Pull battery into release branch
[deliverable/linux.git] / arch / sh / kernel / process.c
1 /*
2 * arch/sh/kernel/process.c
3 *
4 * This file handles the architecture-dependent parts of process handling..
5 *
6 * Copyright (C) 1995 Linus Torvalds
7 *
8 * SuperH version: Copyright (C) 1999, 2000 Niibe Yutaka & Kaz Kojima
9 * Copyright (C) 2006 Lineo Solutions Inc. support SH4A UBC
10 * Copyright (C) 2002 - 2007 Paul Mundt
11 */
12 #include <linux/module.h>
13 #include <linux/mm.h>
14 #include <linux/elfcore.h>
15 #include <linux/pm.h>
16 #include <linux/kallsyms.h>
17 #include <linux/kexec.h>
18 #include <linux/kdebug.h>
19 #include <linux/tick.h>
20 #include <linux/reboot.h>
21 #include <asm/uaccess.h>
22 #include <asm/mmu_context.h>
23 #include <asm/pgalloc.h>
24 #include <asm/system.h>
25 #include <asm/ubc.h>
26
27 static int hlt_counter;
28 int ubc_usercnt = 0;
29
30 void (*pm_idle)(void);
31 void (*pm_power_off)(void);
32 EXPORT_SYMBOL(pm_power_off);
33
34 void disable_hlt(void)
35 {
36 hlt_counter++;
37 }
38 EXPORT_SYMBOL(disable_hlt);
39
40 void enable_hlt(void)
41 {
42 hlt_counter--;
43 }
44 EXPORT_SYMBOL(enable_hlt);
45
46 static int __init nohlt_setup(char *__unused)
47 {
48 hlt_counter = 1;
49 return 1;
50 }
51 __setup("nohlt", nohlt_setup);
52
53 static int __init hlt_setup(char *__unused)
54 {
55 hlt_counter = 0;
56 return 1;
57 }
58 __setup("hlt", hlt_setup);
59
60 void default_idle(void)
61 {
62 if (!hlt_counter) {
63 clear_thread_flag(TIF_POLLING_NRFLAG);
64 smp_mb__after_clear_bit();
65 set_bl_bit();
66 while (!need_resched())
67 cpu_sleep();
68 clear_bl_bit();
69 set_thread_flag(TIF_POLLING_NRFLAG);
70 } else
71 while (!need_resched())
72 cpu_relax();
73 }
74
75 void cpu_idle(void)
76 {
77 set_thread_flag(TIF_POLLING_NRFLAG);
78
79 /* endless idle loop with no priority at all */
80 while (1) {
81 void (*idle)(void) = pm_idle;
82
83 if (!idle)
84 idle = default_idle;
85
86 tick_nohz_stop_sched_tick();
87 while (!need_resched())
88 idle();
89 tick_nohz_restart_sched_tick();
90
91 preempt_enable_no_resched();
92 schedule();
93 preempt_disable();
94 check_pgt_cache();
95 }
96 }
97
98 void machine_restart(char * __unused)
99 {
100 /* SR.BL=1 and invoke address error to let CPU reset (manual reset) */
101 asm volatile("ldc %0, sr\n\t"
102 "mov.l @%1, %0" : : "r" (0x10000000), "r" (0x80000001));
103 }
104
105 void machine_halt(void)
106 {
107 local_irq_disable();
108
109 while (1)
110 cpu_sleep();
111 }
112
113 void machine_power_off(void)
114 {
115 if (pm_power_off)
116 pm_power_off();
117 }
118
119 void show_regs(struct pt_regs * regs)
120 {
121 printk("\n");
122 printk("Pid : %d, Comm: %20s\n", current->pid, current->comm);
123 print_symbol("PC is at %s\n", instruction_pointer(regs));
124 printk("PC : %08lx SP : %08lx SR : %08lx ",
125 regs->pc, regs->regs[15], regs->sr);
126 #ifdef CONFIG_MMU
127 printk("TEA : %08x ", ctrl_inl(MMU_TEA));
128 #else
129 printk(" ");
130 #endif
131 printk("%s\n", print_tainted());
132
133 printk("R0 : %08lx R1 : %08lx R2 : %08lx R3 : %08lx\n",
134 regs->regs[0],regs->regs[1],
135 regs->regs[2],regs->regs[3]);
136 printk("R4 : %08lx R5 : %08lx R6 : %08lx R7 : %08lx\n",
137 regs->regs[4],regs->regs[5],
138 regs->regs[6],regs->regs[7]);
139 printk("R8 : %08lx R9 : %08lx R10 : %08lx R11 : %08lx\n",
140 regs->regs[8],regs->regs[9],
141 regs->regs[10],regs->regs[11]);
142 printk("R12 : %08lx R13 : %08lx R14 : %08lx\n",
143 regs->regs[12],regs->regs[13],
144 regs->regs[14]);
145 printk("MACH: %08lx MACL: %08lx GBR : %08lx PR : %08lx\n",
146 regs->mach, regs->macl, regs->gbr, regs->pr);
147
148 show_trace(NULL, (unsigned long *)regs->regs[15], regs);
149 }
150
151 /*
152 * Create a kernel thread
153 */
154
155 /*
156 * This is the mechanism for creating a new kernel thread.
