Merge remote-tracking branch 'asoc/fix/rsnd' into asoc-linus
[deliverable/linux.git] / arch / powerpc / kvm / mpic.c
1 /*
2 * OpenPIC emulation
3 *
4 * Copyright (c) 2004 Jocelyn Mayer
5 * 2011 Alexander Graf
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a copy
8 * of this software and associated documentation files (the "Software"), to deal
9 * in the Software without restriction, including without limitation the rights
10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 * copies of the Software, and to permit persons to whom the Software is
12 * furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included in
15 * all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23 * THE SOFTWARE.
24 */
25
26 #include <linux/slab.h>
27 #include <linux/mutex.h>
28 #include <linux/kvm_host.h>
29 #include <linux/errno.h>
30 #include <linux/fs.h>
31 #include <linux/anon_inodes.h>
32 #include <asm/uaccess.h>
33 #include <asm/mpic.h>
34 #include <asm/kvm_para.h>
35 #include <asm/kvm_host.h>
36 #include <asm/kvm_ppc.h>
37 #include "iodev.h"
38
39 #define MAX_CPU 32
40 #define MAX_SRC 256
41 #define MAX_TMR 4
42 #define MAX_IPI 4
43 #define MAX_MSI 8
44 #define MAX_IRQ (MAX_SRC + MAX_IPI + MAX_TMR)
45 #define VID 0x03 /* MPIC version ID */
46
47 /* OpenPIC capability flags */
48 #define OPENPIC_FLAG_IDR_CRIT (1 << 0)
49 #define OPENPIC_FLAG_ILR (2 << 0)
50
51 /* OpenPIC address map */
52 #define OPENPIC_REG_SIZE 0x40000
53 #define OPENPIC_GLB_REG_START 0x0
54 #define OPENPIC_GLB_REG_SIZE 0x10F0
55 #define OPENPIC_TMR_REG_START 0x10F0
56 #define OPENPIC_TMR_REG_SIZE 0x220
57 #define OPENPIC_MSI_REG_START 0x1600
58 #define OPENPIC_MSI_REG_SIZE 0x200
59 #define OPENPIC_SUMMARY_REG_START 0x3800
60 #define OPENPIC_SUMMARY_REG_SIZE 0x800
61 #define OPENPIC_SRC_REG_START 0x10000
62 #define OPENPIC_SRC_REG_SIZE (MAX_SRC * 0x20)
63 #define OPENPIC_CPU_REG_START 0x20000
64 #define OPENPIC_CPU_REG_SIZE (0x100 + ((MAX_CPU - 1) * 0x1000))
65
66 struct fsl_mpic_info {
67 int max_ext;
68 };
69
70 static struct fsl_mpic_info fsl_mpic_20 = {
71 .max_ext = 12,
72 };
73
74 static struct fsl_mpic_info fsl_mpic_42 = {
75 .max_ext = 12,
76 };
77
78 #define FRR_NIRQ_SHIFT 16
79 #define FRR_NCPU_SHIFT 8
80 #define FRR_VID_SHIFT 0
81
82 #define VID_REVISION_1_2 2
83 #define VID_REVISION_1_3 3
84
85 #define VIR_GENERIC 0x00000000 /* Generic Vendor ID */
86
87 #define GCR_RESET 0x80000000
88 #define GCR_MODE_PASS 0x00000000
89 #define GCR_MODE_MIXED 0x20000000
90 #define GCR_MODE_PROXY 0x60000000
91
92 #define TBCR_CI 0x80000000 /* count inhibit */
93 #define TCCR_TOG 0x80000000 /* toggles when decrement to zero */
94
95 #define IDR_EP_SHIFT 31
96 #define IDR_EP_MASK (1 << IDR_EP_SHIFT)
97 #define IDR_CI0_SHIFT 30
98 #define IDR_CI1_SHIFT 29
99 #define IDR_P1_SHIFT 1
100 #define IDR_P0_SHIFT 0
101
102 #define ILR_INTTGT_MASK 0x000000ff
103 #define ILR_INTTGT_INT 0x00
104 #define ILR_INTTGT_CINT 0x01 /* critical */
105 #define ILR_INTTGT_MCP 0x02 /* machine check */
106 #define NUM_OUTPUTS 3
107
108 #define MSIIR_OFFSET 0x140
109 #define MSIIR_SRS_SHIFT 29
110 #define MSIIR_SRS_MASK (0x7 << MSIIR_SRS_SHIFT)
111 #define MSIIR_IBS_SHIFT 24
112 #define MSIIR_IBS_MASK (0x1f << MSIIR_IBS_SHIFT)
113
114 static int get_current_cpu(void)
115 {
116 #if defined(CONFIG_KVM) && defined(CONFIG_BOOKE)
117 struct kvm_vcpu *vcpu = current->thread.kvm_vcpu;
118 return vcpu ? vcpu->arch.irq_cpu_id : -1;
119 #else
120 /* XXX */
121 return -1;
122 #endif
123 }
124
125 static int openpic_cpu_write_internal(void *opaque, gpa_t addr,
126 u32 val, int idx);
127 static int openpic_cpu_read_internal(void *opaque, gpa_t addr,
128 u32 *ptr, int idx);
129 static inline void write_IRQreg_idr(struct openpic *opp, int n_IRQ,
130 uint32_t val);
131
132 enum irq_type {
133 IRQ_TYPE_NORMAL = 0,
134 IRQ_TYPE_FSLINT, /* FSL internal interrupt -- level only */
135 IRQ_TYPE_FSLSPECIAL, /* FSL timer/IPI interrupt, edge, no polarity */
136 };
137
138 struct irq_queue {
139 /* Round up to the nearest 64 IRQs so that the queue length
140 * won't change when moving between 32 and 64 bit hosts.
141 */
142 unsigned long queue[BITS_TO_LONGS((MAX_IRQ + 63) & ~63)];
143 int next;
144 int priority;
145 };
146
147 struct irq_source {
148 uint32_t ivpr; /* IRQ vector/priority register */
149 uint32_t idr; /* IRQ destination register */
150 uint32_t destmask; /* bitmap of CPU destinations */
151 int last_cpu;
152 int output; /* IRQ level, e.g. ILR_INTTGT_INT */
153 int pending; /* TRUE if IRQ is pending */
154 enum irq_type type;
155 bool level:1; /* level-triggered */
156 bool nomask:1; /* critical interrupts ignore mask on some FSL MPICs */
157 };
158
159 #define IVPR_MASK_SHIFT 31
160 #define IVPR_MASK_MASK (1 << IVPR_MASK_SHIFT)
161 #define IVPR_ACTIVITY_SHIFT 30
162 #define IVPR_ACTIVITY_MASK (1 << IVPR_ACTIVITY_SHIFT)
163 #define IVPR_MODE_SHIFT 29
164 #define IVPR_MODE_MASK (1 << IVPR_MODE_SHIFT)
165 #define IVPR_POLARITY_SHIFT 23
166 #define IVPR_POLARITY_MASK (1 << IVPR_POLARITY_SHIFT)
167 #define IVPR_SENSE_SHIFT 22
168 #define IVPR_SENSE_MASK (1 << IVPR_SENSE_SHIFT)
169
170 #define IVPR_PRIORITY_MASK (0xF << 16)
171 #define IVPR_PRIORITY(_ivprr_) ((int)(((_ivprr_) & IVPR_PRIORITY_MASK) >> 16))
172 #define IVPR_VECTOR(opp, _ivprr_) ((_ivprr_) & (opp)->vector_mask)
173
174 /* IDR[EP/CI] are only for FSL MPIC prior to v4.0 */
175 #define IDR_EP 0x80000000 /* external pin */
176 #define IDR_CI 0x40000000 /* critical interrupt */
177
178 struct irq_dest {
179 struct kvm_vcpu *vcpu;
180
181 int32_t ctpr; /* CPU current task priority */
182 struct irq_queue raised;
183 struct irq_queue servicing;
184
185 /* Count of IRQ sources asserting on non-INT outputs */
186 uint32_t outputs_active[NUM_OUTPUTS];
187 };
188
189 #define MAX_MMIO_REGIONS 10
190
191 struct openpic {
192 struct kvm *kvm;
193 struct kvm_device *dev;
194 struct kvm_io_device mmio;
195 const struct mem_reg *mmio_regions[MAX_MMIO_REGIONS];
196 int num_mmio_regions;
197
198 gpa_t reg_base;
199 spinlock_t lock;
200
201 /* Behavior control */
202 struct fsl_mpic_info *fsl;
203 uint32_t model;
204 uint32_t flags;
205 uint32_t nb_irqs;
206 uint32_t vid;
207 uint32_t vir; /* Vendor identification register */
208 uint32_t vector_mask;
209 uint32_t tfrr_reset;
210 uint32_t ivpr_reset;
211 uint32_t idr_reset;
