Merge remote-tracking branches 'spi/fix/omap2' and 'spi/fix/rockchip' into spi-linus
[deliverable/linux.git] / arch / powerpc / sysdev / mpic_timer.c
1 /*
2 * MPIC timer driver
3 *
4 * Copyright 2013 Freescale Semiconductor, Inc.
5 * Author: Dongsheng Wang <Dongsheng.Wang@freescale.com>
6 * Li Yang <leoli@freescale.com>
7 *
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the
10 * Free Software Foundation; either version 2 of the License, or (at your
11 * option) any later version.
12 */
13
14 #include <linux/kernel.h>
15 #include <linux/init.h>
16 #include <linux/module.h>
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/interrupt.h>
20 #include <linux/slab.h>
21 #include <linux/of.h>
22 #include <linux/of_address.h>
23 #include <linux/of_device.h>
24 #include <linux/of_irq.h>
25 #include <linux/syscore_ops.h>
26 #include <sysdev/fsl_soc.h>
27 #include <asm/io.h>
28
29 #include <asm/mpic_timer.h>
30
31 #define FSL_GLOBAL_TIMER 0x1
32
33 /* Clock Ratio
34 * Divide by 64 0x00000300
35 * Divide by 32 0x00000200
36 * Divide by 16 0x00000100
37 * Divide by 8 0x00000000 (Hardware default div)
38 */
39 #define MPIC_TIMER_TCR_CLKDIV 0x00000300
40
41 #define MPIC_TIMER_TCR_ROVR_OFFSET 24
42
43 #define TIMER_STOP 0x80000000
44 #define GTCCR_TOG 0x80000000
45 #define TIMERS_PER_GROUP 4
46 #define MAX_TICKS (~0U >> 1)
47 #define MAX_TICKS_CASCADE (~0U)
48 #define TIMER_OFFSET(num) (1 << (TIMERS_PER_GROUP - 1 - num))
49
50 /* tv_usec should be less than ONE_SECOND, otherwise use tv_sec */
51 #define ONE_SECOND 1000000
52
53 struct timer_regs {
54 u32 gtccr;
55 u32 res0[3];
56 u32 gtbcr;
57 u32 res1[3];
58 u32 gtvpr;
59 u32 res2[3];
60 u32 gtdr;
61 u32 res3[3];
62 };
63
64 struct cascade_priv {
65 u32 tcr_value; /* TCR register: CASC & ROVR value */
66 unsigned int cascade_map; /* cascade map */
67 unsigned int timer_num; /* cascade control timer */
68 };
69
70 struct timer_group_priv {
71 struct timer_regs __iomem *regs;
72 struct mpic_timer timer[TIMERS_PER_GROUP];
73 struct list_head node;
74 unsigned int timerfreq;
75 unsigned int idle;
76 unsigned int flags;
77 spinlock_t lock;
78 void __iomem *group_tcr;
79 };
80
81 static struct cascade_priv cascade_timer[] = {
82 /* cascade timer 0 and 1 */
83 {0x1, 0xc, 0x1},
84 /* cascade timer 1 and 2 */
85 {0x2, 0x6, 0x2},
86 /* cascade timer 2 and 3 */
87 {0x4, 0x3, 0x3}
88 };
89
90 static LIST_HEAD(timer_group_list);
91
92 static void convert_ticks_to_time(struct timer_group_priv *priv,
93 const u64 ticks, struct timeval *time)
94 {
95 u64 tmp_sec;
96
97 time->tv_sec = (__kernel_time_t)div_u64(ticks, priv->timerfreq);
98 tmp_sec = (u64)time->tv_sec * (u64)priv->timerfreq;
99
100 time->tv_usec = 0;
101
102 if (tmp_sec <= ticks)
103 time->tv_usec = (__kernel_suseconds_t)
104 div_u64((ticks - tmp_sec) * 1000000, priv->timerfreq);
105
106 return;
107 }
108
109 /* the time set by the user is converted to "ticks" */
110 static int convert_time_to_ticks(struct timer_group_priv *priv,
111 const struct timeval *time, u64 *ticks)
112 {
113 u64 max_value; /* prevent u64 overflow */
114 u64 tmp = 0;
115
116 u64 tmp_sec;
117 u64 tmp_ms;
118 u64 tmp_us;
119
