Merge branch 'kvm-updates/2.6.37' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[deliverable/linux.git] / arch / powerpc / mm / tlb_nohash.c
1 /*
2 * This file contains the routines for TLB flushing.
3 * On machines where the MMU does not use a hash table to store virtual to
4 * physical translations (ie, SW loaded TLBs or Book3E compilant processors,
5 * this does -not- include 603 however which shares the implementation with
6 * hash based processors)
7 *
8 * -- BenH
9 *
10 * Copyright 2008,2009 Ben Herrenschmidt <benh@kernel.crashing.org>
11 * IBM Corp.
12 *
13 * Derived from arch/ppc/mm/init.c:
14 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
15 *
16 * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
17 * and Cort Dougan (PReP) (cort@cs.nmt.edu)
18 * Copyright (C) 1996 Paul Mackerras
19 *
20 * Derived from "arch/i386/mm/init.c"
21 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
22 *
23 * This program is free software; you can redistribute it and/or
24 * modify it under the terms of the GNU General Public License
25 * as published by the Free Software Foundation; either version
26 * 2 of the License, or (at your option) any later version.
27 *
28 */
29
30 #include <linux/kernel.h>
31 #include <linux/mm.h>
32 #include <linux/init.h>
33 #include <linux/highmem.h>
34 #include <linux/pagemap.h>
35 #include <linux/preempt.h>
36 #include <linux/spinlock.h>
37 #include <linux/memblock.h>
38
39 #include <asm/tlbflush.h>
40 #include <asm/tlb.h>
41 #include <asm/code-patching.h>
42
43 #include "mmu_decl.h"
44
45 #ifdef CONFIG_PPC_BOOK3E
46 struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT] = {
47 [MMU_PAGE_4K] = {
48 .shift = 12,
49 .ind = 20,
50 .enc = BOOK3E_PAGESZ_4K,
51 },
52 [MMU_PAGE_16K] = {
53 .shift = 14,
54 .enc = BOOK3E_PAGESZ_16K,
55 },
56 [MMU_PAGE_64K] = {
57 .shift = 16,
58 .ind = 28,
59 .enc = BOOK3E_PAGESZ_64K,
60 },
61 [MMU_PAGE_1M] = {
62 .shift = 20,
63 .enc = BOOK3E_PAGESZ_1M,
64 },
65 [MMU_PAGE_16M] = {
66 .shift = 24,
67 .ind = 36,
68 .enc = BOOK3E_PAGESZ_16M,
69 },
70 [MMU_PAGE_256M] = {
71 .shift = 28,
72 .enc = BOOK3E_PAGESZ_256M,
73 },
74 [MMU_PAGE_1G] = {
75 .shift = 30,
76 .enc = BOOK3E_PAGESZ_1GB,
77 },
78 };
79 static inline int mmu_get_tsize(int psize)
80 {
81 return mmu_psize_defs[psize].enc;
82 }
83 #else
84 static inline int mmu_get_tsize(int psize)
85 {
86 /* This isn't used on !Book3E for now */
87 return 0;
88 }
89 #endif
90
91 /* The variables below are currently only used on 64-bit Book3E
92 * though this will probably be made common with other nohash
93 * implementations at some point
94 */
95 #ifdef CONFIG_PPC64
96
97 int mmu_linear_psize; /* Page size used for the linear mapping */
98 int mmu_pte_psize; /* Page size used for PTE pages */
99 int mmu_vmemmap_psize; /* Page size used for the virtual mem map */
100 int book3e_htw_enabled; /* Is HW tablewalk enabled ? */
101 unsigned long linear_map_top; /* Top of linear mapping */
102
103 #endif /* CONFIG_PPC64 */
104
105 /*
106 * Base TLB flushing operations:
107 *
108 * - flush_tlb_mm(mm) flushes the specified mm context TLB's
109 * - flush_tlb_page(vma, vmaddr) flushes one page
110 * - flush_tlb_range(vma, start, end) flushes a range of pages
111 * - flush_tlb_kernel_range(start, end) flushes kernel pages
112 *
113 * - local_* variants of page and mm only apply to the current
114 * processor
115 */
116
117 /*
118 * These are the base non-SMP variants of page and mm flushing
119 */
120 void local_flush_tlb_mm(struct mm_struct *mm)
121 {
122 unsigned int pid;
123
124 preempt_disable();
125 pid = mm->context.id;
