load_up_transact_altivec(&current->thread);
1555 }
1556 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1557
1558 void performance_monitor_exception(struct pt_regs *regs)
1559 {
1560 __this_cpu_inc(irq_stat.pmu_irqs);
1561
1562 perf_irq(regs);
1563 }
1564
1565 #ifdef CONFIG_8xx
1566 void SoftwareEmulation(struct pt_regs *regs)
1567 {
1568 CHECK_FULL_REGS(regs);
1569
1570 if (!user_mode(regs)) {
1571 debugger(regs);
1572 die("Kernel Mode Unimplemented Instruction or SW FPU Emulation",
1573 regs, SIGFPE);
1574 }
1575
1576 if (!emulate_math(regs))
1577 return;
1578
1579 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1580 }
1581 #endif /* CONFIG_8xx */
1582
1583 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1584 static void handle_debug(struct pt_regs *regs, unsigned long debug_status)
1585 {
1586 int changed = 0;
1587 /*
1588 * Determine the cause of the debug event, clear the
1589 * event flags and send a trap to the handler. Torez
1590 */
1591 if (debug_status & (DBSR_DAC1R | DBSR_DAC1W)) {
1592 dbcr_dac(current) &= ~(DBCR_DAC1R | DBCR_DAC1W);
1593 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
1594 current->thread.debug.dbcr2 &= ~DBCR2_DAC12MODE;
1595 #endif
1596 do_send_trap(regs, mfspr(SPRN_DAC1), debug_status, TRAP_HWBKPT,
1597 5);
1598 changed |= 0x01;
1599 } else if (debug_status & (DBSR_DAC2R | DBSR_DAC2W)) {
1600 dbcr_dac(current) &= ~(DBCR_DAC2R | DBCR_DAC2W);
1601 do_send_trap(regs, mfspr(SPRN_DAC2), debug_status, TRAP_HWBKPT,
1602 6);
1603 changed |= 0x01;
1604 } else if (debug_status & DBSR_IAC1) {
1605 current->thread.debug.dbcr0 &= ~DBCR0_IAC1;
1606 dbcr_iac_range(current) &= ~DBCR_IAC12MODE;
1607 do_send_trap(regs, mfspr(SPRN_IAC1), debug_status, TRAP_HWBKPT,
1608 1);
1609 changed |= 0x01;
1610 } else if (debug_status & DBSR_IAC2) {
1611 current->thread.debug.dbcr0 &= ~DBCR0_IAC2;
1612 do_send_trap(regs, mfspr(SPRN_IAC2), debug_status, TRAP_HWBKPT,
1613 2);
1614 changed |= 0x01;
1615 } else if (debug_status & DBSR_IAC3) {
1616 current->thread.debug.dbcr0 &= ~DBCR0_IAC3;
1617 dbcr_iac_range(current) &= ~DBCR_IAC34MODE;
1618 do_send_trap(regs, mfspr(SPRN_IAC3), debug_status, TRAP_HWBKPT,
1619 3);
1620 changed |= 0x01;
1621 } else if (debug_status & DBSR_IAC4) {
1622 current->thread.debug.dbcr0 &= ~DBCR0_IAC4;
1623 do_send_trap(regs, mfspr(SPRN_IAC4), debug_status, TRAP_HWBKPT,
1624 4);
1625 changed |= 0x01;
1626 }
1627 /*
1628 * At the point this routine was called, the MSR(DE) was turned off.
1629 * Check all other debug flags and see if that bit needs to be turned
1630 * back on or not.
