Merge git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[deliverable/linux.git] / arch / powerpc / mm / numa.c
1 /*
2 * pSeries NUMA support
3 *
4 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11 #include <linux/threads.h>
12 #include <linux/bootmem.h>
13 #include <linux/init.h>
14 #include <linux/mm.h>
15 #include <linux/mmzone.h>
16 #include <linux/module.h>
17 #include <linux/nodemask.h>
18 #include <linux/cpu.h>
19 #include <linux/notifier.h>
20 #include <asm/sparsemem.h>
21 #include <asm/lmb.h>
22 #include <asm/system.h>
23 #include <asm/smp.h>
24
25 static int numa_enabled = 1;
26
27 static int numa_debug;
28 #define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }
29
30 int numa_cpu_lookup_table[NR_CPUS];
31 cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
32 struct pglist_data *node_data[MAX_NUMNODES];
33
34 EXPORT_SYMBOL(numa_cpu_lookup_table);
35 EXPORT_SYMBOL(numa_cpumask_lookup_table);
36 EXPORT_SYMBOL(node_data);
37
38 static bootmem_data_t __initdata plat_node_bdata[MAX_NUMNODES];
39 static int min_common_depth;
40 static int n_mem_addr_cells, n_mem_size_cells;
41
42 static void __cpuinit map_cpu_to_node(int cpu, int node)
43 {
44 numa_cpu_lookup_table[cpu] = node;
45
46 dbg("adding cpu %d to node %d\n", cpu, node);
47
48 if (!(cpu_isset(cpu, numa_cpumask_lookup_table[node])))
49 cpu_set(cpu, numa_cpumask_lookup_table[node]);
50 }
51
52 #ifdef CONFIG_HOTPLUG_CPU
53 static void unmap_cpu_from_node(unsigned long cpu)
54 {
55 int node = numa_cpu_lookup_table[cpu];
56
57 dbg("removing cpu %lu from node %d\n", cpu, node);
58
59 if (cpu_isset(cpu, numa_cpumask_lookup_table[node])) {
60 cpu_clear(cpu, numa_cpumask_lookup_table[node]);
61 } else {
62 printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
63 cpu, node);
64 }
65 }
66 #endif /* CONFIG_HOTPLUG_CPU */
67
68 static struct device_node * __cpuinit find_cpu_node(unsigned int cpu)
69 {
70 unsigned int hw_cpuid = get_hard_smp_processor_id(cpu);
71 struct device_node *cpu_node = NULL;
72 const unsigned int *interrupt_server, *reg;
73 int len;
74
75 while ((cpu_node = of_find_node_by_type(cpu_node, "cpu")) != NULL) {
76 /* Try interrupt server first */
77 interrupt_server = get_property(cpu_node,
78 "ibm,ppc-interrupt-server#s", &len);
79
80 len = len / sizeof(u32);
81
82 if (interrupt_server && (len > 0)) {
83 while (len--) {
84 if (interrupt_server[len] == hw_cpuid)
85 return cpu_node;
86 }
87 } else {
88 reg = get_property(cpu_node, "reg", &len);
89 if (reg && (len > 0) && (reg[0] == hw_cpuid))
90 return cpu_node;
91 }
92 }
93
94 return NULL;
95 }
96
97 /* must hold reference to node during call */
98 static const int *of_get_associativity(struct device_node *dev)
99 {
100 return get_property(dev, "ibm,associativity", NULL);
101 }
102
103 /* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa
104 * info is found.
105 */
106 static int of_node_to_nid_single(struct device_node *device)
107 {
108 int nid = -1;
109 const unsigned int *tmp;
110
111 if (min_common_depth == -1)
112 goto out;
113
114 tmp = of_get_associativity(device);
115 if (!tmp)
116 goto out;
117
118 if (tmp[0] >= min_common_depth)
119 nid = tmp[min_common_depth];
120
121 /* POWER4 LPAR uses 0xffff as invalid node */
122 if (nid == 0xffff || nid >= MAX_NUMNODES)
123 nid = -1;
124 out:
125 return nid;
126 }
127
128 /* Walk the device tree upwards, looking for an associativity id */
129 int of_node_to_nid(struct device_node *device)
130 {
131 struct device_node *tmp;
132 int nid = -1;
133
134 of_node_get(device);
135 while (device) {
136 nid = of_node_to_nid_single(device);
137 if (nid != -1)
138 break;
139
140 tmp = device;
141 device = of_get_parent(tmp);
142 of_node_put(tmp);
143 }
144 of_node_put(device);
145
146 return nid;
147 }
148 EXPORT_SYMBOL_GPL(of_node_to_nid);
149
150 /*
151 * In theory, the "ibm,associativity" property may contain multiple
152 * associativity lists because a resource may be multiply connected
153 * into the machine. This resource then has different associativity
154 * characteristics relative to its multiple connections. We ignore
155 * this for now. We also assume that all cpu and memory sets have
156 * their distances represented at a common level. This won't be
157 * true for heirarchical NUMA.
