fb3bb3ad8b3cf78a0497c5a96c94dfc62cdc3fea
[deliverable/linux.git] / arch / powerpc / kvm / e500_tlb.c
1 /*
2 * Copyright (C) 2008-2011 Freescale Semiconductor, Inc. All rights reserved.
3 *
4 * Author: Yu Liu, yu.liu@freescale.com
5 * Scott Wood, scottwood@freescale.com
6 * Ashish Kalra, ashish.kalra@freescale.com
7 * Varun Sethi, varun.sethi@freescale.com
8 *
9 * Description:
10 * This file is based on arch/powerpc/kvm/44x_tlb.c,
11 * by Hollis Blanchard <hollisb@us.ibm.com>.
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License, version 2, as
15 * published by the Free Software Foundation.
16 */
17
18 #include <linux/kernel.h>
19 #include <linux/types.h>
20 #include <linux/slab.h>
21 #include <linux/string.h>
22 #include <linux/kvm.h>
23 #include <linux/kvm_host.h>
24 #include <linux/highmem.h>
25 #include <linux/log2.h>
26 #include <linux/uaccess.h>
27 #include <linux/sched.h>
28 #include <linux/rwsem.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hugetlb.h>
31 #include <asm/kvm_ppc.h>
32
33 #include "e500.h"
34 #include "trace.h"
35 #include "timing.h"
36
37 #define to_htlb1_esel(esel) (host_tlb_params[1].entries - (esel) - 1)
38
39 static struct kvmppc_e500_tlb_params host_tlb_params[E500_TLB_NUM];
40
41 static inline unsigned int gtlb0_get_next_victim(
42 struct kvmppc_vcpu_e500 *vcpu_e500)
43 {
44 unsigned int victim;
45
46 victim = vcpu_e500->gtlb_nv[0]++;
47 if (unlikely(vcpu_e500->gtlb_nv[0] >= vcpu_e500->gtlb_params[0].ways))
48 vcpu_e500->gtlb_nv[0] = 0;
49
50 return victim;
51 }
52
53 static inline unsigned int tlb1_max_shadow_size(void)
54 {
55 /* reserve one entry for magic page */
56 return host_tlb_params[1].entries - tlbcam_index - 1;
57 }
58
59 static inline int tlbe_is_writable(struct kvm_book3e_206_tlb_entry *tlbe)
60 {
61 return tlbe->mas7_3 & (MAS3_SW|MAS3_UW);
62 }
63
64 static inline u32 e500_shadow_mas3_attrib(u32 mas3, int usermode)
65 {
66 /* Mask off reserved bits. */
67 mas3 &= MAS3_ATTRIB_MASK;
68
69 #ifndef CONFIG_KVM_BOOKE_HV
70 if (!usermode) {
71 /* Guest is in supervisor mode,
72 * so we need to translate guest
73 * supervisor permissions into user permissions. */
74 mas3 &= ~E500_TLB_USER_PERM_MASK;
75 mas3 |= (mas3 & E500_TLB_SUPER_PERM_MASK) << 1;
76 }
77 mas3 |= E500_TLB_SUPER_PERM_MASK;
78 #endif
79 return mas3;
80 }
81
82 static inline u32 e500_shadow_mas2_attrib(u32 mas2, int usermode)
83 {
84 #ifdef CONFIG_SMP
85 return (mas2 & MAS2_ATTRIB_MASK) | MAS2_M;
86 #else
87 return mas2 & MAS2_ATTRIB_MASK;
88 #endif
89 }
90
91 /*
92 * writing shadow tlb entry to host TLB
93 */
94 static inline void __write_host_tlbe(struct kvm_book3e_206_tlb_entry *stlbe,
95 uint32_t mas0)
96 {
97 unsigned long flags;
98
99 local_irq_save(flags);
100 mtspr(SPRN_MAS0, mas0);
101 mtspr(SPRN_MAS1, stlbe->mas1);
102 mtspr(SPRN_MAS2, (unsigned long)stlbe->mas2);
103 mtspr(SPRN_MAS3, (u32)stlbe->mas7_3);
104 mtspr(SPRN_MAS7, (u32)(stlbe->mas7_3 >> 32));
105 #ifdef CONFIG_KVM_BOOKE_HV
106 mtspr(SPRN_MAS8, stlbe->mas8);
107 #endif
108 asm volatile("isync; tlbwe" : : : "memory");
109
110 #ifdef CONFIG_KVM_BOOKE_HV
111 /* Must clear mas8 for other host tlbwe's */
112 mtspr(SPRN_MAS8, 0);
113 isync();
114 #endif
115 local_irq_restore(flags);
116
117 trace_kvm_booke206_stlb_write(mas0, stlbe->mas8, stlbe->mas1,
118 stlbe->mas2, stlbe->mas7_3);
119 }
120
121 /*
122 * Acquire a mas0 with victim hint, as if we just took a TLB miss.
123 *
124 * We don't care about the address we're searching for, other than that it's
125 * in the right set and is not present in the TLB. Using a zero PID and a
126 * userspace address means we don't have to set and then restore MAS5, or
127 * calculate a proper MAS6 value.
128 */
129 static u32 get_host_mas0(unsigned long eaddr)
130 {
131 unsigned long flags;
132 u32 mas0;
133
134 local_irq_save(flags);
135 mtspr(SPRN_MAS6, 0);
136 asm volatile("tlbsx 0, %0" : : "b" (eaddr & ~CONFIG_PAGE_OFFSET));
137 mas0 = mfspr(SPRN_MAS0);
138 local_irq_restore(flags);
139
140 return mas0;
141 }
142
143 /* sesel is for tlb1 only */
144 static inline void write_host_tlbe(struct kvmppc_vcpu_e500 *vcpu_e500,
145 int tlbsel, int sesel, struct kvm_book3e_206_tlb_entry *stlbe)
146 {
147 u32 mas0;
148
149 if (tlbsel == 0) {
150 mas0 = get_host_mas0(stlbe->mas2);
151 __write_host_tlbe(stlbe, mas0);
152 } else {
153 __write_host_tlbe(stlbe,
154 MAS0_TLBSEL(1) |
155 MAS0_ESEL(to_htlb1_esel(sesel)));
156 }
157 }
158
159 #ifdef CONFIG_KVM_E500V2
160 void kvmppc_map_magic(struct kvm_vcpu *vcpu)
161 {
162 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
163 struct kvm_book3e_206_tlb_entry magic;
164 ulong shared_page = ((ulong)vcpu->arch.shared) & PAGE_MASK;
165 unsigned int stid;
166 pfn_t pfn;
167
168 pfn = (pfn_t)virt_to_phys((void *)shared_page) >> PAGE_SHIFT;
169 get_page(pfn_to_page(pfn));
170
171 preempt_disable();