120 max_value = div_u64(ULLONG_MAX, priv->timerfreq);
121
122 if (time->tv_sec > max_value ||
123 (time->tv_sec == max_value && time->tv_usec > 0))
124 return -EINVAL;
125
126 tmp_sec = (u64)time->tv_sec * (u64)priv->timerfreq;
127 tmp += tmp_sec;
128
129 tmp_ms = time->tv_usec / 1000;
130 tmp_ms = div_u64((u64)tmp_ms * (u64)priv->timerfreq, 1000);
131 tmp += tmp_ms;
132
133 tmp_us = time->tv_usec % 1000;
134 tmp_us = div_u64((u64)tmp_us * (u64)priv->timerfreq, 1000000);
135 tmp += tmp_us;
136
137 *ticks = tmp;
138
139 return 0;
140 }
141
142 /* detect whether there is a cascade timer available */
143 static struct mpic_timer *detect_idle_cascade_timer(
144 struct timer_group_priv *priv)
145 {
146 struct cascade_priv *casc_priv;
147 unsigned int map;
148 unsigned int array_size = ARRAY_SIZE(cascade_timer);
149 unsigned int num;
150 unsigned int i;
151 unsigned long flags;
152
153 casc_priv = cascade_timer;
154 for (i = 0; i < array_size; i++) {
155 spin_lock_irqsave(&priv->lock, flags);
156 map = casc_priv->cascade_map & priv->idle;
157 if (map == casc_priv->cascade_map) {
158 num = casc_priv->timer_num;
159 priv->timer[num].cascade_handle = casc_priv;
160
161 /* set timer busy */
162 priv->idle &= ~casc_priv->cascade_map;
163 spin_unlock_irqrestore(&priv->lock, flags);
164 return &priv->timer[num];
165 }
166 spin_unlock_irqrestore(&priv->lock, flags);
167 casc_priv++;
168 }
169
170 return NULL;
171 }
172
173 static int set_cascade_timer(struct timer_group_priv *priv, u64 ticks,
174 unsigned int num)
175 {
176 struct cascade_priv *casc_priv;
177 u32 tcr;
178 u32 tmp_ticks;
179 u32 rem_ticks;
180
181 /* set group tcr reg for cascade */
182 casc_priv = priv->timer[num].cascade_handle;
183 if (!casc_priv)
184 return -EINVAL;
185
186 tcr = casc_priv->tcr_value |
187 (casc_priv->tcr_value << MPIC_TIMER_TCR_ROVR_OFFSET);
188 setbits32(priv->group_tcr, tcr);
189
190 tmp_ticks = div_u64_rem(ticks, MAX_TICKS_CASCADE, &rem_ticks);
191
192 out_be32(&priv->regs[num].gtccr, 0);
193 out_be32(&priv->regs[num].gtbcr, tmp_ticks | TIMER_STOP);
194
195 out_be32(&priv->regs[num - 1].gtccr, 0);
196 out_be32(&priv->regs[num - 1].gtbcr, rem_ticks);
197
198 return 0;
199 }
200
201 static struct mpic_timer *get_cascade_timer(struct timer_group_priv *priv,
202 u64 ticks)
203 {
204 struct mpic_timer *allocated_timer;
205
206 /* Two cascade timers: Support the maximum time */
207 const u64 max_ticks = (u64)MAX_TICKS * (u64)MAX_TICKS_CASCADE;
208 int ret;
209
210 if (ticks > max_ticks)
211 return NULL;
212
213 /* detect idle timer */
214 allocated_timer = detect_idle_cascade_timer(priv);
215 if (!allocated_timer)
216 return NULL;
217
218 /* set ticks to timer */
219 ret = set_cascade_timer(priv, ticks, allocated_timer->num);
220 if (ret < 0)
221 return NULL;
222
223 return allocated_timer;
224 }
225
226 static struct mpic_timer *get_timer(const struct timeval *time)
227 {
228 struct timer_group_priv *priv;
229 struct mpic_timer *timer;
230
231 u64 ticks;
232 unsigned int num;
233 unsigned int i;
234 unsigned long flags;
235 int ret;
236
237 list_for_each_entry(priv, &timer_group_list, node) {
238 ret = convert_time_to_ticks(priv, time, &ticks);