158 *
159 * In any case the ibm,associativity-reference-points should give
160 * the correct depth for a normal NUMA system.
161 *
162 * - Dave Hansen <haveblue@us.ibm.com>
163 */
164 static int __init find_min_common_depth(void)
165 {
166 int depth;
167 const unsigned int *ref_points;
168 struct device_node *rtas_root;
169 unsigned int len;
170
171 rtas_root = of_find_node_by_path("/rtas");
172
173 if (!rtas_root)
174 return -1;
175
176 /*
177 * this property is 2 32-bit integers, each representing a level of
178 * depth in the associativity nodes. The first is for an SMP
179 * configuration (should be all 0's) and the second is for a normal
180 * NUMA configuration.
181 */
182 ref_points = get_property(rtas_root,
183 "ibm,associativity-reference-points", &len);
184
185 if ((len >= 1) && ref_points) {
186 depth = ref_points[1];
187 } else {
188 dbg("NUMA: ibm,associativity-reference-points not found.\n");
189 depth = -1;
190 }
191 of_node_put(rtas_root);
192
193 return depth;
194 }
195
196 static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
197 {
198 struct device_node *memory = NULL;
199
200 memory = of_find_node_by_type(memory, "memory");
201 if (!memory)
202 panic("numa.c: No memory nodes found!");
203
204 *n_addr_cells = prom_n_addr_cells(memory);
205 *n_size_cells = prom_n_size_cells(memory);
206 of_node_put(memory);
207 }
208
209 static unsigned long __devinit read_n_cells(int n, const unsigned int **buf)
210 {
211 unsigned long result = 0;
212
213 while (n--) {
214 result = (result << 32) | **buf;
215 (*buf)++;
216 }
217 return result;
218 }
219
220 /*
221 * Figure out to which domain a cpu belongs and stick it there.
222 * Return the id of the domain used.
223 */
224 static int __cpuinit numa_setup_cpu(unsigned long lcpu)
225 {
226 int nid = 0;
227 struct device_node *cpu = find_cpu_node(lcpu);
228
229 if (!cpu) {
230 WARN_ON(1);
231 goto out;
232 }
233
234 nid = of_node_to_nid_single(cpu);
235
236 if (nid < 0 || !node_online(nid))
237 nid = any_online_node(NODE_MASK_ALL);
238 out:
239 map_cpu_to_node(lcpu, nid);
240
241 of_node_put(cpu);
242
243 return nid;
244 }
245
246 static int __cpuinit cpu_numa_callback(struct notifier_block *nfb,
247 unsigned long action,
248 void *hcpu)
249 {
250 unsigned long lcpu = (unsigned long)hcpu;
251 int ret = NOTIFY_DONE;
252
253 switch (action) {
254 case CPU_UP_PREPARE:
255 numa_setup_cpu(lcpu);
256 ret = NOTIFY_OK;
257 break;
258 #ifdef CONFIG_HOTPLUG_CPU
259 case CPU_DEAD:
260 case CPU_UP_CANCELED:
261 unmap_cpu_from_node(lcpu);
262 break;
263 ret = NOTIFY_OK;
264 #endif
265 }
266 return ret;
267 }
268
269 /*
270 * Check and possibly modify a memory region to enforce the memory limit.
271 *
272 * Returns the size the region should have to enforce the memory limit.
273 * This will either be the original value of size, a truncated value,
274 * or zero. If the returned value of size is 0 the region should be
275 * discarded as it lies wholy above the memory limit.
276 */
277 static unsigned long __init numa_enforce_memory_limit(unsigned long start,
278 unsigned long size)
279 {
280 /*
281 * We use lmb_end_of_DRAM() in here instead of memory_limit because
282 * we've already adjusted it for the limit and it takes care of
283 * having memory holes below the limit.