126 if (pid != MMU_NO_CONTEXT)
127 _tlbil_pid(pid);
128 preempt_enable();
129 }
130 EXPORT_SYMBOL(local_flush_tlb_mm);
131
132 void __local_flush_tlb_page(struct mm_struct *mm, unsigned long vmaddr,
133 int tsize, int ind)
134 {
135 unsigned int pid;
136
137 preempt_disable();
138 pid = mm ? mm->context.id : 0;
139 if (pid != MMU_NO_CONTEXT)
140 _tlbil_va(vmaddr, pid, tsize, ind);
141 preempt_enable();
142 }
143
144 void local_flush_tlb_page(struct vm_area_struct *vma, unsigned long vmaddr)
145 {
146 __local_flush_tlb_page(vma ? vma->vm_mm : NULL, vmaddr,
147 mmu_get_tsize(mmu_virtual_psize), 0);
148 }
149 EXPORT_SYMBOL(local_flush_tlb_page);
150
151 /*
152 * And here are the SMP non-local implementations
153 */
154 #ifdef CONFIG_SMP
155
156 static DEFINE_RAW_SPINLOCK(tlbivax_lock);
157
158 static int mm_is_core_local(struct mm_struct *mm)
159 {
160 return cpumask_subset(mm_cpumask(mm),
161 topology_thread_cpumask(smp_processor_id()));
162 }
163
164 struct tlb_flush_param {
165 unsigned long addr;
166 unsigned int pid;
167 unsigned int tsize;
168 unsigned int ind;
169 };
170
171 static void do_flush_tlb_mm_ipi(void *param)
172 {
173 struct tlb_flush_param *p = param;
174
175 _tlbil_pid(p ? p->pid : 0);
176 }
177
178 static void do_flush_tlb_page_ipi(void *param)
179 {
180 struct tlb_flush_param *p = param;
181
182 _tlbil_va(p->addr, p->pid, p->tsize, p->ind);
183 }
184
185
186 /* Note on invalidations and PID:
187 *
188 * We snapshot the PID with preempt disabled. At this point, it can still
189 * change either because:
190 * - our context is being stolen (PID -> NO_CONTEXT) on another CPU
191 * - we are invaliating some target that isn't currently running here
192 * and is concurrently acquiring a new PID on another CPU
193 * - some other CPU is re-acquiring a lost PID for this mm
194 * etc...
195 *
196 * However, this shouldn't be a problem as we only guarantee
197 * invalidation of TLB entries present prior to this call, so we
198 * don't care about the PID changing, and invalidating a stale PID
199 * is generally harmless.
200 */
201
202 void flush_tlb_mm(struct mm_struct *mm)
203 {
204 unsigned int pid;
205
206 preempt_disable();
207 pid = mm->context.id;
208 if (unlikely(pid == MMU_NO_CONTEXT))
209 goto no_context;
210 if (!mm_is_core_local(mm)) {
211 struct tlb_flush_param p = { .pid = pid };
212 /* Ignores smp_processor_id() even if set. */
213 smp_call_function_many(mm_cpumask(mm),
214 do_flush_tlb_mm_ipi, &p, 1);
215 }
216 _tlbil_pid(pid);
217 no_context:
218 preempt_enable();
219 }
220 EXPORT_SYMBOL(flush_tlb_mm);
221
222 void __flush_tlb_page(struct mm_struct *mm, unsigned long vmaddr,
223 int tsize, int ind)
224 {
225 struct cpumask *cpu_mask;
226 unsigned int pid;
227
228 preempt_disable();
229 pid = mm ? mm->context.id : 0;
230 if (unlikely(pid == MMU_NO_CONTEXT))
231 goto bail;
232 cpu_mask = mm_cpumask(mm);
233 if (!mm_is_core_local(mm)) {
234 /* If broadcast tlbivax is supported, use it */
235 if (mmu_has_feature(MMU_FTR_USE_TLBIVAX_BCAST)) {
236 int lock = mmu_has_feature(MMU_FTR_LOCK_BCAST_INVAL);
237 if (lock)
238 raw_spin_lock(&tlbivax_lock);
239 _tlbivax_bcast(vmaddr, pid, tsize, ind);
240 if (lock)
241 raw_spin_unlock(&tlbivax_lock);
242 goto bail;
243 } else {
244 struct tlb_flush_param p = {
245 .pid = pid,
246 .addr = vmaddr,
247 .tsize = tsize,
248 .ind = ind,
249 };
250 /* Ignores smp_processor_id() even if set in cpu_mask */
251 smp_call_function_many(cpu_mask,
252 do_flush_tlb_page_ipi, &p, 1);
253 }
254 }
255 _tlbil_va(vmaddr, pid, tsize, ind);
256 bail:
257 preempt_enable();
258 }
259
