s390/watchdog: Fix module name in Kconfig help text
[deliverable/linux.git] / arch / s390 / kernel / time.c
1 /*
2 * Time of day based timer functions.
3 *
4 * S390 version
5 * Copyright IBM Corp. 1999, 2008
6 * Author(s): Hartmut Penner (hp@de.ibm.com),
7 * Martin Schwidefsky (schwidefsky@de.ibm.com),
8 * Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
9 *
10 * Derived from "arch/i386/kernel/time.c"
11 * Copyright (C) 1991, 1992, 1995 Linus Torvalds
12 */
13
14 #define KMSG_COMPONENT "time"
15 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
16
17 #include <linux/kernel_stat.h>
18 #include <linux/errno.h>
19 #include <linux/module.h>
20 #include <linux/sched.h>
21 #include <linux/kernel.h>
22 #include <linux/param.h>
23 #include <linux/string.h>
24 #include <linux/mm.h>
25 #include <linux/interrupt.h>
26 #include <linux/cpu.h>
27 #include <linux/stop_machine.h>
28 #include <linux/time.h>
29 #include <linux/device.h>
30 #include <linux/delay.h>
31 #include <linux/init.h>
32 #include <linux/smp.h>
33 #include <linux/types.h>
34 #include <linux/profile.h>
35 #include <linux/timex.h>
36 #include <linux/notifier.h>
37 #include <linux/timekeeper_internal.h>
38 #include <linux/clockchips.h>
39 #include <linux/gfp.h>
40 #include <linux/kprobes.h>
41 #include <asm/uaccess.h>
42 #include <asm/delay.h>
43 #include <asm/div64.h>
44 #include <asm/vdso.h>
45 #include <asm/irq.h>
46 #include <asm/irq_regs.h>
47 #include <asm/vtimer.h>
48 #include <asm/etr.h>
49 #include <asm/cio.h>
50 #include "entry.h"
51
52 /* change this if you have some constant time drift */
53 #define USECS_PER_JIFFY ((unsigned long) 1000000/HZ)
54 #define CLK_TICKS_PER_JIFFY ((unsigned long) USECS_PER_JIFFY << 12)
55
56 u64 sched_clock_base_cc = -1; /* Force to data section. */
57 EXPORT_SYMBOL_GPL(sched_clock_base_cc);
58
59 static DEFINE_PER_CPU(struct clock_event_device, comparators);
60
61 /*
62 * Scheduler clock - returns current time in nanosec units.
63 */
64 unsigned long long notrace __kprobes sched_clock(void)
65 {
66 return tod_to_ns(get_tod_clock_monotonic());
67 }
68
69 /*
70 * Monotonic_clock - returns # of nanoseconds passed since time_init()
71 */
72 unsigned long long monotonic_clock(void)
73 {
74 return sched_clock();
75 }
76 EXPORT_SYMBOL(monotonic_clock);
77
78 void tod_to_timeval(__u64 todval, struct timespec *xt)
79 {
80 unsigned long long sec;
81
82 sec = todval >> 12;
83 do_div(sec, 1000000);
84 xt->tv_sec = sec;
85 todval -= (sec * 1000000) << 12;
86 xt->tv_nsec = ((todval * 1000) >> 12);
87 }
88 EXPORT_SYMBOL(tod_to_timeval);
89
90 void clock_comparator_work(void)
91 {
92 struct clock_event_device *cd;
93
94 S390_lowcore.clock_comparator = -1ULL;
95 cd = &__get_cpu_var(comparators);
96 cd->event_handler(cd);
97 }
98
99 /*
100 * Fixup the clock comparator.
101 */
102 static void fixup_clock_comparator(unsigned long long delta)
103 {
104 /* If nobody is waiting there's nothing to fix. */
105 if (S390_lowcore.clock_comparator == -1ULL)
106 return;
107 S390_lowcore.clock_comparator += delta;
108 set_clock_comparator(S390_lowcore.clock_comparator);
109 }
110
111 static int s390_next_event(unsigned long delta,
112 struct clock_event_device *evt)
113 {
114 S390_lowcore.clock_comparator = get_tod_clock() + delta;
115 set_clock_comparator(S390_lowcore.clock_comparator);
116 return 0;
117 }
118
119 static void s390_set_mode(enum clock_event_mode mode,
120 struct clock_event_device *evt)
121 {
122 }
123
124 /*
125 * Set up lowcore and control register of the current cpu to
126 * enable TOD clock and clock comparator interrupts.
127 */
128 void init_cpu_timer(void)
129 {
130 struct clock_event_device *cd;
131 int cpu;
132
133 S390_lowcore.clock_comparator = -1ULL;
134 set_clock_comparator(S390_lowcore.clock_comparator);
135
136 cpu = smp_processor_id();
137 cd = &per_cpu(comparators, cpu);
138 cd->name = "comparator";
139 cd->features = CLOCK_EVT_FEAT_ONESHOT;
140 cd->mult = 16777;
141 cd->shift = 12;
142 cd->min_delta_ns = 1;
143 cd->max_delta_ns = LONG_MAX;
144 cd->rating = 400;
145 cd->cpumask = cpumask_of(cpu);
146 cd->set_next_event = s390_next_event;
147 cd->set_mode = s390_set_mode;
148
149 clockevents_register_device(cd);
150
151 /* Enable clock comparator timer interrupt. */
152 __ctl_set_bit(0,11);
153
154 /* Always allow the timing alert external interrupt. */
155 __ctl_set_bit(0, 4);
156 }
157
158 static void clock_comparator_interrupt(struct ext_code ext_code,
159 unsigned int param32,
160 unsigned long param64)
161 {
162 inc_irq_stat(IRQEXT_CLK);
163 if (S390_lowcore.clock_comparator == -1ULL)
164 set_clock_comparator(S390_lowcore.clock_comparator);
165 }
166
167 static void etr_timing_alert(struct etr_irq_parm *);
168 static void stp_timing_alert(struct stp_irq_parm *);
169
170 static void timing_alert_interrupt(struct ext_code ext_code,
171 unsigned int param32, unsigned long param64)
172 {
173 inc_irq_stat(IRQEXT_TLA);
174 if (param32 & 0x00c40000)
175 etr_timing_alert((struct etr_irq_parm *) &param32);
176 if (param32 & 0x00038000)
177 stp_timing_alert((struct stp_irq_parm *) &param32);
178 }
179
180 static void etr_reset(void);
181 static void stp_reset(void);
182
183 void read_persistent_clock(struct timespec *ts)
184 {
185 tod_to_timeval(get_tod_clock() - TOD_UNIX_EPOCH, ts);
186 }
187
188 void read_boot_clock(struct timespec *ts)
189 {
190 tod_to_timeval(sched_clock_base_cc - TOD_UNIX_EPOCH, ts);
191 }
192
193 static cycle_t read_tod_clock(struct clocksource *cs)
194 {
195 return get_tod_clock();
196 }
197
198 static struct clocksource clocksource_tod = {
199 .name = "tod",
200 .rating = 400,
201 .read = read_tod_clock,
202 .mask = -1ULL,
203 .mult = 1000,
204 .shift = 12,
205 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
206 };
207
208 struct clocksource * __init clocksource_default_clock(void)
209 {
210 return &clocksource_tod;
211 }
212
213 void update_vsyscall(struct timekeeper *tk)
214 {
215 u64 nsecps;
216
217 if (tk->clock != &clocksource_tod)
218 return;
219
220 /* Make userspace gettimeofday spin until we're done. */
221 ++vdso_data->tb_update_count;
222 smp_wmb();
223 vdso_data->xtime_tod_stamp = tk->clock->cycle_last;
224 vdso_data->xtime_clock_sec = tk->xtime_sec;
225 vdso_data->xtime_clock_nsec = tk->xtime_nsec;
226 vdso_data->wtom_clock_sec =
227 tk->xtime_sec + tk->wall_to_monotonic.tv_sec;
228 vdso_data->wtom_clock_nsec = tk->xtime_nsec +
229 + ((u64) tk->wall_to_monotonic.tv_nsec << tk->shift);
230 nsecps = (u64) NSEC_PER_SEC << tk->shift;
231 while (vdso_data->wtom_clock_nsec >= nsecps) {
232 vdso_data->wtom_clock_nsec -= nsecps;
233 vdso_data->wtom_clock_sec++;
234 }
235 vdso_data->tk_mult = tk->mult;
236 vdso_data->tk_shift = tk->shift;
237 smp_wmb();
238 ++vdso_data->tb_update_count;
239 }
240
241 extern struct timezone sys_tz;
242
243 void update_vsyscall_tz(void)
244 {
245 /* Make userspace gettimeofday spin until we're done. */
246 ++vdso_data->tb_update_count;
247 smp_wmb();
248 vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
249 vdso_data->tz_dsttime = sys_tz.tz_dsttime;
250 smp_wmb();
251 ++vdso_data->tb_update_count;
252 }
253
254 /*
255 * Initialize the TOD clock and the CPU timer of
256 * the boot cpu.