284 */
285
286 if (! memory_limit)
287 return size;
288
289 if (start + size <= lmb_end_of_DRAM())
290 return size;
291
292 if (start >= lmb_end_of_DRAM())
293 return 0;
294
295 return lmb_end_of_DRAM() - start;
296 }
297
298 static int __init parse_numa_properties(void)
299 {
300 struct device_node *cpu = NULL;
301 struct device_node *memory = NULL;
302 int default_nid = 0;
303 unsigned long i;
304
305 if (numa_enabled == 0) {
306 printk(KERN_WARNING "NUMA disabled by user\n");
307 return -1;
308 }
309
310 min_common_depth = find_min_common_depth();
311
312 if (min_common_depth < 0)
313 return min_common_depth;
314
315 dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth);
316
317 /*
318 * Even though we connect cpus to numa domains later in SMP
319 * init, we need to know the node ids now. This is because
320 * each node to be onlined must have NODE_DATA etc backing it.
321 */
322 for_each_present_cpu(i) {
323 int nid;
324
325 cpu = find_cpu_node(i);
326 BUG_ON(!cpu);
327 nid = of_node_to_nid_single(cpu);
328 of_node_put(cpu);
329
330 /*
331 * Don't fall back to default_nid yet -- we will plug
332 * cpus into nodes once the memory scan has discovered
333 * the topology.
334 */
335 if (nid < 0)
336 continue;
337 node_set_online(nid);
338 }
339
340 get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
341 memory = NULL;
342 while ((memory = of_find_node_by_type(memory, "memory")) != NULL) {
343 unsigned long start;
344 unsigned long size;
345 int nid;
346 int ranges;
347 const unsigned int *memcell_buf;
348 unsigned int len;
349
350 memcell_buf = get_property(memory,
351 "linux,usable-memory", &len);
352 if (!memcell_buf || len <= 0)
353 memcell_buf = get_property(memory, "reg", &len);
354 if (!memcell_buf || len <= 0)
355 continue;
356
357 /* ranges in cell */
358 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
359 new_range:
360 /* these are order-sensitive, and modify the buffer pointer */
361 start = read_n_cells(n_mem_addr_cells, &memcell_buf);
362 size = read_n_cells(n_mem_size_cells, &memcell_buf);
363
364 /*
365 * Assumption: either all memory nodes or none will
366 * have associativity properties. If none, then
367 * everything goes to default_nid.
368 */
369 nid = of_node_to_nid_single(memory);
370 if (nid < 0)
371 nid = default_nid;
372 node_set_online(nid);
373
374 if (!(size = numa_enforce_memory_limit(start, size))) {
375 if (--ranges)
376 goto new_range;
377 else
378 continue;
379 }
380
381 add_active_range(nid, start >> PAGE_SHIFT,
382 (start >> PAGE_SHIFT) + (size >> PAGE_SHIFT));
383
384 if (--ranges)
385 goto new_range;
386 }
387
388 return 0;
389 }
390
391 static void __init setup_nonnuma(void)
392 {
393 unsigned long top_of_ram = lmb_end_of_DRAM();
394 unsigned long total_ram = lmb_phys_mem_size();
395 unsigned long start_pfn, end_pfn;
396 unsigned int i;
397
398 printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
399 top_of_ram, total_ram);
400 printk(KERN_DEBUG "Memory hole size: %ldMB\n",
401 (top_of_ram - total_ram) >> 20);
402
403 for (i = 0; i < lmb.memory.cnt; ++i) {
404 start_pfn = lmb.memory.region[i].base >> PAGE_SHIFT;
405 end_pfn = start_pfn + lmb_size_pages(&lmb.memory, i);
406 add_active_range(0, start_pfn, end_pfn);
407 }
408 node_set_online(0);
409 }
410
411 void __init dump_numa_cpu_topology(void)
412 {
413 unsigned int node;
414 unsigned int cpu, count;
415
416 if (min_common_depth == -1 || !numa_enabled)
417 return;
418
419 for_each_online_node(node) {
420 printk(KERN_DEBUG "Node %d CPUs:", node);
421
422 count = 0;
423 /*
424 * If we used a CPU iterator here we would miss printing
425 * the holes in the cpumap.
