kvm: powerpc: book3s: Allow the HV and PR selection per virtual machine
[deliverable/linux.git] / arch / powerpc / kvm / book3s_hv.c
1 /*
2 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
3 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
4 *
5 * Authors:
6 * Paul Mackerras <paulus@au1.ibm.com>
7 * Alexander Graf <agraf@suse.de>
8 * Kevin Wolf <mail@kevin-wolf.de>
9 *
10 * Description: KVM functions specific to running on Book 3S
11 * processors in hypervisor mode (specifically POWER7 and later).
12 *
13 * This file is derived from arch/powerpc/kvm/book3s.c,
14 * by Alexander Graf <agraf@suse.de>.
15 *
16 * This program is free software; you can redistribute it and/or modify
17 * it under the terms of the GNU General Public License, version 2, as
18 * published by the Free Software Foundation.
19 */
20
21 #include <linux/kvm_host.h>
22 #include <linux/err.h>
23 #include <linux/slab.h>
24 #include <linux/preempt.h>
25 #include <linux/sched.h>
26 #include <linux/delay.h>
27 #include <linux/export.h>
28 #include <linux/fs.h>
29 #include <linux/anon_inodes.h>
30 #include <linux/cpumask.h>
31 #include <linux/spinlock.h>
32 #include <linux/page-flags.h>
33 #include <linux/srcu.h>
34
35 #include <asm/reg.h>
36 #include <asm/cputable.h>
37 #include <asm/cacheflush.h>
38 #include <asm/tlbflush.h>
39 #include <asm/uaccess.h>
40 #include <asm/io.h>
41 #include <asm/kvm_ppc.h>
42 #include <asm/kvm_book3s.h>
43 #include <asm/mmu_context.h>
44 #include <asm/lppaca.h>
45 #include <asm/processor.h>
46 #include <asm/cputhreads.h>
47 #include <asm/page.h>
48 #include <asm/hvcall.h>
49 #include <asm/switch_to.h>
50 #include <asm/smp.h>
51 #include <linux/gfp.h>
52 #include <linux/vmalloc.h>
53 #include <linux/highmem.h>
54 #include <linux/hugetlb.h>
55 #include <linux/module.h>
56
57 #include "book3s.h"
58
59 /* #define EXIT_DEBUG */
60 /* #define EXIT_DEBUG_SIMPLE */
61 /* #define EXIT_DEBUG_INT */
62
63 /* Used to indicate that a guest page fault needs to be handled */
64 #define RESUME_PAGE_FAULT (RESUME_GUEST | RESUME_FLAG_ARCH1)
65
66 /* Used as a "null" value for timebase values */
67 #define TB_NIL (~(u64)0)
68
69 static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
70 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
71
72 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
73 {
74 int me;
75 int cpu = vcpu->cpu;
76 wait_queue_head_t *wqp;
77
78 wqp = kvm_arch_vcpu_wq(vcpu);
79 if (waitqueue_active(wqp)) {
80 wake_up_interruptible(wqp);
81 ++vcpu->stat.halt_wakeup;
82 }
83
84 me = get_cpu();
85
86 /* CPU points to the first thread of the core */
87 if (cpu != me && cpu >= 0 && cpu < nr_cpu_ids) {
88 int real_cpu = cpu + vcpu->arch.ptid;
89 if (paca[real_cpu].kvm_hstate.xics_phys)
90 xics_wake_cpu(real_cpu);
91 else if (cpu_online(cpu))
92 smp_send_reschedule(cpu);
93 }
94 put_cpu();
95 }
96
97 /*
98 * We use the vcpu_load/put functions to measure stolen time.
99 * Stolen time is counted as time when either the vcpu is able to
100 * run as part of a virtual core, but the task running the vcore
101 * is preempted or sleeping, or when the vcpu needs something done
102 * in the kernel by the task running the vcpu, but that task is
103 * preempted or sleeping. Those two things have to be counted
104 * separately, since one of the vcpu tasks will take on the job
105 * of running the core, and the other vcpu tasks in the vcore will
106 * sleep waiting for it to do that, but that sleep shouldn't count
107 * as stolen time.
108 *
109 * Hence we accumulate stolen time when the vcpu can run as part of
110 * a vcore using vc->stolen_tb, and the stolen time when the vcpu
111 * needs its task to do other things in the kernel (for example,
112 * service a page fault) in busy_stolen. We don't accumulate
113 * stolen time for a vcore when it is inactive, or for a vcpu
114 * when it is in state RUNNING or NOTREADY. NOTREADY is a bit of
115 * a misnomer; it means that the vcpu task is not executing in
116 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
117 * the kernel. We don't have any way of dividing up that time
118 * between time that the vcpu is genuinely stopped, time that
119 * the task is actively working on behalf of the vcpu, and time
120 * that the task is preempted, so we don't count any of it as
121 * stolen.
122 *
123 * Updates to busy_stolen are protected by arch.tbacct_lock;
124 * updates to vc->stolen_tb are protected by the arch.tbacct_lock
125 * of the vcpu that has taken responsibility for running the vcore
126 * (i.e. vc->runner). The stolen times are measured in units of
127 * timebase ticks. (Note that the != TB_NIL checks below are
128 * purely defensive; they should never fail.)
129 */
130
131 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
132 {
133 struct kvmppc_vcore *vc = vcpu->arch.vcore;
134
135 spin_lock(&vcpu->arch.tbacct_lock);
136 if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE &&
137 vc->preempt_tb != TB_NIL) {
138 vc->stolen_tb += mftb() - vc->preempt_tb;
139 vc->preempt_tb = TB_NIL;
140 }
141 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
142 vcpu->arch.busy_preempt != TB_NIL) {
143 vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
144 vcpu->arch.busy_preempt = TB_NIL;
145 }
146 spin_unlock(&vcpu->arch.tbacct_lock);
147 }
148
149 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
150 {
151 struct kvmppc_vcore *vc = vcpu->arch.vcore;
152
153 spin_lock(&vcpu->arch.tbacct_lock);
154 if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE)
155 vc->preempt_tb = mftb();
156 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
157 vcpu->arch.busy_preempt = mftb();
158 spin_unlock(&vcpu->arch.tbacct_lock);
159 }
160
161 static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
162 {
163 vcpu->arch.shregs.msr = msr;
164 kvmppc_end_cede(vcpu);
165 }
166
167 void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
168 {
169 vcpu->arch.pvr = pvr;
170 }
171
172 int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
173 {
174 unsigned long pcr = 0;
175 struct kvmppc_vcore *vc = vcpu->arch.vcore;
176
177 if (arch_compat) {
178 if (!cpu_has_feature(CPU_FTR_ARCH_206))
179 return -EINVAL; /* 970 has no compat mode support */
180
181 switch (arch_compat) {
182 case PVR_ARCH_205:
183 pcr = PCR_ARCH_205;
184 break;
185 case PVR_ARCH_206:
186 case PVR_ARCH_206p:
187 break;
188 default:
189 return -EINVAL;
190 }
191 }
192
193 spin_lock(&vc->lock);
194 vc->arch_compat = arch_compat;
195 vc->pcr = pcr;
196 spin_unlock(&vc->lock);
197
198 return 0;
199 }
200
201 void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
202 {
203 int r;
204
205 pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
206 pr_err("pc = %.16lx msr = %.16llx trap = %x\n",
207 vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
208 for (r = 0; r < 16; ++r)
209 pr_err("r%2d = %.16lx r%d = %.16lx\n",
210 r, kvmppc_get_gpr(vcpu, r),
211 r+16, kvmppc_get_gpr(vcpu, r+16));
212 pr_err("ctr = %.16lx lr = %.16lx\n",
213 vcpu->arch.ctr, vcpu->arch.lr);
214 pr_err("srr0 = %.16llx srr1 = %.16llx\n",
215 vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
216 pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
217 vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
218 pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
219 vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
220 pr_err("cr = %.8x xer = %.16lx dsisr = %.8x\n",
221 vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
222 pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
223 pr_err("fault dar = %.16lx dsisr = %.8x\n",
224 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
225 pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
226 for (r = 0; r < vcpu->arch.slb_max; ++r)
227 pr_err(" ESID = %.16llx VSID = %.16llx\n",
228 vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
229 pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
230 vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
231 vcpu->arch.last_inst);
232 }
233
234 struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
235 {
236 int r;
237 struct kvm_vcpu *v, *ret = NULL;
238
239 mutex_lock(&kvm->lock);
240 kvm_for_each_vcpu(r, v, kvm) {
241 if (v->vcpu_id == id) {
242 ret = v;
243 break;
244 }
245 }
246 mutex_unlock(&kvm->lock);
247 return ret;
248 }
249
250 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
251 {
252 vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
253 vpa->yield_count = 1;
254 }
255
256 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
257 unsigned long addr, unsigned long len)
258 {
259 /* check address is cacheline aligned */
260 if (addr & (L1_CACHE_BYTES - 1))
261 return -EINVAL;
262 spin_lock(&vcpu->arch.vpa_update_lock);
263 if (v->next_gpa != addr || v->len != len) {
264 v->next_gpa = addr;
265 v->len = addr ? len : 0;
266 v->update_pending = 1;
267 }
268 spin_unlock(&vcpu->arch.vpa_update_lock);
269 return 0;
270 }
271
272 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
273 struct reg_vpa {
274 u32 dummy;
275 union {
276 u16 hword;
277 u32 word;
278 } length;
279 };
280
281 static int vpa_is_registered(struct kvmppc_vpa *vpap)
282 {
283 if (vpap->update_pending)
284 return vpap->next_gpa != 0;
285 return vpap->pinned_addr != NULL;
286 }
287
288 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
289 unsigned long flags,
290 unsigned long vcpuid, unsigned long vpa)
291 {
292 struct kvm *kvm = vcpu->kvm;
293 unsigned long len, nb;
294 void *va;
295 struct kvm_vcpu *tvcpu;
296 int err;
297 int subfunc;