257 */
258 void __init time_init(void)
259 {
260 /* Reset time synchronization interfaces. */
261 etr_reset();
262 stp_reset();
263
264 /* request the clock comparator external interrupt */
265 if (register_external_irq(EXT_IRQ_CLK_COMP, clock_comparator_interrupt))
266 panic("Couldn't request external interrupt 0x1004");
267
268 /* request the timing alert external interrupt */
269 if (register_external_irq(EXT_IRQ_TIMING_ALERT, timing_alert_interrupt))
270 panic("Couldn't request external interrupt 0x1406");
271
272 if (clocksource_register(&clocksource_tod) != 0)
273 panic("Could not register TOD clock source");
274
275 /* Enable TOD clock interrupts on the boot cpu. */
276 init_cpu_timer();
277
278 /* Enable cpu timer interrupts on the boot cpu. */
279 vtime_init();
280 }
281
282 /*
283 * The time is "clock". old is what we think the time is.
284 * Adjust the value by a multiple of jiffies and add the delta to ntp.
285 * "delay" is an approximation how long the synchronization took. If
286 * the time correction is positive, then "delay" is subtracted from
287 * the time difference and only the remaining part is passed to ntp.
288 */
289 static unsigned long long adjust_time(unsigned long long old,
290 unsigned long long clock,
291 unsigned long long delay)
292 {
293 unsigned long long delta, ticks;
294 struct timex adjust;
295
296 if (clock > old) {
297 /* It is later than we thought. */
298 delta = ticks = clock - old;
299 delta = ticks = (delta < delay) ? 0 : delta - delay;
300 delta -= do_div(ticks, CLK_TICKS_PER_JIFFY);
301 adjust.offset = ticks * (1000000 / HZ);
302 } else {
303 /* It is earlier than we thought. */
304 delta = ticks = old - clock;
305 delta -= do_div(ticks, CLK_TICKS_PER_JIFFY);
306 delta = -delta;
307 adjust.offset = -ticks * (1000000 / HZ);
308 }
309 sched_clock_base_cc += delta;
310 if (adjust.offset != 0) {
311 pr_notice("The ETR interface has adjusted the clock "
312 "by %li microseconds\n", adjust.offset);
313 adjust.modes = ADJ_OFFSET_SINGLESHOT;
314 do_adjtimex(&adjust);
315 }
316 return delta;
317 }
318
319 static DEFINE_PER_CPU(atomic_t, clock_sync_word);
320 static DEFINE_MUTEX(clock_sync_mutex);
321 static unsigned long clock_sync_flags;
322
323 #define CLOCK_SYNC_HAS_ETR 0
324 #define CLOCK_SYNC_HAS_STP 1
325 #define CLOCK_SYNC_ETR 2
326 #define CLOCK_SYNC_STP 3
327
328 /*
329 * The synchronous get_clock function. It will write the current clock
330 * value to the clock pointer and return 0 if the clock is in sync with
331 * the external time source. If the clock mode is local it will return
332 * -EOPNOTSUPP and -EAGAIN if the clock is not in sync with the external
333 * reference.
334 */
335 int get_sync_clock(unsigned long long *clock)
336 {
337 atomic_t *sw_ptr;
338 unsigned int sw0, sw1;
339
340 sw_ptr = &get_cpu_var(clock_sync_word);
341 sw0 = atomic_read(sw_ptr);
342 *clock = get_tod_clock();
343 sw1 = atomic_read(sw_ptr);
344 put_cpu_var(clock_sync_word);
345 if (sw0 == sw1 && (sw0 & 0x80000000U))
346 /* Success: time is in sync. */
347 return 0;
348 if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags) &&
349 !test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
350 return -EOPNOTSUPP;
351 if (!test_bit(CLOCK_SYNC_ETR, &clock_sync_flags) &&
352 !test_bit(CLOCK_SYNC_STP, &clock_sync_flags))
353 return -EACCES;
354 return -EAGAIN;
355 }
356 EXPORT_SYMBOL(get_sync_clock);
357
358 /*
359 * Make get_sync_clock return -EAGAIN.
360 */
361 static void disable_sync_clock(void *dummy)
362 {
363 atomic_t *sw_ptr = &__get_cpu_var(clock_sync_word);
364 /*
365 * Clear the in-sync bit 2^31. All get_sync_clock calls will
366 * fail until the sync bit is turned back on. In addition
367 * increase the "sequence" counter to avoid the race of an
368 * etr event and the complete recovery against get_sync_clock.
369 */
370 atomic_clear_mask(0x80000000, sw_ptr);
371 atomic_inc(sw_ptr);
372 }
373
374 /*
375 * Make get_sync_clock return 0 again.
376 * Needs to be called from a context disabled for preemption.
377 */
378 static void enable_sync_clock(void)
379 {
380 atomic_t *sw_ptr = &__get_cpu_var(clock_sync_word);
381 atomic_set_mask(0x80000000, sw_ptr);
382 }
383
384 /*
385 * Function to check if the clock is in sync.
386 */
387 static inline int check_sync_clock(void)
388 {
389 atomic_t *sw_ptr;
390 int rc;
391
392 sw_ptr = &get_cpu_var(clock_sync_word);
393 rc = (atomic_read(sw_ptr) & 0x80000000U) != 0;
394 put_cpu_var(clock_sync_word);
395 return rc;
396 }
397
398 /* Single threaded workqueue used for etr and stp sync events */
399 static struct workqueue_struct *time_sync_wq;
400
401 static void __init time_init_wq(void)
402 {
403 if (time_sync_wq)
404 return;
405 time_sync_wq = create_singlethread_workqueue("timesync");
406 }
407
408 /*
409 * External Time Reference (ETR) code.
410 */
411 static int etr_port0_online;
412 static int etr_port1_online;
413 static int etr_steai_available;
414
415 static int __init early_parse_etr(char *p)
416 {
417 if (strncmp(p, "off", 3) == 0)
418 etr_port0_online = etr_port1_online = 0;
419 else if (strncmp(p, "port0", 5) == 0)
420 etr_port0_online = 1;
421 else if (strncmp(p, "port1", 5) == 0)
422 etr_port1_online = 1;
423 else if (strncmp(p, "on", 2) == 0)
424 etr_port0_online = etr_port1_online = 1;
425 return 0;
426 }
427 early_param("etr", early_parse_etr);
428
429 enum etr_event {
430 ETR_EVENT_PORT0_CHANGE,
431 ETR_EVENT_PORT1_CHANGE,
432 ETR_EVENT_PORT_ALERT,
433 ETR_EVENT_SYNC_CHECK,
434 ETR_EVENT_SWITCH_LOCAL,
435 ETR_EVENT_UPDATE,
436 };
437
438 /*
439 * Valid bit combinations of the eacr register are (x = don't care):
440 * e0 e1 dp p0 p1 ea es sl
441 * 0 0 x 0 0 0 0 0 initial, disabled state
442 * 0 0 x 0 1 1 0 0 port 1 online
443 * 0 0 x 1 0 1 0 0 port 0 online
444 * 0 0 x 1 1 1 0 0 both ports online
445 * 0 1 x 0 1 1 0 0 port 1 online and usable, ETR or PPS mode
446 * 0 1 x 0 1 1 0 1 port 1 online, usable and ETR mode
447 * 0 1 x 0 1 1 1 0 port 1 online, usable, PPS mode, in-sync
448 * 0 1 x 0 1 1 1 1 port 1 online, usable, ETR mode, in-sync
449 * 0 1 x 1 1 1 0 0 both ports online, port 1 usable
450 * 0 1 x 1 1 1 1 0 both ports online, port 1 usable, PPS mode, in-sync
451 * 0 1 x 1 1 1 1 1 both ports online, port 1 usable, ETR mode, in-sync
452 * 1 0 x 1 0 1 0 0 port 0 online and usable, ETR or PPS mode
453 * 1 0 x 1 0 1 0 1 port 0 online, usable and ETR mode
454 * 1 0 x 1 0 1 1 0 port 0 online, usable, PPS mode, in-sync
455 * 1 0 x 1 0 1 1 1 port 0 online, usable, ETR mode, in-sync
456 * 1 0 x 1 1 1 0 0 both ports online, port 0 usable
457 * 1 0 x 1 1 1 1 0 both ports online, port 0 usable, PPS mode, in-sync
458 * 1 0 x 1 1 1 1 1 both ports online, port 0 usable, ETR mode, in-sync
459 * 1 1 x 1 1 1 1 0 both ports online & usable, ETR, in-sync
460 * 1 1 x 1 1 1 1 1 both ports online & usable, ETR, in-sync
461 */
462 static struct etr_eacr etr_eacr;
463 static u64 etr_tolec; /* time of last eacr update */
464 static struct etr_aib etr_port0;
465 static int etr_port0_uptodate;
466 static struct etr_aib etr_port1;
467 static int etr_port1_uptodate;
468 static unsigned long etr_events;
469 static struct timer_list etr_timer;
470
471 static void etr_timeout(unsigned long dummy);
472 static void etr_work_fn(struct work_struct *work);
473 static DEFINE_MUTEX(etr_work_mutex);
474 static DECLARE_WORK(etr_work, etr_work_fn);
475
476 /*
477 * Reset ETR attachment.