172 stid = kvmppc_e500_get_sid(vcpu_e500, 0, 0, 0, 0);
173
174 magic.mas1 = MAS1_VALID | MAS1_TS | MAS1_TID(stid) |
175 MAS1_TSIZE(BOOK3E_PAGESZ_4K);
176 magic.mas2 = vcpu->arch.magic_page_ea | MAS2_M;
177 magic.mas7_3 = ((u64)pfn << PAGE_SHIFT) |
178 MAS3_SW | MAS3_SR | MAS3_UW | MAS3_UR;
179 magic.mas8 = 0;
180
181 __write_host_tlbe(&magic, MAS0_TLBSEL(1) | MAS0_ESEL(tlbcam_index));
182 preempt_enable();
183 }
184 #endif
185
186 static void inval_gtlbe_on_host(struct kvmppc_vcpu_e500 *vcpu_e500,
187 int tlbsel, int esel)
188 {
189 struct kvm_book3e_206_tlb_entry *gtlbe =
190 get_entry(vcpu_e500, tlbsel, esel);
191
192 if (tlbsel == 1 &&
193 vcpu_e500->gtlb_priv[1][esel].ref.flags & E500_TLB_BITMAP) {
194 u64 tmp = vcpu_e500->g2h_tlb1_map[esel];
195 int hw_tlb_indx;
196 unsigned long flags;
197
198 local_irq_save(flags);
199 while (tmp) {
200 hw_tlb_indx = __ilog2_u64(tmp & -tmp);
201 mtspr(SPRN_MAS0,
202 MAS0_TLBSEL(1) |
203 MAS0_ESEL(to_htlb1_esel(hw_tlb_indx)));
204 mtspr(SPRN_MAS1, 0);
205 asm volatile("tlbwe");
206 vcpu_e500->h2g_tlb1_rmap[hw_tlb_indx] = 0;
207 tmp &= tmp - 1;
208 }
209 mb();
210 vcpu_e500->g2h_tlb1_map[esel] = 0;
211 vcpu_e500->gtlb_priv[1][esel].ref.flags &= ~E500_TLB_BITMAP;
212 local_irq_restore(flags);
213
214 return;
215 }
216
217 /* Guest tlbe is backed by at most one host tlbe per shadow pid. */
218 kvmppc_e500_tlbil_one(vcpu_e500, gtlbe);
219 }
220
221 static int tlb0_set_base(gva_t addr, int sets, int ways)
222 {
223 int set_base;
224
225 set_base = (addr >> PAGE_SHIFT) & (sets - 1);
226 set_base *= ways;
227
228 return set_base;
229 }
230
231 static int gtlb0_set_base(struct kvmppc_vcpu_e500 *vcpu_e500, gva_t addr)
232 {
233 return tlb0_set_base(addr, vcpu_e500->gtlb_params[0].sets,
234 vcpu_e500->gtlb_params[0].ways);
235 }
236
237 static unsigned int get_tlb_esel(struct kvm_vcpu *vcpu, int tlbsel)
238 {
239 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
240 int esel = get_tlb_esel_bit(vcpu);
241
242 if (tlbsel == 0) {
243 esel &= vcpu_e500->gtlb_params[0].ways - 1;
244 esel += gtlb0_set_base(vcpu_e500, vcpu->arch.shared->mas2);
245 } else {
246 esel &= vcpu_e500->gtlb_params[tlbsel].entries - 1;
247 }
248
249 return esel;
250 }
251
252 /* Search the guest TLB for a matching entry. */
253 static int kvmppc_e500_tlb_index(struct kvmppc_vcpu_e500 *vcpu_e500,
254 gva_t eaddr, int tlbsel, unsigned int pid, int as)
255 {
256 int size = vcpu_e500->gtlb_params[tlbsel].entries;
257 unsigned int set_base, offset;
258 int i;
259
260 if (tlbsel == 0) {
261 set_base = gtlb0_set_base(vcpu_e500, eaddr);
262 size = vcpu_e500->gtlb_params[0].ways;
263 } else {
264 if (eaddr < vcpu_e500->tlb1_min_eaddr ||
265 eaddr > vcpu_e500->tlb1_max_eaddr)
266 return -1;
267 set_base = 0;
268 }
269
270 offset = vcpu_e500->gtlb_offset[tlbsel];
271
272 for (i = 0; i < size; i++) {
273 struct kvm_book3e_206_tlb_entry *tlbe =
274 &vcpu_e500->gtlb_arch[offset + set_base + i];
275 unsigned int tid;
276
277 if (eaddr < get_tlb_eaddr(tlbe))
278 continue;
279
280 if (eaddr > get_tlb_end(tlbe))
281 continue;
282
283 tid = get_tlb_tid(tlbe);
284 if (tid && (tid != pid))
285 continue;
286
287 if (!get_tlb_v(tlbe))
288 continue;
289
290 if (get_tlb_ts(tlbe) != as && as != -1)
291 continue;
292
293 return set_base + i;
294 }
295
296 return -1;
297 }
298
299 static inline void kvmppc_e500_ref_setup(struct tlbe_ref *ref,
300 struct kvm_book3e_206_tlb_entry *gtlbe,
301 pfn_t pfn)
302 {
303 ref->pfn = pfn;
304 ref->flags = E500_TLB_VALID;
305
306 if (tlbe_is_writable(gtlbe))
307 ref->flags |= E500_TLB_DIRTY;
308 }
309
310 static inline void kvmppc_e500_ref_release(struct tlbe_ref *ref)
311 {
312 if (ref->flags & E500_TLB_VALID) {
313 if (ref->flags & E500_TLB_DIRTY)
314 kvm_release_pfn_dirty(ref->pfn);
315 else
316 kvm_release_pfn_clean(ref->pfn);
317
318 ref->flags = 0;
319 }
320 }
321
322 static void clear_tlb1_bitmap(struct kvmppc_vcpu_e500 *vcpu_e500)
323 {
324 if (vcpu_e500->g2h_tlb1_map)
325 memset(vcpu_e500->g2h_tlb1_map,
326 sizeof(u64) * vcpu_e500->gtlb_params[1].entries, 0);
327 if (vcpu_e500->h2g_tlb1_rmap)
328 memset(vcpu_e500->h2g_tlb1_rmap,
329 sizeof(unsigned int) * host_tlb_params[1].entries, 0);
330 }
331
332 static void clear_tlb_privs(struct kvmppc_vcpu_e500 *vcpu_e500)
333 {
334 int tlbsel = 0;
335 int i;
336
337 for (i = 0; i < vcpu_e500->gtlb_params[tlbsel].entries; i++) {
338 struct tlbe_ref *ref =
339 &vcpu_e500->gtlb_priv[tlbsel][i].ref;
340 kvmppc_e500_ref_release(ref);
341 }
342 }
343
344 static void clear_tlb_refs(struct kvmppc_vcpu_e500 *vcpu_e500)
345 {
346 int stlbsel = 1;
347 int i;
348
349 kvmppc_e500_tlbil_all(vcpu_e500);
350
351 for (i = 0; i < host_tlb_params[stlbsel].entries; i++) {
352 struct tlbe_ref *ref =
353 &vcpu_e500->tlb_refs[stlbsel][i];
354 kvmppc_e500_ref_release(ref);
355 }
356