1631 */
1632 if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0,
1633 current->thread.debug.dbcr1))
1634 regs->msr |= MSR_DE;
1635 else
1636 /* Make sure the IDM flag is off */
1637 current->thread.debug.dbcr0 &= ~DBCR0_IDM;
1638
1639 if (changed & 0x01)
1640 mtspr(SPRN_DBCR0, current->thread.debug.dbcr0);
1641 }
1642
1643 void __kprobes DebugException(struct pt_regs *regs, unsigned long debug_status)
1644 {
1645 current->thread.debug.dbsr = debug_status;
1646
1647 /* Hack alert: On BookE, Branch Taken stops on the branch itself, while
1648 * on server, it stops on the target of the branch. In order to simulate
1649 * the server behaviour, we thus restart right away with a single step
1650 * instead of stopping here when hitting a BT
1651 */
1652 if (debug_status & DBSR_BT) {
1653 regs->msr &= ~MSR_DE;
1654
1655 /* Disable BT */
1656 mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_BT);
1657 /* Clear the BT event */
1658 mtspr(SPRN_DBSR, DBSR_BT);
1659
1660 /* Do the single step trick only when coming from userspace */
1661 if (user_mode(regs)) {
1662 current->thread.debug.dbcr0 &= ~DBCR0_BT;
1663 current->thread.debug.dbcr0 |= DBCR0_IDM | DBCR0_IC;
1664 regs->msr |= MSR_DE;
1665 return;
1666 }
1667
1668 if (notify_die(DIE_SSTEP, "block_step", regs, 5,
1669 5, SIGTRAP) == NOTIFY_STOP) {
1670 return;
1671 }
1672 if (debugger_sstep(regs))
1673 return;
1674 } else if (debug_status & DBSR_IC) { /* Instruction complete */
1675 regs->msr &= ~MSR_DE;
1676
1677 /* Disable instruction completion */
1678 mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_IC);
1679 /* Clear the instruction completion event */
1680 mtspr(SPRN_DBSR, DBSR_IC);
1681
1682 if (notify_die(DIE_SSTEP, "single_step", regs, 5,
1683 5, SIGTRAP) == NOTIFY_STOP) {
1684 return;
1685 }
1686
1687 if (debugger_sstep(regs))
1688 return;
1689
1690 if (user_mode(regs)) {
1691 current->thread.debug.dbcr0 &= ~DBCR0_IC;
1692 if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0,
1693 current->thread.debug.dbcr1))
1694 regs->msr |= MSR_DE;
1695 else
1696 /* Make sure the IDM bit is off */
1697 current->thread.debug.dbcr0 &= ~DBCR0_IDM;
1698 }
1699
1700 _exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
1701 } else
1702 handle_debug(regs, debug_status);
1703 }
1704 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
1705
1706 #if !defined(CONFIG_TAU_INT)
1707 void TAUException(struct pt_regs *regs)
1708 {
1709 printk("TAU trap at PC: %lx, MSR: %lx, vector=%lx %s\n",
1710 regs->nip, regs->msr, regs->trap, print_tainted());
1711 }
1712 #endif /* CONFIG_INT_TAU */
1713
1714 #ifdef CONFIG_ALTIVEC
1715 void altivec_assist_exception(struct pt_regs *regs)
1716 {
1717 int err;
1718
1719 if (!user_mode(regs)) {
1720 printk(KERN_EMERG "VMX/Altivec assist exception in kernel mode"
1721 " at %lx\n", regs->nip);
1722 die("Kernel VMX/Altivec assist exception", regs, SIGILL);
1723 }
1724
1725 flush_altivec_to_thread(current);
1726
1727 PPC_WARN_EMULATED(altivec, regs);
1728 err = emulate_altivec(regs);
1729 if (err == 0) {
1730 regs->nip += 4; /* skip emulated instruction */
1731 emulate_single_step(regs);
1732 return;
1733 }
1734
1735 if (err == -EFAULT) {
1736 /* got an error reading the instruction */
1737 _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1738 } else {
1739 /* didn't recognize the instruction */
1740 /* XXX quick hack for now: set the non-Java bit in the VSCR */
1741 printk_ratelimited(KERN_ERR "Unrecognized altivec instruction "
1742 "in %s at %lx\n", current->comm, regs->nip);
1743 current->thread.vr_state.vscr.u[3] |= 0x10000;
1744 }
1745 }
1746 #endif /* CONFIG_ALTIVEC */
1747
1748 #ifdef CONFIG_FSL_BOOKE
1749 void CacheLockingException(struct pt_regs *regs, unsigned long address,
1750 unsigned long error_code)
1751 {