426 */
427 for (cpu = 0; cpu < NR_CPUS; cpu++) {
428 if (cpu_isset(cpu, numa_cpumask_lookup_table[node])) {
429 if (count == 0)
430 printk(" %u", cpu);
431 ++count;
432 } else {
433 if (count > 1)
434 printk("-%u", cpu - 1);
435 count = 0;
436 }
437 }
438
439 if (count > 1)
440 printk("-%u", NR_CPUS - 1);
441 printk("\n");
442 }
443 }
444
445 static void __init dump_numa_memory_topology(void)
446 {
447 unsigned int node;
448 unsigned int count;
449
450 if (min_common_depth == -1 || !numa_enabled)
451 return;
452
453 for_each_online_node(node) {
454 unsigned long i;
455
456 printk(KERN_DEBUG "Node %d Memory:", node);
457
458 count = 0;
459
460 for (i = 0; i < lmb_end_of_DRAM();
461 i += (1 << SECTION_SIZE_BITS)) {
462 if (early_pfn_to_nid(i >> PAGE_SHIFT) == node) {
463 if (count == 0)
464 printk(" 0x%lx", i);
465 ++count;
466 } else {
467 if (count > 0)
468 printk("-0x%lx", i);
469 count = 0;
470 }
471 }
472
473 if (count > 0)
474 printk("-0x%lx", i);
475 printk("\n");
476 }
477 }
478
479 /*
480 * Allocate some memory, satisfying the lmb or bootmem allocator where
481 * required. nid is the preferred node and end is the physical address of
482 * the highest address in the node.
483 *
484 * Returns the physical address of the memory.
485 */
486 static void __init *careful_allocation(int nid, unsigned long size,
487 unsigned long align,
488 unsigned long end_pfn)
489 {
490 int new_nid;
491 unsigned long ret = __lmb_alloc_base(size, align, end_pfn << PAGE_SHIFT);
492
493 /* retry over all memory */
494 if (!ret)
495 ret = __lmb_alloc_base(size, align, lmb_end_of_DRAM());
496
497 if (!ret)
498 panic("numa.c: cannot allocate %lu bytes on node %d",
499 size, nid);
500
501 /*
502 * If the memory came from a previously allocated node, we must
503 * retry with the bootmem allocator.
504 */
505 new_nid = early_pfn_to_nid(ret >> PAGE_SHIFT);
506 if (new_nid < nid) {
507 ret = (unsigned long)__alloc_bootmem_node(NODE_DATA(new_nid),
508 size, align, 0);
509
510 if (!ret)
511 panic("numa.c: cannot allocate %lu bytes on node %d",
512 size, new_nid);
513
514 ret = __pa(ret);
515
516 dbg("alloc_bootmem %lx %lx\n", ret, size);
517 }
518
519 return (void *)ret;
520 }
521
522 static struct notifier_block __cpuinitdata ppc64_numa_nb = {
523 .notifier_call = cpu_numa_callback,
524 .priority = 1 /* Must run before sched domains notifier. */
525 };
526
527 void __init do_init_bootmem(void)
528 {
529 int nid;
530 unsigned int i;
531
532 min_low_pfn = 0;
533 max_low_pfn = lmb_end_of_DRAM() >> PAGE_SHIFT;
534 max_pfn = max_low_pfn;
535
536 if (parse_numa_properties())
537 setup_nonnuma();
538 else
539 dump_numa_memory_topology();
540
541 register_cpu_notifier(&ppc64_numa_nb);
542 cpu_numa_callback(&ppc64_numa_nb, CPU_UP_PREPARE,
543 (void *)(unsigned long)boot_cpuid);
544
545 for_each_online_node(nid) {
546 unsigned long start_pfn, end_pfn;
547 unsigned long bootmem_paddr;
548 unsigned long bootmap_pages;
549
550 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
551
552 /* Allocate the node structure node local if possible */
553 NODE_DATA(nid) = careful_allocation(nid,
554 sizeof(struct pglist_data),
555 SMP_CACHE_BYTES, end_pfn);
556 NODE_DATA(nid) = __va(NODE_DATA(nid));
557 memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
558
559 dbg("node %d\n", nid);
560 dbg("NODE_DATA() = %p\n", NODE_DATA(nid));
561
562 NODE_DATA(nid)->bdata = &plat_node_bdata[nid];
563 NODE_DATA(nid)->node_start_pfn = start_pfn;
564 NODE_DATA(nid)->node_spanned_pages = end_pfn - start_pfn;
565
566 if (NODE_DATA(nid)->node_spanned_pages == 0)
567 continue;
568
569 dbg("start_paddr = %lx\n", start_pfn << PAGE_SHIFT);
570 dbg("end_paddr = %lx\n", end_pfn << PAGE_SHIFT);