357 clear_tlb_privs(vcpu_e500);
358 }
359
360 static inline void kvmppc_e500_deliver_tlb_miss(struct kvm_vcpu *vcpu,
361 unsigned int eaddr, int as)
362 {
363 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
364 unsigned int victim, tsized;
365 int tlbsel;
366
367 /* since we only have two TLBs, only lower bit is used. */
368 tlbsel = (vcpu->arch.shared->mas4 >> 28) & 0x1;
369 victim = (tlbsel == 0) ? gtlb0_get_next_victim(vcpu_e500) : 0;
370 tsized = (vcpu->arch.shared->mas4 >> 7) & 0x1f;
371
372 vcpu->arch.shared->mas0 = MAS0_TLBSEL(tlbsel) | MAS0_ESEL(victim)
373 | MAS0_NV(vcpu_e500->gtlb_nv[tlbsel]);
374 vcpu->arch.shared->mas1 = MAS1_VALID | (as ? MAS1_TS : 0)
375 | MAS1_TID(get_tlbmiss_tid(vcpu))
376 | MAS1_TSIZE(tsized);
377 vcpu->arch.shared->mas2 = (eaddr & MAS2_EPN)
378 | (vcpu->arch.shared->mas4 & MAS2_ATTRIB_MASK);
379 vcpu->arch.shared->mas7_3 &= MAS3_U0 | MAS3_U1 | MAS3_U2 | MAS3_U3;
380 vcpu->arch.shared->mas6 = (vcpu->arch.shared->mas6 & MAS6_SPID1)
381 | (get_cur_pid(vcpu) << 16)
382 | (as ? MAS6_SAS : 0);
383 }
384
385 /* TID must be supplied by the caller */
386 static inline void kvmppc_e500_setup_stlbe(
387 struct kvm_vcpu *vcpu,
388 struct kvm_book3e_206_tlb_entry *gtlbe,
389 int tsize, struct tlbe_ref *ref, u64 gvaddr,
390 struct kvm_book3e_206_tlb_entry *stlbe)
391 {
392 pfn_t pfn = ref->pfn;
393 u32 pr = vcpu->arch.shared->msr & MSR_PR;
394
395 BUG_ON(!(ref->flags & E500_TLB_VALID));
396
397 /* Force IPROT=0 for all guest mappings. */
398 stlbe->mas1 = MAS1_TSIZE(tsize) | get_tlb_sts(gtlbe) | MAS1_VALID;
399 stlbe->mas2 = (gvaddr & MAS2_EPN) |
400 e500_shadow_mas2_attrib(gtlbe->mas2, pr);
401 stlbe->mas7_3 = ((u64)pfn << PAGE_SHIFT) |
402 e500_shadow_mas3_attrib(gtlbe->mas7_3, pr);
403
404 #ifdef CONFIG_KVM_BOOKE_HV
405 stlbe->mas8 = MAS8_TGS | vcpu->kvm->arch.lpid;
406 #endif
407 }
408
409 static inline void kvmppc_e500_shadow_map(struct kvmppc_vcpu_e500 *vcpu_e500,
410 u64 gvaddr, gfn_t gfn, struct kvm_book3e_206_tlb_entry *gtlbe,
411 int tlbsel, struct kvm_book3e_206_tlb_entry *stlbe,
412 struct tlbe_ref *ref)
413 {
414 struct kvm_memory_slot *slot;
415 unsigned long pfn, hva;
416 int pfnmap = 0;
417 int tsize = BOOK3E_PAGESZ_4K;
418
419 /*
420 * Translate guest physical to true physical, acquiring
421 * a page reference if it is normal, non-reserved memory.
422 *
423 * gfn_to_memslot() must succeed because otherwise we wouldn't
424 * have gotten this far. Eventually we should just pass the slot
425 * pointer through from the first lookup.
426 */
427 slot = gfn_to_memslot(vcpu_e500->vcpu.kvm, gfn);
428 hva = gfn_to_hva_memslot(slot, gfn);
429
430 if (tlbsel == 1) {
431 struct vm_area_struct *vma;
432 down_read(&current->mm->mmap_sem);
433
434 vma = find_vma(current->mm, hva);
435 if (vma && hva >= vma->vm_start &&
436 (vma->vm_flags & VM_PFNMAP)) {
437 /*
438 * This VMA is a physically contiguous region (e.g.
439 * /dev/mem) that bypasses normal Linux page
440 * management. Find the overlap between the
441 * vma and the memslot.
442 */
443
444 unsigned long start, end;
445 unsigned long slot_start, slot_end;
446
447 pfnmap = 1;
448
449 start = vma->vm_pgoff;
450 end = start +
451 ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT);
452
453 pfn = start + ((hva - vma->vm_start) >> PAGE_SHIFT);
454
455 slot_start = pfn - (gfn - slot->base_gfn);
456 slot_end = slot_start + slot->npages;
457
458 if (start < slot_start)
459 start = slot_start;
460 if (end > slot_end)
461 end = slot_end;
462
463 tsize = (gtlbe->mas1 & MAS1_TSIZE_MASK) >>
464 MAS1_TSIZE_SHIFT;
465
466 /*
467 * e500 doesn't implement the lowest tsize bit,
468 * or 1K pages.
469 */
470 tsize = max(BOOK3E_PAGESZ_4K, tsize & ~1);
471
472 /*
473 * Now find the largest tsize (up to what the guest
474 * requested) that will cover gfn, stay within the
475 * range, and for which gfn and pfn are mutually
476 * aligned.
477 */
478
479 for (; tsize > BOOK3E_PAGESZ_4K; tsize -= 2) {
480 unsigned long gfn_start, gfn_end, tsize_pages;
481 tsize_pages = 1 << (tsize - 2);
482
483 gfn_start = gfn & ~(tsize_pages - 1);
484 gfn_end = gfn_start + tsize_pages;
485
486 if (gfn_start + pfn - gfn < start)
487 continue;
488 if (gfn_end + pfn - gfn > end)
489 continue;
490 if ((gfn & (tsize_pages - 1)) !=
491 (pfn & (tsize_pages - 1)))
492 continue;
493
494 gvaddr &= ~((tsize_pages << PAGE_SHIFT) - 1);
495 pfn &= ~(tsize_pages - 1);
496 break;
497 }
498 } else if (vma && hva >= vma->vm_start &&
499 (vma->vm_flags & VM_HUGETLB)) {
500 unsigned long psize = vma_kernel_pagesize(vma);
501
502 tsize = (gtlbe->mas1 & MAS1_TSIZE_MASK) >>
503 MAS1_TSIZE_SHIFT;
504
505 /*
506 * Take the largest page size that satisfies both host
507 * and guest mapping
508 */
509 tsize = min(__ilog2(psize) - 10, tsize);
510
511 /*
512 * e500 doesn't implement the lowest tsize bit,
513 * or 1K pages.
