powerpc/8xx: Invalidate non present TLBs
[deliverable/linux.git] / arch / powerpc / mm / fault.c
1 /*
2 * PowerPC version
3 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
4 *
5 * Derived from "arch/i386/mm/fault.c"
6 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
7 *
8 * Modified by Cort Dougan and Paul Mackerras.
9 *
10 * Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation; either version
15 * 2 of the License, or (at your option) any later version.
16 */
17
18 #include <linux/signal.h>
19 #include <linux/sched.h>
20 #include <linux/kernel.h>
21 #include <linux/errno.h>
22 #include <linux/string.h>
23 #include <linux/types.h>
24 #include <linux/ptrace.h>
25 #include <linux/mman.h>
26 #include <linux/mm.h>
27 #include <linux/interrupt.h>
28 #include <linux/highmem.h>
29 #include <linux/module.h>
30 #include <linux/kprobes.h>
31 #include <linux/kdebug.h>
32 #include <linux/perf_event.h>
33
34 #include <asm/firmware.h>
35 #include <asm/page.h>
36 #include <asm/pgtable.h>
37 #include <asm/mmu.h>
38 #include <asm/mmu_context.h>
39 #include <asm/system.h>
40 #include <asm/uaccess.h>
41 #include <asm/tlbflush.h>
42 #include <asm/siginfo.h>
43 #include <mm/mmu_decl.h>
44
45 #ifdef CONFIG_KPROBES
46 static inline int notify_page_fault(struct pt_regs *regs)
47 {
48 int ret = 0;
49
50 /* kprobe_running() needs smp_processor_id() */
51 if (!user_mode(regs)) {
52 preempt_disable();
53 if (kprobe_running() && kprobe_fault_handler(regs, 11))
54 ret = 1;
55 preempt_enable();
56 }
57
58 return ret;
59 }
60 #else
61 static inline int notify_page_fault(struct pt_regs *regs)
62 {
63 return 0;
64 }
65 #endif
66
67 /*
68 * Check whether the instruction at regs->nip is a store using
69 * an update addressing form which will update r1.
70 */
71 static int store_updates_sp(struct pt_regs *regs)
72 {
73 unsigned int inst;
74
75 if (get_user(inst, (unsigned int __user *)regs->nip))
76 return 0;
77 /* check for 1 in the rA field */
78 if (((inst >> 16) & 0x1f) != 1)
79 return 0;
80 /* check major opcode */
81 switch (inst >> 26) {
82 case 37: /* stwu */
83 case 39: /* stbu */
84 case 45: /* sthu */
85 case 53: /* stfsu */
86 case 55: /* stfdu */
87 return 1;
88 case 62: /* std or stdu */
89 return (inst & 3) == 1;
90 case 31:
91 /* check minor opcode */
92 switch ((inst >> 1) & 0x3ff) {
93 case 181: /* stdux */
94 case 183: /* stwux */
95 case 247: /* stbux */
96 case 439: /* sthux */
97 case 695: /* stfsux */
98 case 759: /* stfdux */
99 return 1;
100 }
101 }
102 return 0;
103 }
104
105 /*
106 * For 600- and 800-family processors, the error_code parameter is DSISR
107 * for a data fault, SRR1 for an instruction fault. For 400-family processors
108 * the error_code parameter is ESR for a data fault, 0 for an instruction
109 * fault.
110 * For 64-bit processors, the error_code parameter is
111 * - DSISR for a non-SLB data access fault,
112 * - SRR1 & 0x08000000 for a non-SLB instruction access fault
113 * - 0 any SLB fault.
114 *
115 * The return value is 0 if the fault was handled, or the signal
116 * number if this is a kernel fault that can't be handled here.
117 */
118 int __kprobes do_page_fault(struct pt_regs *regs, unsigned long address,
119 unsigned long error_code)
120 {
121 struct vm_area_struct * vma;
122 struct mm_struct *mm = current->mm;
123 siginfo_t info;
124 int code = SEGV_MAPERR;
125 int is_write = 0, ret;
126 int trap = TRAP(regs);
127 int is_exec = trap == 0x400;
128
129 #if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
130 /*
131 * Fortunately the bit assignments in SRR1 for an instruction
132 * fault and DSISR for a data fault are mostly the same for the
133 * bits we are interested in. But there are some bits which
134 * indicate errors in DSISR but can validly be set in SRR1.