1752 /* We treat cache locking instructions from the user
1753 * as priv ops, in the future we could try to do
1754 * something smarter
1755 */
1756 if (error_code & (ESR_DLK|ESR_ILK))
1757 _exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1758 return;
1759 }
1760 #endif /* CONFIG_FSL_BOOKE */
1761
1762 #ifdef CONFIG_SPE
1763 void SPEFloatingPointException(struct pt_regs *regs)
1764 {
1765 extern int do_spe_mathemu(struct pt_regs *regs);
1766 unsigned long spefscr;
1767 int fpexc_mode;
1768 int code = 0;
1769 int err;
1770
1771 flush_spe_to_thread(current);
1772
1773 spefscr = current->thread.spefscr;
1774 fpexc_mode = current->thread.fpexc_mode;
1775
1776 if ((spefscr & SPEFSCR_FOVF) && (fpexc_mode & PR_FP_EXC_OVF)) {
1777 code = FPE_FLTOVF;
1778 }
1779 else if ((spefscr & SPEFSCR_FUNF) && (fpexc_mode & PR_FP_EXC_UND)) {
1780 code = FPE_FLTUND;
1781 }
1782 else if ((spefscr & SPEFSCR_FDBZ) && (fpexc_mode & PR_FP_EXC_DIV))
1783 code = FPE_FLTDIV;
1784 else if ((spefscr & SPEFSCR_FINV) && (fpexc_mode & PR_FP_EXC_INV)) {
1785 code = FPE_FLTINV;
1786 }
1787 else if ((spefscr & (SPEFSCR_FG | SPEFSCR_FX)) && (fpexc_mode & PR_FP_EXC_RES))
1788 code = FPE_FLTRES;
1789
1790 err = do_spe_mathemu(regs);
1791 if (err == 0) {
1792 regs->nip += 4; /* skip emulated instruction */
1793 emulate_single_step(regs);
1794 return;
1795 }
1796
1797 if (err == -EFAULT) {
1798 /* got an error reading the instruction */
1799 _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1800 } else if (err == -EINVAL) {
1801 /* didn't recognize the instruction */
1802 printk(KERN_ERR "unrecognized spe instruction "
1803 "in %s at %lx\n", current->comm, regs->nip);
1804 } else {
1805 _exception(SIGFPE, regs, code, regs->nip);
1806 }
1807
1808 return;
1809 }
1810
1811 void SPEFloatingPointRoundException(struct pt_regs *regs)
1812 {
1813 extern int speround_handler(struct pt_regs *regs);
1814 int err;
1815
1816 preempt_disable();
1817 if (regs->msr & MSR_SPE)
1818 giveup_spe(current);
1819 preempt_enable();
1820
1821 regs->nip -= 4;
1822 err = speround_handler(regs);
1823 if (err == 0) {
1824 regs->nip += 4; /* skip emulated instruction */
1825 emulate_single_step(regs);
1826 return;
1827 }
1828
1829 if (err == -EFAULT) {
1830 /* got an error reading the instruction */
1831 _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1832 } else if (err == -EINVAL) {
1833 /* didn't recognize the instruction */
1834 printk(KERN_ERR "unrecognized spe instruction "
1835 "in %s at %lx\n", current->comm, regs->nip);
1836 } else {
1837 _exception(SIGFPE, regs, 0, regs->nip);
1838 return;
1839 }
1840 }
1841 #endif
1842
1843 /*
1844 * We enter here if we get an unrecoverable exception, that is, one
1845 * that happened at a point where the RI (recoverable interrupt) bit
1846 * in the MSR is 0. This indicates that SRR0/1 are live, and that
1847 * we therefore lost state by taking this exception.
1848 */
1849 void unrecoverable_exception(struct pt_regs *regs)
1850 {
1851 printk(KERN_EMERG "Unrecoverable exception %lx at %lx\n",
1852 regs->trap, regs->nip);
1853 die("Unrecoverable exception", regs, SIGABRT);
1854 }
1855
1856 #if defined(CONFIG_BOOKE_WDT) || defined(CONFIG_40x)
1857 /*
1858 * Default handler for a Watchdog exception,
1859 * spins until a reboot occurs
1860 */
1861 void __attribute__ ((weak)) WatchdogHandler(struct pt_regs *regs)
1862 {
1863 /* Generic WatchdogHandler, implement your own */
1864 mtspr(SPRN_TCR, mfspr(SPRN_TCR)&(~TCR_WIE));
1865 return;
1866 }
1867
1868 void WatchdogException(struct pt_regs *regs)
1869 {
1870 printk (KERN_EMERG "PowerPC Book-E Watchdog Exception\n");
1871 WatchdogHandler(regs);
1872 }
1873 #endif
1874
1875 /*
1876 * We enter here if we discover during exception entry that we are
1877 * running in supervisor mode with a userspace value in the stack pointer.