514 */
515 tsize = max(BOOK3E_PAGESZ_4K, tsize & ~1);
516 }
517
518 up_read(&current->mm->mmap_sem);
519 }
520
521 if (likely(!pfnmap)) {
522 unsigned long tsize_pages = 1 << (tsize + 10 - PAGE_SHIFT);
523 pfn = gfn_to_pfn_memslot(vcpu_e500->vcpu.kvm, slot, gfn);
524 if (is_error_pfn(pfn)) {
525 printk(KERN_ERR "Couldn't get real page for gfn %lx!\n",
526 (long)gfn);
527 kvm_release_pfn_clean(pfn);
528 return;
529 }
530
531 /* Align guest and physical address to page map boundaries */
532 pfn &= ~(tsize_pages - 1);
533 gvaddr &= ~((tsize_pages << PAGE_SHIFT) - 1);
534 }
535
536 /* Drop old ref and setup new one. */
537 kvmppc_e500_ref_release(ref);
538 kvmppc_e500_ref_setup(ref, gtlbe, pfn);
539
540 kvmppc_e500_setup_stlbe(&vcpu_e500->vcpu, gtlbe, tsize,
541 ref, gvaddr, stlbe);
542
543 /* Clear i-cache for new pages */
544 kvmppc_mmu_flush_icache(pfn);
545 }
546
547 /* XXX only map the one-one case, for now use TLB0 */
548 static void kvmppc_e500_tlb0_map(struct kvmppc_vcpu_e500 *vcpu_e500,
549 int esel,
550 struct kvm_book3e_206_tlb_entry *stlbe)
551 {
552 struct kvm_book3e_206_tlb_entry *gtlbe;
553 struct tlbe_ref *ref;
554
555 gtlbe = get_entry(vcpu_e500, 0, esel);
556 ref = &vcpu_e500->gtlb_priv[0][esel].ref;
557
558 kvmppc_e500_shadow_map(vcpu_e500, get_tlb_eaddr(gtlbe),
559 get_tlb_raddr(gtlbe) >> PAGE_SHIFT,
560 gtlbe, 0, stlbe, ref);
561 }
562
563 /* Caller must ensure that the specified guest TLB entry is safe to insert into
564 * the shadow TLB. */
565 /* XXX for both one-one and one-to-many , for now use TLB1 */
566 static int kvmppc_e500_tlb1_map(struct kvmppc_vcpu_e500 *vcpu_e500,
567 u64 gvaddr, gfn_t gfn, struct kvm_book3e_206_tlb_entry *gtlbe,
568 struct kvm_book3e_206_tlb_entry *stlbe, int esel)
569 {
570 struct tlbe_ref *ref;
571 unsigned int victim;
572
573 victim = vcpu_e500->host_tlb1_nv++;
574
575 if (unlikely(vcpu_e500->host_tlb1_nv >= tlb1_max_shadow_size()))
576 vcpu_e500->host_tlb1_nv = 0;
577
578 ref = &vcpu_e500->tlb_refs[1][victim];
579 kvmppc_e500_shadow_map(vcpu_e500, gvaddr, gfn, gtlbe, 1, stlbe, ref);
580
581 vcpu_e500->g2h_tlb1_map[esel] |= (u64)1 << victim;
582 vcpu_e500->gtlb_priv[1][esel].ref.flags |= E500_TLB_BITMAP;
583 if (vcpu_e500->h2g_tlb1_rmap[victim]) {
584 unsigned int idx = vcpu_e500->h2g_tlb1_rmap[victim];
585 vcpu_e500->g2h_tlb1_map[idx] &= ~(1ULL << victim);
586 }
587 vcpu_e500->h2g_tlb1_rmap[victim] = esel;
588
589 return victim;
590 }
591
592 static void kvmppc_recalc_tlb1map_range(struct kvmppc_vcpu_e500 *vcpu_e500)
593 {
594 int size = vcpu_e500->gtlb_params[1].entries;
595 unsigned int offset;
596 gva_t eaddr;
597 int i;
598
599 vcpu_e500->tlb1_min_eaddr = ~0UL;
600 vcpu_e500->tlb1_max_eaddr = 0;
601 offset = vcpu_e500->gtlb_offset[1];
602
603 for (i = 0; i < size; i++) {
604 struct kvm_book3e_206_tlb_entry *tlbe =
605 &vcpu_e500->gtlb_arch[offset + i];
606
607 if (!get_tlb_v(tlbe))
608 continue;
609
610 eaddr = get_tlb_eaddr(tlbe);
611 vcpu_e500->tlb1_min_eaddr =
612 min(vcpu_e500->tlb1_min_eaddr, eaddr);
613
614 eaddr = get_tlb_end(tlbe);
615 vcpu_e500->tlb1_max_eaddr =
616 max(vcpu_e500->tlb1_max_eaddr, eaddr);
617 }
618 }
619
620 static int kvmppc_need_recalc_tlb1map_range(struct kvmppc_vcpu_e500 *vcpu_e500,
621 struct kvm_book3e_206_tlb_entry *gtlbe)
622 {
623 unsigned long start, end, size;
624
625 size = get_tlb_bytes(gtlbe);
626 start = get_tlb_eaddr(gtlbe) & ~(size - 1);
627 end = start + size - 1;
628
629 return vcpu_e500->tlb1_min_eaddr == start ||
630 vcpu_e500->tlb1_max_eaddr == end;
631 }
632
633 /* This function is supposed to be called for a adding a new valid tlb entry */
634 static void kvmppc_set_tlb1map_range(struct kvm_vcpu *vcpu,
635 struct kvm_book3e_206_tlb_entry *gtlbe)
636 {
637 unsigned long start, end, size;
638 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
639
640 if (!get_tlb_v(gtlbe))
641 return;
642
643 size = get_tlb_bytes(gtlbe);
644 start = get_tlb_eaddr(gtlbe) & ~(size - 1);
645 end = start + size - 1;
646
647 vcpu_e500->tlb1_min_eaddr = min(vcpu_e500->tlb1_min_eaddr, start);
648 vcpu_e500->tlb1_max_eaddr = max(vcpu_e500->tlb1_max_eaddr, end);
649 }
650
651 static inline int kvmppc_e500_gtlbe_invalidate(
652 struct kvmppc_vcpu_e500 *vcpu_e500,
653 int tlbsel, int esel)
654 {
655 struct kvm_book3e_206_tlb_entry *gtlbe =
656 get_entry(vcpu_e500, tlbsel, esel);
657
658 if (unlikely(get_tlb_iprot(gtlbe)))
659 return -1;
660
661 if (tlbsel == 1 && kvmppc_need_recalc_tlb1map_range(vcpu_e500, gtlbe))
662 kvmppc_recalc_tlb1map_range(vcpu_e500);
663
664 gtlbe->mas1 = 0;
665
666 return 0;
667 }
668
669 int kvmppc_e500_emul_mt_mmucsr0(struct kvmppc_vcpu_e500 *vcpu_e500, ulong value)
670 {
671 int esel;
672
673 if (value & MMUCSR0_TLB0FI)
674 for (esel = 0; esel < vcpu_e500->gtlb_params[0].entries; esel++)
675 kvmppc_e500_gtlbe_invalidate(vcpu_e500, 0, esel);
676 if (value & MMUCSR0_TLB1FI)
677 for (esel = 0; esel < vcpu_e500->gtlb_params[1].entries; esel++)
678 kvmppc_e500_gtlbe_invalidate(vcpu_e500, 1, esel);
679
680 /* Invalidate all vcpu id mappings */
681 kvmppc_e500_tlbil_all(vcpu_e500);
682
683 return EMULATE_DONE;
684 }
685
686 int kvmppc_e500_emul_tlbivax(struct kvm_vcpu *vcpu, int ra, int rb)
687 {
688 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
689 unsigned int ia;
690 int esel, tlbsel;
691 gva_t ea;
692
693 ea = ((ra) ? kvmppc_get_gpr(vcpu, ra) : 0) + kvmppc_get_gpr(vcpu, rb);
694
695 ia = (ea >> 2) & 0x1;
696
697 /* since we only have two TLBs, only lower bit is used. */
698 tlbsel = (ea >> 3) & 0x1;
699
700 if (ia) {
701 /* invalidate all entries */