239 if (ret < 0)
240 return NULL;
241
242 if (ticks > MAX_TICKS) {
243 if (!(priv->flags & FSL_GLOBAL_TIMER))
244 return NULL;
245
246 timer = get_cascade_timer(priv, ticks);
247 if (!timer)
248 continue;
249
250 return timer;
251 }
252
253 for (i = 0; i < TIMERS_PER_GROUP; i++) {
254 /* one timer: Reverse allocation */
255 num = TIMERS_PER_GROUP - 1 - i;
256 spin_lock_irqsave(&priv->lock, flags);
257 if (priv->idle & (1 << i)) {
258 /* set timer busy */
259 priv->idle &= ~(1 << i);
260 /* set ticks & stop timer */
261 out_be32(&priv->regs[num].gtbcr,
262 ticks | TIMER_STOP);
263 out_be32(&priv->regs[num].gtccr, 0);
264 priv->timer[num].cascade_handle = NULL;
265 spin_unlock_irqrestore(&priv->lock, flags);
266 return &priv->timer[num];
267 }
268 spin_unlock_irqrestore(&priv->lock, flags);
269 }
270 }
271
272 return NULL;
273 }
274
275 /**
276 * mpic_start_timer - start hardware timer
277 * @handle: the timer to be started.
278 *
279 * It will do ->fn(->dev) callback from the hardware interrupt at
280 * the ->timeval point in the future.
281 */
282 void mpic_start_timer(struct mpic_timer *handle)
283 {
284 struct timer_group_priv *priv = container_of(handle,
285 struct timer_group_priv, timer[handle->num]);
286
287 clrbits32(&priv->regs[handle->num].gtbcr, TIMER_STOP);
288 }
289 EXPORT_SYMBOL(mpic_start_timer);
290
291 /**
292 * mpic_stop_timer - stop hardware timer
293 * @handle: the timer to be stoped
294 *
295 * The timer periodically generates an interrupt. Unless user stops the timer.
296 */
297 void mpic_stop_timer(struct mpic_timer *handle)
298 {
299 struct timer_group_priv *priv = container_of(handle,
300 struct timer_group_priv, timer[handle->num]);
301 struct cascade_priv *casc_priv;
302
303 setbits32(&priv->regs[handle->num].gtbcr, TIMER_STOP);
304
305 casc_priv = priv->timer[handle->num].cascade_handle;
306 if (casc_priv) {
307 out_be32(&priv->regs[handle->num].gtccr, 0);
308 out_be32(&priv->regs[handle->num - 1].gtccr, 0);
309 } else {
310 out_be32(&priv->regs[handle->num].gtccr, 0);
311 }
312 }
313 EXPORT_SYMBOL(mpic_stop_timer);
314
315 /**
316 * mpic_get_remain_time - get timer time
317 * @handle: the timer to be selected.
318 * @time: time for timer
319 *
320 * Query timer remaining time.
321 */
322 void mpic_get_remain_time(struct mpic_timer *handle, struct timeval *time)
323 {
324 struct timer_group_priv *priv = container_of(handle,
325 struct timer_group_priv, timer[handle->num]);
326 struct cascade_priv *casc_priv;
327
328 u64 ticks;
329 u32 tmp_ticks;
330
331 casc_priv = priv->timer[handle->num].cascade_handle;
332 if (casc_priv) {
333 tmp_ticks = in_be32(&priv->regs[handle->num].gtccr);
334 tmp_ticks &= ~GTCCR_TOG;
335 ticks = ((u64)tmp_ticks & UINT_MAX) * (u64)MAX_TICKS_CASCADE;
336 tmp_ticks = in_be32(&priv->regs[handle->num - 1].gtccr);
337 ticks += tmp_ticks;
338 } else {
339 ticks = in_be32(&priv->regs[handle->num].gtccr);
340 ticks &= ~GTCCR_TOG;
341 }
342
343 convert_ticks_to_time(priv, ticks, time);
344 }
345 EXPORT_SYMBOL(mpic_get_remain_time);
346
347 /**
348 * mpic_free_timer - free hardware timer
349 * @handle: the timer to be removed.