212 uint32_t brr1;
213 uint32_t mpic_mode_mask;
214
215 /* Global registers */
216 uint32_t frr; /* Feature reporting register */
217 uint32_t gcr; /* Global configuration register */
218 uint32_t pir; /* Processor initialization register */
219 uint32_t spve; /* Spurious vector register */
220 uint32_t tfrr; /* Timer frequency reporting register */
221 /* Source registers */
222 struct irq_source src[MAX_IRQ];
223 /* Local registers per output pin */
224 struct irq_dest dst[MAX_CPU];
225 uint32_t nb_cpus;
226 /* Timer registers */
227 struct {
228 uint32_t tccr; /* Global timer current count register */
229 uint32_t tbcr; /* Global timer base count register */
230 } timers[MAX_TMR];
231 /* Shared MSI registers */
232 struct {
233 uint32_t msir; /* Shared Message Signaled Interrupt Register */
234 } msi[MAX_MSI];
235 uint32_t max_irq;
236 uint32_t irq_ipi0;
237 uint32_t irq_tim0;
238 uint32_t irq_msi;
239 };
240
241
242 static void mpic_irq_raise(struct openpic *opp, struct irq_dest *dst,
243 int output)
244 {
245 struct kvm_interrupt irq = {
246 .irq = KVM_INTERRUPT_SET_LEVEL,
247 };
248
249 if (!dst->vcpu) {
250 pr_debug("%s: destination cpu %d does not exist\n",
251 __func__, (int)(dst - &opp->dst[0]));
252 return;
253 }
254
255 pr_debug("%s: cpu %d output %d\n", __func__, dst->vcpu->arch.irq_cpu_id,
256 output);
257
258 if (output != ILR_INTTGT_INT) /* TODO */
259 return;
260
261 kvm_vcpu_ioctl_interrupt(dst->vcpu, &irq);
262 }
263
264 static void mpic_irq_lower(struct openpic *opp, struct irq_dest *dst,
265 int output)
266 {
267 if (!dst->vcpu) {
268 pr_debug("%s: destination cpu %d does not exist\n",
269 __func__, (int)(dst - &opp->dst[0]));
270 return;
271 }
272
273 pr_debug("%s: cpu %d output %d\n", __func__, dst->vcpu->arch.irq_cpu_id,
274 output);
275
276 if (output != ILR_INTTGT_INT) /* TODO */
277 return;
278
279 kvmppc_core_dequeue_external(dst->vcpu);
280 }
281
282 static inline void IRQ_setbit(struct irq_queue *q, int n_IRQ)
283 {
284 set_bit(n_IRQ, q->queue);
285 }
286
287 static inline void IRQ_resetbit(struct irq_queue *q, int n_IRQ)
288 {
289 clear_bit(n_IRQ, q->queue);
290 }
291
292 static inline int IRQ_testbit(struct irq_queue *q, int n_IRQ)
293 {
294 return test_bit(n_IRQ, q->queue);
295 }
296
297 static void IRQ_check(struct openpic *opp, struct irq_queue *q)
298 {
299 int irq = -1;
300 int next = -1;
301 int priority = -1;
302
303 for (;;) {
304 irq = find_next_bit(q->queue, opp->max_irq, irq + 1);
305 if (irq == opp->max_irq)
306 break;
307
308 pr_debug("IRQ_check: irq %d set ivpr_pr=%d pr=%d\n",
309 irq, IVPR_PRIORITY(opp->src[irq].ivpr), priority);
310
311 if (IVPR_PRIORITY(opp->src[irq].ivpr) > priority) {
312 next = irq;
313 priority = IVPR_PRIORITY(opp->src[irq].ivpr);
314 }
315 }
316
317 q->next = next;
318 q->priority = priority;
319 }
320
321 static int IRQ_get_next(struct openpic *opp, struct irq_queue *q)
322 {
323 /* XXX: optimize */
324 IRQ_check(opp, q);
325
326 return q->next;
327 }
328
329 static void IRQ_local_pipe(struct openpic *opp, int n_CPU, int n_IRQ,
330 bool active, bool was_active)
331 {
332 struct irq_dest *dst;
333 struct irq_source *src;
334 int priority;
335
336 dst = &opp->dst[n_CPU];
337 src = &opp->src[n_IRQ];
338
339 pr_debug("%s: IRQ %d active %d was %d\n",
340 __func__, n_IRQ, active, was_active);
341
342 if (src->output != ILR_INTTGT_INT) {
343 pr_debug("%s: output %d irq %d active %d was %d count %d\n",
344 __func__, src->output, n_IRQ, active, was_active,
345 dst->outputs_active[src->output]);
346
347 /* On Freescale MPIC, critical interrupts ignore priority,
348 * IACK, EOI, etc. Before MPIC v4.1 they also ignore
349 * masking.
350 */
351 if (active) {
352 if (!was_active &&
353 dst->outputs_active[src->output]++ == 0) {
354 pr_debug("%s: Raise OpenPIC output %d cpu %d irq %d\n",
355 __func__, src->output, n_CPU, n_IRQ);
356 mpic_irq_raise(opp, dst, src->output);
357 }
358 } else {
359 if (was_active &&
360 --dst->outputs_active[src->output] == 0) {
361 pr_debug("%s: Lower OpenPIC output %d cpu %d irq %d\n",
362 __func__, src->output, n_CPU, n_IRQ);
363 mpic_irq_lower(opp, dst, src->output);
364 }
365 }
366
367 return;
368 }
369
370 priority = IVPR_PRIORITY(src->ivpr);
371
372 /* Even if the interrupt doesn't have enough priority,
373 * it is still raised, in case ctpr is lowered later.
374 */
375 if (active)
376 IRQ_setbit(&dst->raised, n_IRQ);
377 else
378 IRQ_resetbit(&dst->raised, n_IRQ);
379
380 IRQ_check(opp, &dst->raised);
381
382 if (active && priority <= dst->ctpr) {
383 pr_debug("%s: IRQ %d priority %d too low for ctpr %d on CPU %d\n",
384 __func__, n_IRQ, priority, dst->ctpr, n_CPU);
385 active = 0;
386 }
387
388 if (active) {
389 if (IRQ_get_next(opp, &dst->servicing) >= 0 &&
390 priority <= dst->servicing.priority) {
391 pr_debug("%s: IRQ %d is hidden by servicing IRQ %d on CPU %d\n",
392 __func__, n_IRQ, dst->servicing.next, n_CPU);
393 } else {
394 pr_debug("%s: Raise OpenPIC INT output cpu %d irq %d/%d\n",
395 __func__, n_CPU, n_IRQ, dst->raised.next);
396 mpic_irq_raise(opp, dst, ILR_INTTGT_INT);
397 }
398 } else {
399 IRQ_get_next(opp, &dst->servicing);
400 if (dst->raised.priority > dst->ctpr &&
401 dst->raised.priority > dst->servicing.priority) {
402 pr_debug("%s: IRQ %d inactive, IRQ %d prio %d above %d/%d, CPU %d\n",
403 __func__, n_IRQ, dst->raised.next,
404 dst->raised.priority, dst->ctpr,
405 dst->servicing.priority, n_CPU);
406 /* IRQ line stays asserted */
407 } else {
408 pr_debug("%s: IRQ %d inactive, current prio %d/%d, CPU %d\n",
409 __func__, n_IRQ, dst->ctpr,
410 dst->servicing.priority, n_CPU);
411 mpic_irq_lower(opp, dst, ILR_INTTGT_INT);
412 }
413 }
414 }
415
416 /* update pic state because registers for n_IRQ have changed value */
417 static void openpic_update_irq(struct openpic *opp, int n_IRQ)
418 {
419 struct irq_source *src;
420 bool active, was_active;
421 int i;
422
423 src = &opp->src[n_IRQ];
424 active = src->pending;
425
426 if ((src->ivpr & IVPR_MASK_MASK) && !src->nomask) {
427 /* Interrupt source is disabled */
428 pr_debug("%s: IRQ %d is disabled\n", __func__, n_IRQ);
429 active = false;
430 }
431
432 was_active = !!(src->ivpr & IVPR_ACTIVITY_MASK);
433
434 /*
435 * We don't have a similar check for already-active because
436 * ctpr may have changed and we need to withdraw the interrupt.