702 for (esel = 0; esel < vcpu_e500->gtlb_params[tlbsel].entries;
703 esel++)
704 kvmppc_e500_gtlbe_invalidate(vcpu_e500, tlbsel, esel);
705 } else {
706 ea &= 0xfffff000;
707 esel = kvmppc_e500_tlb_index(vcpu_e500, ea, tlbsel,
708 get_cur_pid(vcpu), -1);
709 if (esel >= 0)
710 kvmppc_e500_gtlbe_invalidate(vcpu_e500, tlbsel, esel);
711 }
712
713 /* Invalidate all vcpu id mappings */
714 kvmppc_e500_tlbil_all(vcpu_e500);
715
716 return EMULATE_DONE;
717 }
718
719 static void tlbilx_all(struct kvmppc_vcpu_e500 *vcpu_e500, int tlbsel,
720 int pid, int rt)
721 {
722 struct kvm_book3e_206_tlb_entry *tlbe;
723 int tid, esel;
724
725 /* invalidate all entries */
726 for (esel = 0; esel < vcpu_e500->gtlb_params[tlbsel].entries; esel++) {
727 tlbe = get_entry(vcpu_e500, tlbsel, esel);
728 tid = get_tlb_tid(tlbe);
729 if (rt == 0 || tid == pid) {
730 inval_gtlbe_on_host(vcpu_e500, tlbsel, esel);
731 kvmppc_e500_gtlbe_invalidate(vcpu_e500, tlbsel, esel);
732 }
733 }
734 }
735
736 static void tlbilx_one(struct kvmppc_vcpu_e500 *vcpu_e500, int pid,
737 int ra, int rb)
738 {
739 int tlbsel, esel;
740 gva_t ea;
741
742 ea = kvmppc_get_gpr(&vcpu_e500->vcpu, rb);
743 if (ra)
744 ea += kvmppc_get_gpr(&vcpu_e500->vcpu, ra);
745
746 for (tlbsel = 0; tlbsel < 2; tlbsel++) {
747 esel = kvmppc_e500_tlb_index(vcpu_e500, ea, tlbsel, pid, -1);
748 if (esel >= 0) {
749 inval_gtlbe_on_host(vcpu_e500, tlbsel, esel);
750 kvmppc_e500_gtlbe_invalidate(vcpu_e500, tlbsel, esel);
751 break;
752 }
753 }
754 }
755
756 int kvmppc_e500_emul_tlbilx(struct kvm_vcpu *vcpu, int rt, int ra, int rb)
757 {
758 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
759 int pid = get_cur_spid(vcpu);
760
761 if (rt == 0 || rt == 1) {
762 tlbilx_all(vcpu_e500, 0, pid, rt);
763 tlbilx_all(vcpu_e500, 1, pid, rt);
764 } else if (rt == 3) {
765 tlbilx_one(vcpu_e500, pid, ra, rb);
766 }
767
768 return EMULATE_DONE;
769 }
770
771 int kvmppc_e500_emul_tlbre(struct kvm_vcpu *vcpu)
772 {
773 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
774 int tlbsel, esel;
775 struct kvm_book3e_206_tlb_entry *gtlbe;
776
777 tlbsel = get_tlb_tlbsel(vcpu);
778 esel = get_tlb_esel(vcpu, tlbsel);
779
780 gtlbe = get_entry(vcpu_e500, tlbsel, esel);
781 vcpu->arch.shared->mas0 &= ~MAS0_NV(~0);
782 vcpu->arch.shared->mas0 |= MAS0_NV(vcpu_e500->gtlb_nv[tlbsel]);
783 vcpu->arch.shared->mas1 = gtlbe->mas1;
784 vcpu->arch.shared->mas2 = gtlbe->mas2;
785 vcpu->arch.shared->mas7_3 = gtlbe->mas7_3;
786
787 return EMULATE_DONE;
788 }
789
790 int kvmppc_e500_emul_tlbsx(struct kvm_vcpu *vcpu, int rb)
791 {
792 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
793 int as = !!get_cur_sas(vcpu);
794 unsigned int pid = get_cur_spid(vcpu);
795 int esel, tlbsel;
796 struct kvm_book3e_206_tlb_entry *gtlbe = NULL;
797 gva_t ea;
798
799 ea = kvmppc_get_gpr(vcpu, rb);
800
801 for (tlbsel = 0; tlbsel < 2; tlbsel++) {
802 esel = kvmppc_e500_tlb_index(vcpu_e500, ea, tlbsel, pid, as);
803 if (esel >= 0) {
804 gtlbe = get_entry(vcpu_e500, tlbsel, esel);
805 break;
806 }
807 }
808
809 if (gtlbe) {
810 esel &= vcpu_e500->gtlb_params[tlbsel].ways - 1;
811
812 vcpu->arch.shared->mas0 = MAS0_TLBSEL(tlbsel) | MAS0_ESEL(esel)
813 | MAS0_NV(vcpu_e500->gtlb_nv[tlbsel]);
814 vcpu->arch.shared->mas1 = gtlbe->mas1;
815 vcpu->arch.shared->mas2 = gtlbe->mas2;
816 vcpu->arch.shared->mas7_3 = gtlbe->mas7_3;
817 } else {
818 int victim;
819
820 /* since we only have two TLBs, only lower bit is used. */
821 tlbsel = vcpu->arch.shared->mas4 >> 28 & 0x1;
822 victim = (tlbsel == 0) ? gtlb0_get_next_victim(vcpu_e500) : 0;
823
824 vcpu->arch.shared->mas0 = MAS0_TLBSEL(tlbsel)
825 | MAS0_ESEL(victim)
826 | MAS0_NV(vcpu_e500->gtlb_nv[tlbsel]);
827 vcpu->arch.shared->mas1 =
828 (vcpu->arch.shared->mas6 & MAS6_SPID0)
829 | (vcpu->arch.shared->mas6 & (MAS6_SAS ? MAS1_TS : 0))
830 | (vcpu->arch.shared->mas4 & MAS4_TSIZED(~0));
831 vcpu->arch.shared->mas2 &= MAS2_EPN;
832 vcpu->arch.shared->mas2 |= vcpu->arch.shared->mas4 &
833 MAS2_ATTRIB_MASK;
834 vcpu->arch.shared->mas7_3 &= MAS3_U0 | MAS3_U1 |
835 MAS3_U2 | MAS3_U3;
836 }
837
838 kvmppc_set_exit_type(vcpu, EMULATED_TLBSX_EXITS);
839 return EMULATE_DONE;
840 }
841
842 /* sesel is for tlb1 only */
843 static void write_stlbe(struct kvmppc_vcpu_e500 *vcpu_e500,
844 struct kvm_book3e_206_tlb_entry *gtlbe,
845 struct kvm_book3e_206_tlb_entry *stlbe,
846 int stlbsel, int sesel)
847 {
848 int stid;
849
850 preempt_disable();
851 stid = kvmppc_e500_get_tlb_stid(&vcpu_e500->vcpu, gtlbe);
852
853 stlbe->mas1 |= MAS1_TID(stid);
854 write_host_tlbe(vcpu_e500, stlbsel, sesel, stlbe);
855 preempt_enable();
856 }
857
858 int kvmppc_e500_emul_tlbwe(struct kvm_vcpu *vcpu)
859 {
860 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
861 struct kvm_book3e_206_tlb_entry *gtlbe, stlbe;
862 int tlbsel, esel, stlbsel, sesel;
863 int recal = 0;
864
865 tlbsel = get_tlb_tlbsel(vcpu);
866 esel = get_tlb_esel(vcpu, tlbsel);
867
868 gtlbe = get_entry(vcpu_e500, tlbsel, esel);
869
870 if (get_tlb_v(gtlbe)) {
871 inval_gtlbe_on_host(vcpu_e500, tlbsel, esel);
872 if ((tlbsel == 1) &&
873 kvmppc_need_recalc_tlb1map_range(vcpu_e500, gtlbe))
874 recal = 1;
875 }
876
877 gtlbe->mas1 = vcpu->arch.shared->mas1;
878 gtlbe->mas2 = vcpu->arch.shared->mas2;
879 gtlbe->mas7_3 = vcpu->arch.shared->mas7_3;
880
881 trace_kvm_booke206_gtlb_write(vcpu->arch.shared->mas0, gtlbe->mas1,
882 gtlbe->mas2, gtlbe->mas7_3);
883
884 if (tlbsel == 1) {
885 /*
886 * If a valid tlb1 entry is overwritten then recalculate the
887 * min/max TLB1 map address range otherwise no need to look
888 * in tlb1 array.