135 */
136 if (trap == 0x400)
137 error_code &= 0x48200000;
138 else
139 is_write = error_code & DSISR_ISSTORE;
140 #else
141 is_write = error_code & ESR_DST;
142 #endif /* CONFIG_4xx || CONFIG_BOOKE */
143
144 if (notify_page_fault(regs))
145 return 0;
146
147 if (unlikely(debugger_fault_handler(regs)))
148 return 0;
149
150 /* On a kernel SLB miss we can only check for a valid exception entry */
151 if (!user_mode(regs) && (address >= TASK_SIZE))
152 return SIGSEGV;
153
154 #if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
155 if (error_code & DSISR_DABRMATCH) {
156 /* DABR match */
157 do_dabr(regs, address, error_code);
158 return 0;
159 }
160 #endif /* !(CONFIG_4xx || CONFIG_BOOKE)*/
161
162 if (in_atomic() || mm == NULL) {
163 if (!user_mode(regs))
164 return SIGSEGV;
165 /* in_atomic() in user mode is really bad,
166 as is current->mm == NULL. */
167 printk(KERN_EMERG "Page fault in user mode with "
168 "in_atomic() = %d mm = %p\n", in_atomic(), mm);
169 printk(KERN_EMERG "NIP = %lx MSR = %lx\n",
170 regs->nip, regs->msr);
171 die("Weird page fault", regs, SIGSEGV);
172 }
173
174 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, 0, regs, address);
175
176 /* When running in the kernel we expect faults to occur only to
177 * addresses in user space. All other faults represent errors in the
178 * kernel and should generate an OOPS. Unfortunately, in the case of an
179 * erroneous fault occurring in a code path which already holds mmap_sem
180 * we will deadlock attempting to validate the fault against the
181 * address space. Luckily the kernel only validly references user
182 * space from well defined areas of code, which are listed in the
183 * exceptions table.
184 *
185 * As the vast majority of faults will be valid we will only perform
186 * the source reference check when there is a possibility of a deadlock.
187 * Attempt to lock the address space, if we cannot we then validate the
188 * source. If this is invalid we can skip the address space check,
189 * thus avoiding the deadlock.
190 */
191 if (!down_read_trylock(&mm->mmap_sem)) {
192 if (!user_mode(regs) && !search_exception_tables(regs->nip))
193 goto bad_area_nosemaphore;
194
195 down_read(&mm->mmap_sem);
196 }
197
198 vma = find_vma(mm, address);
199 if (!vma)
200 goto bad_area;
201 if (vma->vm_start <= address)
202 goto good_area;
203 if (!(vma->vm_flags & VM_GROWSDOWN))
204 goto bad_area;
205
206 /*
207 * N.B. The POWER/Open ABI allows programs to access up to
208 * 288 bytes below the stack pointer.
209 * The kernel signal delivery code writes up to about 1.5kB
210 * below the stack pointer (r1) before decrementing it.
211 * The exec code can write slightly over 640kB to the stack
212 * before setting the user r1. Thus we allow the stack to
213 * expand to 1MB without further checks.
214 */
215 if (address + 0x100000 < vma->vm_end) {
216 /* get user regs even if this fault is in kernel mode */
217 struct pt_regs *uregs = current->thread.regs;
218 if (uregs == NULL)
219 goto bad_area;
220
221 /*
222 * A user-mode access to an address a long way below
223 * the stack pointer is only valid if the instruction
224 * is one which would update the stack pointer to the
225 * address accessed if the instruction completed,
226 * i.e. either stwu rs,n(r1) or stwux rs,r1,rb
227 * (or the byte, halfword, float or double forms).
228 *
229 * If we don't check this then any write to the area
230 * between the last mapped region and the stack will
231 * expand the stack rather than segfaulting.
232 */
233 if (address + 2048 < uregs->gpr[1]
234 && (!user_mode(regs) || !store_updates_sp(regs)))
235 goto bad_area;
236 }
237 if (expand_stack(vma, address))
238 goto bad_area;
239
240 good_area:
241 code = SEGV_ACCERR;
242 #if defined(CONFIG_6xx)
243 if (error_code & 0x95700000)
244 /* an error such as lwarx to I/O controller space,
245 address matching DABR, eciwx, etc. */
246 goto bad_area;
247 #endif /* CONFIG_6xx */
248 #if defined(CONFIG_8xx)
249 /* 8xx sometimes need to load a invalid/non-present TLBs.
250 * These must be invalidated separately as linux mm don't.
251 */
252 if (error_code & 0x40000000) /* no translation? */
253 _tlbil_va(address, 0, 0, 0);
254
255 /* The MPC8xx seems to always set 0x80000000, which is
256 * "undefined". Of those that can be set, this is the only
257 * one which seems bad.
258 */
259 if (error_code & 0x10000000)
260 /* Guarded storage error. */
261 goto bad_area;
262 #endif /* CONFIG_8xx */
263
264 if (is_exec) {
265 #ifdef CONFIG_PPC_STD_MMU
266 /* Protection fault on exec go straight to failure on
267 * Hash based MMUs as they either don't support per-page
268 * execute permission, or if they do, it's handled already
269 * at the hash level. This test would probably have to
270 * be removed if we change the way this works to make hash
271 * processors use the same I/D cache coherency mechanism
272 * as embedded.