437 */
438 if (!active && !was_active) {
439 pr_debug("%s: IRQ %d is already inactive\n", __func__, n_IRQ);
440 return;
441 }
442
443 if (active)
444 src->ivpr |= IVPR_ACTIVITY_MASK;
445 else
446 src->ivpr &= ~IVPR_ACTIVITY_MASK;
447
448 if (src->destmask == 0) {
449 /* No target */
450 pr_debug("%s: IRQ %d has no target\n", __func__, n_IRQ);
451 return;
452 }
453
454 if (src->destmask == (1 << src->last_cpu)) {
455 /* Only one CPU is allowed to receive this IRQ */
456 IRQ_local_pipe(opp, src->last_cpu, n_IRQ, active, was_active);
457 } else if (!(src->ivpr & IVPR_MODE_MASK)) {
458 /* Directed delivery mode */
459 for (i = 0; i < opp->nb_cpus; i++) {
460 if (src->destmask & (1 << i)) {
461 IRQ_local_pipe(opp, i, n_IRQ, active,
462 was_active);
463 }
464 }
465 } else {
466 /* Distributed delivery mode */
467 for (i = src->last_cpu + 1; i != src->last_cpu; i++) {
468 if (i == opp->nb_cpus)
469 i = 0;
470
471 if (src->destmask & (1 << i)) {
472 IRQ_local_pipe(opp, i, n_IRQ, active,
473 was_active);
474 src->last_cpu = i;
475 break;
476 }
477 }
478 }
479 }
480
481 static void openpic_set_irq(void *opaque, int n_IRQ, int level)
482 {
483 struct openpic *opp = opaque;
484 struct irq_source *src;
485
486 if (n_IRQ >= MAX_IRQ) {
487 WARN_ONCE(1, "%s: IRQ %d out of range\n", __func__, n_IRQ);
488 return;
489 }
490
491 src = &opp->src[n_IRQ];
492 pr_debug("openpic: set irq %d = %d ivpr=0x%08x\n",
493 n_IRQ, level, src->ivpr);
494 if (src->level) {
495 /* level-sensitive irq */
496 src->pending = level;
497 openpic_update_irq(opp, n_IRQ);
498 } else {
499 /* edge-sensitive irq */
500 if (level) {
501 src->pending = 1;
502 openpic_update_irq(opp, n_IRQ);
503 }
504
505 if (src->output != ILR_INTTGT_INT) {
506 /* Edge-triggered interrupts shouldn't be used
507 * with non-INT delivery, but just in case,
508 * try to make it do something sane rather than
509 * cause an interrupt storm. This is close to
510 * what you'd probably see happen in real hardware.
511 */
512 src->pending = 0;
513 openpic_update_irq(opp, n_IRQ);
514 }
515 }
516 }
517
518 static void openpic_reset(struct openpic *opp)
519 {
520 int i;
521
522 opp->gcr = GCR_RESET;
523 /* Initialise controller registers */
524 opp->frr = ((opp->nb_irqs - 1) << FRR_NIRQ_SHIFT) |
525 (opp->vid << FRR_VID_SHIFT);
526
527 opp->pir = 0;
528 opp->spve = -1 & opp->vector_mask;
529 opp->tfrr = opp->tfrr_reset;
530 /* Initialise IRQ sources */
531 for (i = 0; i < opp->max_irq; i++) {
532 opp->src[i].ivpr = opp->ivpr_reset;
533
534 switch (opp->src[i].type) {
535 case IRQ_TYPE_NORMAL:
536 opp->src[i].level =
537 !!(opp->ivpr_reset & IVPR_SENSE_MASK);
538 break;
539
540 case IRQ_TYPE_FSLINT:
541 opp->src[i].ivpr |= IVPR_POLARITY_MASK;
542 break;
543
544 case IRQ_TYPE_FSLSPECIAL:
545 break;
546 }
547
548 write_IRQreg_idr(opp, i, opp->idr_reset);
549 }
550 /* Initialise IRQ destinations */
551 for (i = 0; i < MAX_CPU; i++) {
552 opp->dst[i].ctpr = 15;
553 memset(&opp->dst[i].raised, 0, sizeof(struct irq_queue));
554 opp->dst[i].raised.next = -1;
555 memset(&opp->dst[i].servicing, 0, sizeof(struct irq_queue));
556 opp->dst[i].servicing.next = -1;
557 }
558 /* Initialise timers */
559 for (i = 0; i < MAX_TMR; i++) {
560 opp->timers[i].tccr = 0;
561 opp->timers[i].tbcr = TBCR_CI;
562 }
563 /* Go out of RESET state */
564 opp->gcr = 0;
565 }
566
567 static inline uint32_t read_IRQreg_idr(struct openpic *opp, int n_IRQ)
568 {
569 return opp->src[n_IRQ].idr;
570 }
571
572 static inline uint32_t read_IRQreg_ilr(struct openpic *opp, int n_IRQ)
573 {
574 if (opp->flags & OPENPIC_FLAG_ILR)
575 return opp->src[n_IRQ].output;
576
577 return 0xffffffff;
578 }
579
580 static inline uint32_t read_IRQreg_ivpr(struct openpic *opp, int n_IRQ)
581 {
582 return opp->src[n_IRQ].ivpr;
583 }
584
585 static inline void write_IRQreg_idr(struct openpic *opp, int n_IRQ,
586 uint32_t val)
587 {
588 struct irq_source *src = &opp->src[n_IRQ];
589 uint32_t normal_mask = (1UL << opp->nb_cpus) - 1;
590 uint32_t crit_mask = 0;
591 uint32_t mask = normal_mask;
592 int crit_shift = IDR_EP_SHIFT - opp->nb_cpus;
593 int i;
594
595 if (opp->flags & OPENPIC_FLAG_IDR_CRIT) {
596 crit_mask = mask << crit_shift;
597 mask |= crit_mask | IDR_EP;
598 }
599
600 src->idr = val & mask;
601 pr_debug("Set IDR %d to 0x%08x\n", n_IRQ, src->idr);
602
603 if (opp->flags & OPENPIC_FLAG_IDR_CRIT) {
604 if (src->idr & crit_mask) {
605 if (src->idr & normal_mask) {
606 pr_debug("%s: IRQ configured for multiple output types, using critical\n",
607 __func__);
608 }
609
610 src->output = ILR_INTTGT_CINT;
611 src->nomask = true;
612 src->destmask = 0;
613
614 for (i = 0; i < opp->nb_cpus; i++) {
615 int n_ci = IDR_CI0_SHIFT - i;
616
617 if (src->idr & (1UL << n_ci))
618 src->destmask |= 1UL << i;
619 }
620 } else {
621 src->output = ILR_INTTGT_INT;
622 src->nomask = false;
623 src->destmask = src->idr & normal_mask;
624 }
625 } else {
626 src->destmask = src->idr;
627 }
628 }
629
630 static inline void write_IRQreg_ilr(struct openpic *opp, int n_IRQ,
631 uint32_t val)
632 {
633 if (opp->flags & OPENPIC_FLAG_ILR) {
634 struct irq_source *src = &opp->src[n_IRQ];
635
636 src->output = val & ILR_INTTGT_MASK;
637 pr_debug("Set ILR %d to 0x%08x, output %d\n", n_IRQ, src->idr,
638 src->output);
639
640 /* TODO: on MPIC v4.0 only, set nomask for non-INT */
641 }
642 }
643
644 static inline void write_IRQreg_ivpr(struct openpic *opp, int n_IRQ,
645 uint32_t val)
646 {
647 uint32_t mask;
648
649 /* NOTE when implementing newer FSL MPIC models: starting with v4.0,
650 * the polarity bit is read-only on internal interrupts.