889 */
890 if (recal)
891 kvmppc_recalc_tlb1map_range(vcpu_e500);
892 else
893 kvmppc_set_tlb1map_range(vcpu, gtlbe);
894 }
895
896 /* Invalidate shadow mappings for the about-to-be-clobbered TLBE. */
897 if (tlbe_is_host_safe(vcpu, gtlbe)) {
898 u64 eaddr;
899 u64 raddr;
900
901 switch (tlbsel) {
902 case 0:
903 /* TLB0 */
904 gtlbe->mas1 &= ~MAS1_TSIZE(~0);
905 gtlbe->mas1 |= MAS1_TSIZE(BOOK3E_PAGESZ_4K);
906
907 stlbsel = 0;
908 kvmppc_e500_tlb0_map(vcpu_e500, esel, &stlbe);
909 sesel = 0; /* unused */
910
911 break;
912
913 case 1:
914 /* TLB1 */
915 eaddr = get_tlb_eaddr(gtlbe);
916 raddr = get_tlb_raddr(gtlbe);
917
918 /* Create a 4KB mapping on the host.
919 * If the guest wanted a large page,
920 * only the first 4KB is mapped here and the rest
921 * are mapped on the fly. */
922 stlbsel = 1;
923 sesel = kvmppc_e500_tlb1_map(vcpu_e500, eaddr,
924 raddr >> PAGE_SHIFT, gtlbe, &stlbe, esel);
925 break;
926
927 default:
928 BUG();
929 }
930
931 write_stlbe(vcpu_e500, gtlbe, &stlbe, stlbsel, sesel);
932 }
933
934 kvmppc_set_exit_type(vcpu, EMULATED_TLBWE_EXITS);
935 return EMULATE_DONE;
936 }
937
938 static int kvmppc_e500_tlb_search(struct kvm_vcpu *vcpu,
939 gva_t eaddr, unsigned int pid, int as)
940 {
941 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
942 int esel, tlbsel;
943
944 for (tlbsel = 0; tlbsel < 2; tlbsel++) {
945 esel = kvmppc_e500_tlb_index(vcpu_e500, eaddr, tlbsel, pid, as);
946 if (esel >= 0)
947 return index_of(tlbsel, esel);
948 }
949
950 return -1;
951 }
952
953 /* 'linear_address' is actually an encoding of AS|PID|EADDR . */
954 int kvmppc_core_vcpu_translate(struct kvm_vcpu *vcpu,
955 struct kvm_translation *tr)
956 {
957 int index;
958 gva_t eaddr;
959 u8 pid;
960 u8 as;
961
962 eaddr = tr->linear_address;
963 pid = (tr->linear_address >> 32) & 0xff;
964 as = (tr->linear_address >> 40) & 0x1;
965
966 index = kvmppc_e500_tlb_search(vcpu, eaddr, pid, as);
967 if (index < 0) {
968 tr->valid = 0;
969 return 0;
970 }
971
972 tr->physical_address = kvmppc_mmu_xlate(vcpu, index, eaddr);
973 /* XXX what does "writeable" and "usermode" even mean? */
974 tr->valid = 1;
975
976 return 0;
977 }
978
979
980 int kvmppc_mmu_itlb_index(struct kvm_vcpu *vcpu, gva_t eaddr)
981 {
982 unsigned int as = !!(vcpu->arch.shared->msr & MSR_IS);
983
984 return kvmppc_e500_tlb_search(vcpu, eaddr, get_cur_pid(vcpu), as);
985 }
986
987 int kvmppc_mmu_dtlb_index(struct kvm_vcpu *vcpu, gva_t eaddr)
988 {
989 unsigned int as = !!(vcpu->arch.shared->msr & MSR_DS);
990
991 return kvmppc_e500_tlb_search(vcpu, eaddr, get_cur_pid(vcpu), as);
992 }
993
994 void kvmppc_mmu_itlb_miss(struct kvm_vcpu *vcpu)
995 {
996 unsigned int as = !!(vcpu->arch.shared->msr & MSR_IS);
997
998 kvmppc_e500_deliver_tlb_miss(vcpu, vcpu->arch.pc, as);
999 }
1000
1001 void kvmppc_mmu_dtlb_miss(struct kvm_vcpu *vcpu)
1002 {
1003 unsigned int as = !!(vcpu->arch.shared->msr & MSR_DS);
1004
1005 kvmppc_e500_deliver_tlb_miss(vcpu, vcpu->arch.fault_dear, as);
1006 }
1007
1008 gpa_t kvmppc_mmu_xlate(struct kvm_vcpu *vcpu, unsigned int index,
1009 gva_t eaddr)
1010 {
1011 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
1012 struct kvm_book3e_206_tlb_entry *gtlbe;
1013 u64 pgmask;
1014
1015 gtlbe = get_entry(vcpu_e500, tlbsel_of(index), esel_of(index));
1016 pgmask = get_tlb_bytes(gtlbe) - 1;
1017
1018 return get_tlb_raddr(gtlbe) | (eaddr & pgmask);
1019 }
1020
1021 void kvmppc_mmu_destroy(struct kvm_vcpu *vcpu)
1022 {
1023 }
1024
1025 void kvmppc_mmu_map(struct kvm_vcpu *vcpu, u64 eaddr, gpa_t gpaddr,
1026 unsigned int index)
1027 {
1028 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
1029 struct tlbe_priv *priv;
1030 struct kvm_book3e_206_tlb_entry *gtlbe, stlbe;
1031 int tlbsel = tlbsel_of(index);
1032 int esel = esel_of(index);
1033 int stlbsel, sesel;
1034
1035 gtlbe = get_entry(vcpu_e500, tlbsel, esel);
1036
1037 switch (tlbsel) {
1038 case 0:
1039 stlbsel = 0;
1040 sesel = 0; /* unused */
1041 priv = &vcpu_e500->gtlb_priv[tlbsel][esel];
1042
1043 kvmppc_e500_setup_stlbe(vcpu, gtlbe, BOOK3E_PAGESZ_4K,
1044 &priv->ref, eaddr, &stlbe);
1045 break;
1046
1047 case 1: {
1048 gfn_t gfn = gpaddr >> PAGE_SHIFT;
1049
1050 stlbsel = 1;
1051 sesel = kvmppc_e500_tlb1_map(vcpu_e500, eaddr, gfn,
1052 gtlbe, &stlbe, esel);
1053 break;
1054 }
1055
1056 default:
1057 BUG();
1058 break;
1059 }
1060
1061 write_stlbe(vcpu_e500, gtlbe, &stlbe, stlbsel, sesel);
1062 }
1063
1064 static void free_gtlb(struct kvmppc_vcpu_e500 *vcpu_e500)
1065 {
1066 int i;
1067
1068 clear_tlb1_bitmap(vcpu_e500);
1069 kfree(vcpu_e500->g2h_tlb1_map);
1070
1071 clear_tlb_refs(vcpu_e500);
1072 kfree(vcpu_e500->gtlb_priv[0]);
1073 kfree(vcpu_e500->gtlb_priv[1]);
1074
1075 if (vcpu_e500->shared_tlb_pages) {
1076 vfree((void *)(round_down((uintptr_t)vcpu_e500->gtlb_arch,
1077 PAGE_SIZE)));
1078
1079 for (i = 0; i < vcpu_e500->num_shared_tlb_pages; i++) {
1080 set_page_dirty_lock(vcpu_e500->shared_tlb_pages[i]);
1081 put_page(vcpu_e500->shared_tlb_pages[i]);
1082 }
1083
1084 vcpu_e500->num_shared_tlb_pages = 0;
1085 vcpu_e500->shared_tlb_pages = NULL;
1086 } else {
1087 kfree(vcpu_e500->gtlb_arch);
1088 }
1089
1090 vcpu_e500->gtlb_arch = NULL;
1091 }
1092
1093 void kvmppc_get_sregs_e500_tlb(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
1094 {
1095 sregs->u.e.mas0 = vcpu->arch.shared->mas0;
1096 sregs->u.e.mas1 = vcpu->arch.shared->mas1;
1097 sregs->u.e.mas2 = vcpu->arch.shared->mas2;