478 */
479 static void etr_reset(void)
480 {
481 etr_eacr = (struct etr_eacr) {
482 .e0 = 0, .e1 = 0, ._pad0 = 4, .dp = 0,
483 .p0 = 0, .p1 = 0, ._pad1 = 0, .ea = 0,
484 .es = 0, .sl = 0 };
485 if (etr_setr(&etr_eacr) == 0) {
486 etr_tolec = get_tod_clock();
487 set_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags);
488 if (etr_port0_online && etr_port1_online)
489 set_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
490 } else if (etr_port0_online || etr_port1_online) {
491 pr_warning("The real or virtual hardware system does "
492 "not provide an ETR interface\n");
493 etr_port0_online = etr_port1_online = 0;
494 }
495 }
496
497 static int __init etr_init(void)
498 {
499 struct etr_aib aib;
500
501 if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags))
502 return 0;
503 time_init_wq();
504 /* Check if this machine has the steai instruction. */
505 if (etr_steai(&aib, ETR_STEAI_STEPPING_PORT) == 0)
506 etr_steai_available = 1;
507 setup_timer(&etr_timer, etr_timeout, 0UL);
508 if (etr_port0_online) {
509 set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events);
510 queue_work(time_sync_wq, &etr_work);
511 }
512 if (etr_port1_online) {
513 set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events);
514 queue_work(time_sync_wq, &etr_work);
515 }
516 return 0;
517 }
518
519 arch_initcall(etr_init);
520
521 /*
522 * Two sorts of ETR machine checks. The architecture reads:
523 * "When a machine-check niterruption occurs and if a switch-to-local or
524 * ETR-sync-check interrupt request is pending but disabled, this pending
525 * disabled interruption request is indicated and is cleared".
526 * Which means that we can get etr_switch_to_local events from the machine
527 * check handler although the interruption condition is disabled. Lovely..
528 */
529
530 /*
531 * Switch to local machine check. This is called when the last usable
532 * ETR port goes inactive. After switch to local the clock is not in sync.
533 */
534 void etr_switch_to_local(void)
535 {
536 if (!etr_eacr.sl)
537 return;
538 disable_sync_clock(NULL);
539 if (!test_and_set_bit(ETR_EVENT_SWITCH_LOCAL, &etr_events)) {
540 etr_eacr.es = etr_eacr.sl = 0;
541 etr_setr(&etr_eacr);
542 queue_work(time_sync_wq, &etr_work);
543 }
544 }
545
546 /*
547 * ETR sync check machine check. This is called when the ETR OTE and the
548 * local clock OTE are farther apart than the ETR sync check tolerance.
549 * After a ETR sync check the clock is not in sync. The machine check
550 * is broadcasted to all cpus at the same time.
551 */
552 void etr_sync_check(void)
553 {
554 if (!etr_eacr.es)
555 return;
556 disable_sync_clock(NULL);
557 if (!test_and_set_bit(ETR_EVENT_SYNC_CHECK, &etr_events)) {
558 etr_eacr.es = 0;
559 etr_setr(&etr_eacr);
560 queue_work(time_sync_wq, &etr_work);
561 }
562 }
563
564 /*
565 * ETR timing alert. There are two causes:
566 * 1) port state change, check the usability of the port
567 * 2) port alert, one of the ETR-data-validity bits (v1-v2 bits of the
568 * sldr-status word) or ETR-data word 1 (edf1) or ETR-data word 3 (edf3)
569 * or ETR-data word 4 (edf4) has changed.
570 */
571 static void etr_timing_alert(struct etr_irq_parm *intparm)
572 {
573 if (intparm->pc0)
574 /* ETR port 0 state change. */
575 set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events);
576 if (intparm->pc1)
577 /* ETR port 1 state change. */
578 set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events);
579 if (intparm->eai)
580 /*
581 * ETR port alert on either port 0, 1 or both.
582 * Both ports are not up-to-date now.
583 */
584 set_bit(ETR_EVENT_PORT_ALERT, &etr_events);
585 queue_work(time_sync_wq, &etr_work);
586 }
587
588 static void etr_timeout(unsigned long dummy)
589 {
590 set_bit(ETR_EVENT_UPDATE, &etr_events);
591 queue_work(time_sync_wq, &etr_work);
592 }
593
594 /*
595 * Check if the etr mode is pss.
596 */
597 static inline int etr_mode_is_pps(struct etr_eacr eacr)
598 {
599 return eacr.es && !eacr.sl;
600 }
601
602 /*
603 * Check if the etr mode is etr.
604 */
605 static inline int etr_mode_is_etr(struct etr_eacr eacr)
606 {
607 return eacr.es && eacr.sl;
608 }
609
610 /*
611 * Check if the port can be used for TOD synchronization.
612 * For PPS mode the port has to receive OTEs. For ETR mode
613 * the port has to receive OTEs, the ETR stepping bit has to
614 * be zero and the validity bits for data frame 1, 2, and 3
615 * have to be 1.
616 */
617 static int etr_port_valid(struct etr_aib *aib, int port)
618 {
619 unsigned int psc;
620
621 /* Check that this port is receiving OTEs. */
622 if (aib->tsp == 0)
623 return 0;
624
625 psc = port ? aib->esw.psc1 : aib->esw.psc0;
626 if (psc == etr_lpsc_pps_mode)
627 return 1;
628 if (psc == etr_lpsc_operational_step)
629 return !aib->esw.y && aib->slsw.v1 &&
630 aib->slsw.v2 && aib->slsw.v3;
631 return 0;
632 }
633
634 /*
635 * Check if two ports are on the same network.
636 */
637 static int etr_compare_network(struct etr_aib *aib1, struct etr_aib *aib2)
638 {
639 // FIXME: any other fields we have to compare?
640 return aib1->edf1.net_id == aib2->edf1.net_id;
641 }
642
643 /*
644 * Wrapper for etr_stei that converts physical port states
645 * to logical port states to be consistent with the output
646 * of stetr (see etr_psc vs. etr_lpsc).
647 */
648 static void etr_steai_cv(struct etr_aib *aib, unsigned int func)
649 {
650 BUG_ON(etr_steai(aib, func) != 0);
651 /* Convert port state to logical port state. */
652 if (aib->esw.psc0 == 1)
653 aib->esw.psc0 = 2;
654 else if (aib->esw.psc0 == 0 && aib->esw.p == 0)
655 aib->esw.psc0 = 1;
656 if (aib->esw.psc1 == 1)
657 aib->esw.psc1 = 2;
658 else if (aib->esw.psc1 == 0 && aib->esw.p == 1)
659 aib->esw.psc1 = 1;
660 }
661
662 /*
663 * Check if the aib a2 is still connected to the same attachment as
664 * aib a1, the etv values differ by one and a2 is valid.