651 */
652 mask = IVPR_MASK_MASK | IVPR_PRIORITY_MASK | IVPR_SENSE_MASK |
653 IVPR_POLARITY_MASK | opp->vector_mask;
654
655 /* ACTIVITY bit is read-only */
656 opp->src[n_IRQ].ivpr =
657 (opp->src[n_IRQ].ivpr & IVPR_ACTIVITY_MASK) | (val & mask);
658
659 /* For FSL internal interrupts, The sense bit is reserved and zero,
660 * and the interrupt is always level-triggered. Timers and IPIs
661 * have no sense or polarity bits, and are edge-triggered.
662 */
663 switch (opp->src[n_IRQ].type) {
664 case IRQ_TYPE_NORMAL:
665 opp->src[n_IRQ].level =
666 !!(opp->src[n_IRQ].ivpr & IVPR_SENSE_MASK);
667 break;
668
669 case IRQ_TYPE_FSLINT:
670 opp->src[n_IRQ].ivpr &= ~IVPR_SENSE_MASK;
671 break;
672
673 case IRQ_TYPE_FSLSPECIAL:
674 opp->src[n_IRQ].ivpr &= ~(IVPR_POLARITY_MASK | IVPR_SENSE_MASK);
675 break;
676 }
677
678 openpic_update_irq(opp, n_IRQ);
679 pr_debug("Set IVPR %d to 0x%08x -> 0x%08x\n", n_IRQ, val,
680 opp->src[n_IRQ].ivpr);
681 }
682
683 static void openpic_gcr_write(struct openpic *opp, uint64_t val)
684 {
685 if (val & GCR_RESET) {
686 openpic_reset(opp);
687 return;
688 }
689
690 opp->gcr &= ~opp->mpic_mode_mask;
691 opp->gcr |= val & opp->mpic_mode_mask;
692 }
693
694 static int openpic_gbl_write(void *opaque, gpa_t addr, u32 val)
695 {
696 struct openpic *opp = opaque;
697 int err = 0;
698
699 pr_debug("%s: addr %#llx <= %08x\n", __func__, addr, val);
700 if (addr & 0xF)
701 return 0;
702
703 switch (addr) {
704 case 0x00: /* Block Revision Register1 (BRR1) is Readonly */
705 break;
706 case 0x40:
707 case 0x50:
708 case 0x60:
709 case 0x70:
710 case 0x80:
711 case 0x90:
712 case 0xA0:
713 case 0xB0:
714 err = openpic_cpu_write_internal(opp, addr, val,
715 get_current_cpu());
716 break;
717 case 0x1000: /* FRR */
718 break;
719 case 0x1020: /* GCR */
720 openpic_gcr_write(opp, val);
721 break;
722 case 0x1080: /* VIR */
723 break;
724 case 0x1090: /* PIR */
725 /*
726 * This register is used to reset a CPU core --
727 * let userspace handle it.
728 */
729 err = -ENXIO;
730 break;
731 case 0x10A0: /* IPI_IVPR */
732 case 0x10B0:
733 case 0x10C0:
734 case 0x10D0: {
735 int idx;
736 idx = (addr - 0x10A0) >> 4;
737 write_IRQreg_ivpr(opp, opp->irq_ipi0 + idx, val);
738 break;
739 }
740 case 0x10E0: /* SPVE */
741 opp->spve = val & opp->vector_mask;
742 break;
743 default:
744 break;
745 }
746
747 return err;
748 }
749
750 static int openpic_gbl_read(void *opaque, gpa_t addr, u32 *ptr)
751 {
752 struct openpic *opp = opaque;
753 u32 retval;
754 int err = 0;
755
756 pr_debug("%s: addr %#llx\n", __func__, addr);
757 retval = 0xFFFFFFFF;
758 if (addr & 0xF)
759 goto out;
760
761 switch (addr) {
762 case 0x1000: /* FRR */
763 retval = opp->frr;
764 retval |= (opp->nb_cpus - 1) << FRR_NCPU_SHIFT;
765 break;
766 case 0x1020: /* GCR */
767 retval = opp->gcr;
768 break;
769 case 0x1080: /* VIR */
770 retval = opp->vir;
771 break;
772 case 0x1090: /* PIR */
773 retval = 0x00000000;
774 break;
775 case 0x00: /* Block Revision Register1 (BRR1) */
776 retval = opp->brr1;
777 break;
778 case 0x40:
779 case 0x50:
780 case 0x60:
781 case 0x70:
782 case 0x80:
783 case 0x90:
784 case 0xA0:
785 case 0xB0:
786 err = openpic_cpu_read_internal(opp, addr,
787 &retval, get_current_cpu());
788 break;
789 case 0x10A0: /* IPI_IVPR */
790 case 0x10B0:
791 case 0x10C0:
792 case 0x10D0:
793 {
794 int idx;
795 idx = (addr - 0x10A0) >> 4;
796 retval = read_IRQreg_ivpr(opp, opp->irq_ipi0 + idx);
797 }
798 break;
799 case 0x10E0: /* SPVE */
800 retval = opp->spve;
801 break;
802 default:
803 break;
804 }
805
806 out:
807 pr_debug("%s: => 0x%08x\n", __func__, retval);
808 *ptr = retval;
809 return err;
810 }
811
812 static int openpic_tmr_write(void *opaque, gpa_t addr, u32 val)
813 {
814 struct openpic *opp = opaque;
815 int idx;
816
817 addr += 0x10f0;
818
819 pr_debug("%s: addr %#llx <= %08x\n", __func__, addr, val);
820 if (addr & 0xF)
821 return 0;
822
823 if (addr == 0x10f0) {
824 /* TFRR */
825 opp->tfrr = val;
826 return 0;
827 }
828
829 idx = (addr >> 6) & 0x3;
830 addr = addr & 0x30;
831
832 switch (addr & 0x30) {
833 case 0x00: /* TCCR */
834 break;
835 case 0x10: /* TBCR */
836 if ((opp->timers[idx].tccr & TCCR_TOG) != 0 &&
837 (val & TBCR_CI) == 0 &&
838 (opp->timers[idx].tbcr & TBCR_CI) != 0)
839 opp->timers[idx].tccr &= ~TCCR_TOG;
840
841 opp->timers[idx].tbcr = val;
842 break;
843 case 0x20: /* TVPR */
844 write_IRQreg_ivpr(opp, opp->irq_tim0 + idx, val);
845 break;
846 case 0x30: /* TDR */
847 write_IRQreg_idr(opp, opp->irq_tim0 + idx, val);
848 break;
849 }
850
851 return 0;
852 }
853
854 static int openpic_tmr_read(void *opaque, gpa_t addr, u32 *ptr)
855 {
856 struct openpic *opp = opaque;
857 uint32_t retval = -1;
858 int idx;
859
860 pr_debug("%s: addr %#llx\n", __func__, addr);
861 if (addr & 0xF)
862 goto out;
863
864 idx = (addr >> 6) & 0x3;
865 if (addr == 0x0) {
866 /* TFRR */
867 retval = opp->tfrr;
868 goto out;
869 }
870
871 switch (addr & 0x30) {
872 case 0x00: /* TCCR */
873 retval = opp->timers[idx].tccr;
874 break;
875 case 0x10: /* TBCR */
876 retval = opp->timers[idx].tbcr;
877 break;
878 case 0x20: /* TIPV */
879 retval = read_IRQreg_ivpr(opp, opp->irq_tim0 + idx);
880 break;
881 case 0x30: /* TIDE (TIDR) */
882 retval = read_IRQreg_idr(opp, opp->irq_tim0 + idx);
883 break;
884 }
885
886 out:
887 pr_debug("%s: => 0x%08x\n", __func__, retval);
888 *ptr = retval;
889 return 0;
890 }
891
892 static int openpic_src_write(void *opaque, gpa_t addr, u32 val)
893 {
894 struct openpic *opp = opaque;
895 int idx;
896
897 pr_debug("%s: addr %#llx <= %08x\n", __func__, addr, val);
898
899 addr = addr & 0xffff;
900 idx = addr >> 5;
901
902 switch (addr & 0x1f) {
903 case 0x00:
904 write_IRQreg_ivpr(opp, idx, val);
905 break;
906 case 0x10:
907 write_IRQreg_idr(opp, idx, val);
908 break;
909 case 0x18:
910 write_IRQreg_ilr(opp, idx, val);
911 break;
912 }
913
914 return 0;
915 }
916
917 static int openpic_src_read(void *opaque, gpa_t addr, u32 *ptr)
918 {
919 struct openpic *opp = opaque;
920 uint32_t retval;
921 int idx;
922
923 pr_debug("%s: addr %#llx\n", __func__, addr);