1098 sregs->u.e.mas7_3 = vcpu->arch.shared->mas7_3;
1099 sregs->u.e.mas4 = vcpu->arch.shared->mas4;
1100 sregs->u.e.mas6 = vcpu->arch.shared->mas6;
1101
1102 sregs->u.e.mmucfg = vcpu->arch.mmucfg;
1103 sregs->u.e.tlbcfg[0] = vcpu->arch.tlbcfg[0];
1104 sregs->u.e.tlbcfg[1] = vcpu->arch.tlbcfg[1];
1105 sregs->u.e.tlbcfg[2] = 0;
1106 sregs->u.e.tlbcfg[3] = 0;
1107 }
1108
1109 int kvmppc_set_sregs_e500_tlb(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
1110 {
1111 if (sregs->u.e.features & KVM_SREGS_E_ARCH206_MMU) {
1112 vcpu->arch.shared->mas0 = sregs->u.e.mas0;
1113 vcpu->arch.shared->mas1 = sregs->u.e.mas1;
1114 vcpu->arch.shared->mas2 = sregs->u.e.mas2;
1115 vcpu->arch.shared->mas7_3 = sregs->u.e.mas7_3;
1116 vcpu->arch.shared->mas4 = sregs->u.e.mas4;
1117 vcpu->arch.shared->mas6 = sregs->u.e.mas6;
1118 }
1119
1120 return 0;
1121 }
1122
1123 int kvm_vcpu_ioctl_config_tlb(struct kvm_vcpu *vcpu,
1124 struct kvm_config_tlb *cfg)
1125 {
1126 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
1127 struct kvm_book3e_206_tlb_params params;
1128 char *virt;
1129 struct page **pages;
1130 struct tlbe_priv *privs[2] = {};
1131 u64 *g2h_bitmap = NULL;
1132 size_t array_len;
1133 u32 sets;
1134 int num_pages, ret, i;
1135
1136 if (cfg->mmu_type != KVM_MMU_FSL_BOOKE_NOHV)
1137 return -EINVAL;
1138
1139 if (copy_from_user(&params, (void __user *)(uintptr_t)cfg->params,
1140 sizeof(params)))
1141 return -EFAULT;
1142
1143 if (params.tlb_sizes[1] > 64)
1144 return -EINVAL;
1145 if (params.tlb_ways[1] != params.tlb_sizes[1])
1146 return -EINVAL;
1147 if (params.tlb_sizes[2] != 0 || params.tlb_sizes[3] != 0)
1148 return -EINVAL;
1149 if (params.tlb_ways[2] != 0 || params.tlb_ways[3] != 0)
1150 return -EINVAL;
1151
1152 if (!is_power_of_2(params.tlb_ways[0]))
1153 return -EINVAL;
1154
1155 sets = params.tlb_sizes[0] >> ilog2(params.tlb_ways[0]);
1156 if (!is_power_of_2(sets))
1157 return -EINVAL;
1158
1159 array_len = params.tlb_sizes[0] + params.tlb_sizes[1];
1160 array_len *= sizeof(struct kvm_book3e_206_tlb_entry);
1161
1162 if (cfg->array_len < array_len)
1163 return -EINVAL;
1164
1165 num_pages = DIV_ROUND_UP(cfg->array + array_len - 1, PAGE_SIZE) -
1166 cfg->array / PAGE_SIZE;
1167 pages = kmalloc(sizeof(struct page *) * num_pages, GFP_KERNEL);
1168 if (!pages)
1169 return -ENOMEM;
1170
1171 ret = get_user_pages_fast(cfg->array, num_pages, 1, pages);
1172 if (ret < 0)
1173 goto err_pages;
1174
1175 if (ret != num_pages) {
1176 num_pages = ret;
1177 ret = -EFAULT;
1178 goto err_put_page;
1179 }
1180
1181 virt = vmap(pages, num_pages, VM_MAP, PAGE_KERNEL);
1182 if (!virt)
1183 goto err_put_page;
1184
1185 privs[0] = kzalloc(sizeof(struct tlbe_priv) * params.tlb_sizes[0],
1186 GFP_KERNEL);
1187 privs[1] = kzalloc(sizeof(struct tlbe_priv) * params.tlb_sizes[1],
1188 GFP_KERNEL);
1189
1190 if (!privs[0] || !privs[1])
1191 goto err_put_page;
1192
1193 g2h_bitmap = kzalloc(sizeof(u64) * params.tlb_sizes[1],
1194 GFP_KERNEL);
1195 if (!g2h_bitmap)
1196 goto err_put_page;
1197
1198 free_gtlb(vcpu_e500);
1199
1200 vcpu_e500->gtlb_priv[0] = privs[0];
1201 vcpu_e500->gtlb_priv[1] = privs[1];
1202 vcpu_e500->g2h_tlb1_map = g2h_bitmap;
1203
1204 vcpu_e500->gtlb_arch = (struct kvm_book3e_206_tlb_entry *)
1205 (virt + (cfg->array & (PAGE_SIZE - 1)));
1206
1207 vcpu_e500->gtlb_params[0].entries = params.tlb_sizes[0];
1208 vcpu_e500->gtlb_params[1].entries = params.tlb_sizes[1];
1209
1210 vcpu_e500->gtlb_offset[0] = 0;
1211 vcpu_e500->gtlb_offset[1] = params.tlb_sizes[0];
1212
1213 vcpu->arch.mmucfg = mfspr(SPRN_MMUCFG) & ~MMUCFG_LPIDSIZE;
1214
1215 vcpu->arch.tlbcfg[0] &= ~(TLBnCFG_N_ENTRY | TLBnCFG_ASSOC);
1216 if (params.tlb_sizes[0] <= 2048)
1217 vcpu->arch.tlbcfg[0] |= params.tlb_sizes[0];
1218 vcpu->arch.tlbcfg[0] |= params.tlb_ways[0] << TLBnCFG_ASSOC_SHIFT;
1219
1220 vcpu->arch.tlbcfg[1] &= ~(TLBnCFG_N_ENTRY | TLBnCFG_ASSOC);
1221 vcpu->arch.tlbcfg[1] |= params.tlb_sizes[1];
1222 vcpu->arch.tlbcfg[1] |= params.tlb_ways[1] << TLBnCFG_ASSOC_SHIFT;
1223
1224 vcpu_e500->shared_tlb_pages = pages;
1225 vcpu_e500->num_shared_tlb_pages = num_pages;
1226
1227 vcpu_e500->gtlb_params[0].ways = params.tlb_ways[0];
1228 vcpu_e500->gtlb_params[0].sets = sets;
1229
1230 vcpu_e500->gtlb_params[1].ways = params.tlb_sizes[1];
1231 vcpu_e500->gtlb_params[1].sets = 1;
1232
1233 kvmppc_recalc_tlb1map_range(vcpu_e500);
1234 return 0;
1235
1236 err_put_page:
1237 kfree(privs[0]);
1238 kfree(privs[1]);
1239
1240 for (i = 0; i < num_pages; i++)
1241 put_page(pages[i]);
1242
1243 err_pages:
1244 kfree(pages);
1245 return ret;
1246 }
1247
1248 int kvm_vcpu_ioctl_dirty_tlb(struct kvm_vcpu *vcpu,
1249 struct kvm_dirty_tlb *dirty)
1250 {
1251 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
1252 kvmppc_recalc_tlb1map_range(vcpu_e500);
1253 clear_tlb_refs(vcpu_e500);
1254 return 0;
1255 }
1256
1257 int kvmppc_e500_tlb_init(struct kvmppc_vcpu_e500 *vcpu_e500)
1258 {
1259 struct kvm_vcpu *vcpu = &vcpu_e500->vcpu;
1260 int entry_size = sizeof(struct kvm_book3e_206_tlb_entry);
1261 int entries = KVM_E500_TLB0_SIZE + KVM_E500_TLB1_SIZE;
1262
1263 host_tlb_params[0].entries = mfspr(SPRN_TLB0CFG) & TLBnCFG_N_ENTRY;
1264 host_tlb_params[1].entries = mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY;
1265
1266 /*
1267 * This should never happen on real e500 hardware, but is
1268 * architecturally possible -- e.g. in some weird nested
1269 * virtualization case.