273 */
274 if (error_code & DSISR_PROTFAULT)
275 goto bad_area;
276 #endif /* CONFIG_PPC_STD_MMU */
277
278 /*
279 * Allow execution from readable areas if the MMU does not
280 * provide separate controls over reading and executing.
281 *
282 * Note: That code used to not be enabled for 4xx/BookE.
283 * It is now as I/D cache coherency for these is done at
284 * set_pte_at() time and I see no reason why the test
285 * below wouldn't be valid on those processors. This -may-
286 * break programs compiled with a really old ABI though.
287 */
288 if (!(vma->vm_flags & VM_EXEC) &&
289 (cpu_has_feature(CPU_FTR_NOEXECUTE) ||
290 !(vma->vm_flags & (VM_READ | VM_WRITE))))
291 goto bad_area;
292 /* a write */
293 } else if (is_write) {
294 if (!(vma->vm_flags & VM_WRITE))
295 goto bad_area;
296 /* a read */
297 } else {
298 /* protection fault */
299 if (error_code & 0x08000000)
300 goto bad_area;
301 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
302 goto bad_area;
303 }
304
305 /*
306 * If for any reason at all we couldn't handle the fault,
307 * make sure we exit gracefully rather than endlessly redo
308 * the fault.
309 */
310 survive:
311 ret = handle_mm_fault(mm, vma, address, is_write ? FAULT_FLAG_WRITE : 0);
312 if (unlikely(ret & VM_FAULT_ERROR)) {
313 if (ret & VM_FAULT_OOM)
314 goto out_of_memory;
315 else if (ret & VM_FAULT_SIGBUS)
316 goto do_sigbus;
317 BUG();
318 }
319 if (ret & VM_FAULT_MAJOR) {
320 current->maj_flt++;
321 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, 0,
322 regs, address);
323 #ifdef CONFIG_PPC_SMLPAR
324 if (firmware_has_feature(FW_FEATURE_CMO)) {
325 preempt_disable();
326 get_lppaca()->page_ins += (1 << PAGE_FACTOR);
327 preempt_enable();
328 }
329 #endif
330 } else {
331 current->min_flt++;
332 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, 0,
333 regs, address);
334 }
335 up_read(&mm->mmap_sem);
336 return 0;
337
338 bad_area:
339 up_read(&mm->mmap_sem);
340
341 bad_area_nosemaphore:
342 /* User mode accesses cause a SIGSEGV */
343 if (user_mode(regs)) {
344 _exception(SIGSEGV, regs, code, address);
345 return 0;
346 }
347
348 if (is_exec && (error_code & DSISR_PROTFAULT)
349 && printk_ratelimit())
350 printk(KERN_CRIT "kernel tried to execute NX-protected"
351 " page (%lx) - exploit attempt? (uid: %d)\n",
352 address, current_uid());
353
354 return SIGSEGV;
355
356 /*
357 * We ran out of memory, or some other thing happened to us that made
358 * us unable to handle the page fault gracefully.
359 */
360 out_of_memory:
361 up_read(&mm->mmap_sem);
362 if (is_global_init(current)) {
363 yield();
364 down_read(&mm->mmap_sem);
365 goto survive;
366 }
367 printk("VM: killing process %s\n", current->comm);
368 if (user_mode(regs))
369 do_group_exit(SIGKILL);
370 return SIGKILL;
371
372 do_sigbus:
373 up_read(&mm->mmap_sem);
374 if (user_mode(regs)) {
375 info.si_signo = SIGBUS;
376 info.si_errno = 0;
377 info.si_code = BUS_ADRERR;
378 info.si_addr = (void __user *)address;
379 force_sig_info(SIGBUS, &info, current);
380 return 0;
381 }
382 return SIGBUS;
383 }
384
385 /*
386 * bad_page_fault is called when we have a bad access from the kernel.
387 * It is called from the DSI and ISI handlers in head.S and from some
388 * of the procedures in traps.c.
389 */
390 void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig)
391 {
392 const struct exception_table_entry *entry;
393
394 /* Are we prepared to handle this fault? */
395 if ((entry = search_exception_tables(regs->nip)) != NULL) {
396 regs->nip = entry->fixup;
397 return;
398 }
399
400 /* kernel has accessed a bad area */
401
402 switch (regs->trap) {
403 case 0x300:
404 case 0x380:
405 printk(KERN_ALERT "Unable to handle kernel paging request for "
406 "data at address 0x%08lx\n", regs->dar);
407 break;
408 case 0x400:
409 case 0x480:
410 printk(KERN_ALERT "Unable to handle kernel paging request for "
411 "instruction fetch\n");
412 break;
413 default:
414 printk(KERN_ALERT "Unable to handle kernel paging request for "
415 "unknown fault\n");
416 break;
417 }
418 printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n",
419 regs->nip);
420
421 die("Kernel access of bad area", regs, sig);
422 }
This page took 0.051151 seconds and 6 git commands to generate.