298 struct kvmppc_vpa *vpap;
299
300 tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
301 if (!tvcpu)
302 return H_PARAMETER;
303
304 subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
305 if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
306 subfunc == H_VPA_REG_SLB) {
307 /* Registering new area - address must be cache-line aligned */
308 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
309 return H_PARAMETER;
310
311 /* convert logical addr to kernel addr and read length */
312 va = kvmppc_pin_guest_page(kvm, vpa, &nb);
313 if (va == NULL)
314 return H_PARAMETER;
315 if (subfunc == H_VPA_REG_VPA)
316 len = ((struct reg_vpa *)va)->length.hword;
317 else
318 len = ((struct reg_vpa *)va)->length.word;
319 kvmppc_unpin_guest_page(kvm, va, vpa, false);
320
321 /* Check length */
322 if (len > nb || len < sizeof(struct reg_vpa))
323 return H_PARAMETER;
324 } else {
325 vpa = 0;
326 len = 0;
327 }
328
329 err = H_PARAMETER;
330 vpap = NULL;
331 spin_lock(&tvcpu->arch.vpa_update_lock);
332
333 switch (subfunc) {
334 case H_VPA_REG_VPA: /* register VPA */
335 if (len < sizeof(struct lppaca))
336 break;
337 vpap = &tvcpu->arch.vpa;
338 err = 0;
339 break;
340
341 case H_VPA_REG_DTL: /* register DTL */
342 if (len < sizeof(struct dtl_entry))
343 break;
344 len -= len % sizeof(struct dtl_entry);
345
346 /* Check that they have previously registered a VPA */
347 err = H_RESOURCE;
348 if (!vpa_is_registered(&tvcpu->arch.vpa))
349 break;
350
351 vpap = &tvcpu->arch.dtl;
352 err = 0;
353 break;
354
355 case H_VPA_REG_SLB: /* register SLB shadow buffer */
356 /* Check that they have previously registered a VPA */
357 err = H_RESOURCE;
358 if (!vpa_is_registered(&tvcpu->arch.vpa))
359 break;
360
361 vpap = &tvcpu->arch.slb_shadow;
362 err = 0;
363 break;
364
365 case H_VPA_DEREG_VPA: /* deregister VPA */
366 /* Check they don't still have a DTL or SLB buf registered */
367 err = H_RESOURCE;
368 if (vpa_is_registered(&tvcpu->arch.dtl) ||
369 vpa_is_registered(&tvcpu->arch.slb_shadow))
370 break;
371
372 vpap = &tvcpu->arch.vpa;
373 err = 0;
374 break;
375
376 case H_VPA_DEREG_DTL: /* deregister DTL */
377 vpap = &tvcpu->arch.dtl;
378 err = 0;
379 break;
380
381 case H_VPA_DEREG_SLB: /* deregister SLB shadow buffer */
382 vpap = &tvcpu->arch.slb_shadow;
383 err = 0;
384 break;
385 }
386
387 if (vpap) {
388 vpap->next_gpa = vpa;
389 vpap->len = len;
390 vpap->update_pending = 1;
391 }
392
393 spin_unlock(&tvcpu->arch.vpa_update_lock);
394
395 return err;
396 }
397
398 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
399 {
400 struct kvm *kvm = vcpu->kvm;
401 void *va;
402 unsigned long nb;
403 unsigned long gpa;
404
405 /*
406 * We need to pin the page pointed to by vpap->next_gpa,
407 * but we can't call kvmppc_pin_guest_page under the lock
408 * as it does get_user_pages() and down_read(). So we
409 * have to drop the lock, pin the page, then get the lock
410 * again and check that a new area didn't get registered
411 * in the meantime.
412 */
413 for (;;) {
414 gpa = vpap->next_gpa;
415 spin_unlock(&vcpu->arch.vpa_update_lock);
416 va = NULL;
417 nb = 0;
418 if (gpa)
419 va = kvmppc_pin_guest_page(kvm, gpa, &nb);
420 spin_lock(&vcpu->arch.vpa_update_lock);
421 if (gpa == vpap->next_gpa)
422 break;
423 /* sigh... unpin that one and try again */
424 if (va)
425 kvmppc_unpin_guest_page(kvm, va, gpa, false);
426 }
427
428 vpap->update_pending = 0;
429 if (va && nb < vpap->len) {
430 /*
431 * If it's now too short, it must be that userspace
432 * has changed the mappings underlying guest memory,
433 * so unregister the region.
434 */
435 kvmppc_unpin_guest_page(kvm, va, gpa, false);
436 va = NULL;
437 }
438 if (vpap->pinned_addr)
439 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
440 vpap->dirty);
441 vpap->gpa = gpa;
442 vpap->pinned_addr = va;
443 vpap->dirty = false;
444 if (va)
445 vpap->pinned_end = va + vpap->len;
446 }
447
448 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
449 {
450 if (!(vcpu->arch.vpa.update_pending ||
451 vcpu->arch.slb_shadow.update_pending ||
452 vcpu->arch.dtl.update_pending))
453 return;
454
455 spin_lock(&vcpu->arch.vpa_update_lock);
456 if (vcpu->arch.vpa.update_pending) {
457 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
458 if (vcpu->arch.vpa.pinned_addr)
459 init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
460 }
461 if (vcpu->arch.dtl.update_pending) {
462 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
463 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
464 vcpu->arch.dtl_index = 0;
465 }
466 if (vcpu->arch.slb_shadow.update_pending)
467 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
468 spin_unlock(&vcpu->arch.vpa_update_lock);
469 }
470
471 /*
472 * Return the accumulated stolen time for the vcore up until `now'.
473 * The caller should hold the vcore lock.
474 */
475 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
476 {
477 u64 p;
478
479 /*
480 * If we are the task running the vcore, then since we hold
481 * the vcore lock, we can't be preempted, so stolen_tb/preempt_tb
482 * can't be updated, so we don't need the tbacct_lock.
483 * If the vcore is inactive, it can't become active (since we
484 * hold the vcore lock), so the vcpu load/put functions won't
485 * update stolen_tb/preempt_tb, and we don't need tbacct_lock.
486 */
487 if (vc->vcore_state != VCORE_INACTIVE &&
488 vc->runner->arch.run_task != current) {
489 spin_lock(&vc->runner->arch.tbacct_lock);
490 p = vc->stolen_tb;
491 if (vc->preempt_tb != TB_NIL)
492 p += now - vc->preempt_tb;
493 spin_unlock(&vc->runner->arch.tbacct_lock);
494 } else {
495 p = vc->stolen_tb;
496 }
497 return p;
498 }
499
500 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
501 struct kvmppc_vcore *vc)
502 {
503 struct dtl_entry *dt;
504 struct lppaca *vpa;
505 unsigned long stolen;
506 unsigned long core_stolen;
507 u64 now;
508
509 dt = vcpu->arch.dtl_ptr;
510 vpa = vcpu->arch.vpa.pinned_addr;
511 now = mftb();
512 core_stolen = vcore_stolen_time(vc, now);
513 stolen = core_stolen - vcpu->arch.stolen_logged;
514 vcpu->arch.stolen_logged = core_stolen;
515 spin_lock(&vcpu->arch.tbacct_lock);
516 stolen += vcpu->arch.busy_stolen;
517 vcpu->arch.busy_stolen = 0;
518 spin_unlock(&vcpu->arch.tbacct_lock);
519 if (!dt || !vpa)
520 return;
521 memset(dt, 0, sizeof(struct dtl_entry));
522 dt->dispatch_reason = 7;
523 dt->processor_id = vc->pcpu + vcpu->arch.ptid;
524 dt->timebase = now + vc->tb_offset;
525 dt->enqueue_to_dispatch_time = stolen;
526 dt->srr0 = kvmppc_get_pc(vcpu);
527 dt->srr1 = vcpu->arch.shregs.msr;
528 ++dt;
529 if (dt == vcpu->arch.dtl.pinned_end)
530 dt = vcpu->arch.dtl.pinned_addr;
531 vcpu->arch.dtl_ptr = dt;
532 /* order writing *dt vs. writing vpa->dtl_idx */
533 smp_wmb();
534 vpa->dtl_idx = ++vcpu->arch.dtl_index;
535 vcpu->arch.dtl.dirty = true;
536 }
537
538 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
539 {
540 unsigned long req = kvmppc_get_gpr(vcpu, 3);
541 unsigned long target, ret = H_SUCCESS;
542 struct kvm_vcpu *tvcpu;
543 int idx, rc;
544
545 switch (req) {
546 case H_ENTER:
547 idx = srcu_read_lock(&vcpu->kvm->srcu);
548 ret = kvmppc_virtmode_h_enter(vcpu, kvmppc_get_gpr(vcpu, 4),
549 kvmppc_get_gpr(vcpu, 5),
550 kvmppc_get_gpr(vcpu, 6),
551 kvmppc_get_gpr(vcpu, 7));
552 srcu_read_unlock(&vcpu->kvm->srcu, idx);
553 break;
554 case H_CEDE:
555 break;
556 case H_PROD:
557 target = kvmppc_get_gpr(vcpu, 4);
558 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
559 if (!tvcpu) {
560 ret = H_PARAMETER;
561 break;
562 }
563 tvcpu->arch.prodded = 1;
564 smp_mb();
565 if (vcpu->arch.ceded) {
566 if (waitqueue_active(&vcpu->wq)) {
567 wake_up_interruptible(&vcpu->wq);
568 vcpu->stat.halt_wakeup++;
569 }
570 }
571 break;
572 case H_CONFER:
573 target = kvmppc_get_gpr(vcpu, 4);
574 if (target == -1)
575 break;
576 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
577 if (!tvcpu) {
578 ret = H_PARAMETER;
579 break;
580 }
581 kvm_vcpu_yield_to(tvcpu);
582 break;
583 case H_REGISTER_VPA:
584 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
585 kvmppc_get_gpr(vcpu, 5),
586 kvmppc_get_gpr(vcpu, 6));
587 break;
588 case H_RTAS:
589 if (list_empty(&vcpu->kvm->arch.rtas_tokens))
590 return RESUME_HOST;
591
592 rc = kvmppc_rtas_hcall(vcpu);
593
594 if (rc == -ENOENT)
595 return RESUME_HOST;
596 else if (rc == 0)
597 break;
598
599 /* Send the error out to userspace via KVM_RUN */
600 return rc;
601
602 case H_XIRR:
603 case H_CPPR:
604 case H_EOI:
605 case H_IPI:
606 case H_IPOLL:
607 case H_XIRR_X:
608 if (kvmppc_xics_enabled(vcpu)) {
609 ret = kvmppc_xics_hcall(vcpu, req);
610 break;
611 } /* fallthrough */
612 default:
613 return RESUME_HOST;
614 }
615 kvmppc_set_gpr(vcpu, 3, ret);
616 vcpu->arch.hcall_needed = 0;
617 return RESUME_GUEST;
618 }
619
620 static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
621 struct task_struct *tsk)
622 {
623 int r = RESUME_HOST;
624
625 vcpu->stat.sum_exits++;
626
627 run->exit_reason = KVM_EXIT_UNKNOWN;
628 run->ready_for_interrupt_injection = 1;
629 switch (vcpu->arch.trap) {
630 /* We're good on these - the host merely wanted to get our attention */
631 case BOOK3S_INTERRUPT_HV_DECREMENTER:
632 vcpu->stat.dec_exits++;
633 r = RESUME_GUEST;
634 break;
635 case BOOK3S_INTERRUPT_EXTERNAL:
636 vcpu->stat.ext_intr_exits++;
637 r = RESUME_GUEST;
638 break;
639 case BOOK3S_INTERRUPT_PERFMON:
640 r = RESUME_GUEST;
641 break;
642 case BOOK3S_INTERRUPT_MACHINE_CHECK:
643 /*
644 * Deliver a machine check interrupt to the guest.