157 *
158 */
159 extern void kernel_thread_helper(void);
160 __asm__(".align 5\n"
161 "kernel_thread_helper:\n\t"
162 "jsr @r5\n\t"
163 " nop\n\t"
164 "mov.l 1f, r1\n\t"
165 "jsr @r1\n\t"
166 " mov r0, r4\n\t"
167 ".align 2\n\t"
168 "1:.long do_exit");
169
170 /* Don't use this in BL=1(cli). Or else, CPU resets! */
171 int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
172 {
173 struct pt_regs regs;
174
175 memset(&regs, 0, sizeof(regs));
176 regs.regs[4] = (unsigned long)arg;
177 regs.regs[5] = (unsigned long)fn;
178
179 regs.pc = (unsigned long)kernel_thread_helper;
180 regs.sr = (1 << 30);
181
182 /* Ok, create the new process.. */
183 return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0,
184 &regs, 0, NULL, NULL);
185 }
186
187 /*
188 * Free current thread data structures etc..
189 */
190 void exit_thread(void)
191 {
192 if (current->thread.ubc_pc) {
193 current->thread.ubc_pc = 0;
194 ubc_usercnt -= 1;
195 }
196 }
197
198 void flush_thread(void)
199 {
200 #if defined(CONFIG_SH_FPU)
201 struct task_struct *tsk = current;
202 /* Forget lazy FPU state */
203 clear_fpu(tsk, task_pt_regs(tsk));
204 clear_used_math();
205 #endif
206 }
207
208 void release_thread(struct task_struct *dead_task)
209 {
210 /* do nothing */
211 }
212
213 /* Fill in the fpu structure for a core dump.. */
214 int dump_fpu(struct pt_regs *regs, elf_fpregset_t *fpu)
215 {
216 int fpvalid = 0;
217
218 #if defined(CONFIG_SH_FPU)
219 struct task_struct *tsk = current;
220
221 fpvalid = !!tsk_used_math(tsk);
222 if (fpvalid) {
223 unlazy_fpu(tsk, regs);
224 memcpy(fpu, &tsk->thread.fpu.hard, sizeof(*fpu));
225 }
226 #endif
227
228 return fpvalid;
229 }
230
231 /*
232 * Capture the user space registers if the task is not running (in user space)
233 */
234 int dump_task_regs(struct task_struct *tsk, elf_gregset_t *regs)
235 {
236 struct pt_regs ptregs;
237
238 ptregs = *task_pt_regs(tsk);
239 elf_core_copy_regs(regs, &ptregs);
240
241 return 1;
242 }
243
244 int dump_task_fpu(struct task_struct *tsk, elf_fpregset_t *fpu)
245 {
246 int fpvalid = 0;
247
248 #if defined(CONFIG_SH_FPU)
249 fpvalid = !!tsk_used_math(tsk);
250 if (fpvalid) {
251 unlazy_fpu(tsk, task_pt_regs(tsk));
252 memcpy(fpu, &tsk->thread.fpu.hard, sizeof(*fpu));
253 }
254 #endif
255
256 return fpvalid;
257 }
258
259 asmlinkage void ret_from_fork(void);
260
261 int copy_thread(int nr, unsigned long clone_flags, unsigned long usp,
262 unsigned long unused,
263 struct task_struct *p, struct pt_regs *regs)
264 {
265 struct thread_info *ti = task_thread_info(p);
266 struct pt_regs *childregs;
267 #if defined(CONFIG_SH_FPU)
268 struct task_struct *tsk = current;
269
270 unlazy_fpu(tsk, regs);
271 p->thread.fpu = tsk->thread.fpu;
272 copy_to_stopped_child_used_math(p);
273 #endif
274
275 childregs = task_pt_regs(p);
276 *childregs = *regs;
277
278 if (user_mode(regs)) {
279 childregs->regs[15] = usp;
280 ti->addr_limit = USER_DS;
281 } else {
282 childregs->regs[15] = (unsigned long)childregs;
283 ti->addr_limit = KERNEL_DS;
284 }
285
286 if (clone_flags & CLONE_SETTLS)
287 childregs->gbr = childregs->regs[0];
288
289 childregs->regs[0] = 0; /* Set return value for child */
290
291 p->thread.sp = (unsigned long) childregs;
292 p->thread.pc = (unsigned long) ret_from_fork;
293
294 p->thread.ubc_pc = 0;
295
296 return 0;
297 }
298
299 /* Tracing by user break controller. */
300 static void ubc_set_tracing(int asid, unsigned long pc)
301 {
302 #if defined(CONFIG_CPU_SH4A)