260 void flush_tlb_page(struct vm_area_struct *vma, unsigned long vmaddr)
261 {
262 __flush_tlb_page(vma ? vma->vm_mm : NULL, vmaddr,
263 mmu_get_tsize(mmu_virtual_psize), 0);
264 }
265 EXPORT_SYMBOL(flush_tlb_page);
266
267 #endif /* CONFIG_SMP */
268
269 /*
270 * Flush kernel TLB entries in the given range
271 */
272 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
273 {
274 #ifdef CONFIG_SMP
275 preempt_disable();
276 smp_call_function(do_flush_tlb_mm_ipi, NULL, 1);
277 _tlbil_pid(0);
278 preempt_enable();
279 #else
280 _tlbil_pid(0);
281 #endif
282 }
283 EXPORT_SYMBOL(flush_tlb_kernel_range);
284
285 /*
286 * Currently, for range flushing, we just do a full mm flush. This should
287 * be optimized based on a threshold on the size of the range, since
288 * some implementation can stack multiple tlbivax before a tlbsync but
289 * for now, we keep it that way
290 */
291 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
292 unsigned long end)
293
294 {
295 flush_tlb_mm(vma->vm_mm);
296 }
297 EXPORT_SYMBOL(flush_tlb_range);
298
299 void tlb_flush(struct mmu_gather *tlb)
300 {
301 flush_tlb_mm(tlb->mm);
302
303 /* Push out batch of freed page tables */
304 pte_free_finish();
305 }
306
307 /*
308 * Below are functions specific to the 64-bit variant of Book3E though that
309 * may change in the future
310 */
311
312 #ifdef CONFIG_PPC64
313
314 /*
315 * Handling of virtual linear page tables or indirect TLB entries
316 * flushing when PTE pages are freed
317 */
318 void tlb_flush_pgtable(struct mmu_gather *tlb, unsigned long address)
319 {
320 int tsize = mmu_psize_defs[mmu_pte_psize].enc;
321
322 if (book3e_htw_enabled) {
323 unsigned long start = address & PMD_MASK;
324 unsigned long end = address + PMD_SIZE;
325 unsigned long size = 1UL << mmu_psize_defs[mmu_pte_psize].shift;
326
327 /* This isn't the most optimal, ideally we would factor out the
328 * while preempt & CPU mask mucking around, or even the IPI but
329 * it will do for now
330 */
331 while (start < end) {
332 __flush_tlb_page(tlb->mm, start, tsize, 1);
333 start += size;
334 }
335 } else {
336 unsigned long rmask = 0xf000000000000000ul;
337 unsigned long rid = (address & rmask) | 0x1000000000000000ul;
338 unsigned long vpte = address & ~rmask;
339
340 #ifdef CONFIG_PPC_64K_PAGES
341 vpte = (vpte >> (PAGE_SHIFT - 4)) & ~0xfffful;
342 #else
343 vpte = (vpte >> (PAGE_SHIFT - 3)) & ~0xffful;
344 #endif
345 vpte |= rid;
346 __flush_tlb_page(tlb->mm, vpte, tsize, 0);
347 }
348 }
349
350 static void setup_page_sizes(void)
351 {
352 unsigned int tlb0cfg;
353 unsigned int tlb0ps;
354 unsigned int eptcfg;
355 int i, psize;
356
357 #ifdef CONFIG_PPC_FSL_BOOK3E
358 unsigned int mmucfg = mfspr(SPRN_MMUCFG);
359
360 if (((mmucfg & MMUCFG_MAVN) == MMUCFG_MAVN_V1) &&
361 (mmu_has_feature(MMU_FTR_TYPE_FSL_E))) {
362 unsigned int tlb1cfg = mfspr(SPRN_TLB1CFG);
363 unsigned int min_pg, max_pg;
364
365 min_pg = (tlb1cfg & TLBnCFG_MINSIZE) >> TLBnCFG_MINSIZE_SHIFT;
366 max_pg = (tlb1cfg & TLBnCFG_MAXSIZE) >> TLBnCFG_MAXSIZE_SHIFT;
367
368 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
369 struct mmu_psize_def *def;
370 unsigned int shift;
371
372 def = &mmu_psize_defs[psize];
373 shift = def->shift;
374
375 if (shift == 0)
376 continue;
377
378 /* adjust to be in terms of 4^shift Kb */
379 shift = (shift - 10) >> 1;
380
381 if ((shift >= min_pg) && (shift <= max_pg))
382 def->flags |= MMU_PAGE_SIZE_DIRECT;
383 }
384
385 goto no_indirect;
386 }
387 #endif
388
389 tlb0cfg = mfspr(SPRN_TLB0CFG);
390 tlb0ps = mfspr(SPRN_TLB0PS);
391 eptcfg = mfspr(SPRN_EPTCFG);
392
393 /* Look for supported direct sizes */