924 retval = 0xFFFFFFFF;
925
926 addr = addr & 0xffff;
927 idx = addr >> 5;
928
929 switch (addr & 0x1f) {
930 case 0x00:
931 retval = read_IRQreg_ivpr(opp, idx);
932 break;
933 case 0x10:
934 retval = read_IRQreg_idr(opp, idx);
935 break;
936 case 0x18:
937 retval = read_IRQreg_ilr(opp, idx);
938 break;
939 }
940
941 pr_debug("%s: => 0x%08x\n", __func__, retval);
942 *ptr = retval;
943 return 0;
944 }
945
946 static int openpic_msi_write(void *opaque, gpa_t addr, u32 val)
947 {
948 struct openpic *opp = opaque;
949 int idx = opp->irq_msi;
950 int srs, ibs;
951
952 pr_debug("%s: addr %#llx <= 0x%08x\n", __func__, addr, val);
953 if (addr & 0xF)
954 return 0;
955
956 switch (addr) {
957 case MSIIR_OFFSET:
958 srs = val >> MSIIR_SRS_SHIFT;
959 idx += srs;
960 ibs = (val & MSIIR_IBS_MASK) >> MSIIR_IBS_SHIFT;
961 opp->msi[srs].msir |= 1 << ibs;
962 openpic_set_irq(opp, idx, 1);
963 break;
964 default:
965 /* most registers are read-only, thus ignored */
966 break;
967 }
968
969 return 0;
970 }
971
972 static int openpic_msi_read(void *opaque, gpa_t addr, u32 *ptr)
973 {
974 struct openpic *opp = opaque;
975 uint32_t r = 0;
976 int i, srs;
977
978 pr_debug("%s: addr %#llx\n", __func__, addr);
979 if (addr & 0xF)
980 return -ENXIO;
981
982 srs = addr >> 4;
983
984 switch (addr) {
985 case 0x00:
986 case 0x10:
987 case 0x20:
988 case 0x30:
989 case 0x40:
990 case 0x50:
991 case 0x60:
992 case 0x70: /* MSIRs */
993 r = opp->msi[srs].msir;
994 /* Clear on read */
995 opp->msi[srs].msir = 0;
996 openpic_set_irq(opp, opp->irq_msi + srs, 0);
997 break;
998 case 0x120: /* MSISR */
999 for (i = 0; i < MAX_MSI; i++)
1000 r |= (opp->msi[i].msir ? 1 : 0) << i;
1001 break;
1002 }
1003
1004 pr_debug("%s: => 0x%08x\n", __func__, r);
1005 *ptr = r;
1006 return 0;
1007 }
1008
1009 static int openpic_summary_read(void *opaque, gpa_t addr, u32 *ptr)
1010 {
1011 uint32_t r = 0;
1012
1013 pr_debug("%s: addr %#llx\n", __func__, addr);
1014
1015 /* TODO: EISR/EIMR */
1016
1017 *ptr = r;
1018 return 0;
1019 }
1020
1021 static int openpic_summary_write(void *opaque, gpa_t addr, u32 val)
1022 {
1023 pr_debug("%s: addr %#llx <= 0x%08x\n", __func__, addr, val);
1024
1025 /* TODO: EISR/EIMR */
1026 return 0;
1027 }
1028
1029 static int openpic_cpu_write_internal(void *opaque, gpa_t addr,
1030 u32 val, int idx)
1031 {
1032 struct openpic *opp = opaque;
1033 struct irq_source *src;
1034 struct irq_dest *dst;
1035 int s_IRQ, n_IRQ;
1036
1037 pr_debug("%s: cpu %d addr %#llx <= 0x%08x\n", __func__, idx,
1038 addr, val);
1039
1040 if (idx < 0)
1041 return 0;
1042
1043 if (addr & 0xF)
1044 return 0;
1045
1046 dst = &opp->dst[idx];
1047 addr &= 0xFF0;
1048 switch (addr) {
1049 case 0x40: /* IPIDR */
1050 case 0x50:
1051 case 0x60:
1052 case 0x70:
1053 idx = (addr - 0x40) >> 4;
1054 /* we use IDE as mask which CPUs to deliver the IPI to still. */
1055 opp->src[opp->irq_ipi0 + idx].destmask |= val;
1056 openpic_set_irq(opp, opp->irq_ipi0 + idx, 1);
1057 openpic_set_irq(opp, opp->irq_ipi0 + idx, 0);
1058 break;
1059 case 0x80: /* CTPR */
1060 dst->ctpr = val & 0x0000000F;
1061
1062 pr_debug("%s: set CPU %d ctpr to %d, raised %d servicing %d\n",
1063 __func__, idx, dst->ctpr, dst->raised.priority,
1064 dst->servicing.priority);
1065
1066 if (dst->raised.priority <= dst->ctpr) {
1067 pr_debug("%s: Lower OpenPIC INT output cpu %d due to ctpr\n",
1068 __func__, idx);
1069 mpic_irq_lower(opp, dst, ILR_INTTGT_INT);
1070 } else if (dst->raised.priority > dst->servicing.priority) {
1071 pr_debug("%s: Raise OpenPIC INT output cpu %d irq %d\n",
1072 __func__, idx, dst->raised.next);
1073 mpic_irq_raise(opp, dst, ILR_INTTGT_INT);
1074 }
1075
1076 break;
1077 case 0x90: /* WHOAMI */
1078 /* Read-only register */
1079 break;
1080 case 0xA0: /* IACK */
1081 /* Read-only register */
1082 break;
1083 case 0xB0: { /* EOI */
1084 int notify_eoi;
1085
1086 pr_debug("EOI\n");
1087 s_IRQ = IRQ_get_next(opp, &dst->servicing);
1088
1089 if (s_IRQ < 0) {
1090 pr_debug("%s: EOI with no interrupt in service\n",
1091 __func__);
1092 break;
1093 }
1094
1095 IRQ_resetbit(&dst->servicing, s_IRQ);
1096 /* Notify listeners that the IRQ is over */
1097 notify_eoi = s_IRQ;
1098 /* Set up next servicing IRQ */
1099 s_IRQ = IRQ_get_next(opp, &dst->servicing);
1100 /* Check queued interrupts. */
1101 n_IRQ = IRQ_get_next(opp, &dst->raised);
1102 src = &opp->src[n_IRQ];
1103 if (n_IRQ != -1 &&
1104 (s_IRQ == -1 ||
1105 IVPR_PRIORITY(src->ivpr) > dst->servicing.priority)) {
1106 pr_debug("Raise OpenPIC INT output cpu %d irq %d\n",
1107 idx, n_IRQ);
1108 mpic_irq_raise(opp, dst, ILR_INTTGT_INT);
1109 }
1110
1111 spin_unlock(&opp->lock);
1112 kvm_notify_acked_irq(opp->kvm, 0, notify_eoi);
1113 spin_lock(&opp->lock);
1114
1115 break;
1116 }
1117 default:
1118 break;
1119 }
1120
1121 return 0;
1122 }
1123
1124 static int openpic_cpu_write(void *opaque, gpa_t addr, u32 val)
1125 {
1126 struct openpic *opp = opaque;
1127
1128 return openpic_cpu_write_internal(opp, addr, val,
1129 (addr & 0x1f000) >> 12);
1130 }
1131
1132 static uint32_t openpic_iack(struct openpic *opp, struct irq_dest *dst,
1133 int cpu)
1134 {
1135 struct irq_source *src;
1136 int retval, irq;
1137
1138 pr_debug("Lower OpenPIC INT output\n");
1139 mpic_irq_lower(opp, dst, ILR_INTTGT_INT);
1140
1141 irq = IRQ_get_next(opp, &dst->raised);
1142 pr_debug("IACK: irq=%d\n", irq);
1143
1144 if (irq == -1)
1145 /* No more interrupt pending */
1146 return opp->spve;
1147
1148 src = &opp->src[irq];
1149 if (!(src->ivpr & IVPR_ACTIVITY_MASK) ||
1150 !(IVPR_PRIORITY(src->ivpr) > dst->ctpr)) {
1151 pr_err("%s: bad raised IRQ %d ctpr %d ivpr 0x%08x\n",
1152 __func__, irq, dst->ctpr, src->ivpr);
1153 openpic_update_irq(opp, irq);
1154 retval = opp->spve;
1155 } else {
1156 /* IRQ enter servicing state */
1157 IRQ_setbit(&dst->servicing, irq);
1158 retval = IVPR_VECTOR(opp, src->ivpr);
1159 }
1160
1161 if (!src->level) {
1162 /* edge-sensitive IRQ */
1163 src->ivpr &= ~IVPR_ACTIVITY_MASK;
1164 src->pending = 0;
1165 IRQ_resetbit(&dst->raised, irq);
1166 }
1167
1168 if ((irq >= opp->irq_ipi0) && (irq < (opp->irq_ipi0 + MAX_IPI))) {