1270 */
1271 if (host_tlb_params[0].entries == 0 ||
1272 host_tlb_params[1].entries == 0) {
1273 pr_err("%s: need to know host tlb size\n", __func__);
1274 return -ENODEV;
1275 }
1276
1277 host_tlb_params[0].ways = (mfspr(SPRN_TLB0CFG) & TLBnCFG_ASSOC) >>
1278 TLBnCFG_ASSOC_SHIFT;
1279 host_tlb_params[1].ways = host_tlb_params[1].entries;
1280
1281 if (!is_power_of_2(host_tlb_params[0].entries) ||
1282 !is_power_of_2(host_tlb_params[0].ways) ||
1283 host_tlb_params[0].entries < host_tlb_params[0].ways ||
1284 host_tlb_params[0].ways == 0) {
1285 pr_err("%s: bad tlb0 host config: %u entries %u ways\n",
1286 __func__, host_tlb_params[0].entries,
1287 host_tlb_params[0].ways);
1288 return -ENODEV;
1289 }
1290
1291 host_tlb_params[0].sets =
1292 host_tlb_params[0].entries / host_tlb_params[0].ways;
1293 host_tlb_params[1].sets = 1;
1294
1295 vcpu_e500->gtlb_params[0].entries = KVM_E500_TLB0_SIZE;
1296 vcpu_e500->gtlb_params[1].entries = KVM_E500_TLB1_SIZE;
1297
1298 vcpu_e500->gtlb_params[0].ways = KVM_E500_TLB0_WAY_NUM;
1299 vcpu_e500->gtlb_params[0].sets =
1300 KVM_E500_TLB0_SIZE / KVM_E500_TLB0_WAY_NUM;
1301
1302 vcpu_e500->gtlb_params[1].ways = KVM_E500_TLB1_SIZE;
1303 vcpu_e500->gtlb_params[1].sets = 1;
1304
1305 vcpu_e500->gtlb_arch = kmalloc(entries * entry_size, GFP_KERNEL);
1306 if (!vcpu_e500->gtlb_arch)
1307 return -ENOMEM;
1308
1309 vcpu_e500->gtlb_offset[0] = 0;
1310 vcpu_e500->gtlb_offset[1] = KVM_E500_TLB0_SIZE;
1311
1312 vcpu_e500->tlb_refs[0] =
1313 kzalloc(sizeof(struct tlbe_ref) * host_tlb_params[0].entries,
1314 GFP_KERNEL);
1315 if (!vcpu_e500->tlb_refs[0])
1316 goto err;
1317
1318 vcpu_e500->tlb_refs[1] =
1319 kzalloc(sizeof(struct tlbe_ref) * host_tlb_params[1].entries,
1320 GFP_KERNEL);
1321 if (!vcpu_e500->tlb_refs[1])
1322 goto err;
1323
1324 vcpu_e500->gtlb_priv[0] = kzalloc(sizeof(struct tlbe_ref) *
1325 vcpu_e500->gtlb_params[0].entries,
1326 GFP_KERNEL);
1327 if (!vcpu_e500->gtlb_priv[0])
1328 goto err;
1329
1330 vcpu_e500->gtlb_priv[1] = kzalloc(sizeof(struct tlbe_ref) *
1331 vcpu_e500->gtlb_params[1].entries,
1332 GFP_KERNEL);
1333 if (!vcpu_e500->gtlb_priv[1])
1334 goto err;
1335
1336 vcpu_e500->g2h_tlb1_map = kzalloc(sizeof(unsigned int) *
1337 vcpu_e500->gtlb_params[1].entries,
1338 GFP_KERNEL);
1339 if (!vcpu_e500->g2h_tlb1_map)
1340 goto err;
1341
1342 vcpu_e500->h2g_tlb1_rmap = kzalloc(sizeof(unsigned int) *
1343 host_tlb_params[1].entries,
1344 GFP_KERNEL);
1345 if (!vcpu_e500->h2g_tlb1_rmap)
1346 goto err;
1347
1348 /* Init TLB configuration register */
1349 vcpu->arch.tlbcfg[0] = mfspr(SPRN_TLB0CFG) &
1350 ~(TLBnCFG_N_ENTRY | TLBnCFG_ASSOC);
1351 vcpu->arch.tlbcfg[0] |= vcpu_e500->gtlb_params[0].entries;
1352 vcpu->arch.tlbcfg[0] |=
1353 vcpu_e500->gtlb_params[0].ways << TLBnCFG_ASSOC_SHIFT;
1354
1355 vcpu->arch.tlbcfg[1] = mfspr(SPRN_TLB1CFG) &
1356 ~(TLBnCFG_N_ENTRY | TLBnCFG_ASSOC);
1357 vcpu->arch.tlbcfg[1] |= vcpu_e500->gtlb_params[1].entries;
1358 vcpu->arch.tlbcfg[1] |=
1359 vcpu_e500->gtlb_params[1].ways << TLBnCFG_ASSOC_SHIFT;
1360
1361 kvmppc_recalc_tlb1map_range(vcpu_e500);
1362 return 0;
1363
1364 err:
1365 free_gtlb(vcpu_e500);
1366 kfree(vcpu_e500->tlb_refs[0]);
1367 kfree(vcpu_e500->tlb_refs[1]);
1368 return -1;
1369 }
1370
1371 void kvmppc_e500_tlb_uninit(struct kvmppc_vcpu_e500 *vcpu_e500)
1372 {
1373 free_gtlb(vcpu_e500);
1374 kfree(vcpu_e500->h2g_tlb1_rmap);
1375 kfree(vcpu_e500->tlb_refs[0]);
1376 kfree(vcpu_e500->tlb_refs[1]);
1377 }
This page took 0.056156 seconds and 4 git commands to generate.