645 * We have to do this, even if the host has handled the
646 * machine check, because machine checks use SRR0/1 and
647 * the interrupt might have trashed guest state in them.
648 */
649 kvmppc_book3s_queue_irqprio(vcpu,
650 BOOK3S_INTERRUPT_MACHINE_CHECK);
651 r = RESUME_GUEST;
652 break;
653 case BOOK3S_INTERRUPT_PROGRAM:
654 {
655 ulong flags;
656 /*
657 * Normally program interrupts are delivered directly
658 * to the guest by the hardware, but we can get here
659 * as a result of a hypervisor emulation interrupt
660 * (e40) getting turned into a 700 by BML RTAS.
661 */
662 flags = vcpu->arch.shregs.msr & 0x1f0000ull;
663 kvmppc_core_queue_program(vcpu, flags);
664 r = RESUME_GUEST;
665 break;
666 }
667 case BOOK3S_INTERRUPT_SYSCALL:
668 {
669 /* hcall - punt to userspace */
670 int i;
671
672 if (vcpu->arch.shregs.msr & MSR_PR) {
673 /* sc 1 from userspace - reflect to guest syscall */
674 kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_SYSCALL);
675 r = RESUME_GUEST;
676 break;
677 }
678 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
679 for (i = 0; i < 9; ++i)
680 run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
681 run->exit_reason = KVM_EXIT_PAPR_HCALL;
682 vcpu->arch.hcall_needed = 1;
683 r = RESUME_HOST;
684 break;
685 }
686 /*
687 * We get these next two if the guest accesses a page which it thinks
688 * it has mapped but which is not actually present, either because
689 * it is for an emulated I/O device or because the corresonding
690 * host page has been paged out. Any other HDSI/HISI interrupts
691 * have been handled already.
692 */
693 case BOOK3S_INTERRUPT_H_DATA_STORAGE:
694 r = RESUME_PAGE_FAULT;
695 break;
696 case BOOK3S_INTERRUPT_H_INST_STORAGE:
697 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
698 vcpu->arch.fault_dsisr = 0;
699 r = RESUME_PAGE_FAULT;
700 break;
701 /*
702 * This occurs if the guest executes an illegal instruction.
703 * We just generate a program interrupt to the guest, since
704 * we don't emulate any guest instructions at this stage.
705 */
706 case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
707 kvmppc_core_queue_program(vcpu, 0x80000);
708 r = RESUME_GUEST;
709 break;
710 default:
711 kvmppc_dump_regs(vcpu);
712 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
713 vcpu->arch.trap, kvmppc_get_pc(vcpu),
714 vcpu->arch.shregs.msr);
715 run->hw.hardware_exit_reason = vcpu->arch.trap;
716 r = RESUME_HOST;
717 break;
718 }
719
720 return r;
721 }
722
723 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
724 struct kvm_sregs *sregs)
725 {
726 int i;
727
728 memset(sregs, 0, sizeof(struct kvm_sregs));
729 sregs->pvr = vcpu->arch.pvr;
730 for (i = 0; i < vcpu->arch.slb_max; i++) {
731 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
732 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
733 }
734
735 return 0;
736 }
737
738 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
739 struct kvm_sregs *sregs)
740 {
741 int i, j;
742
743 kvmppc_set_pvr_hv(vcpu, sregs->pvr);
744
745 j = 0;
746 for (i = 0; i < vcpu->arch.slb_nr; i++) {
747 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
748 vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
749 vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
750 ++j;
751 }
752 }
753 vcpu->arch.slb_max = j;
754
755 return 0;
756 }
757
758 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr)
759 {
760 struct kvmppc_vcore *vc = vcpu->arch.vcore;
761 u64 mask;
762
763 spin_lock(&vc->lock);
764 /*
765 * Userspace can only modify DPFD (default prefetch depth),
766 * ILE (interrupt little-endian) and TC (translation control).
767 */
768 mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
769 vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
770 spin_unlock(&vc->lock);
771 }
772
773 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
774 union kvmppc_one_reg *val)
775 {
776 int r = 0;
777 long int i;
778
779 switch (id) {
780 case KVM_REG_PPC_HIOR:
781 *val = get_reg_val(id, 0);
782 break;
783 case KVM_REG_PPC_DABR:
784 *val = get_reg_val(id, vcpu->arch.dabr);
785 break;
786 case KVM_REG_PPC_DSCR:
787 *val = get_reg_val(id, vcpu->arch.dscr);
788 break;
789 case KVM_REG_PPC_PURR:
790 *val = get_reg_val(id, vcpu->arch.purr);
791 break;
792 case KVM_REG_PPC_SPURR:
793 *val = get_reg_val(id, vcpu->arch.spurr);
794 break;
795 case KVM_REG_PPC_AMR:
796 *val = get_reg_val(id, vcpu->arch.amr);
797 break;
798 case KVM_REG_PPC_UAMOR:
799 *val = get_reg_val(id, vcpu->arch.uamor);
800 break;
801 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRA:
802 i = id - KVM_REG_PPC_MMCR0;
803 *val = get_reg_val(id, vcpu->arch.mmcr[i]);
804 break;
805 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
806 i = id - KVM_REG_PPC_PMC1;
807 *val = get_reg_val(id, vcpu->arch.pmc[i]);
808 break;
809 case KVM_REG_PPC_SIAR:
810 *val = get_reg_val(id, vcpu->arch.siar);
811 break;
812 case KVM_REG_PPC_SDAR:
813 *val = get_reg_val(id, vcpu->arch.sdar);
814 break;
815 #ifdef CONFIG_VSX
816 case KVM_REG_PPC_FPR0 ... KVM_REG_PPC_FPR31:
817 if (cpu_has_feature(CPU_FTR_VSX)) {
818 /* VSX => FP reg i is stored in arch.vsr[2*i] */
819 long int i = id - KVM_REG_PPC_FPR0;
820 *val = get_reg_val(id, vcpu->arch.vsr[2 * i]);
821 } else {
822 /* let generic code handle it */
823 r = -EINVAL;
824 }
825 break;
826 case KVM_REG_PPC_VSR0 ... KVM_REG_PPC_VSR31:
827 if (cpu_has_feature(CPU_FTR_VSX)) {
828 long int i = id - KVM_REG_PPC_VSR0;
829 val->vsxval[0] = vcpu->arch.vsr[2 * i];
830 val->vsxval[1] = vcpu->arch.vsr[2 * i + 1];
831 } else {
832 r = -ENXIO;
833 }
834 break;
835 #endif /* CONFIG_VSX */
836 case KVM_REG_PPC_VPA_ADDR:
837 spin_lock(&vcpu->arch.vpa_update_lock);
838 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
839 spin_unlock(&vcpu->arch.vpa_update_lock);
840 break;
841 case KVM_REG_PPC_VPA_SLB:
842 spin_lock(&vcpu->arch.vpa_update_lock);
843 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
844 val->vpaval.length = vcpu->arch.slb_shadow.len;
845 spin_unlock(&vcpu->arch.vpa_update_lock);
846 break;
847 case KVM_REG_PPC_VPA_DTL:
848 spin_lock(&vcpu->arch.vpa_update_lock);
849 val->vpaval.addr = vcpu->arch.dtl.next_gpa;
850 val->vpaval.length = vcpu->arch.dtl.len;
851 spin_unlock(&vcpu->arch.vpa_update_lock);
852 break;
853 case KVM_REG_PPC_TB_OFFSET:
854 *val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
855 break;
856 case KVM_REG_PPC_LPCR:
857 *val = get_reg_val(id, vcpu->arch.vcore->lpcr);
858 break;
859 case KVM_REG_PPC_PPR:
860 *val = get_reg_val(id, vcpu->arch.ppr);
861 break;
862 case KVM_REG_PPC_ARCH_COMPAT:
863 *val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
864 break;
865 default:
866 r = -EINVAL;
867 break;
868 }
869
870 return r;
871 }
872
873 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
874 union kvmppc_one_reg *val)
875 {
876 int r = 0;
877 long int i;
878 unsigned long addr, len;
879
880 switch (id) {
881 case KVM_REG_PPC_HIOR:
882 /* Only allow this to be set to zero */
883 if (set_reg_val(id, *val))
884 r = -EINVAL;
885 break;
886 case KVM_REG_PPC_DABR:
887 vcpu->arch.dabr = set_reg_val(id, *val);
888 break;
889 case KVM_REG_PPC_DSCR:
890 vcpu->arch.dscr = set_reg_val(id, *val);
891 break;
892 case KVM_REG_PPC_PURR:
893 vcpu->arch.purr = set_reg_val(id, *val);
894 break;
895 case KVM_REG_PPC_SPURR:
896 vcpu->arch.spurr = set_reg_val(id, *val);
897 break;
898 case KVM_REG_PPC_AMR:
899 vcpu->arch.amr = set_reg_val(id, *val);
900 break;
901 case KVM_REG_PPC_UAMOR:
902 vcpu->arch.uamor = set_reg_val(id, *val);
903 break;
904 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRA:
905 i = id - KVM_REG_PPC_MMCR0;
906 vcpu->arch.mmcr[i] = set_reg_val(id, *val);
907 break;
908 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
909 i = id - KVM_REG_PPC_PMC1;
910 vcpu->arch.pmc[i] = set_reg_val(id, *val);
911 break;
912 case KVM_REG_PPC_SIAR:
913 vcpu->arch.siar = set_reg_val(id, *val);
914 break;
915 case KVM_REG_PPC_SDAR:
916 vcpu->arch.sdar = set_reg_val(id, *val);
917 break;
918 #ifdef CONFIG_VSX
919 case KVM_REG_PPC_FPR0 ... KVM_REG_PPC_FPR31:
920 if (cpu_has_feature(CPU_FTR_VSX)) {
921 /* VSX => FP reg i is stored in arch.vsr[2*i] */
922 long int i = id - KVM_REG_PPC_FPR0;
923 vcpu->arch.vsr[2 * i] = set_reg_val(id, *val);
924 } else {
925 /* let generic code handle it */
926 r = -EINVAL;
927 }
928 break;
929 case KVM_REG_PPC_VSR0 ... KVM_REG_PPC_VSR31:
930 if (cpu_has_feature(CPU_FTR_VSX)) {
931 long int i = id - KVM_REG_PPC_VSR0;
932 vcpu->arch.vsr[2 * i] = val->vsxval[0];
933 vcpu->arch.vsr[2 * i + 1] = val->vsxval[1];
934 } else {
935 r = -ENXIO;
936 }
937 break;
938 #endif /* CONFIG_VSX */
939 case KVM_REG_PPC_VPA_ADDR:
940 addr = set_reg_val(id, *val);
941 r = -EINVAL;
942 if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
943 vcpu->arch.dtl.next_gpa))
944 break;
945 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
946 break;
947 case KVM_REG_PPC_VPA_SLB:
948 addr = val->vpaval.addr;
949 len = val->vpaval.length;
950 r = -EINVAL;
951 if (addr && !vcpu->arch.vpa.next_gpa)
952 break;
953 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
954 break;
955 case KVM_REG_PPC_VPA_DTL:
956 addr = val->vpaval.addr;
957 len = val->vpaval.length;
958 r = -EINVAL;
959 if (addr && (len < sizeof(struct dtl_entry) ||
960 !vcpu->arch.vpa.next_gpa))
961 break;
962 len -= len % sizeof(struct dtl_entry);
963 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
964 break;
965 case KVM_REG_PPC_TB_OFFSET:
966 /* round up to multiple of 2^24 */
967 vcpu->arch.vcore->tb_offset =
968 ALIGN(set_reg_val(id, *val), 1UL << 24);
969 break;
970 case KVM_REG_PPC_LPCR:
971 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val));
972 break;
973 case KVM_REG_PPC_PPR:
974 vcpu->arch.ppr = set_reg_val(id, *val);
975 break;
976 case KVM_REG_PPC_ARCH_COMPAT:
977 r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
978 break;
979 default:
980 r = -EINVAL;
981 break;
982 }
983
984 return r;
985 }
986
987 static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm,
988 unsigned int id)
989 {
990 struct kvm_vcpu *vcpu;
991 int err = -EINVAL;
992 int core;
993 struct kvmppc_vcore *vcore;
994
995 core = id / threads_per_core;
996 if (core >= KVM_MAX_VCORES)
997 goto out;
998
999 err = -ENOMEM;
1000 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1001 if (!vcpu)
1002 goto out;
1003
1004 err = kvm_vcpu_init(vcpu, kvm, id);
1005 if (err)
1006 goto free_vcpu;
1007
1008 vcpu->arch.shared = &vcpu->arch.shregs;
1009 vcpu->arch.mmcr[0] = MMCR0_FC;
1010 vcpu->arch.ctrl = CTRL_RUNLATCH;
1011 /* default to host PVR, since we can't spoof it */
1012 kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
1013 spin_lock_init(&vcpu->arch.vpa_update_lock);
1014 spin_lock_init(&vcpu->arch.tbacct_lock);
1015 vcpu->arch.busy_preempt = TB_NIL;
1016
1017 kvmppc_mmu_book3s_hv_init(vcpu);
1018
1019 vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
1020
1021 init_waitqueue_head(&vcpu->arch.cpu_run);
1022
1023 mutex_lock(&kvm->lock);
1024 vcore = kvm->arch.vcores[core];
1025 if (!vcore) {
1026 vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
1027 if (vcore) {
1028 INIT_LIST_HEAD(&vcore->runnable_threads);
1029 spin_lock_init(&vcore->lock);
1030 init_waitqueue_head(&vcore->wq);
1031 vcore->preempt_tb = TB_NIL;
1032 vcore->lpcr = kvm->arch.lpcr;
1033 }
1034 kvm->arch.vcores[core] = vcore;
1035 kvm->arch.online_vcores++;
1036 }
1037 mutex_unlock(&kvm->lock);
1038
1039 if (!vcore)
1040 goto free_vcpu;
1041
1042 spin_lock(&vcore->lock);
1043 ++vcore->num_threads;
1044 spin_unlock(&vcore->lock);
1045 vcpu->arch.vcore = vcore;
1046
1047 vcpu->arch.cpu_type = KVM_CPU_3S_64;
1048 kvmppc_sanity_check(vcpu);
1049
1050 return vcpu;
1051
1052 free_vcpu:
1053 kmem_cache_free(kvm_vcpu_cache, vcpu);
1054 out:
1055 return ERR_PTR(err);
1056 }
1057
1058 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
1059 {
1060 if (vpa->pinned_addr)
1061 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
1062 vpa->dirty);
1063 }
1064
1065 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
1066 {
1067 spin_lock(&vcpu->arch.vpa_update_lock);
1068 unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
1069 unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
1070 unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
1071 spin_unlock(&vcpu->arch.vpa_update_lock);
1072 kvm_vcpu_uninit(vcpu);
1073 kmem_cache_free(kvm_vcpu_cache, vcpu);
1074 }
1075
1076 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
1077 {
1078 /* Indicate we want to get back into the guest */
1079 return 1;
1080 }
1081
1082 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
1083 {
1084 unsigned long dec_nsec, now;
1085
1086 now = get_tb();
1087 if (now > vcpu->arch.dec_expires) {
1088 /* decrementer has already gone negative */
1089 kvmppc_core_queue_dec(vcpu);
1090 kvmppc_core_prepare_to_enter(vcpu);
1091 return;
1092 }
1093 dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
1094 / tb_ticks_per_sec;
1095 hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec),
1096 HRTIMER_MODE_REL);
1097 vcpu->arch.timer_running = 1;
1098 }
1099
1100 static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
1101 {
1102 vcpu->arch.ceded = 0;
1103 if (vcpu->arch.timer_running) {
1104 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
1105 vcpu->arch.timer_running = 0;
1106 }
1107 }
1108
1109 extern int __kvmppc_vcore_entry(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu);
1110
1111 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
1112 struct kvm_vcpu *vcpu)
1113 {
1114 u64 now;
1115
1116 if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
1117 return;
1118 spin_lock(&vcpu->arch.tbacct_lock);
1119 now = mftb();
1120 vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
1121 vcpu->arch.stolen_logged;
1122 vcpu->arch.busy_preempt = now;
1123 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
1124 spin_unlock(&vcpu->arch.tbacct_lock);
1125 --vc->n_runnable;
1126 list_del(&vcpu->arch.run_list);
1127 }
1128
1129 static int kvmppc_grab_hwthread(int cpu)
1130 {
1131 struct paca_struct *tpaca;
1132 long timeout = 1000;
1133
1134 tpaca = &paca[cpu];
1135
1136 /* Ensure the thread won't go into the kernel if it wakes */
1137 tpaca->kvm_hstate.hwthread_req = 1;
1138 tpaca->kvm_hstate.kvm_vcpu = NULL;
1139
1140 /*
1141 * If the thread is already executing in the kernel (e.g. handling
1142 * a stray interrupt), wait for it to get back to nap mode.