1169 src->destmask &= ~(1 << cpu);
1170 if (src->destmask && !src->level) {
1171 /* trigger on CPUs that didn't know about it yet */
1172 openpic_set_irq(opp, irq, 1);
1173 openpic_set_irq(opp, irq, 0);
1174 /* if all CPUs knew about it, set active bit again */
1175 src->ivpr |= IVPR_ACTIVITY_MASK;
1176 }
1177 }
1178
1179 return retval;
1180 }
1181
1182 void kvmppc_mpic_set_epr(struct kvm_vcpu *vcpu)
1183 {
1184 struct openpic *opp = vcpu->arch.mpic;
1185 int cpu = vcpu->arch.irq_cpu_id;
1186 unsigned long flags;
1187
1188 spin_lock_irqsave(&opp->lock, flags);
1189
1190 if ((opp->gcr & opp->mpic_mode_mask) == GCR_MODE_PROXY)
1191 kvmppc_set_epr(vcpu, openpic_iack(opp, &opp->dst[cpu], cpu));
1192
1193 spin_unlock_irqrestore(&opp->lock, flags);
1194 }
1195
1196 static int openpic_cpu_read_internal(void *opaque, gpa_t addr,
1197 u32 *ptr, int idx)
1198 {
1199 struct openpic *opp = opaque;
1200 struct irq_dest *dst;
1201 uint32_t retval;
1202
1203 pr_debug("%s: cpu %d addr %#llx\n", __func__, idx, addr);
1204 retval = 0xFFFFFFFF;
1205
1206 if (idx < 0)
1207 goto out;
1208
1209 if (addr & 0xF)
1210 goto out;
1211
1212 dst = &opp->dst[idx];
1213 addr &= 0xFF0;
1214 switch (addr) {
1215 case 0x80: /* CTPR */
1216 retval = dst->ctpr;
1217 break;
1218 case 0x90: /* WHOAMI */
1219 retval = idx;
1220 break;
1221 case 0xA0: /* IACK */
1222 retval = openpic_iack(opp, dst, idx);
1223 break;
1224 case 0xB0: /* EOI */
1225 retval = 0;
1226 break;
1227 default:
1228 break;
1229 }
1230 pr_debug("%s: => 0x%08x\n", __func__, retval);
1231
1232 out:
1233 *ptr = retval;
1234 return 0;
1235 }
1236
1237 static int openpic_cpu_read(void *opaque, gpa_t addr, u32 *ptr)
1238 {
1239 struct openpic *opp = opaque;
1240
1241 return openpic_cpu_read_internal(opp, addr, ptr,
1242 (addr & 0x1f000) >> 12);
1243 }
1244
1245 struct mem_reg {
1246 int (*read)(void *opaque, gpa_t addr, u32 *ptr);
1247 int (*write)(void *opaque, gpa_t addr, u32 val);
1248 gpa_t start_addr;
1249 int size;
1250 };
1251
1252 static const struct mem_reg openpic_gbl_mmio = {
1253 .write = openpic_gbl_write,
1254 .read = openpic_gbl_read,
1255 .start_addr = OPENPIC_GLB_REG_START,
1256 .size = OPENPIC_GLB_REG_SIZE,
1257 };
1258
1259 static const struct mem_reg openpic_tmr_mmio = {
1260 .write = openpic_tmr_write,
1261 .read = openpic_tmr_read,
1262 .start_addr = OPENPIC_TMR_REG_START,
1263 .size = OPENPIC_TMR_REG_SIZE,
1264 };
1265
1266 static const struct mem_reg openpic_cpu_mmio = {
1267 .write = openpic_cpu_write,
1268 .read = openpic_cpu_read,
1269 .start_addr = OPENPIC_CPU_REG_START,
1270 .size = OPENPIC_CPU_REG_SIZE,
1271 };
1272
1273 static const struct mem_reg openpic_src_mmio = {
1274 .write = openpic_src_write,
1275 .read = openpic_src_read,
1276 .start_addr = OPENPIC_SRC_REG_START,
1277 .size = OPENPIC_SRC_REG_SIZE,
1278 };
1279
1280 static const struct mem_reg openpic_msi_mmio = {
1281 .read = openpic_msi_read,
1282 .write = openpic_msi_write,
1283 .start_addr = OPENPIC_MSI_REG_START,
1284 .size = OPENPIC_MSI_REG_SIZE,
1285 };
1286
1287 static const struct mem_reg openpic_summary_mmio = {
1288 .read = openpic_summary_read,
1289 .write = openpic_summary_write,
1290 .start_addr = OPENPIC_SUMMARY_REG_START,
1291 .size = OPENPIC_SUMMARY_REG_SIZE,
1292 };
1293
1294 static void add_mmio_region(struct openpic *opp, const struct mem_reg *mr)
1295 {
1296 if (opp->num_mmio_regions >= MAX_MMIO_REGIONS) {
1297 WARN(1, "kvm mpic: too many mmio regions\n");
1298 return;
1299 }
1300
1301 opp->mmio_regions[opp->num_mmio_regions++] = mr;
1302 }
1303
1304 static void fsl_common_init(struct openpic *opp)
1305 {
1306 int i;
1307 int virq = MAX_SRC;
1308
1309 add_mmio_region(opp, &openpic_msi_mmio);
1310 add_mmio_region(opp, &openpic_summary_mmio);
1311
1312 opp->vid = VID_REVISION_1_2;
1313 opp->vir = VIR_GENERIC;
1314 opp->vector_mask = 0xFFFF;
1315 opp->tfrr_reset = 0;
1316 opp->ivpr_reset = IVPR_MASK_MASK;
1317 opp->idr_reset = 1 << 0;
1318 opp->max_irq = MAX_IRQ;
1319
1320 opp->irq_ipi0 = virq;
1321 virq += MAX_IPI;
1322 opp->irq_tim0 = virq;
1323 virq += MAX_TMR;
1324
1325 BUG_ON(virq > MAX_IRQ);
1326
1327 opp->irq_msi = 224;
1328
1329 for (i = 0; i < opp->fsl->max_ext; i++)
1330 opp->src[i].level = false;
1331
1332 /* Internal interrupts, including message and MSI */
1333 for (i = 16; i < MAX_SRC; i++) {
1334 opp->src[i].type = IRQ_TYPE_FSLINT;
1335 opp->src[i].level = true;
1336 }
1337
1338 /* timers and IPIs */
1339 for (i = MAX_SRC; i < virq; i++) {
1340 opp->src[i].type = IRQ_TYPE_FSLSPECIAL;
1341 opp->src[i].level = false;
1342 }
1343 }
1344
1345 static int kvm_mpic_read_internal(struct openpic *opp, gpa_t addr, u32 *ptr)
1346 {
1347 int i;
1348
1349 for (i = 0; i < opp->num_mmio_regions; i++) {
1350 const struct mem_reg *mr = opp->mmio_regions[i];
1351
1352 if (mr->start_addr > addr || addr >= mr->start_addr + mr->size)
1353 continue;
1354
1355 return mr->read(opp, addr - mr->start_addr, ptr);
1356 }
1357
1358 return -ENXIO;
1359 }
1360
1361 static int kvm_mpic_write_internal(struct openpic *opp, gpa_t addr, u32 val)
1362 {
1363 int i;
1364
1365 for (i = 0; i < opp->num_mmio_regions; i++) {
1366 const struct mem_reg *mr = opp->mmio_regions[i];
1367
1368 if (mr->start_addr > addr || addr >= mr->start_addr + mr->size)
1369 continue;
1370
1371 return mr->write(opp, addr - mr->start_addr, val);
1372 }
1373
1374 return -ENXIO;
1375 }
1376
1377 static int kvm_mpic_read(struct kvm_io_device *this, gpa_t addr,
1378 int len, void *ptr)
1379 {
1380 struct openpic *opp = container_of(this, struct openpic, mmio);
1381 int ret;
1382 union {
1383 u32 val;
1384 u8 bytes[4];
1385 } u;
1386
1387 if (addr & (len - 1)) {
1388 pr_debug("%s: bad alignment %llx/%d\n",
1389 __func__, addr, len);
1390 return -EINVAL;
1391 }
1392
1393 spin_lock_irq(&opp->lock);
1394 ret = kvm_mpic_read_internal(opp, addr - opp->reg_base, &u.val);
1395 spin_unlock_irq(&opp->lock);
1396
1397 /*
1398 * Technically only 32-bit accesses are allowed, but be nice to
1399 * people dumping registers a byte at a time -- it works in real
1400 * hardware (reads only, not writes).