665 */
666 static int etr_aib_follows(struct etr_aib *a1, struct etr_aib *a2, int p)
667 {
668 int state_a1, state_a2;
669
670 /* Paranoia check: e0/e1 should better be the same. */
671 if (a1->esw.eacr.e0 != a2->esw.eacr.e0 ||
672 a1->esw.eacr.e1 != a2->esw.eacr.e1)
673 return 0;
674
675 /* Still connected to the same etr ? */
676 state_a1 = p ? a1->esw.psc1 : a1->esw.psc0;
677 state_a2 = p ? a2->esw.psc1 : a2->esw.psc0;
678 if (state_a1 == etr_lpsc_operational_step) {
679 if (state_a2 != etr_lpsc_operational_step ||
680 a1->edf1.net_id != a2->edf1.net_id ||
681 a1->edf1.etr_id != a2->edf1.etr_id ||
682 a1->edf1.etr_pn != a2->edf1.etr_pn)
683 return 0;
684 } else if (state_a2 != etr_lpsc_pps_mode)
685 return 0;
686
687 /* The ETV value of a2 needs to be ETV of a1 + 1. */
688 if (a1->edf2.etv + 1 != a2->edf2.etv)
689 return 0;
690
691 if (!etr_port_valid(a2, p))
692 return 0;
693
694 return 1;
695 }
696
697 struct clock_sync_data {
698 atomic_t cpus;
699 int in_sync;
700 unsigned long long fixup_cc;
701 int etr_port;
702 struct etr_aib *etr_aib;
703 };
704
705 static void clock_sync_cpu(struct clock_sync_data *sync)
706 {
707 atomic_dec(&sync->cpus);
708 enable_sync_clock();
709 /*
710 * This looks like a busy wait loop but it isn't. etr_sync_cpus
711 * is called on all other cpus while the TOD clocks is stopped.
712 * __udelay will stop the cpu on an enabled wait psw until the
713 * TOD is running again.
714 */
715 while (sync->in_sync == 0) {
716 __udelay(1);
717 /*
718 * A different cpu changes *in_sync. Therefore use
719 * barrier() to force memory access.
720 */
721 barrier();
722 }
723 if (sync->in_sync != 1)
724 /* Didn't work. Clear per-cpu in sync bit again. */
725 disable_sync_clock(NULL);
726 /*
727 * This round of TOD syncing is done. Set the clock comparator
728 * to the next tick and let the processor continue.
729 */
730 fixup_clock_comparator(sync->fixup_cc);
731 }
732
733 /*
734 * Sync the TOD clock using the port referred to by aibp. This port
735 * has to be enabled and the other port has to be disabled. The
736 * last eacr update has to be more than 1.6 seconds in the past.
737 */
738 static int etr_sync_clock(void *data)
739 {
740 static int first;
741 unsigned long long clock, old_clock, delay, delta;
742 struct clock_sync_data *etr_sync;
743 struct etr_aib *sync_port, *aib;
744 int port;
745 int rc;
746
747 etr_sync = data;
748
749 if (xchg(&first, 1) == 1) {
750 /* Slave */
751 clock_sync_cpu(etr_sync);
752 return 0;
753 }
754
755 /* Wait until all other cpus entered the sync function. */
756 while (atomic_read(&etr_sync->cpus) != 0)
757 cpu_relax();
758
759 port = etr_sync->etr_port;
760 aib = etr_sync->etr_aib;
761 sync_port = (port == 0) ? &etr_port0 : &etr_port1;
762 enable_sync_clock();
763
764 /* Set clock to next OTE. */
765 __ctl_set_bit(14, 21);
766 __ctl_set_bit(0, 29);
767 clock = ((unsigned long long) (aib->edf2.etv + 1)) << 32;
768 old_clock = get_tod_clock();
769 if (set_tod_clock(clock) == 0) {
770 __udelay(1); /* Wait for the clock to start. */
771 __ctl_clear_bit(0, 29);
772 __ctl_clear_bit(14, 21);
773 etr_stetr(aib);
774 /* Adjust Linux timing variables. */
775 delay = (unsigned long long)
776 (aib->edf2.etv - sync_port->edf2.etv) << 32;
777 delta = adjust_time(old_clock, clock, delay);
778 etr_sync->fixup_cc = delta;
779 fixup_clock_comparator(delta);
780 /* Verify that the clock is properly set. */
781 if (!etr_aib_follows(sync_port, aib, port)) {
782 /* Didn't work. */
783 disable_sync_clock(NULL);
784 etr_sync->in_sync = -EAGAIN;
785 rc = -EAGAIN;
786 } else {
787 etr_sync->in_sync = 1;
788 rc = 0;
789 }
790 } else {
791 /* Could not set the clock ?!? */
792 __ctl_clear_bit(0, 29);
793 __ctl_clear_bit(14, 21);
794 disable_sync_clock(NULL);
795 etr_sync->in_sync = -EAGAIN;
796 rc = -EAGAIN;
797 }
798 xchg(&first, 0);
799 return rc;
800 }
801
802 static int etr_sync_clock_stop(struct etr_aib *aib, int port)
803 {
804 struct clock_sync_data etr_sync;
805 struct etr_aib *sync_port;
806 int follows;
807 int rc;
808
809 /* Check if the current aib is adjacent to the sync port aib. */
810 sync_port = (port == 0) ? &etr_port0 : &etr_port1;
811 follows = etr_aib_follows(sync_port, aib, port);
812 memcpy(sync_port, aib, sizeof(*aib));
813 if (!follows)
814 return -EAGAIN;
815 memset(&etr_sync, 0, sizeof(etr_sync));
816 etr_sync.etr_aib = aib;
817 etr_sync.etr_port = port;
818 get_online_cpus();
819 atomic_set(&etr_sync.cpus, num_online_cpus() - 1);
820 rc = stop_machine(etr_sync_clock, &etr_sync, cpu_online_mask);
821 put_online_cpus();
822 return rc;
823 }
824
825 /*
826 * Handle the immediate effects of the different events.
827 * The port change event is used for online/offline changes.
828 */
829 static struct etr_eacr etr_handle_events(struct etr_eacr eacr)
830 {
831 if (test_and_clear_bit(ETR_EVENT_SYNC_CHECK, &etr_events))
832 eacr.es = 0;
833 if (test_and_clear_bit(ETR_EVENT_SWITCH_LOCAL, &etr_events))
834 eacr.es = eacr.sl = 0;
835 if (test_and_clear_bit(ETR_EVENT_PORT_ALERT, &etr_events))
836 etr_port0_uptodate = etr_port1_uptodate = 0;
837
838 if (test_and_clear_bit(ETR_EVENT_PORT0_CHANGE, &etr_events)) {
839 if (eacr.e0)
840 /*
841 * Port change of an enabled port. We have to
842 * assume that this can have caused an stepping
843 * port switch.
844 */
845 etr_tolec = get_tod_clock();
846 eacr.p0 = etr_port0_online;
847 if (!eacr.p0)
848 eacr.e0 = 0;
849 etr_port0_uptodate = 0;
850 }
851 if (test_and_clear_bit(ETR_EVENT_PORT1_CHANGE, &etr_events)) {
852 if (eacr.e1)
853 /*
854 * Port change of an enabled port. We have to
855 * assume that this can have caused an stepping
856 * port switch.
857 */
858 etr_tolec = get_tod_clock();
859 eacr.p1 = etr_port1_online;
860 if (!eacr.p1)
861 eacr.e1 = 0;
862 etr_port1_uptodate = 0;
863 }
864 clear_bit(ETR_EVENT_UPDATE, &etr_events);
865 return eacr;
866 }
867
868 /*
869 * Set up a timer that expires after the etr_tolec + 1.6 seconds if
870 * one of the ports needs an update.
871 */
872 static void etr_set_tolec_timeout(unsigned long long now)
873 {
874 unsigned long micros;
875
876 if ((!etr_eacr.p0 || etr_port0_uptodate) &&
877 (!etr_eacr.p1 || etr_port1_uptodate))
878 return;
879 micros = (now > etr_tolec) ? ((now - etr_tolec) >> 12) : 0;
880 micros = (micros > 1600000) ? 0 : 1600000 - micros;
881 mod_timer(&etr_timer, jiffies + (micros * HZ) / 1000000 + 1);
882 }
883
884 /*
885 * Set up a time that expires after 1/2 second.