1143 * The smp_mb() is to ensure that our setting of hwthread_req
1144 * is visible before we look at hwthread_state, so if this
1145 * races with the code at system_reset_pSeries and the thread
1146 * misses our setting of hwthread_req, we are sure to see its
1147 * setting of hwthread_state, and vice versa.
1148 */
1149 smp_mb();
1150 while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
1151 if (--timeout <= 0) {
1152 pr_err("KVM: couldn't grab cpu %d\n", cpu);
1153 return -EBUSY;
1154 }
1155 udelay(1);
1156 }
1157 return 0;
1158 }
1159
1160 static void kvmppc_release_hwthread(int cpu)
1161 {
1162 struct paca_struct *tpaca;
1163
1164 tpaca = &paca[cpu];
1165 tpaca->kvm_hstate.hwthread_req = 0;
1166 tpaca->kvm_hstate.kvm_vcpu = NULL;
1167 }
1168
1169 static void kvmppc_start_thread(struct kvm_vcpu *vcpu)
1170 {
1171 int cpu;
1172 struct paca_struct *tpaca;
1173 struct kvmppc_vcore *vc = vcpu->arch.vcore;
1174
1175 if (vcpu->arch.timer_running) {
1176 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
1177 vcpu->arch.timer_running = 0;
1178 }
1179 cpu = vc->pcpu + vcpu->arch.ptid;
1180 tpaca = &paca[cpu];
1181 tpaca->kvm_hstate.kvm_vcpu = vcpu;
1182 tpaca->kvm_hstate.kvm_vcore = vc;
1183 tpaca->kvm_hstate.napping = 0;
1184 vcpu->cpu = vc->pcpu;
1185 smp_wmb();
1186 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
1187 if (vcpu->arch.ptid) {
1188 xics_wake_cpu(cpu);
1189 ++vc->n_woken;
1190 }
1191 #endif
1192 }
1193
1194 static void kvmppc_wait_for_nap(struct kvmppc_vcore *vc)
1195 {
1196 int i;
1197
1198 HMT_low();
1199 i = 0;
1200 while (vc->nap_count < vc->n_woken) {
1201 if (++i >= 1000000) {
1202 pr_err("kvmppc_wait_for_nap timeout %d %d\n",
1203 vc->nap_count, vc->n_woken);
1204 break;
1205 }
1206 cpu_relax();
1207 }
1208 HMT_medium();
1209 }
1210
1211 /*
1212 * Check that we are on thread 0 and that any other threads in
1213 * this core are off-line. Then grab the threads so they can't
1214 * enter the kernel.
1215 */
1216 static int on_primary_thread(void)
1217 {
1218 int cpu = smp_processor_id();
1219 int thr = cpu_thread_in_core(cpu);
1220
1221 if (thr)
1222 return 0;
1223 while (++thr < threads_per_core)
1224 if (cpu_online(cpu + thr))
1225 return 0;
1226
1227 /* Grab all hw threads so they can't go into the kernel */
1228 for (thr = 1; thr < threads_per_core; ++thr) {
1229 if (kvmppc_grab_hwthread(cpu + thr)) {
1230 /* Couldn't grab one; let the others go */
1231 do {
1232 kvmppc_release_hwthread(cpu + thr);
1233 } while (--thr > 0);
1234 return 0;
1235 }
1236 }
1237 return 1;
1238 }
1239
1240 /*
1241 * Run a set of guest threads on a physical core.
1242 * Called with vc->lock held.
1243 */
1244 static void kvmppc_run_core(struct kvmppc_vcore *vc)
1245 {
1246 struct kvm_vcpu *vcpu, *vcpu0, *vnext;
1247 long ret;
1248 u64 now;
1249 int ptid, i, need_vpa_update;
1250 int srcu_idx;
1251 struct kvm_vcpu *vcpus_to_update[threads_per_core];
1252
1253 /* don't start if any threads have a signal pending */
1254 need_vpa_update = 0;
1255 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1256 if (signal_pending(vcpu->arch.run_task))
1257 return;
1258 if (vcpu->arch.vpa.update_pending ||
1259 vcpu->arch.slb_shadow.update_pending ||
1260 vcpu->arch.dtl.update_pending)
1261 vcpus_to_update[need_vpa_update++] = vcpu;
1262 }
1263
1264 /*
1265 * Initialize *vc, in particular vc->vcore_state, so we can
1266 * drop the vcore lock if necessary.
1267 */
1268 vc->n_woken = 0;
1269 vc->nap_count = 0;
1270 vc->entry_exit_count = 0;
1271 vc->vcore_state = VCORE_STARTING;
1272 vc->in_guest = 0;
1273 vc->napping_threads = 0;
1274
1275 /*
1276 * Updating any of the vpas requires calling kvmppc_pin_guest_page,
1277 * which can't be called with any spinlocks held.
1278 */
1279 if (need_vpa_update) {
1280 spin_unlock(&vc->lock);
1281 for (i = 0; i < need_vpa_update; ++i)
1282 kvmppc_update_vpas(vcpus_to_update[i]);
1283 spin_lock(&vc->lock);
1284 }
1285
1286 /*
1287 * Assign physical thread IDs, first to non-ceded vcpus
1288 * and then to ceded ones.
1289 */
1290 ptid = 0;
1291 vcpu0 = NULL;
1292 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1293 if (!vcpu->arch.ceded) {
1294 if (!ptid)
1295 vcpu0 = vcpu;
1296 vcpu->arch.ptid = ptid++;
1297 }
1298 }
1299 if (!vcpu0)
1300 goto out; /* nothing to run; should never happen */
1301 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
1302 if (vcpu->arch.ceded)
1303 vcpu->arch.ptid = ptid++;
1304
1305 /*
1306 * Make sure we are running on thread 0, and that
1307 * secondary threads are offline.
1308 */
1309 if (threads_per_core > 1 && !on_primary_thread()) {
1310 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
1311 vcpu->arch.ret = -EBUSY;
1312 goto out;
1313 }
1314
1315 vc->pcpu = smp_processor_id();
1316 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1317 kvmppc_start_thread(vcpu);
1318 kvmppc_create_dtl_entry(vcpu, vc);
1319 }
1320
1321 vc->vcore_state = VCORE_RUNNING;
1322 preempt_disable();
1323 spin_unlock(&vc->lock);
1324
1325 kvm_guest_enter();
1326
1327 srcu_idx = srcu_read_lock(&vcpu0->kvm->srcu);
1328
1329 __kvmppc_vcore_entry(NULL, vcpu0);
1330
1331 spin_lock(&vc->lock);
1332 /* disable sending of IPIs on virtual external irqs */
1333 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
1334 vcpu->cpu = -1;
1335 /* wait for secondary threads to finish writing their state to memory */
1336 if (vc->nap_count < vc->n_woken)
1337 kvmppc_wait_for_nap(vc);
1338 for (i = 0; i < threads_per_core; ++i)
1339 kvmppc_release_hwthread(vc->pcpu + i);
1340 /* prevent other vcpu threads from doing kvmppc_start_thread() now */
1341 vc->vcore_state = VCORE_EXITING;
1342 spin_unlock(&vc->lock);
1343
1344 srcu_read_unlock(&vcpu0->kvm->srcu, srcu_idx);
1345
1346 /* make sure updates to secondary vcpu structs are visible now */
1347 smp_mb();
1348 kvm_guest_exit();
1349
1350 preempt_enable();
1351 kvm_resched(vcpu);
1352
1353 spin_lock(&vc->lock);
1354 now = get_tb();
1355 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1356 /* cancel pending dec exception if dec is positive */
1357 if (now < vcpu->arch.dec_expires &&
1358 kvmppc_core_pending_dec(vcpu))
1359 kvmppc_core_dequeue_dec(vcpu);
1360
1361 ret = RESUME_GUEST;
1362 if (vcpu->arch.trap)
1363 ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu,
1364 vcpu->arch.run_task);
1365
1366 vcpu->arch.ret = ret;
1367 vcpu->arch.trap = 0;
1368
1369 if (vcpu->arch.ceded) {
1370 if (ret != RESUME_GUEST)
1371 kvmppc_end_cede(vcpu);
1372 else
1373 kvmppc_set_timer(vcpu);
1374 }
1375 }
1376
1377 out:
1378 vc->vcore_state = VCORE_INACTIVE;
1379 list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
1380 arch.run_list) {
1381 if (vcpu->arch.ret != RESUME_GUEST) {
1382 kvmppc_remove_runnable(vc, vcpu);
1383 wake_up(&vcpu->arch.cpu_run);
1384 }
1385 }
1386 }
1387
1388 /*
1389 * Wait for some other vcpu thread to execute us, and
1390 * wake us up when we need to handle something in the host.
1391 */
1392 static void kvmppc_wait_for_exec(struct kvm_vcpu *vcpu, int wait_state)
1393 {
1394 DEFINE_WAIT(wait);
1395
1396 prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
1397 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE)
1398 schedule();
1399 finish_wait(&vcpu->arch.cpu_run, &wait);
1400 }
1401
1402 /*
1403 * All the vcpus in this vcore are idle, so wait for a decrementer
1404 * or external interrupt to one of the vcpus. vc->lock is held.