1401 */
1402 if (len == 4) {
1403 *(u32 *)ptr = u.val;
1404 pr_debug("%s: addr %llx ret %d len 4 val %x\n",
1405 __func__, addr, ret, u.val);
1406 } else if (len == 1) {
1407 *(u8 *)ptr = u.bytes[addr & 3];
1408 pr_debug("%s: addr %llx ret %d len 1 val %x\n",
1409 __func__, addr, ret, u.bytes[addr & 3]);
1410 } else {
1411 pr_debug("%s: bad length %d\n", __func__, len);
1412 return -EINVAL;
1413 }
1414
1415 return ret;
1416 }
1417
1418 static int kvm_mpic_write(struct kvm_io_device *this, gpa_t addr,
1419 int len, const void *ptr)
1420 {
1421 struct openpic *opp = container_of(this, struct openpic, mmio);
1422 int ret;
1423
1424 if (len != 4) {
1425 pr_debug("%s: bad length %d\n", __func__, len);
1426 return -EOPNOTSUPP;
1427 }
1428 if (addr & 3) {
1429 pr_debug("%s: bad alignment %llx/%d\n", __func__, addr, len);
1430 return -EOPNOTSUPP;
1431 }
1432
1433 spin_lock_irq(&opp->lock);
1434 ret = kvm_mpic_write_internal(opp, addr - opp->reg_base,
1435 *(const u32 *)ptr);
1436 spin_unlock_irq(&opp->lock);
1437
1438 pr_debug("%s: addr %llx ret %d val %x\n",
1439 __func__, addr, ret, *(const u32 *)ptr);
1440
1441 return ret;
1442 }
1443
1444 static const struct kvm_io_device_ops mpic_mmio_ops = {
1445 .read = kvm_mpic_read,
1446 .write = kvm_mpic_write,
1447 };
1448
1449 static void map_mmio(struct openpic *opp)
1450 {
1451 kvm_iodevice_init(&opp->mmio, &mpic_mmio_ops);
1452
1453 kvm_io_bus_register_dev(opp->kvm, KVM_MMIO_BUS,
1454 opp->reg_base, OPENPIC_REG_SIZE,
1455 &opp->mmio);
1456 }
1457
1458 static void unmap_mmio(struct openpic *opp)
1459 {
1460 kvm_io_bus_unregister_dev(opp->kvm, KVM_MMIO_BUS, &opp->mmio);
1461 }
1462
1463 static int set_base_addr(struct openpic *opp, struct kvm_device_attr *attr)
1464 {
1465 u64 base;
1466
1467 if (copy_from_user(&base, (u64 __user *)(long)attr->addr, sizeof(u64)))
1468 return -EFAULT;
1469
1470 if (base & 0x3ffff) {
1471 pr_debug("kvm mpic %s: KVM_DEV_MPIC_BASE_ADDR %08llx not aligned\n",
1472 __func__, base);
1473 return -EINVAL;
1474 }
1475
1476 if (base == opp->reg_base)
1477 return 0;
1478
1479 mutex_lock(&opp->kvm->slots_lock);
1480
1481 unmap_mmio(opp);
1482 opp->reg_base = base;
1483
1484 pr_debug("kvm mpic %s: KVM_DEV_MPIC_BASE_ADDR %08llx\n",
1485 __func__, base);
1486
1487 if (base == 0)
1488 goto out;
1489
1490 map_mmio(opp);
1491
1492 out:
1493 mutex_unlock(&opp->kvm->slots_lock);
1494 return 0;
1495 }
1496
1497 #define ATTR_SET 0
1498 #define ATTR_GET 1
1499
1500 static int access_reg(struct openpic *opp, gpa_t addr, u32 *val, int type)
1501 {
1502 int ret;
1503
1504 if (addr & 3)
1505 return -ENXIO;
1506
1507 spin_lock_irq(&opp->lock);
1508
1509 if (type == ATTR_SET)
1510 ret = kvm_mpic_write_internal(opp, addr, *val);
1511 else
1512 ret = kvm_mpic_read_internal(opp, addr, val);
1513
1514 spin_unlock_irq(&opp->lock);
1515
1516 pr_debug("%s: type %d addr %llx val %x\n", __func__, type, addr, *val);
1517
1518 return ret;
1519 }
1520
1521 static int mpic_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1522 {
1523 struct openpic *opp = dev->private;
1524 u32 attr32;
1525
1526 switch (attr->group) {
1527 case KVM_DEV_MPIC_GRP_MISC:
1528 switch (attr->attr) {
1529 case KVM_DEV_MPIC_BASE_ADDR:
1530 return set_base_addr(opp, attr);
1531 }
1532
1533 break;
1534
1535 case KVM_DEV_MPIC_GRP_REGISTER:
1536 if (get_user(attr32, (u32 __user *)(long)attr->addr))
1537 return -EFAULT;
1538
1539 return access_reg(opp, attr->attr, &attr32, ATTR_SET);
1540
1541 case KVM_DEV_MPIC_GRP_IRQ_ACTIVE:
1542 if (attr->attr > MAX_SRC)
1543 return -EINVAL;
1544
1545 if (get_user(attr32, (u32 __user *)(long)attr->addr))
1546 return -EFAULT;
1547
1548 if (attr32 != 0 && attr32 != 1)
1549 return -EINVAL;
1550
1551 spin_lock_irq(&opp->lock);
1552 openpic_set_irq(opp, attr->attr, attr32);
1553 spin_unlock_irq(&opp->lock);
1554 return 0;
1555 }
1556
1557 return -ENXIO;
1558 }
1559
1560 static int mpic_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1561 {
1562 struct openpic *opp = dev->private;
1563 u64 attr64;
1564 u32 attr32;
1565 int ret;
1566
1567 switch (attr->group) {
1568 case KVM_DEV_MPIC_GRP_MISC:
1569 switch (attr->attr) {
1570 case KVM_DEV_MPIC_BASE_ADDR:
1571 mutex_lock(&opp->kvm->slots_lock);
1572 attr64 = opp->reg_base;
1573 mutex_unlock(&opp->kvm->slots_lock);
1574
1575 if (copy_to_user((u64 __user *)(long)attr->addr,
1576 &attr64, sizeof(u64)))
1577 return -EFAULT;
1578
1579 return 0;
1580 }
1581
1582 break;
1583
1584 case KVM_DEV_MPIC_GRP_REGISTER:
1585 ret = access_reg(opp, attr->attr, &attr32, ATTR_GET);
1586 if (ret)
1587 return ret;
1588
1589 if (put_user(attr32, (u32 __user *)(long)attr->addr))
1590 return -EFAULT;
1591
1592 return 0;
1593
1594 case KVM_DEV_MPIC_GRP_IRQ_ACTIVE:
1595 if (attr->attr > MAX_SRC)
1596 return -EINVAL;
1597
1598 spin_lock_irq(&opp->lock);
1599 attr32 = opp->src[attr->attr].pending;
1600 spin_unlock_irq(&opp->lock);
1601
1602 if (put_user(attr32, (u32 __user *)(long)attr->addr))
1603 return -EFAULT;
1604
1605 return 0;
1606 }
1607
1608 return -ENXIO;
1609 }
1610
1611 static int mpic_has_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1612 {
1613 switch (attr->group) {
1614 case KVM_DEV_MPIC_GRP_MISC:
1615 switch (attr->attr) {
1616 case KVM_DEV_MPIC_BASE_ADDR:
1617 return 0;
1618 }
1619
1620 break;
1621
1622 case KVM_DEV_MPIC_GRP_REGISTER:
1623 return 0;
1624
1625 case KVM_DEV_MPIC_GRP_IRQ_ACTIVE:
1626 if (attr->attr > MAX_SRC)
1627 break;
1628
1629 return 0;
1630 }
1631
1632 return -ENXIO;
1633 }
1634
1635 static void mpic_destroy(struct kvm_device *dev)
1636 {
1637 struct openpic *opp = dev->private;
1638