394 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
395 struct mmu_psize_def *def = &mmu_psize_defs[psize];
396
397 if (tlb0ps & (1U << (def->shift - 10)))
398 def->flags |= MMU_PAGE_SIZE_DIRECT;
399 }
400
401 /* Indirect page sizes supported ? */
402 if ((tlb0cfg & TLBnCFG_IND) == 0)
403 goto no_indirect;
404
405 /* Now, we only deal with one IND page size for each
406 * direct size. Hopefully all implementations today are
407 * unambiguous, but we might want to be careful in the
408 * future.
409 */
410 for (i = 0; i < 3; i++) {
411 unsigned int ps, sps;
412
413 sps = eptcfg & 0x1f;
414 eptcfg >>= 5;
415 ps = eptcfg & 0x1f;
416 eptcfg >>= 5;
417 if (!ps || !sps)
418 continue;
419 for (psize = 0; psize < MMU_PAGE_COUNT; psize++) {
420 struct mmu_psize_def *def = &mmu_psize_defs[psize];
421
422 if (ps == (def->shift - 10))
423 def->flags |= MMU_PAGE_SIZE_INDIRECT;
424 if (sps == (def->shift - 10))
425 def->ind = ps + 10;
426 }
427 }
428 no_indirect:
429
430 /* Cleanup array and print summary */
431 pr_info("MMU: Supported page sizes\n");
432 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
433 struct mmu_psize_def *def = &mmu_psize_defs[psize];
434 const char *__page_type_names[] = {
435 "unsupported",
436 "direct",
437 "indirect",
438 "direct & indirect"
439 };
440 if (def->flags == 0) {
441 def->shift = 0;
442 continue;
443 }
444 pr_info(" %8ld KB as %s\n", 1ul << (def->shift - 10),
445 __page_type_names[def->flags & 0x3]);
446 }
447 }
448
449 static void setup_mmu_htw(void)
450 {
451 extern unsigned int interrupt_base_book3e;
452 extern unsigned int exc_data_tlb_miss_htw_book3e;
453 extern unsigned int exc_instruction_tlb_miss_htw_book3e;
454
455 unsigned int *ibase = &interrupt_base_book3e;
456
457 /* Check if HW tablewalk is present, and if yes, enable it by:
458 *
459 * - patching the TLB miss handlers to branch to the
460 * one dedicates to it
461 *
462 * - setting the global book3e_htw_enabled
463 */
464 unsigned int tlb0cfg = mfspr(SPRN_TLB0CFG);
465
466 if ((tlb0cfg & TLBnCFG_IND) &&
467 (tlb0cfg & TLBnCFG_PT)) {
468 /* Our exceptions vectors start with a NOP and -then- a branch
469 * to deal with single stepping from userspace which stops on
470 * the second instruction. Thus we need to patch the second
471 * instruction of the exception, not the first one
472 */
473 patch_branch(ibase + (0x1c0 / 4) + 1,
474 (unsigned long)&exc_data_tlb_miss_htw_book3e, 0);
475 patch_branch(ibase + (0x1e0 / 4) + 1,
476 (unsigned long)&exc_instruction_tlb_miss_htw_book3e, 0);
477 book3e_htw_enabled = 1;
478 }
479 pr_info("MMU: Book3E Page Tables %s\n",
480 book3e_htw_enabled ? "Enabled" : "Disabled");
481 }
482
483 /*
484 * Early initialization of the MMU TLB code
485 */
486 static void __early_init_mmu(int boot_cpu)
487 {
488 unsigned int mas4;
489
490 /* XXX This will have to be decided at runtime, but right
491 * now our boot and TLB miss code hard wires it. Ideally
492 * we should find out a suitable page size and patch the
493 * TLB miss code (either that or use the PACA to store
494 * the value we want)
495 */
496 mmu_linear_psize = MMU_PAGE_1G;
497
498 /* XXX This should be decided at runtime based on supported
499 * page sizes in the TLB, but for now let's assume 16M is
500 * always there and a good fit (which it probably is)
501 */
502 mmu_vmemmap_psize = MMU_PAGE_16M;
503
504 /* XXX This code only checks for TLB 0 capabilities and doesn't
505 * check what page size combos are supported by the HW. It
506 * also doesn't handle the case where a separate array holds
507 * the IND entries from the array loaded by the PT.