886 */
887 static void etr_set_sync_timeout(void)
888 {
889 mod_timer(&etr_timer, jiffies + HZ/2);
890 }
891
892 /*
893 * Update the aib information for one or both ports.
894 */
895 static struct etr_eacr etr_handle_update(struct etr_aib *aib,
896 struct etr_eacr eacr)
897 {
898 /* With both ports disabled the aib information is useless. */
899 if (!eacr.e0 && !eacr.e1)
900 return eacr;
901
902 /* Update port0 or port1 with aib stored in etr_work_fn. */
903 if (aib->esw.q == 0) {
904 /* Information for port 0 stored. */
905 if (eacr.p0 && !etr_port0_uptodate) {
906 etr_port0 = *aib;
907 if (etr_port0_online)
908 etr_port0_uptodate = 1;
909 }
910 } else {
911 /* Information for port 1 stored. */
912 if (eacr.p1 && !etr_port1_uptodate) {
913 etr_port1 = *aib;
914 if (etr_port0_online)
915 etr_port1_uptodate = 1;
916 }
917 }
918
919 /*
920 * Do not try to get the alternate port aib if the clock
921 * is not in sync yet.
922 */
923 if (!eacr.es || !check_sync_clock())
924 return eacr;
925
926 /*
927 * If steai is available we can get the information about
928 * the other port immediately. If only stetr is available the
929 * data-port bit toggle has to be used.
930 */
931 if (etr_steai_available) {
932 if (eacr.p0 && !etr_port0_uptodate) {
933 etr_steai_cv(&etr_port0, ETR_STEAI_PORT_0);
934 etr_port0_uptodate = 1;
935 }
936 if (eacr.p1 && !etr_port1_uptodate) {
937 etr_steai_cv(&etr_port1, ETR_STEAI_PORT_1);
938 etr_port1_uptodate = 1;
939 }
940 } else {
941 /*
942 * One port was updated above, if the other
943 * port is not uptodate toggle dp bit.
944 */
945 if ((eacr.p0 && !etr_port0_uptodate) ||
946 (eacr.p1 && !etr_port1_uptodate))
947 eacr.dp ^= 1;
948 else
949 eacr.dp = 0;
950 }
951 return eacr;
952 }
953
954 /*
955 * Write new etr control register if it differs from the current one.
956 * Return 1 if etr_tolec has been updated as well.
957 */
958 static void etr_update_eacr(struct etr_eacr eacr)
959 {
960 int dp_changed;
961
962 if (memcmp(&etr_eacr, &eacr, sizeof(eacr)) == 0)
963 /* No change, return. */
964 return;
965 /*
966 * The disable of an active port of the change of the data port
967 * bit can/will cause a change in the data port.
968 */
969 dp_changed = etr_eacr.e0 > eacr.e0 || etr_eacr.e1 > eacr.e1 ||
970 (etr_eacr.dp ^ eacr.dp) != 0;
971 etr_eacr = eacr;
972 etr_setr(&etr_eacr);
973 if (dp_changed)
974 etr_tolec = get_tod_clock();
975 }
976
977 /*
978 * ETR work. In this function you'll find the main logic. In
979 * particular this is the only function that calls etr_update_eacr(),
980 * it "controls" the etr control register.
981 */
982 static void etr_work_fn(struct work_struct *work)
983 {
984 unsigned long long now;
985 struct etr_eacr eacr;
986 struct etr_aib aib;
987 int sync_port;
988
989 /* prevent multiple execution. */
990 mutex_lock(&etr_work_mutex);
991
992 /* Create working copy of etr_eacr. */
993 eacr = etr_eacr;
994
995 /* Check for the different events and their immediate effects. */
996 eacr = etr_handle_events(eacr);
997
998 /* Check if ETR is supposed to be active. */
999 eacr.ea = eacr.p0 || eacr.p1;
1000 if (!eacr.ea) {
1001 /* Both ports offline. Reset everything. */
1002 eacr.dp = eacr.es = eacr.sl = 0;
1003 on_each_cpu(disable_sync_clock, NULL, 1);
1004 del_timer_sync(&etr_timer);
1005 etr_update_eacr(eacr);
1006 goto out_unlock;
1007 }
1008
1009 /* Store aib to get the current ETR status word. */
1010 BUG_ON(etr_stetr(&aib) != 0);
1011 etr_port0.esw = etr_port1.esw = aib.esw; /* Copy status word. */
1012 now = get_tod_clock();
1013
1014 /*
1015 * Update the port information if the last stepping port change
1016 * or data port change is older than 1.6 seconds.
1017 */
1018 if (now >= etr_tolec + (1600000 << 12))
1019 eacr = etr_handle_update(&aib, eacr);
1020
1021 /*
1022 * Select ports to enable. The preferred synchronization mode is PPS.
1023 * If a port can be enabled depends on a number of things:
1024 * 1) The port needs to be online and uptodate. A port is not
1025 * disabled just because it is not uptodate, but it is only
1026 * enabled if it is uptodate.
1027 * 2) The port needs to have the same mode (pps / etr).
1028 * 3) The port needs to be usable -> etr_port_valid() == 1
1029 * 4) To enable the second port the clock needs to be in sync.
1030 * 5) If both ports are useable and are ETR ports, the network id
1031 * has to be the same.
1032 * The eacr.sl bit is used to indicate etr mode vs. pps mode.
1033 */
1034 if (eacr.p0 && aib.esw.psc0 == etr_lpsc_pps_mode) {
1035 eacr.sl = 0;
1036 eacr.e0 = 1;
1037 if (!etr_mode_is_pps(etr_eacr))
1038 eacr.es = 0;
1039 if (!eacr.es || !eacr.p1 || aib.esw.psc1 != etr_lpsc_pps_mode)
1040 eacr.e1 = 0;
1041 // FIXME: uptodate checks ?
1042 else if (etr_port0_uptodate && etr_port1_uptodate)
1043 eacr.e1 = 1;
1044 sync_port = (etr_port0_uptodate &&
1045 etr_port_valid(&etr_port0, 0)) ? 0 : -1;
1046 } else if (eacr.p1 && aib.esw.psc1 == etr_lpsc_pps_mode) {
1047 eacr.sl = 0;
1048 eacr.e0 = 0;
1049 eacr.e1 = 1;
1050 if (!etr_mode_is_pps(etr_eacr))
1051 eacr.es = 0;
1052 sync_port = (etr_port1_uptodate &&
1053 etr_port_valid(&etr_port1, 1)) ? 1 : -1;
1054 } else if (eacr.p0 && aib.esw.psc0 == etr_lpsc_operational_step) {
1055 eacr.sl = 1;
1056 eacr.e0 = 1;
1057 if (!etr_mode_is_etr(etr_eacr))
1058 eacr.es = 0;
1059 if (!eacr.es || !eacr.p1 ||
1060 aib.esw.psc1 != etr_lpsc_operational_alt)
1061 eacr.e1 = 0;
1062 else if (etr_port0_uptodate && etr_port1_uptodate &&
1063 etr_compare_network(&etr_port0, &etr_port1))
1064 eacr.e1 = 1;
1065 sync_port = (etr_port0_uptodate &&
1066 etr_port_valid(&etr_port0, 0)) ? 0 : -1;
1067 } else if (eacr.p1 && aib.esw.psc1 == etr_lpsc_operational_step) {
1068 eacr.sl = 1;
1069 eacr.e0 = 0;
1070 eacr.e1 = 1;
1071 if (!etr_mode_is_etr(etr_eacr))
1072 eacr.es = 0;
1073 sync_port = (etr_port1_uptodate &&
1074 etr_port_valid(&etr_port1, 1)) ? 1 : -1;
1075 } else {
1076 /* Both ports not usable. */
1077 eacr.es = eacr.sl = 0;
1078 sync_port = -1;
1079 }
1080
1081 /*
1082 * If the clock is in sync just update the eacr and return.
1083 * If there is no valid sync port wait for a port update.