1639 dev->kvm->arch.mpic = NULL;
1640 kfree(opp);
1641 kfree(dev);
1642 }
1643
1644 static int mpic_set_default_irq_routing(struct openpic *opp)
1645 {
1646 struct kvm_irq_routing_entry *routing;
1647
1648 /* Create a nop default map, so that dereferencing it still works */
1649 routing = kzalloc((sizeof(*routing)), GFP_KERNEL);
1650 if (!routing)
1651 return -ENOMEM;
1652
1653 kvm_set_irq_routing(opp->kvm, routing, 0, 0);
1654
1655 kfree(routing);
1656 return 0;
1657 }
1658
1659 static int mpic_create(struct kvm_device *dev, u32 type)
1660 {
1661 struct openpic *opp;
1662 int ret;
1663
1664 /* We only support one MPIC at a time for now */
1665 if (dev->kvm->arch.mpic)
1666 return -EINVAL;
1667
1668 opp = kzalloc(sizeof(struct openpic), GFP_KERNEL);
1669 if (!opp)
1670 return -ENOMEM;
1671
1672 dev->private = opp;
1673 opp->kvm = dev->kvm;
1674 opp->dev = dev;
1675 opp->model = type;
1676 spin_lock_init(&opp->lock);
1677
1678 add_mmio_region(opp, &openpic_gbl_mmio);
1679 add_mmio_region(opp, &openpic_tmr_mmio);
1680 add_mmio_region(opp, &openpic_src_mmio);
1681 add_mmio_region(opp, &openpic_cpu_mmio);
1682
1683 switch (opp->model) {
1684 case KVM_DEV_TYPE_FSL_MPIC_20:
1685 opp->fsl = &fsl_mpic_20;
1686 opp->brr1 = 0x00400200;
1687 opp->flags |= OPENPIC_FLAG_IDR_CRIT;
1688 opp->nb_irqs = 80;
1689 opp->mpic_mode_mask = GCR_MODE_MIXED;
1690
1691 fsl_common_init(opp);
1692
1693 break;
1694
1695 case KVM_DEV_TYPE_FSL_MPIC_42:
1696 opp->fsl = &fsl_mpic_42;
1697 opp->brr1 = 0x00400402;
1698 opp->flags |= OPENPIC_FLAG_ILR;
1699 opp->nb_irqs = 196;
1700 opp->mpic_mode_mask = GCR_MODE_PROXY;
1701
1702 fsl_common_init(opp);
1703
1704 break;
1705
1706 default:
1707 ret = -ENODEV;
1708 goto err;
1709 }
1710
1711 ret = mpic_set_default_irq_routing(opp);
1712 if (ret)
1713 goto err;
1714
1715 openpic_reset(opp);
1716
1717 smp_wmb();
1718 dev->kvm->arch.mpic = opp;
1719
1720 return 0;
1721
1722 err:
1723 kfree(opp);
1724 return ret;
1725 }
1726
1727 struct kvm_device_ops kvm_mpic_ops = {
1728 .name = "kvm-mpic",
1729 .create = mpic_create,
1730 .destroy = mpic_destroy,
1731 .set_attr = mpic_set_attr,
1732 .get_attr = mpic_get_attr,
1733 .has_attr = mpic_has_attr,
1734 };
1735
1736 int kvmppc_mpic_connect_vcpu(struct kvm_device *dev, struct kvm_vcpu *vcpu,
1737 u32 cpu)
1738 {
1739 struct openpic *opp = dev->private;
1740 int ret = 0;
1741
1742 if (dev->ops != &kvm_mpic_ops)
1743 return -EPERM;
1744 if (opp->kvm != vcpu->kvm)
1745 return -EPERM;
1746 if (cpu < 0 || cpu >= MAX_CPU)
1747 return -EPERM;
1748
1749 spin_lock_irq(&opp->lock);
1750
1751 if (opp->dst[cpu].vcpu) {
1752 ret = -EEXIST;
1753 goto out;
1754 }
1755 if (vcpu->arch.irq_type) {
1756 ret = -EBUSY;
1757 goto out;
1758 }
1759
1760 opp->dst[cpu].vcpu = vcpu;
1761 opp->nb_cpus = max(opp->nb_cpus, cpu + 1);
1762
1763 vcpu->arch.mpic = opp;
1764 vcpu->arch.irq_cpu_id = cpu;
1765 vcpu->arch.irq_type = KVMPPC_IRQ_MPIC;
1766
1767 /* This might need to be changed if GCR gets extended */
1768 if (opp->mpic_mode_mask == GCR_MODE_PROXY)
1769 vcpu->arch.epr_flags |= KVMPPC_EPR_KERNEL;
1770
1771 out:
1772 spin_unlock_irq(&opp->lock);
1773 return ret;
1774 }
1775
1776 /*
1777 * This should only happen immediately before the mpic is destroyed,
1778 * so we shouldn't need to worry about anything still trying to
1779 * access the vcpu pointer.
1780 */
1781 void kvmppc_mpic_disconnect_vcpu(struct openpic *opp, struct kvm_vcpu *vcpu)
1782 {
1783 BUG_ON(!opp->dst[vcpu->arch.irq_cpu_id].vcpu);
1784
1785 opp->dst[vcpu->arch.irq_cpu_id].vcpu = NULL;
1786 }
1787
1788 /*
1789 * Return value:
1790 * < 0 Interrupt was ignored (masked or not delivered for other reasons)
1791 * = 0 Interrupt was coalesced (previous irq is still pending)
1792 * > 0 Number of CPUs interrupt was delivered to
1793 */
1794 static int mpic_set_irq(struct kvm_kernel_irq_routing_entry *e,
1795 struct kvm *kvm, int irq_source_id, int level,
1796 bool line_status)
1797 {
1798 u32 irq = e->irqchip.pin;
1799 struct openpic *opp = kvm->arch.mpic;
1800 unsigned long flags;
1801
1802 spin_lock_irqsave(&opp->lock, flags);
1803 openpic_set_irq(opp, irq, level);
1804 spin_unlock_irqrestore(&opp->lock, flags);
1805
1806 /* All code paths we care about don't check for the return value */
1807 return 0;
1808 }
1809
1810 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *e,
1811 struct kvm *kvm, int irq_source_id, int level, bool line_status)
1812 {
1813 struct openpic *opp = kvm->arch.mpic;
1814 unsigned long flags;
1815
1816 spin_lock_irqsave(&opp->lock, flags);
1817
1818 /*
1819 * XXX We ignore the target address for now, as we only support
1820 * a single MSI bank.
1821 */
1822 openpic_msi_write(kvm->arch.mpic, MSIIR_OFFSET, e->msi.data);
1823 spin_unlock_irqrestore(&opp->lock, flags);
1824
1825 /* All code paths we care about don't check for the return value */
1826 return 0;
1827 }
1828
1829 int kvm_set_routing_entry(struct kvm_kernel_irq_routing_entry *e,
1830 const struct kvm_irq_routing_entry *ue)
1831 {
1832 int r = -EINVAL;
1833
1834 switch (ue->type) {
1835 case KVM_IRQ_ROUTING_IRQCHIP:
1836 e->set = mpic_set_irq;
1837 e->irqchip.irqchip = ue->u.irqchip.irqchip;
1838 e->irqchip.pin = ue->u.irqchip.pin;
1839 if (e->irqchip.pin >= KVM_IRQCHIP_NUM_PINS)
1840 goto out;
1841 break;
1842 case KVM_IRQ_ROUTING_MSI:
1843 e->set = kvm_set_msi;
1844 e->msi.address_lo = ue->u.msi.address_lo;
1845 e->msi.address_hi = ue->u.msi.address_hi;
1846 e->msi.data = ue->u.msi.data;
1847 break;
1848 default:
1849 goto out;
1850 }
1851
1852 r = 0;
1853 out:
1854 return r;
1855 }
This page took 0.068948 seconds and 5 git commands to generate.