303 unsigned long val;
304
305 val = (UBC_CBR_ID_INST | UBC_CBR_RW_READ | UBC_CBR_CE);
306 val |= (UBC_CBR_AIE | UBC_CBR_AIV_SET(asid));
307
308 ctrl_outl(val, UBC_CBR0);
309 ctrl_outl(pc, UBC_CAR0);
310 ctrl_outl(0x0, UBC_CAMR0);
311 ctrl_outl(0x0, UBC_CBCR);
312
313 val = (UBC_CRR_RES | UBC_CRR_PCB | UBC_CRR_BIE);
314 ctrl_outl(val, UBC_CRR0);
315
316 /* Read UBC register that we wrote last, for checking update */
317 val = ctrl_inl(UBC_CRR0);
318
319 #else /* CONFIG_CPU_SH4A */
320 ctrl_outl(pc, UBC_BARA);
321
322 #ifdef CONFIG_MMU
323 ctrl_outb(asid, UBC_BASRA);
324 #endif
325
326 ctrl_outl(0, UBC_BAMRA);
327
328 if (current_cpu_data.type == CPU_SH7729 ||
329 current_cpu_data.type == CPU_SH7710 ||
330 current_cpu_data.type == CPU_SH7712) {
331 ctrl_outw(BBR_INST | BBR_READ | BBR_CPU, UBC_BBRA);
332 ctrl_outl(BRCR_PCBA | BRCR_PCTE, UBC_BRCR);
333 } else {
334 ctrl_outw(BBR_INST | BBR_READ, UBC_BBRA);
335 ctrl_outw(BRCR_PCBA, UBC_BRCR);
336 }
337 #endif /* CONFIG_CPU_SH4A */
338 }
339
340 /*
341 * switch_to(x,y) should switch tasks from x to y.
342 *
343 */
344 struct task_struct *__switch_to(struct task_struct *prev,
345 struct task_struct *next)
346 {
347 #if defined(CONFIG_SH_FPU)
348 unlazy_fpu(prev, task_pt_regs(prev));
349 #endif
350
351 #ifdef CONFIG_PREEMPT
352 {
353 unsigned long flags;
354 struct pt_regs *regs;
355
356 local_irq_save(flags);
357 regs = task_pt_regs(prev);
358 if (user_mode(regs) && regs->regs[15] >= 0xc0000000) {
359 int offset = (int)regs->regs[15];
360
361 /* Reset stack pointer: clear critical region mark */
362 regs->regs[15] = regs->regs[1];
363 if (regs->pc < regs->regs[0])
364 /* Go to rewind point */
365 regs->pc = regs->regs[0] + offset;
366 }
367 local_irq_restore(flags);
368 }
369 #endif
370
371 #ifdef CONFIG_MMU
372 /*
373 * Restore the kernel mode register
374 * k7 (r7_bank1)
375 */
376 asm volatile("ldc %0, r7_bank"
377 : /* no output */
378 : "r" (task_thread_info(next)));
379 #endif
380
381 /* If no tasks are using the UBC, we're done */
382 if (ubc_usercnt == 0)
383 /* If no tasks are using the UBC, we're done */;
384 else if (next->thread.ubc_pc && next->mm) {
385 int asid = 0;
386 #ifdef CONFIG_MMU
387 asid |= cpu_asid(smp_processor_id(), next->mm);
388 #endif
389 ubc_set_tracing(asid, next->thread.ubc_pc);
390 } else {
391 #if defined(CONFIG_CPU_SH4A)
392 ctrl_outl(UBC_CBR_INIT, UBC_CBR0);
393 ctrl_outl(UBC_CRR_INIT, UBC_CRR0);
394 #else
395 ctrl_outw(0, UBC_BBRA);
396 ctrl_outw(0, UBC_BBRB);
397 #endif
398 }
399
400 return prev;
401 }
402
403 asmlinkage int sys_fork(unsigned long r4, unsigned long r5,
404 unsigned long r6, unsigned long r7,
405 struct pt_regs __regs)
406 {
407 #ifdef CONFIG_MMU
408 struct pt_regs *regs = RELOC_HIDE(&__regs, 0);
409 return do_fork(SIGCHLD, regs->regs[15], regs, 0, NULL, NULL);
410 #else
411 /* fork almost works, enough to trick you into looking elsewhere :-( */
412 return -EINVAL;
413 #endif
414 }
415
416 asmlinkage int sys_clone(unsigned long clone_flags, unsigned long newsp,
417 unsigned long parent_tidptr,
418 unsigned long child_tidptr,
419 struct pt_regs __regs)
420 {
421 struct pt_regs *regs = RELOC_HIDE(&__regs, 0);
422 if (!newsp)
423 newsp = regs->regs[15];
424 return do_fork(clone_flags, newsp, regs, 0,
425 (int __user *)parent_tidptr,
426 (int __user *)child_tidptr);
427 }
428
429 /*
430 * This is trivial, and on the face of it looks like it
431 * could equally well be done in user mode.