1084 */
1085 if ((eacr.es && check_sync_clock()) || sync_port < 0) {
1086 etr_update_eacr(eacr);
1087 etr_set_tolec_timeout(now);
1088 goto out_unlock;
1089 }
1090
1091 /*
1092 * Prepare control register for clock syncing
1093 * (reset data port bit, set sync check control.
1094 */
1095 eacr.dp = 0;
1096 eacr.es = 1;
1097
1098 /*
1099 * Update eacr and try to synchronize the clock. If the update
1100 * of eacr caused a stepping port switch (or if we have to
1101 * assume that a stepping port switch has occurred) or the
1102 * clock syncing failed, reset the sync check control bit
1103 * and set up a timer to try again after 0.5 seconds
1104 */
1105 etr_update_eacr(eacr);
1106 if (now < etr_tolec + (1600000 << 12) ||
1107 etr_sync_clock_stop(&aib, sync_port) != 0) {
1108 /* Sync failed. Try again in 1/2 second. */
1109 eacr.es = 0;
1110 etr_update_eacr(eacr);
1111 etr_set_sync_timeout();
1112 } else
1113 etr_set_tolec_timeout(now);
1114 out_unlock:
1115 mutex_unlock(&etr_work_mutex);
1116 }
1117
1118 /*
1119 * Sysfs interface functions
1120 */
1121 static struct bus_type etr_subsys = {
1122 .name = "etr",
1123 .dev_name = "etr",
1124 };
1125
1126 static struct device etr_port0_dev = {
1127 .id = 0,
1128 .bus = &etr_subsys,
1129 };
1130
1131 static struct device etr_port1_dev = {
1132 .id = 1,
1133 .bus = &etr_subsys,
1134 };
1135
1136 /*
1137 * ETR subsys attributes
1138 */
1139 static ssize_t etr_stepping_port_show(struct device *dev,
1140 struct device_attribute *attr,
1141 char *buf)
1142 {
1143 return sprintf(buf, "%i\n", etr_port0.esw.p);
1144 }
1145
1146 static DEVICE_ATTR(stepping_port, 0400, etr_stepping_port_show, NULL);
1147
1148 static ssize_t etr_stepping_mode_show(struct device *dev,
1149 struct device_attribute *attr,
1150 char *buf)
1151 {
1152 char *mode_str;
1153
1154 if (etr_mode_is_pps(etr_eacr))
1155 mode_str = "pps";
1156 else if (etr_mode_is_etr(etr_eacr))
1157 mode_str = "etr";
1158 else
1159 mode_str = "local";
1160 return sprintf(buf, "%s\n", mode_str);
1161 }
1162
1163 static DEVICE_ATTR(stepping_mode, 0400, etr_stepping_mode_show, NULL);
1164
1165 /*
1166 * ETR port attributes
1167 */
1168 static inline struct etr_aib *etr_aib_from_dev(struct device *dev)
1169 {
1170 if (dev == &etr_port0_dev)
1171 return etr_port0_online ? &etr_port0 : NULL;
1172 else
1173 return etr_port1_online ? &etr_port1 : NULL;
1174 }
1175
1176 static ssize_t etr_online_show(struct device *dev,
1177 struct device_attribute *attr,
1178 char *buf)
1179 {
1180 unsigned int online;
1181
1182 online = (dev == &etr_port0_dev) ? etr_port0_online : etr_port1_online;
1183 return sprintf(buf, "%i\n", online);
1184 }
1185
1186 static ssize_t etr_online_store(struct device *dev,
1187 struct device_attribute *attr,
1188 const char *buf, size_t count)
1189 {
1190 unsigned int value;
1191
1192 value = simple_strtoul(buf, NULL, 0);
1193 if (value != 0 && value != 1)
1194 return -EINVAL;
1195 if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags))
1196 return -EOPNOTSUPP;
1197 mutex_lock(&clock_sync_mutex);
1198 if (dev == &etr_port0_dev) {
1199 if (etr_port0_online == value)
1200 goto out; /* Nothing to do. */
1201 etr_port0_online = value;
1202 if (etr_port0_online && etr_port1_online)
1203 set_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1204 else
1205 clear_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1206 set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events);
1207 queue_work(time_sync_wq, &etr_work);
1208 } else {
1209 if (etr_port1_online == value)
1210 goto out; /* Nothing to do. */
1211 etr_port1_online = value;
1212 if (etr_port0_online && etr_port1_online)
1213 set_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1214 else
1215 clear_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1216 set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events);
1217 queue_work(time_sync_wq, &etr_work);
1218 }
1219 out:
1220 mutex_unlock(&clock_sync_mutex);
1221 return count;
1222 }
1223
1224 static DEVICE_ATTR(online, 0600, etr_online_show, etr_online_store);
1225
1226 static ssize_t etr_stepping_control_show(struct device *dev,
1227 struct device_attribute *attr,
1228 char *buf)
1229 {
1230 return sprintf(buf, "%i\n", (dev == &etr_port0_dev) ?
1231 etr_eacr.e0 : etr_eacr.e1);
1232 }
1233
1234 static DEVICE_ATTR(stepping_control, 0400, etr_stepping_control_show, NULL);
1235
1236 static ssize_t etr_mode_code_show(struct device *dev,
1237 struct device_attribute *attr, char *buf)
1238 {
1239 if (!etr_port0_online && !etr_port1_online)
1240 /* Status word is not uptodate if both ports are offline. */
1241 return -ENODATA;
1242 return sprintf(buf, "%i\n", (dev == &etr_port0_dev) ?
1243 etr_port0.esw.psc0 : etr_port0.esw.psc1);
1244 }
1245
1246 static DEVICE_ATTR(state_code, 0400, etr_mode_code_show, NULL);
1247
1248 static ssize_t etr_untuned_show(struct device *dev,
1249 struct device_attribute *attr, char *buf)
1250 {
1251 struct etr_aib *aib = etr_aib_from_dev(dev);
1252
1253 if (!aib || !aib->slsw.v1)
1254 return -ENODATA;
1255 return sprintf(buf, "%i\n", aib->edf1.u);
1256 }
1257
1258 static DEVICE_ATTR(untuned, 0400, etr_untuned_show, NULL);
1259
1260 static ssize_t etr_network_id_show(struct device *dev,
1261 struct device_attribute *attr, char *buf)
1262 {
1263 struct etr_aib *aib = etr_aib_from_dev(dev);
1264
1265 if (!aib || !aib->slsw.v1)
1266 return -ENODATA;
1267 return sprintf(buf, "%i\n", aib->edf1.net_id);
1268 }
1269
1270 static DEVICE_ATTR(network, 0400, etr_network_id_show, NULL);
1271
1272 static ssize_t etr_id_show(struct device *dev,
1273 struct device_attribute *attr, char *buf)
1274 {
1275 struct etr_aib *aib = etr_aib_from_dev(dev);
1276
1277 if (!aib || !aib->slsw.v1)
1278 return -ENODATA;
1279 return sprintf(buf, "%i\n", aib->edf1.etr_id);
1280 }
1281
1282 static DEVICE_ATTR(id, 0400, etr_id_show, NULL);
1283
1284 static ssize_t etr_port_number_show(struct device *dev,
1285 struct device_attribute *attr, char *buf)
1286 {
1287 struct etr_aib *aib = etr_aib_from_dev(dev);
1288
1289 if (!aib || !aib->slsw.v1)
1290 return -ENODATA;
1291 return sprintf(buf, "%i\n", aib->edf1.etr_pn);
1292 }
1293
1294 static DEVICE_ATTR(port, 0400, etr_port_number_show, NULL);
1295
1296 static ssize_t etr_coupled_show(struct device *dev,
1297 struct device_attribute *attr, char *buf)
1298 {
1299 struct etr_aib *aib = etr_aib_from_dev(dev);
1300
1301 if (!aib || !aib->slsw.v3)
1302 return -ENODATA;
1303 return sprintf(buf, "%i\n", aib->edf3.c);
1304 }
1305
1306 static DEVICE_ATTR(coupled, 0400, etr_coupled_show, NULL);
1307
1308 static ssize_t etr_local_time_show(struct device *dev,
1309 struct device_attribute *attr, char *buf)
1310 {
1311 struct etr_aib *aib = etr_aib_from_dev(dev);
1312