1878 */
1879 void kernel_bad_stack(struct pt_regs *regs)
1880 {
1881 printk(KERN_EMERG "Bad kernel stack pointer %lx at %lx\n",
1882 regs->gpr[1], regs->nip);
1883 die("Bad kernel stack pointer", regs, SIGABRT);
1884 }
1885
1886 void __init trap_init(void)
1887 {
1888 }
1889
1890
1891 #ifdef CONFIG_PPC_EMULATED_STATS
1892
1893 #define WARN_EMULATED_SETUP(type) .type = { .name = #type }
1894
1895 struct ppc_emulated ppc_emulated = {
1896 #ifdef CONFIG_ALTIVEC
1897 WARN_EMULATED_SETUP(altivec),
1898 #endif
1899 WARN_EMULATED_SETUP(dcba),
1900 WARN_EMULATED_SETUP(dcbz),
1901 WARN_EMULATED_SETUP(fp_pair),
1902 WARN_EMULATED_SETUP(isel),
1903 WARN_EMULATED_SETUP(mcrxr),
1904 WARN_EMULATED_SETUP(mfpvr),
1905 WARN_EMULATED_SETUP(multiple),
1906 WARN_EMULATED_SETUP(popcntb),
1907 WARN_EMULATED_SETUP(spe),
1908 WARN_EMULATED_SETUP(string),
1909 WARN_EMULATED_SETUP(sync),
1910 WARN_EMULATED_SETUP(unaligned),
1911 #ifdef CONFIG_MATH_EMULATION
1912 WARN_EMULATED_SETUP(math),
1913 #endif
1914 #ifdef CONFIG_VSX
1915 WARN_EMULATED_SETUP(vsx),
1916 #endif
1917 #ifdef CONFIG_PPC64
1918 WARN_EMULATED_SETUP(mfdscr),
1919 WARN_EMULATED_SETUP(mtdscr),
1920 WARN_EMULATED_SETUP(lq_stq),
1921 #endif
1922 };
1923
1924 u32 ppc_warn_emulated;
1925
1926 void ppc_warn_emulated_print(const char *type)
1927 {
1928 pr_warn_ratelimited("%s used emulated %s instruction\n", current->comm,
1929 type);
1930 }
1931
1932 static int __init ppc_warn_emulated_init(void)
1933 {
1934 struct dentry *dir, *d;
1935 unsigned int i;
1936 struct ppc_emulated_entry *entries = (void *)&ppc_emulated;
1937
1938 if (!powerpc_debugfs_root)
1939 return -ENODEV;
1940
1941 dir = debugfs_create_dir("emulated_instructions",
1942 powerpc_debugfs_root);
1943 if (!dir)
1944 return -ENOMEM;
1945
1946 d = debugfs_create_u32("do_warn", S_IRUGO | S_IWUSR, dir,
1947 &ppc_warn_emulated);
1948 if (!d)
1949 goto fail;
1950
1951 for (i = 0; i < sizeof(ppc_emulated)/sizeof(*entries); i++) {
1952 d = debugfs_create_u32(entries[i].name, S_IRUGO | S_IWUSR, dir,
1953 (u32 *)&entries[i].val.counter);
1954 if (!d)
1955 goto fail;
1956 }
1957
1958 return 0;
1959
1960 fail:
1961 debugfs_remove_recursive(dir);
1962 return -ENOMEM;
1963 }
1964
1965 device_initcall(ppc_warn_emulated_init);
1966
1967 #endif /* CONFIG_PPC_EMULATED_STATS */
This page took 0.072368 seconds and 5 git commands to generate.