350 *
351 * Free the timer.
352 *
353 * Note: can not be used in interrupt context.
354 */
355 void mpic_free_timer(struct mpic_timer *handle)
356 {
357 struct timer_group_priv *priv = container_of(handle,
358 struct timer_group_priv, timer[handle->num]);
359
360 struct cascade_priv *casc_priv;
361 unsigned long flags;
362
363 mpic_stop_timer(handle);
364
365 casc_priv = priv->timer[handle->num].cascade_handle;
366
367 free_irq(priv->timer[handle->num].irq, priv->timer[handle->num].dev);
368
369 spin_lock_irqsave(&priv->lock, flags);
370 if (casc_priv) {
371 u32 tcr;
372 tcr = casc_priv->tcr_value | (casc_priv->tcr_value <<
373 MPIC_TIMER_TCR_ROVR_OFFSET);
374 clrbits32(priv->group_tcr, tcr);
375 priv->idle |= casc_priv->cascade_map;
376 priv->timer[handle->num].cascade_handle = NULL;
377 } else {
378 priv->idle |= TIMER_OFFSET(handle->num);
379 }
380 spin_unlock_irqrestore(&priv->lock, flags);
381 }
382 EXPORT_SYMBOL(mpic_free_timer);
383
384 /**
385 * mpic_request_timer - get a hardware timer
386 * @fn: interrupt handler function
387 * @dev: callback function of the data
388 * @time: time for timer
389 *
390 * This executes the "request_irq", returning NULL
391 * else "handle" on success.
392 */
393 struct mpic_timer *mpic_request_timer(irq_handler_t fn, void *dev,
394 const struct timeval *time)
395 {
396 struct mpic_timer *allocated_timer;
397 int ret;
398
399 if (list_empty(&timer_group_list))
400 return NULL;
401
402 if (!(time->tv_sec + time->tv_usec) ||
403 time->tv_sec < 0 || time->tv_usec < 0)
404 return NULL;
405
406 if (time->tv_usec > ONE_SECOND)
407 return NULL;
408
409 allocated_timer = get_timer(time);
410 if (!allocated_timer)
411 return NULL;
412
413 ret = request_irq(allocated_timer->irq, fn,
414 IRQF_TRIGGER_LOW, "global-timer", dev);
415 if (ret) {
416 mpic_free_timer(allocated_timer);
417 return NULL;
418 }
419
420 allocated_timer->dev = dev;
421
422 return allocated_timer;
423 }
424 EXPORT_SYMBOL(mpic_request_timer);
425
426 static int timer_group_get_freq(struct device_node *np,
427 struct timer_group_priv *priv)
428 {
429 u32 div;
430
431 if (priv->flags & FSL_GLOBAL_TIMER) {
432 struct device_node *dn;
433
434 dn = of_find_compatible_node(NULL, NULL, "fsl,mpic");
435 if (dn) {
436 of_property_read_u32(dn, "clock-frequency",
437 &priv->timerfreq);
438 of_node_put(dn);
439 }
440 }
441
442 if (priv->timerfreq <= 0)
443 return -EINVAL;
444
445 if (priv->flags & FSL_GLOBAL_TIMER) {
446 div = (1 << (MPIC_TIMER_TCR_CLKDIV >> 8)) * 8;
447 priv->timerfreq /= div;
448 }
449
450 return 0;
451 }
452
453 static int timer_group_get_irq(struct device_node *np,
454 struct timer_group_priv *priv)
455 {
456 const u32 all_timer[] = { 0, TIMERS_PER_GROUP };
457 const u32 *p;
458 u32 offset;
459 u32 count;
460
461 unsigned int i;
462 unsigned int j;
463 unsigned int irq_index = 0;
464 unsigned int irq;
465 int len;
466
467 p = of_get_property(np, "fsl,available-ranges", &len);
468 if (p && len % (2 * sizeof(u32)) != 0) {
469 pr_err("%s: malformed available-ranges property.\n",