571
572 bootmap_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
573 bootmem_paddr = (unsigned long)careful_allocation(nid,
574 bootmap_pages << PAGE_SHIFT,
575 PAGE_SIZE, end_pfn);
576 memset(__va(bootmem_paddr), 0, bootmap_pages << PAGE_SHIFT);
577
578 dbg("bootmap_paddr = %lx\n", bootmem_paddr);
579
580 init_bootmem_node(NODE_DATA(nid), bootmem_paddr >> PAGE_SHIFT,
581 start_pfn, end_pfn);
582
583 free_bootmem_with_active_regions(nid, end_pfn);
584
585 /* Mark reserved regions on this node */
586 for (i = 0; i < lmb.reserved.cnt; i++) {
587 unsigned long physbase = lmb.reserved.region[i].base;
588 unsigned long size = lmb.reserved.region[i].size;
589 unsigned long start_paddr = start_pfn << PAGE_SHIFT;
590 unsigned long end_paddr = end_pfn << PAGE_SHIFT;
591
592 if (early_pfn_to_nid(physbase >> PAGE_SHIFT) != nid &&
593 early_pfn_to_nid((physbase+size-1) >> PAGE_SHIFT) != nid)
594 continue;
595
596 if (physbase < end_paddr &&
597 (physbase+size) > start_paddr) {
598 /* overlaps */
599 if (physbase < start_paddr) {
600 size -= start_paddr - physbase;
601 physbase = start_paddr;
602 }
603
604 if (size > end_paddr - physbase)
605 size = end_paddr - physbase;
606
607 dbg("reserve_bootmem %lx %lx\n", physbase,
608 size);
609 reserve_bootmem_node(NODE_DATA(nid), physbase,
610 size);
611 }
612 }
613
614 sparse_memory_present_with_active_regions(nid);
615 }
616 }
617
618 void __init paging_init(void)
619 {
620 unsigned long max_zone_pfns[MAX_NR_ZONES];
621 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
622 max_zone_pfns[ZONE_DMA] = lmb_end_of_DRAM() >> PAGE_SHIFT;
623 free_area_init_nodes(max_zone_pfns);
624 }
625
626 static int __init early_numa(char *p)
627 {
628 if (!p)
629 return 0;
630
631 if (strstr(p, "off"))
632 numa_enabled = 0;
633
634 if (strstr(p, "debug"))
635 numa_debug = 1;
636
637 return 0;
638 }
639 early_param("numa", early_numa);
640
641 #ifdef CONFIG_MEMORY_HOTPLUG
642 /*
643 * Find the node associated with a hot added memory section. Section
644 * corresponds to a SPARSEMEM section, not an LMB. It is assumed that
645 * sections are fully contained within a single LMB.
646 */
647 int hot_add_scn_to_nid(unsigned long scn_addr)
648 {
649 struct device_node *memory = NULL;
650 nodemask_t nodes;
651 int default_nid = any_online_node(NODE_MASK_ALL);
652 int nid;
653
654 if (!numa_enabled || (min_common_depth < 0))
655 return default_nid;
656
657 while ((memory = of_find_node_by_type(memory, "memory")) != NULL) {
658 unsigned long start, size;
659 int ranges;
660 const unsigned int *memcell_buf;
661 unsigned int len;
662
663 memcell_buf = get_property(memory, "reg", &len);
664 if (!memcell_buf || len <= 0)
665 continue;
666
667 /* ranges in cell */
668 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
669 ha_new_range:
670 start = read_n_cells(n_mem_addr_cells, &memcell_buf);
671 size = read_n_cells(n_mem_size_cells, &memcell_buf);
672 nid = of_node_to_nid_single(memory);
673
674 /* Domains not present at boot default to 0 */
675 if (nid < 0 || !node_online(nid))
676 nid = default_nid;
677
678 if ((scn_addr >= start) && (scn_addr < (start + size))) {
679 of_node_put(memory);
680 goto got_nid;
681 }
682
683 if (--ranges) /* process all ranges in cell */
684 goto ha_new_range;
685 }
686 BUG(); /* section address should be found above */
687 return 0;
688
689 /* Temporary code to ensure that returned node is not empty */
690 got_nid:
691 nodes_setall(nodes);
692 while (NODE_DATA(nid)->node_spanned_pages == 0) {
693 node_clear(nid, nodes);
694 nid = any_online_node(nodes);
695 }
696 return nid;
697 }
698 #endif /* CONFIG_MEMORY_HOTPLUG */
This page took 0.074138 seconds and 6 git commands to generate.