1313 if (!aib || !aib->slsw.v3)
1314 return -ENODATA;
1315 return sprintf(buf, "%i\n", aib->edf3.blto);
1316 }
1317
1318 static DEVICE_ATTR(local_time, 0400, etr_local_time_show, NULL);
1319
1320 static ssize_t etr_utc_offset_show(struct device *dev,
1321 struct device_attribute *attr, char *buf)
1322 {
1323 struct etr_aib *aib = etr_aib_from_dev(dev);
1324
1325 if (!aib || !aib->slsw.v3)
1326 return -ENODATA;
1327 return sprintf(buf, "%i\n", aib->edf3.buo);
1328 }
1329
1330 static DEVICE_ATTR(utc_offset, 0400, etr_utc_offset_show, NULL);
1331
1332 static struct device_attribute *etr_port_attributes[] = {
1333 &dev_attr_online,
1334 &dev_attr_stepping_control,
1335 &dev_attr_state_code,
1336 &dev_attr_untuned,
1337 &dev_attr_network,
1338 &dev_attr_id,
1339 &dev_attr_port,
1340 &dev_attr_coupled,
1341 &dev_attr_local_time,
1342 &dev_attr_utc_offset,
1343 NULL
1344 };
1345
1346 static int __init etr_register_port(struct device *dev)
1347 {
1348 struct device_attribute **attr;
1349 int rc;
1350
1351 rc = device_register(dev);
1352 if (rc)
1353 goto out;
1354 for (attr = etr_port_attributes; *attr; attr++) {
1355 rc = device_create_file(dev, *attr);
1356 if (rc)
1357 goto out_unreg;
1358 }
1359 return 0;
1360 out_unreg:
1361 for (; attr >= etr_port_attributes; attr--)
1362 device_remove_file(dev, *attr);
1363 device_unregister(dev);
1364 out:
1365 return rc;
1366 }
1367
1368 static void __init etr_unregister_port(struct device *dev)
1369 {
1370 struct device_attribute **attr;
1371
1372 for (attr = etr_port_attributes; *attr; attr++)
1373 device_remove_file(dev, *attr);
1374 device_unregister(dev);
1375 }
1376
1377 static int __init etr_init_sysfs(void)
1378 {
1379 int rc;
1380
1381 rc = subsys_system_register(&etr_subsys, NULL);
1382 if (rc)
1383 goto out;
1384 rc = device_create_file(etr_subsys.dev_root, &dev_attr_stepping_port);
1385 if (rc)
1386 goto out_unreg_subsys;
1387 rc = device_create_file(etr_subsys.dev_root, &dev_attr_stepping_mode);
1388 if (rc)
1389 goto out_remove_stepping_port;
1390 rc = etr_register_port(&etr_port0_dev);
1391 if (rc)
1392 goto out_remove_stepping_mode;
1393 rc = etr_register_port(&etr_port1_dev);
1394 if (rc)
1395 goto out_remove_port0;
1396 return 0;
1397
1398 out_remove_port0:
1399 etr_unregister_port(&etr_port0_dev);
1400 out_remove_stepping_mode:
1401 device_remove_file(etr_subsys.dev_root, &dev_attr_stepping_mode);
1402 out_remove_stepping_port:
1403 device_remove_file(etr_subsys.dev_root, &dev_attr_stepping_port);
1404 out_unreg_subsys:
1405 bus_unregister(&etr_subsys);
1406 out:
1407 return rc;
1408 }
1409
1410 device_initcall(etr_init_sysfs);
1411
1412 /*
1413 * Server Time Protocol (STP) code.
1414 */
1415 static int stp_online;
1416 static struct stp_sstpi stp_info;
1417 static void *stp_page;
1418
1419 static void stp_work_fn(struct work_struct *work);
1420 static DEFINE_MUTEX(stp_work_mutex);
1421 static DECLARE_WORK(stp_work, stp_work_fn);
1422 static struct timer_list stp_timer;
1423
1424 static int __init early_parse_stp(char *p)
1425 {
1426 if (strncmp(p, "off", 3) == 0)
1427 stp_online = 0;
1428 else if (strncmp(p, "on", 2) == 0)
1429 stp_online = 1;
1430 return 0;
1431 }
1432 early_param("stp", early_parse_stp);
1433
1434 /*
1435 * Reset STP attachment.
1436 */
1437 static void __init stp_reset(void)
1438 {
1439 int rc;
1440
1441 stp_page = (void *) get_zeroed_page(GFP_ATOMIC);
1442 rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000);
1443 if (rc == 0)
1444 set_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags);
1445 else if (stp_online) {
1446 pr_warning("The real or virtual hardware system does "
1447 "not provide an STP interface\n");
1448 free_page((unsigned long) stp_page);
1449 stp_page = NULL;
1450 stp_online = 0;
1451 }
1452 }
1453
1454 static void stp_timeout(unsigned long dummy)
1455 {
1456 queue_work(time_sync_wq, &stp_work);
1457 }
1458
1459 static int __init stp_init(void)
1460 {
1461 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
1462 return 0;
1463 setup_timer(&stp_timer, stp_timeout, 0UL);
1464 time_init_wq();
1465 if (!stp_online)
1466 return 0;
1467 queue_work(time_sync_wq, &stp_work);
1468 return 0;
1469 }
1470
1471 arch_initcall(stp_init);
1472
1473 /*
1474 * STP timing alert. There are three causes:
1475 * 1) timing status change
1476 * 2) link availability change
1477 * 3) time control parameter change
1478 * In all three cases we are only interested in the clock source state.
1479 * If a STP clock source is now available use it.
1480 */
1481 static void stp_timing_alert(struct stp_irq_parm *intparm)
1482 {
1483 if (intparm->tsc || intparm->lac || intparm->tcpc)
1484 queue_work(time_sync_wq, &stp_work);
1485 }
1486
1487 /*
1488 * STP sync check machine check. This is called when the timing state
1489 * changes from the synchronized state to the unsynchronized state.
1490 * After a STP sync check the clock is not in sync. The machine check
1491 * is broadcasted to all cpus at the same time.
1492 */
1493 void stp_sync_check(void)
1494 {
1495 disable_sync_clock(NULL);
1496 queue_work(time_sync_wq, &stp_work);
1497 }
1498
1499 /*
1500 * STP island condition machine check. This is called when an attached
1501 * server attempts to communicate over an STP link and the servers
1502 * have matching CTN ids and have a valid stratum-1 configuration
1503 * but the configurations do not match.
1504 */
1505 void stp_island_check(void)
1506 {
1507 disable_sync_clock(NULL);
1508 queue_work(time_sync_wq, &stp_work);
1509 }
1510
1511
1512 static int stp_sync_clock(void *data)
1513 {
1514 static int first;
1515 unsigned long long old_clock, delta;
1516 struct clock_sync_data *stp_sync;
1517 int rc;
1518
1519 stp_sync = data;
1520
1521 if (xchg(&first, 1) == 1) {
1522 /* Slave */
1523 clock_sync_cpu(stp_sync);
1524 return 0;
1525 }
1526
1527 /* Wait until all other cpus entered the sync function. */
1528 while (atomic_read(&stp_sync->cpus) != 0)
1529 cpu_relax();
1530
1531 enable_sync_clock();
1532
1533 rc = 0;
1534 if (stp_info.todoff[0] || stp_info.todoff[1] ||
1535 stp_info.todoff[2] || stp_info.todoff[3] ||
1536 stp_info.tmd != 2) {
1537 old_clock = get_tod_clock();
1538 rc = chsc_sstpc(stp_page, STP_OP_SYNC, 0);
1539 if (rc == 0) {
1540 delta = adjust_time(old_clock, get_tod_clock(), 0);
1541 fixup_clock_comparator(delta);
1542 rc = chsc_sstpi(stp_page, &stp_info,
1543 sizeof(struct stp_sstpi));
1544 if (rc == 0 && stp_info.tmd != 2)
1545 rc = -EAGAIN;
1546 }
1547 }
1548 if (rc) {
1549 disable_sync_clock(NULL);
1550 stp_sync->in_sync = -EAGAIN;
1551 } else
1552 stp_sync->in_sync = 1;
1553 xchg(&first, 0);
1554 return 0;
1555 }
1556
1557 /*
1558 * STP work. Check for the STP state and take over the clock
1559 * synchronization if the STP clock source is usable.