1405 */
1406 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
1407 {
1408 DEFINE_WAIT(wait);
1409
1410 prepare_to_wait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
1411 vc->vcore_state = VCORE_SLEEPING;
1412 spin_unlock(&vc->lock);
1413 schedule();
1414 finish_wait(&vc->wq, &wait);
1415 spin_lock(&vc->lock);
1416 vc->vcore_state = VCORE_INACTIVE;
1417 }
1418
1419 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
1420 {
1421 int n_ceded;
1422 struct kvmppc_vcore *vc;
1423 struct kvm_vcpu *v, *vn;
1424
1425 kvm_run->exit_reason = 0;
1426 vcpu->arch.ret = RESUME_GUEST;
1427 vcpu->arch.trap = 0;
1428 kvmppc_update_vpas(vcpu);
1429
1430 /*
1431 * Synchronize with other threads in this virtual core
1432 */
1433 vc = vcpu->arch.vcore;
1434 spin_lock(&vc->lock);
1435 vcpu->arch.ceded = 0;
1436 vcpu->arch.run_task = current;
1437 vcpu->arch.kvm_run = kvm_run;
1438 vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
1439 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
1440 vcpu->arch.busy_preempt = TB_NIL;
1441 list_add_tail(&vcpu->arch.run_list, &vc->runnable_threads);
1442 ++vc->n_runnable;
1443
1444 /*
1445 * This happens the first time this is called for a vcpu.
1446 * If the vcore is already running, we may be able to start
1447 * this thread straight away and have it join in.
1448 */
1449 if (!signal_pending(current)) {
1450 if (vc->vcore_state == VCORE_RUNNING &&
1451 VCORE_EXIT_COUNT(vc) == 0) {
1452 vcpu->arch.ptid = vc->n_runnable - 1;
1453 kvmppc_create_dtl_entry(vcpu, vc);
1454 kvmppc_start_thread(vcpu);
1455 } else if (vc->vcore_state == VCORE_SLEEPING) {
1456 wake_up(&vc->wq);
1457 }
1458
1459 }
1460
1461 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
1462 !signal_pending(current)) {
1463 if (vc->vcore_state != VCORE_INACTIVE) {
1464 spin_unlock(&vc->lock);
1465 kvmppc_wait_for_exec(vcpu, TASK_INTERRUPTIBLE);
1466 spin_lock(&vc->lock);
1467 continue;
1468 }
1469 list_for_each_entry_safe(v, vn, &vc->runnable_threads,
1470 arch.run_list) {
1471 kvmppc_core_prepare_to_enter(v);
1472 if (signal_pending(v->arch.run_task)) {
1473 kvmppc_remove_runnable(vc, v);
1474 v->stat.signal_exits++;
1475 v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
1476 v->arch.ret = -EINTR;
1477 wake_up(&v->arch.cpu_run);
1478 }
1479 }
1480 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
1481 break;
1482 vc->runner = vcpu;
1483 n_ceded = 0;
1484 list_for_each_entry(v, &vc->runnable_threads, arch.run_list) {
1485 if (!v->arch.pending_exceptions)
1486 n_ceded += v->arch.ceded;
1487 else
1488 v->arch.ceded = 0;
1489 }
1490 if (n_ceded == vc->n_runnable)
1491 kvmppc_vcore_blocked(vc);
1492 else
1493 kvmppc_run_core(vc);
1494 vc->runner = NULL;
1495 }
1496
1497 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
1498 (vc->vcore_state == VCORE_RUNNING ||
1499 vc->vcore_state == VCORE_EXITING)) {
1500 spin_unlock(&vc->lock);
1501 kvmppc_wait_for_exec(vcpu, TASK_UNINTERRUPTIBLE);
1502 spin_lock(&vc->lock);
1503 }
1504
1505 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
1506 kvmppc_remove_runnable(vc, vcpu);
1507 vcpu->stat.signal_exits++;
1508 kvm_run->exit_reason = KVM_EXIT_INTR;
1509 vcpu->arch.ret = -EINTR;
1510 }
1511
1512 if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
1513 /* Wake up some vcpu to run the core */
1514 v = list_first_entry(&vc->runnable_threads,
1515 struct kvm_vcpu, arch.run_list);
1516 wake_up(&v->arch.cpu_run);
1517 }
1518
1519 spin_unlock(&vc->lock);
1520 return vcpu->arch.ret;
1521 }
1522
1523 static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
1524 {
1525 int r;
1526 int srcu_idx;
1527
1528 if (!vcpu->arch.sane) {
1529 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1530 return -EINVAL;
1531 }
1532
1533 kvmppc_core_prepare_to_enter(vcpu);
1534
1535 /* No need to go into the guest when all we'll do is come back out */
1536 if (signal_pending(current)) {
1537 run->exit_reason = KVM_EXIT_INTR;
1538 return -EINTR;
1539 }
1540
1541 atomic_inc(&vcpu->kvm->arch.vcpus_running);
1542 /* Order vcpus_running vs. rma_setup_done, see kvmppc_alloc_reset_hpt */
1543 smp_mb();
1544
1545 /* On the first time here, set up HTAB and VRMA or RMA */
1546 if (!vcpu->kvm->arch.rma_setup_done) {
1547 r = kvmppc_hv_setup_htab_rma(vcpu);
1548 if (r)
1549 goto out;
1550 }
1551
1552 flush_fp_to_thread(current);
1553 flush_altivec_to_thread(current);
1554 flush_vsx_to_thread(current);
1555 vcpu->arch.wqp = &vcpu->arch.vcore->wq;
1556 vcpu->arch.pgdir = current->mm->pgd;
1557 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
1558
1559 do {
1560 r = kvmppc_run_vcpu(run, vcpu);
1561
1562 if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
1563 !(vcpu->arch.shregs.msr & MSR_PR)) {
1564 r = kvmppc_pseries_do_hcall(vcpu);
1565 kvmppc_core_prepare_to_enter(vcpu);
1566 } else if (r == RESUME_PAGE_FAULT) {
1567 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1568 r = kvmppc_book3s_hv_page_fault(run, vcpu,
1569 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
1570 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1571 }
1572 } while (r == RESUME_GUEST);
1573
1574 out:
1575 vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
1576 atomic_dec(&vcpu->kvm->arch.vcpus_running);
1577 return r;
1578 }
1579
1580
1581 /* Work out RMLS (real mode limit selector) field value for a given RMA size.
1582 Assumes POWER7 or PPC970. */
1583 static inline int lpcr_rmls(unsigned long rma_size)
1584 {
1585 switch (rma_size) {
1586 case 32ul << 20: /* 32 MB */
1587 if (cpu_has_feature(CPU_FTR_ARCH_206))
1588 return 8; /* only supported on POWER7 */
1589 return -1;
1590 case 64ul << 20: /* 64 MB */
1591 return 3;
1592 case 128ul << 20: /* 128 MB */
1593 return 7;
1594 case 256ul << 20: /* 256 MB */
1595 return 4;
1596 case 1ul << 30: /* 1 GB */
1597 return 2;
1598 case 16ul << 30: /* 16 GB */
1599 return 1;
1600 case 256ul << 30: /* 256 GB */
1601 return 0;
1602 default:
1603 return -1;
1604 }
1605 }
1606
1607 static int kvm_rma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1608 {
1609 struct page *page;
1610 struct kvm_rma_info *ri = vma->vm_file->private_data;
1611
1612 if (vmf->pgoff >= kvm_rma_pages)
1613 return VM_FAULT_SIGBUS;
1614
1615 page = pfn_to_page(ri->base_pfn + vmf->pgoff);
1616 get_page(page);
1617 vmf->page = page;
1618 return 0;
1619 }
1620
1621 static const struct vm_operations_struct kvm_rma_vm_ops = {
1622 .fault = kvm_rma_fault,
1623 };
1624
1625 static int kvm_rma_mmap(struct file *file, struct vm_area_struct *vma)
1626 {
1627 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
1628 vma->vm_ops = &kvm_rma_vm_ops;
1629 return 0;
1630 }
1631
1632 static int kvm_rma_release(struct inode *inode, struct file *filp)
1633 {
1634 struct kvm_rma_info *ri = filp->private_data;
1635
1636 kvm_release_rma(ri);
1637 return 0;
1638 }
1639
1640 static const struct file_operations kvm_rma_fops = {
1641 .mmap = kvm_rma_mmap,
1642 .release = kvm_rma_release,
1643 };
1644
1645 static long kvm_vm_ioctl_allocate_rma(struct kvm *kvm,
1646 struct kvm_allocate_rma *ret)
1647 {
1648 long fd;
1649 struct kvm_rma_info *ri;
1650 /*
1651 * Only do this on PPC970 in HV mode
1652 */
1653 if (!cpu_has_feature(CPU_FTR_HVMODE) ||
1654 !cpu_has_feature(CPU_FTR_ARCH_201))
1655 return -EINVAL;
1656
1657 if (!kvm_rma_pages)
1658 return -EINVAL;
1659
1660 ri = kvm_alloc_rma();
1661 if (!ri)
1662 return -ENOMEM;
1663
1664 fd = anon_inode_getfd("kvm-rma", &kvm_rma_fops, ri, O_RDWR | O_CLOEXEC);
1665 if (fd < 0)
1666 kvm_release_rma(ri);
1667
1668 ret->rma_size = kvm_rma_pages << PAGE_SHIFT;
1669 return fd;
1670 }
1671
1672 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
1673 int linux_psize)
1674 {
1675 struct mmu_psize_def *def = &mmu_psize_defs[linux_psize];
1676
1677 if (!def->shift)
1678 return;
1679 (*sps)->page_shift = def->shift;
1680 (*sps)->slb_enc = def->sllp;
1681 (*sps)->enc[0].page_shift = def->shift;
1682 /*
1683 * Only return base page encoding. We don't want to return
1684 * all the supporting pte_enc, because our H_ENTER doesn't
1685 * support MPSS yet. Once they do, we can start passing all
1686 * support pte_enc here
1687 */
1688 (*sps)->enc[0].pte_enc = def->penc[linux_psize];
1689 (*sps)++;
1690 }
1691
1692 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
1693 struct kvm_ppc_smmu_info *info)
1694 {
1695 struct kvm_ppc_one_seg_page_size *sps;
1696
1697 info->flags = KVM_PPC_PAGE_SIZES_REAL;
1698 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1699 info->flags |= KVM_PPC_1T_SEGMENTS;
1700 info->slb_size = mmu_slb_size;
1701
1702 /* We only support these sizes for now, and no muti-size segments */
1703 sps = &info->sps[0];
1704 kvmppc_add_seg_page_size(&sps, MMU_PAGE_4K);
1705 kvmppc_add_seg_page_size(&sps, MMU_PAGE_64K);
1706 kvmppc_add_seg_page_size(&sps, MMU_PAGE_16M);
1707
1708 return 0;
1709 }
1710
1711 /*
1712 * Get (and clear) the dirty memory log for a memory slot.