470 np->full_name);
471 return -EINVAL;
472 }
473
474 if (!p) {
475 p = all_timer;
476 len = sizeof(all_timer);
477 }
478
479 len /= 2 * sizeof(u32);
480
481 for (i = 0; i < len; i++) {
482 offset = p[i * 2];
483 count = p[i * 2 + 1];
484 for (j = 0; j < count; j++) {
485 irq = irq_of_parse_and_map(np, irq_index);
486 if (!irq) {
487 pr_err("%s: irq parse and map failed.\n",
488 np->full_name);
489 return -EINVAL;
490 }
491
492 /* Set timer idle */
493 priv->idle |= TIMER_OFFSET((offset + j));
494 priv->timer[offset + j].irq = irq;
495 priv->timer[offset + j].num = offset + j;
496 irq_index++;
497 }
498 }
499
500 return 0;
501 }
502
503 static void timer_group_init(struct device_node *np)
504 {
505 struct timer_group_priv *priv;
506 unsigned int i = 0;
507 int ret;
508
509 priv = kzalloc(sizeof(struct timer_group_priv), GFP_KERNEL);
510 if (!priv) {
511 pr_err("%s: cannot allocate memory for group.\n",
512 np->full_name);
513 return;
514 }
515
516 if (of_device_is_compatible(np, "fsl,mpic-global-timer"))
517 priv->flags |= FSL_GLOBAL_TIMER;
518
519 priv->regs = of_iomap(np, i++);
520 if (!priv->regs) {
521 pr_err("%s: cannot ioremap timer register address.\n",
522 np->full_name);
523 goto out;
524 }
525
526 if (priv->flags & FSL_GLOBAL_TIMER) {
527 priv->group_tcr = of_iomap(np, i++);
528 if (!priv->group_tcr) {
529 pr_err("%s: cannot ioremap tcr address.\n",
530 np->full_name);
531 goto out;
532 }
533 }
534
535 ret = timer_group_get_freq(np, priv);
536 if (ret < 0) {
537 pr_err("%s: cannot get timer frequency.\n", np->full_name);
538 goto out;
539 }
540
541 ret = timer_group_get_irq(np, priv);
542 if (ret < 0) {
543 pr_err("%s: cannot get timer irqs.\n", np->full_name);
544 goto out;
545 }
546
547 spin_lock_init(&priv->lock);
548
549 /* Init FSL timer hardware */
550 if (priv->flags & FSL_GLOBAL_TIMER)
551 setbits32(priv->group_tcr, MPIC_TIMER_TCR_CLKDIV);
552
553 list_add_tail(&priv->node, &timer_group_list);
554
555 return;
556
557 out:
558 if (priv->regs)
559 iounmap(priv->regs);
560
561 if (priv->group_tcr)
562 iounmap(priv->group_tcr);
563
564 kfree(priv);
565 }
566
567 static void mpic_timer_resume(void)
568 {
569 struct timer_group_priv *priv;
570
571 list_for_each_entry(priv, &timer_group_list, node) {
572 /* Init FSL timer hardware */
573 if (priv->flags & FSL_GLOBAL_TIMER)
574 setbits32(priv->group_tcr, MPIC_TIMER_TCR_CLKDIV);
575 }
576 }
577
578 static const struct of_device_id mpic_timer_ids[] = {
579 { .compatible = "fsl,mpic-global-timer", },
580 {},
581 };
582
583 static struct syscore_ops mpic_timer_syscore_ops = {
584 .resume = mpic_timer_resume,
585 };
586
587 static int __init mpic_timer_init(void)
588 {
589 struct device_node *np = NULL;
590
591 for_each_matching_node(np, mpic_timer_ids)
592 timer_group_init(np);
593
594 register_syscore_ops(&mpic_timer_syscore_ops);
595
596 if (list_empty(&timer_group_list))
597 return -ENODEV;
598
599 return 0;
600 }
601 subsys_initcall(mpic_timer_init);
This page took 0.04207 seconds and 5 git commands to generate.