1560 */
1561 static void stp_work_fn(struct work_struct *work)
1562 {
1563 struct clock_sync_data stp_sync;
1564 int rc;
1565
1566 /* prevent multiple execution. */
1567 mutex_lock(&stp_work_mutex);
1568
1569 if (!stp_online) {
1570 chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000);
1571 del_timer_sync(&stp_timer);
1572 goto out_unlock;
1573 }
1574
1575 rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0xb0e0);
1576 if (rc)
1577 goto out_unlock;
1578
1579 rc = chsc_sstpi(stp_page, &stp_info, sizeof(struct stp_sstpi));
1580 if (rc || stp_info.c == 0)
1581 goto out_unlock;
1582
1583 /* Skip synchronization if the clock is already in sync. */
1584 if (check_sync_clock())
1585 goto out_unlock;
1586
1587 memset(&stp_sync, 0, sizeof(stp_sync));
1588 get_online_cpus();
1589 atomic_set(&stp_sync.cpus, num_online_cpus() - 1);
1590 stop_machine(stp_sync_clock, &stp_sync, cpu_online_mask);
1591 put_online_cpus();
1592
1593 if (!check_sync_clock())
1594 /*
1595 * There is a usable clock but the synchonization failed.
1596 * Retry after a second.
1597 */
1598 mod_timer(&stp_timer, jiffies + HZ);
1599
1600 out_unlock:
1601 mutex_unlock(&stp_work_mutex);
1602 }
1603
1604 /*
1605 * STP subsys sysfs interface functions
1606 */
1607 static struct bus_type stp_subsys = {
1608 .name = "stp",
1609 .dev_name = "stp",
1610 };
1611
1612 static ssize_t stp_ctn_id_show(struct device *dev,
1613 struct device_attribute *attr,
1614 char *buf)
1615 {
1616 if (!stp_online)
1617 return -ENODATA;
1618 return sprintf(buf, "%016llx\n",
1619 *(unsigned long long *) stp_info.ctnid);
1620 }
1621
1622 static DEVICE_ATTR(ctn_id, 0400, stp_ctn_id_show, NULL);
1623
1624 static ssize_t stp_ctn_type_show(struct device *dev,
1625 struct device_attribute *attr,
1626 char *buf)
1627 {
1628 if (!stp_online)
1629 return -ENODATA;
1630 return sprintf(buf, "%i\n", stp_info.ctn);
1631 }
1632
1633 static DEVICE_ATTR(ctn_type, 0400, stp_ctn_type_show, NULL);
1634
1635 static ssize_t stp_dst_offset_show(struct device *dev,
1636 struct device_attribute *attr,
1637 char *buf)
1638 {
1639 if (!stp_online || !(stp_info.vbits & 0x2000))
1640 return -ENODATA;
1641 return sprintf(buf, "%i\n", (int)(s16) stp_info.dsto);
1642 }
1643
1644 static DEVICE_ATTR(dst_offset, 0400, stp_dst_offset_show, NULL);
1645
1646 static ssize_t stp_leap_seconds_show(struct device *dev,
1647 struct device_attribute *attr,
1648 char *buf)
1649 {
1650 if (!stp_online || !(stp_info.vbits & 0x8000))
1651 return -ENODATA;
1652 return sprintf(buf, "%i\n", (int)(s16) stp_info.leaps);
1653 }
1654
1655 static DEVICE_ATTR(leap_seconds, 0400, stp_leap_seconds_show, NULL);
1656
1657 static ssize_t stp_stratum_show(struct device *dev,
1658 struct device_attribute *attr,
1659 char *buf)
1660 {
1661 if (!stp_online)
1662 return -ENODATA;
1663 return sprintf(buf, "%i\n", (int)(s16) stp_info.stratum);
1664 }
1665
1666 static DEVICE_ATTR(stratum, 0400, stp_stratum_show, NULL);
1667
1668 static ssize_t stp_time_offset_show(struct device *dev,
1669 struct device_attribute *attr,
1670 char *buf)
1671 {
1672 if (!stp_online || !(stp_info.vbits & 0x0800))
1673 return -ENODATA;
1674 return sprintf(buf, "%i\n", (int) stp_info.tto);
1675 }
1676
1677 static DEVICE_ATTR(time_offset, 0400, stp_time_offset_show, NULL);
1678
1679 static ssize_t stp_time_zone_offset_show(struct device *dev,
1680 struct device_attribute *attr,
1681 char *buf)
1682 {
1683 if (!stp_online || !(stp_info.vbits & 0x4000))
1684 return -ENODATA;
1685 return sprintf(buf, "%i\n", (int)(s16) stp_info.tzo);
1686 }
1687
1688 static DEVICE_ATTR(time_zone_offset, 0400,
1689 stp_time_zone_offset_show, NULL);
1690
1691 static ssize_t stp_timing_mode_show(struct device *dev,
1692 struct device_attribute *attr,
1693 char *buf)
1694 {
1695 if (!stp_online)
1696 return -ENODATA;
1697 return sprintf(buf, "%i\n", stp_info.tmd);
1698 }
1699
1700 static DEVICE_ATTR(timing_mode, 0400, stp_timing_mode_show, NULL);
1701
1702 static ssize_t stp_timing_state_show(struct device *dev,
1703 struct device_attribute *attr,
1704 char *buf)
1705 {
1706 if (!stp_online)
1707 return -ENODATA;
1708 return sprintf(buf, "%i\n", stp_info.tst);
1709 }
1710
1711 static DEVICE_ATTR(timing_state, 0400, stp_timing_state_show, NULL);
1712
1713 static ssize_t stp_online_show(struct device *dev,
1714 struct device_attribute *attr,
1715 char *buf)
1716 {
1717 return sprintf(buf, "%i\n", stp_online);
1718 }
1719
1720 static ssize_t stp_online_store(struct device *dev,
1721 struct device_attribute *attr,
1722 const char *buf, size_t count)
1723 {
1724 unsigned int value;
1725
1726 value = simple_strtoul(buf, NULL, 0);
1727 if (value != 0 && value != 1)
1728 return -EINVAL;
1729 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
1730 return -EOPNOTSUPP;
1731 mutex_lock(&clock_sync_mutex);
1732 stp_online = value;
1733 if (stp_online)
1734 set_bit(CLOCK_SYNC_STP, &clock_sync_flags);
1735 else
1736 clear_bit(CLOCK_SYNC_STP, &clock_sync_flags);
1737 queue_work(time_sync_wq, &stp_work);
1738 mutex_unlock(&clock_sync_mutex);
1739 return count;
1740 }
1741
1742 /*
1743 * Can't use DEVICE_ATTR because the attribute should be named
1744 * stp/online but dev_attr_online already exists in this file ..
1745 */
1746 static struct device_attribute dev_attr_stp_online = {
1747 .attr = { .name = "online", .mode = 0600 },
1748 .show = stp_online_show,
1749 .store = stp_online_store,
1750 };
1751
1752 static struct device_attribute *stp_attributes[] = {
1753 &dev_attr_ctn_id,
1754 &dev_attr_ctn_type,
1755 &dev_attr_dst_offset,
1756 &dev_attr_leap_seconds,
1757 &dev_attr_stp_online,
1758 &dev_attr_stratum,
1759 &dev_attr_time_offset,
1760 &dev_attr_time_zone_offset,
1761 &dev_attr_timing_mode,
1762 &dev_attr_timing_state,
1763 NULL
1764 };
1765
1766 static int __init stp_init_sysfs(void)
1767 {
1768 struct device_attribute **attr;
1769 int rc;
1770
1771 rc = subsys_system_register(&stp_subsys, NULL);
1772 if (rc)
1773 goto out;
1774 for (attr = stp_attributes; *attr; attr++) {
1775 rc = device_create_file(stp_subsys.dev_root, *attr);
1776 if (rc)
1777 goto out_unreg;
1778 }
1779 return 0;
1780 out_unreg:
1781 for (; attr >= stp_attributes; attr--)
1782 device_remove_file(stp_subsys.dev_root, *attr);
1783 bus_unregister(&stp_subsys);
1784 out:
1785 return rc;
1786 }
1787
1788 device_initcall(stp_init_sysfs);
This page took 0.068412 seconds and 5 git commands to generate.