1713 */
1714 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
1715 struct kvm_dirty_log *log)
1716 {
1717 struct kvm_memory_slot *memslot;
1718 int r;
1719 unsigned long n;
1720
1721 mutex_lock(&kvm->slots_lock);
1722
1723 r = -EINVAL;
1724 if (log->slot >= KVM_USER_MEM_SLOTS)
1725 goto out;
1726
1727 memslot = id_to_memslot(kvm->memslots, log->slot);
1728 r = -ENOENT;
1729 if (!memslot->dirty_bitmap)
1730 goto out;
1731
1732 n = kvm_dirty_bitmap_bytes(memslot);
1733 memset(memslot->dirty_bitmap, 0, n);
1734
1735 r = kvmppc_hv_get_dirty_log(kvm, memslot, memslot->dirty_bitmap);
1736 if (r)
1737 goto out;
1738
1739 r = -EFAULT;
1740 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1741 goto out;
1742
1743 r = 0;
1744 out:
1745 mutex_unlock(&kvm->slots_lock);
1746 return r;
1747 }
1748
1749 static void unpin_slot(struct kvm_memory_slot *memslot)
1750 {
1751 unsigned long *physp;
1752 unsigned long j, npages, pfn;
1753 struct page *page;
1754
1755 physp = memslot->arch.slot_phys;
1756 npages = memslot->npages;
1757 if (!physp)
1758 return;
1759 for (j = 0; j < npages; j++) {
1760 if (!(physp[j] & KVMPPC_GOT_PAGE))
1761 continue;
1762 pfn = physp[j] >> PAGE_SHIFT;
1763 page = pfn_to_page(pfn);
1764 SetPageDirty(page);
1765 put_page(page);
1766 }
1767 }
1768
1769 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free,
1770 struct kvm_memory_slot *dont)
1771 {
1772 if (!dont || free->arch.rmap != dont->arch.rmap) {
1773 vfree(free->arch.rmap);
1774 free->arch.rmap = NULL;
1775 }
1776 if (!dont || free->arch.slot_phys != dont->arch.slot_phys) {
1777 unpin_slot(free);
1778 vfree(free->arch.slot_phys);
1779 free->arch.slot_phys = NULL;
1780 }
1781 }
1782
1783 static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot,
1784 unsigned long npages)
1785 {
1786 slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap));
1787 if (!slot->arch.rmap)
1788 return -ENOMEM;
1789 slot->arch.slot_phys = NULL;
1790
1791 return 0;
1792 }
1793
1794 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
1795 struct kvm_memory_slot *memslot,
1796 struct kvm_userspace_memory_region *mem)
1797 {
1798 unsigned long *phys;
1799
1800 /* Allocate a slot_phys array if needed */
1801 phys = memslot->arch.slot_phys;
1802 if (!kvm->arch.using_mmu_notifiers && !phys && memslot->npages) {
1803 phys = vzalloc(memslot->npages * sizeof(unsigned long));
1804 if (!phys)
1805 return -ENOMEM;
1806 memslot->arch.slot_phys = phys;
1807 }
1808
1809 return 0;
1810 }
1811
1812 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
1813 struct kvm_userspace_memory_region *mem,
1814 const struct kvm_memory_slot *old)
1815 {
1816 unsigned long npages = mem->memory_size >> PAGE_SHIFT;
1817 struct kvm_memory_slot *memslot;
1818
1819 if (npages && old->npages) {
1820 /*
1821 * If modifying a memslot, reset all the rmap dirty bits.
1822 * If this is a new memslot, we don't need to do anything
1823 * since the rmap array starts out as all zeroes,
1824 * i.e. no pages are dirty.
1825 */
1826 memslot = id_to_memslot(kvm->memslots, mem->slot);
1827 kvmppc_hv_get_dirty_log(kvm, memslot, NULL);
1828 }
1829 }
1830
1831 /*
1832 * Update LPCR values in kvm->arch and in vcores.
1833 * Caller must hold kvm->lock.
1834 */
1835 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
1836 {
1837 long int i;
1838 u32 cores_done = 0;
1839
1840 if ((kvm->arch.lpcr & mask) == lpcr)
1841 return;
1842
1843 kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
1844
1845 for (i = 0; i < KVM_MAX_VCORES; ++i) {
1846 struct kvmppc_vcore *vc = kvm->arch.vcores[i];
1847 if (!vc)
1848 continue;
1849 spin_lock(&vc->lock);
1850 vc->lpcr = (vc->lpcr & ~mask) | lpcr;
1851 spin_unlock(&vc->lock);
1852 if (++cores_done >= kvm->arch.online_vcores)
1853 break;
1854 }
1855 }
1856
1857 static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu)
1858 {
1859 return;
1860 }
1861
1862 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
1863 {
1864 int err = 0;
1865 struct kvm *kvm = vcpu->kvm;
1866 struct kvm_rma_info *ri = NULL;
1867 unsigned long hva;
1868 struct kvm_memory_slot *memslot;
1869 struct vm_area_struct *vma;
1870 unsigned long lpcr = 0, senc;
1871 unsigned long lpcr_mask = 0;
1872 unsigned long psize, porder;
1873 unsigned long rma_size;
1874 unsigned long rmls;
1875 unsigned long *physp;
1876 unsigned long i, npages;
1877 int srcu_idx;
1878
1879 mutex_lock(&kvm->lock);
1880 if (kvm->arch.rma_setup_done)
1881 goto out; /* another vcpu beat us to it */
1882
1883 /* Allocate hashed page table (if not done already) and reset it */
1884 if (!kvm->arch.hpt_virt) {
1885 err = kvmppc_alloc_hpt(kvm, NULL);
1886 if (err) {
1887 pr_err("KVM: Couldn't alloc HPT\n");
1888 goto out;
1889 }
1890 }
1891
1892 /* Look up the memslot for guest physical address 0 */
1893 srcu_idx = srcu_read_lock(&kvm->srcu);
1894 memslot = gfn_to_memslot(kvm, 0);
1895
1896 /* We must have some memory at 0 by now */
1897 err = -EINVAL;
1898 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
1899 goto out_srcu;
1900
1901 /* Look up the VMA for the start of this memory slot */
1902 hva = memslot->userspace_addr;
1903 down_read(&current->mm->mmap_sem);
1904 vma = find_vma(current->mm, hva);
1905 if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
1906 goto up_out;
1907
1908 psize = vma_kernel_pagesize(vma);
1909 porder = __ilog2(psize);
1910
1911 /* Is this one of our preallocated RMAs? */
1912 if (vma->vm_file && vma->vm_file->f_op == &kvm_rma_fops &&
1913 hva == vma->vm_start)
1914 ri = vma->vm_file->private_data;
1915
1916 up_read(&current->mm->mmap_sem);
1917
1918 if (!ri) {
1919 /* On POWER7, use VRMA; on PPC970, give up */
1920 err = -EPERM;
1921 if (cpu_has_feature(CPU_FTR_ARCH_201)) {
1922 pr_err("KVM: CPU requires an RMO\n");
1923 goto out_srcu;
1924 }
1925
1926 /* We can handle 4k, 64k or 16M pages in the VRMA */
1927 err = -EINVAL;
1928 if (!(psize == 0x1000 || psize == 0x10000 ||
1929 psize == 0x1000000))
1930 goto out_srcu;
1931
1932 /* Update VRMASD field in the LPCR */
1933 senc = slb_pgsize_encoding(psize);
1934 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
1935 (VRMA_VSID << SLB_VSID_SHIFT_1T);
1936 lpcr_mask = LPCR_VRMASD;
1937 /* the -4 is to account for senc values starting at 0x10 */
1938 lpcr = senc << (LPCR_VRMASD_SH - 4);
1939
1940 /* Create HPTEs in the hash page table for the VRMA */
1941 kvmppc_map_vrma(vcpu, memslot, porder);
1942
1943 } else {
1944 /* Set up to use an RMO region */
1945 rma_size = kvm_rma_pages;
1946 if (rma_size > memslot->npages)
1947 rma_size = memslot->npages;
1948 rma_size <<= PAGE_SHIFT;
1949 rmls = lpcr_rmls(rma_size);
1950 err = -EINVAL;
1951 if ((long)rmls < 0) {
1952 pr_err("KVM: Can't use RMA of 0x%lx bytes\n", rma_size);
1953 goto out_srcu;
1954 }
1955 atomic_inc(&ri->use_count);
1956 kvm->arch.rma = ri;
1957
1958 /* Update LPCR and RMOR */
1959 if (cpu_has_feature(CPU_FTR_ARCH_201)) {
1960 /* PPC970; insert RMLS value (split field) in HID4 */
1961 lpcr_mask = (1ul << HID4_RMLS0_SH) |
1962 (3ul << HID4_RMLS2_SH) | HID4_RMOR;
1963 lpcr = ((rmls >> 2) << HID4_RMLS0_SH) |
1964 ((rmls & 3) << HID4_RMLS2_SH);
1965 /* RMOR is also in HID4 */
1966 lpcr |= ((ri->base_pfn >> (26 - PAGE_SHIFT)) & 0xffff)
1967 << HID4_RMOR_SH;
1968 } else {
1969 /* POWER7 */
1970 lpcr_mask = LPCR_VPM0 | LPCR_VRMA_L | LPCR_RMLS;
1971 lpcr = rmls << LPCR_RMLS_SH;
1972 kvm->arch.rmor = ri->base_pfn << PAGE_SHIFT;
1973 }
1974 pr_info("KVM: Using RMO at %lx size %lx (LPCR = %lx)\n",
1975 ri->base_pfn << PAGE_SHIFT, rma_size, lpcr);
1976
1977 /* Initialize phys addrs of pages in RMO */
1978 npages = kvm_rma_pages;
1979 porder = __ilog2(npages);
1980 physp = memslot->arch.slot_phys;
1981 if (physp) {
1982 if (npages > memslot->npages)
1983 npages = memslot->npages;
1984 spin_lock(&kvm->arch.slot_phys_lock);
1985 for (i = 0; i < npages; ++i)
1986 physp[i] = ((ri->base_pfn + i) << PAGE_SHIFT) +
1987 porder;
1988 spin_unlock(&kvm->arch.slot_phys_lock);
1989 }
1990 }
1991
1992 kvmppc_update_lpcr(kvm, lpcr, lpcr_mask);
1993
1994 /* Order updates to kvm->arch.lpcr etc. vs. rma_setup_done */
1995 smp_wmb();
1996 kvm->arch.rma_setup_done = 1;
1997 err = 0;
1998 out_srcu:
1999 srcu_read_unlock(&kvm->srcu, srcu_idx);
2000 out:
2001 mutex_unlock(&kvm->lock);
2002 return err;
2003
2004 up_out:
2005 up_read(&current->mm->mmap_sem);
2006 goto out_srcu;
2007 }
2008
2009 static int kvmppc_core_init_vm_hv(struct kvm *kvm)
2010 {
2011 unsigned long lpcr, lpid;
2012
2013 /* Allocate the guest's logical partition ID */
2014
2015 lpid = kvmppc_alloc_lpid();
2016 if ((long)lpid < 0)
2017 return -ENOMEM;
2018 kvm->arch.lpid = lpid;
2019
2020 /*
2021 * Since we don't flush the TLB when tearing down a VM,
2022 * and this lpid might have previously been used,
2023 * make sure we flush on each core before running the new VM.