432 *
433 * Not so, for quite unobvious reasons - register pressure.
434 * In user mode vfork() cannot have a stack frame, and if
435 * done by calling the "clone()" system call directly, you
436 * do not have enough call-clobbered registers to hold all
437 * the information you need.
438 */
439 asmlinkage int sys_vfork(unsigned long r4, unsigned long r5,
440 unsigned long r6, unsigned long r7,
441 struct pt_regs __regs)
442 {
443 struct pt_regs *regs = RELOC_HIDE(&__regs, 0);
444 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->regs[15], regs,
445 0, NULL, NULL);
446 }
447
448 /*
449 * sys_execve() executes a new program.
450 */
451 asmlinkage int sys_execve(char __user *ufilename, char __user * __user *uargv,
452 char __user * __user *uenvp, unsigned long r7,
453 struct pt_regs __regs)
454 {
455 struct pt_regs *regs = RELOC_HIDE(&__regs, 0);
456 int error;
457 char *filename;
458
459 filename = getname(ufilename);
460 error = PTR_ERR(filename);
461 if (IS_ERR(filename))
462 goto out;
463
464 error = do_execve(filename, uargv, uenvp, regs);
465 if (error == 0) {
466 task_lock(current);
467 current->ptrace &= ~PT_DTRACE;
468 task_unlock(current);
469 }
470 putname(filename);
471 out:
472 return error;
473 }
474
475 unsigned long get_wchan(struct task_struct *p)
476 {
477 unsigned long schedule_frame;
478 unsigned long pc;
479
480 if (!p || p == current || p->state == TASK_RUNNING)
481 return 0;
482
483 /*
484 * The same comment as on the Alpha applies here, too ...
485 */
486 pc = thread_saved_pc(p);
487 if (in_sched_functions(pc)) {
488 schedule_frame = (unsigned long)p->thread.sp;
489 return ((unsigned long *)schedule_frame)[21];
490 }
491
492 return pc;
493 }
494
495 asmlinkage void break_point_trap(void)
496 {
497 /* Clear tracing. */
498 #if defined(CONFIG_CPU_SH4A)
499 ctrl_outl(UBC_CBR_INIT, UBC_CBR0);
500 ctrl_outl(UBC_CRR_INIT, UBC_CRR0);
501 #else
502 ctrl_outw(0, UBC_BBRA);
503 ctrl_outw(0, UBC_BBRB);
504 #endif
505 current->thread.ubc_pc = 0;
506 ubc_usercnt -= 1;
507
508 force_sig(SIGTRAP, current);
509 }
510
511 /*
512 * Generic trap handler.
513 */
514 asmlinkage void debug_trap_handler(unsigned long r4, unsigned long r5,
515 unsigned long r6, unsigned long r7,
516 struct pt_regs __regs)
517 {
518 struct pt_regs *regs = RELOC_HIDE(&__regs, 0);
519
520 /* Rewind */
521 regs->pc -= instruction_size(ctrl_inw(regs->pc - 4));
522
523 if (notify_die(DIE_TRAP, "debug trap", regs, 0, regs->tra & 0xff,
524 SIGTRAP) == NOTIFY_STOP)
525 return;
526
527 force_sig(SIGTRAP, current);
528 }
529
530 /*
531 * Special handler for BUG() traps.
532 */
533 asmlinkage void bug_trap_handler(unsigned long r4, unsigned long r5,
534 unsigned long r6, unsigned long r7,
535 struct pt_regs __regs)
536 {
537 struct pt_regs *regs = RELOC_HIDE(&__regs, 0);
538
539 /* Rewind */
540 regs->pc -= instruction_size(ctrl_inw(regs->pc - 4));
541
542 if (notify_die(DIE_TRAP, "bug trap", regs, 0, TRAPA_BUG_OPCODE & 0xff,
543 SIGTRAP) == NOTIFY_STOP)
544 return;
545
546 #ifdef CONFIG_BUG
547 if (__kernel_text_address(instruction_pointer(regs))) {
548 u16 insn = *(u16 *)instruction_pointer(regs);
549 if (insn == TRAPA_BUG_OPCODE)
550 handle_BUG(regs);
551 }
552 #endif
553
554 force_sig(SIGTRAP, current);
555 }
This page took 0.04203 seconds and 6 git commands to generate.