508 */
509 if (boot_cpu) {
510 /* Look for supported page sizes */
511 setup_page_sizes();
512
513 /* Look for HW tablewalk support */
514 setup_mmu_htw();
515 }
516
517 /* Set MAS4 based on page table setting */
518
519 mas4 = 0x4 << MAS4_WIMGED_SHIFT;
520 if (book3e_htw_enabled) {
521 mas4 |= mas4 | MAS4_INDD;
522 #ifdef CONFIG_PPC_64K_PAGES
523 mas4 |= BOOK3E_PAGESZ_256M << MAS4_TSIZED_SHIFT;
524 mmu_pte_psize = MMU_PAGE_256M;
525 #else
526 mas4 |= BOOK3E_PAGESZ_1M << MAS4_TSIZED_SHIFT;
527 mmu_pte_psize = MMU_PAGE_1M;
528 #endif
529 } else {
530 #ifdef CONFIG_PPC_64K_PAGES
531 mas4 |= BOOK3E_PAGESZ_64K << MAS4_TSIZED_SHIFT;
532 #else
533 mas4 |= BOOK3E_PAGESZ_4K << MAS4_TSIZED_SHIFT;
534 #endif
535 mmu_pte_psize = mmu_virtual_psize;
536 }
537 mtspr(SPRN_MAS4, mas4);
538
539 /* Set the global containing the top of the linear mapping
540 * for use by the TLB miss code
541 */
542 linear_map_top = memblock_end_of_DRAM();
543
544 #ifdef CONFIG_PPC_FSL_BOOK3E
545 if (mmu_has_feature(MMU_FTR_TYPE_FSL_E)) {
546 unsigned int num_cams;
547
548 /* use a quarter of the TLBCAM for bolted linear map */
549 num_cams = (mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY) / 4;
550 linear_map_top = map_mem_in_cams(linear_map_top, num_cams);
551
552 /* limit memory so we dont have linear faults */
553 memblock_enforce_memory_limit(linear_map_top);
554 memblock_analyze();
555 }
556 #endif
557
558 /* A sync won't hurt us after mucking around with
559 * the MMU configuration
560 */
561 mb();
562
563 memblock_set_current_limit(linear_map_top);
564 }
565
566 void __init early_init_mmu(void)
567 {
568 __early_init_mmu(1);
569 }
570
571 void __cpuinit early_init_mmu_secondary(void)
572 {
573 __early_init_mmu(0);
574 }
575
576 void setup_initial_memory_limit(phys_addr_t first_memblock_base,
577 phys_addr_t first_memblock_size)
578 {
579 /* On Embedded 64-bit, we adjust the RMA size to match
580 * the bolted TLB entry. We know for now that only 1G
581 * entries are supported though that may eventually
582 * change. We crop it to the size of the first MEMBLOCK to
583 * avoid going over total available memory just in case...
584 */
585 ppc64_rma_size = min_t(u64, first_memblock_size, 0x40000000);
586
587 /* Finally limit subsequent allocations */
588 memblock_set_current_limit(first_memblock_base + ppc64_rma_size);
589 }
590 #endif /* CONFIG_PPC64 */
This page took 0.044223 seconds and 6 git commands to generate.