2024 */
2025 cpumask_setall(&kvm->arch.need_tlb_flush);
2026
2027 kvm->arch.rma = NULL;
2028
2029 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
2030
2031 if (cpu_has_feature(CPU_FTR_ARCH_201)) {
2032 /* PPC970; HID4 is effectively the LPCR */
2033 kvm->arch.host_lpid = 0;
2034 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_HID4);
2035 lpcr &= ~((3 << HID4_LPID1_SH) | (0xful << HID4_LPID5_SH));
2036 lpcr |= ((lpid >> 4) << HID4_LPID1_SH) |
2037 ((lpid & 0xf) << HID4_LPID5_SH);
2038 } else {
2039 /* POWER7; init LPCR for virtual RMA mode */
2040 kvm->arch.host_lpid = mfspr(SPRN_LPID);
2041 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
2042 lpcr &= LPCR_PECE | LPCR_LPES;
2043 lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
2044 LPCR_VPM0 | LPCR_VPM1;
2045 kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
2046 (VRMA_VSID << SLB_VSID_SHIFT_1T);
2047 }
2048 kvm->arch.lpcr = lpcr;
2049
2050 kvm->arch.using_mmu_notifiers = !!cpu_has_feature(CPU_FTR_ARCH_206);
2051 spin_lock_init(&kvm->arch.slot_phys_lock);
2052
2053 /*
2054 * Don't allow secondary CPU threads to come online
2055 * while any KVM VMs exist.
2056 */
2057 inhibit_secondary_onlining();
2058
2059 return 0;
2060 }
2061
2062 static void kvmppc_free_vcores(struct kvm *kvm)
2063 {
2064 long int i;
2065
2066 for (i = 0; i < KVM_MAX_VCORES; ++i)
2067 kfree(kvm->arch.vcores[i]);
2068 kvm->arch.online_vcores = 0;
2069 }
2070
2071 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
2072 {
2073 uninhibit_secondary_onlining();
2074
2075 kvmppc_free_vcores(kvm);
2076 if (kvm->arch.rma) {
2077 kvm_release_rma(kvm->arch.rma);
2078 kvm->arch.rma = NULL;
2079 }
2080
2081 kvmppc_free_hpt(kvm);
2082 }
2083
2084 /* We don't need to emulate any privileged instructions or dcbz */
2085 static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
2086 unsigned int inst, int *advance)
2087 {
2088 return EMULATE_FAIL;
2089 }
2090
2091 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
2092 ulong spr_val)
2093 {
2094 return EMULATE_FAIL;
2095 }
2096
2097 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
2098 ulong *spr_val)
2099 {
2100 return EMULATE_FAIL;
2101 }
2102
2103 static int kvmppc_core_check_processor_compat_hv(void)
2104 {
2105 if (!cpu_has_feature(CPU_FTR_HVMODE))
2106 return -EIO;
2107 return 0;
2108 }
2109
2110 static long kvm_arch_vm_ioctl_hv(struct file *filp,
2111 unsigned int ioctl, unsigned long arg)
2112 {
2113 struct kvm *kvm __maybe_unused = filp->private_data;
2114 void __user *argp = (void __user *)arg;
2115 long r;
2116
2117 switch (ioctl) {
2118
2119 case KVM_ALLOCATE_RMA: {
2120 struct kvm_allocate_rma rma;
2121 struct kvm *kvm = filp->private_data;
2122
2123 r = kvm_vm_ioctl_allocate_rma(kvm, &rma);
2124 if (r >= 0 && copy_to_user(argp, &rma, sizeof(rma)))
2125 r = -EFAULT;
2126 break;
2127 }
2128
2129 case KVM_PPC_ALLOCATE_HTAB: {
2130 u32 htab_order;
2131
2132 r = -EFAULT;
2133 if (get_user(htab_order, (u32 __user *)argp))
2134 break;
2135 r = kvmppc_alloc_reset_hpt(kvm, &htab_order);
2136 if (r)
2137 break;
2138 r = -EFAULT;
2139 if (put_user(htab_order, (u32 __user *)argp))
2140 break;
2141 r = 0;
2142 break;
2143 }
2144
2145 case KVM_PPC_GET_HTAB_FD: {
2146 struct kvm_get_htab_fd ghf;
2147
2148 r = -EFAULT;
2149 if (copy_from_user(&ghf, argp, sizeof(ghf)))
2150 break;
2151 r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
2152 break;
2153 }
2154
2155 default:
2156 r = -ENOTTY;
2157 }
2158
2159 return r;
2160 }
2161
2162 static struct kvmppc_ops kvm_ops_hv = {
2163 .is_hv_enabled = true,
2164 .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
2165 .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
2166 .get_one_reg = kvmppc_get_one_reg_hv,
2167 .set_one_reg = kvmppc_set_one_reg_hv,
2168 .vcpu_load = kvmppc_core_vcpu_load_hv,
2169 .vcpu_put = kvmppc_core_vcpu_put_hv,
2170 .set_msr = kvmppc_set_msr_hv,
2171 .vcpu_run = kvmppc_vcpu_run_hv,
2172 .vcpu_create = kvmppc_core_vcpu_create_hv,
2173 .vcpu_free = kvmppc_core_vcpu_free_hv,
2174 .check_requests = kvmppc_core_check_requests_hv,
2175 .get_dirty_log = kvm_vm_ioctl_get_dirty_log_hv,
2176 .flush_memslot = kvmppc_core_flush_memslot_hv,
2177 .prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
2178 .commit_memory_region = kvmppc_core_commit_memory_region_hv,
2179 .unmap_hva = kvm_unmap_hva_hv,
2180 .unmap_hva_range = kvm_unmap_hva_range_hv,
2181 .age_hva = kvm_age_hva_hv,
2182 .test_age_hva = kvm_test_age_hva_hv,
2183 .set_spte_hva = kvm_set_spte_hva_hv,
2184 .mmu_destroy = kvmppc_mmu_destroy_hv,
2185 .free_memslot = kvmppc_core_free_memslot_hv,
2186 .create_memslot = kvmppc_core_create_memslot_hv,
2187 .init_vm = kvmppc_core_init_vm_hv,
2188 .destroy_vm = kvmppc_core_destroy_vm_hv,
2189 .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
2190 .emulate_op = kvmppc_core_emulate_op_hv,
2191 .emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
2192 .emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
2193 .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
2194 .arch_vm_ioctl = kvm_arch_vm_ioctl_hv,
2195 };
2196
2197 static int kvmppc_book3s_init_hv(void)
2198 {
2199 int r;
2200 /*
2201 * FIXME!! Do we need to check on all cpus ?
2202 */
2203 r = kvmppc_core_check_processor_compat_hv();
2204 if (r < 0)
2205 return r;
2206
2207 kvm_ops_hv.owner = THIS_MODULE;
2208 kvmppc_hv_ops = &kvm_ops_hv;
2209
2210 r = kvmppc_mmu_hv_init();
2211 return r;
2212 }
2213
2214 static void kvmppc_book3s_exit_hv(void)
2215 {
2216 kvmppc_hv_ops = NULL;
2217 }
2218
2219 module_init(kvmppc_book3s_init_hv);
2220 module_exit(kvmppc_book3s_exit_hv);
2221 MODULE_LICENSE("GPL");
This page took 0.109189 seconds and 5 git commands to generate.