sparc64: clear syscall_noerror on the entry to syscall, not on the exit
[deliverable/linux.git] / arch / sparc / kernel / process_64.c
1 /* arch/sparc64/kernel/process.c
2 *
3 * Copyright (C) 1995, 1996, 2008 David S. Miller (davem@davemloft.net)
4 * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
5 * Copyright (C) 1997, 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
6 */
7
8 /*
9 * This file handles the architecture-dependent parts of process handling..
10 */
11
12 #include <stdarg.h>
13
14 #include <linux/errno.h>
15 #include <linux/export.h>
16 #include <linux/sched.h>
17 #include <linux/kernel.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/smp.h>
21 #include <linux/stddef.h>
22 #include <linux/ptrace.h>
23 #include <linux/slab.h>
24 #include <linux/user.h>
25 #include <linux/delay.h>
26 #include <linux/compat.h>
27 #include <linux/tick.h>
28 #include <linux/init.h>
29 #include <linux/cpu.h>
30 #include <linux/elfcore.h>
31 #include <linux/sysrq.h>
32 #include <linux/nmi.h>
33
34 #include <asm/uaccess.h>
35 #include <asm/page.h>
36 #include <asm/pgalloc.h>
37 #include <asm/pgtable.h>
38 #include <asm/processor.h>
39 #include <asm/pstate.h>
40 #include <asm/elf.h>
41 #include <asm/fpumacro.h>
42 #include <asm/head.h>
43 #include <asm/cpudata.h>
44 #include <asm/mmu_context.h>
45 #include <asm/unistd.h>
46 #include <asm/hypervisor.h>
47 #include <asm/syscalls.h>
48 #include <asm/irq_regs.h>
49 #include <asm/smp.h>
50
51 #include "kstack.h"
52
53 static void sparc64_yield(int cpu)
54 {
55 if (tlb_type != hypervisor) {
56 touch_nmi_watchdog();
57 return;
58 }
59
60 clear_thread_flag(TIF_POLLING_NRFLAG);
61 smp_mb__after_clear_bit();
62
63 while (!need_resched() && !cpu_is_offline(cpu)) {
64 unsigned long pstate;
65
66 /* Disable interrupts. */
67 __asm__ __volatile__(
68 "rdpr %%pstate, %0\n\t"
69 "andn %0, %1, %0\n\t"
70 "wrpr %0, %%g0, %%pstate"
71 : "=&r" (pstate)
72 : "i" (PSTATE_IE));
73
74 if (!need_resched() && !cpu_is_offline(cpu))
75 sun4v_cpu_yield();
76
77 /* Re-enable interrupts. */
78 __asm__ __volatile__(
79 "rdpr %%pstate, %0\n\t"
80 "or %0, %1, %0\n\t"
81 "wrpr %0, %%g0, %%pstate"
82 : "=&r" (pstate)
83 : "i" (PSTATE_IE));
84 }
85
86 set_thread_flag(TIF_POLLING_NRFLAG);
87 }
88
89 /* The idle loop on sparc64. */
90 void cpu_idle(void)
91 {
92 int cpu = smp_processor_id();
93
94 set_thread_flag(TIF_POLLING_NRFLAG);
95
96 while(1) {
97 tick_nohz_idle_enter();
98 rcu_idle_enter();
99
100 while (!need_resched() && !cpu_is_offline(cpu))
101 sparc64_yield(cpu);
102
103 rcu_idle_exit();
104 tick_nohz_idle_exit();
105
106 #ifdef CONFIG_HOTPLUG_CPU
107 if (cpu_is_offline(cpu)) {
108 sched_preempt_enable_no_resched();
109 cpu_play_dead();
110 }
111 #endif
112 schedule_preempt_disabled();
113 }
114 }
115
116 #ifdef CONFIG_COMPAT
117 static void show_regwindow32(struct pt_regs *regs)
118 {
119 struct reg_window32 __user *rw;
120 struct reg_window32 r_w;
121 mm_segment_t old_fs;
122
123 __asm__ __volatile__ ("flushw");
124 rw = compat_ptr((unsigned)regs->u_regs[14]);
125 old_fs = get_fs();
126 set_fs (USER_DS);
127 if (copy_from_user (&r_w, rw, sizeof(r_w))) {
128 set_fs (old_fs);
129 return;
130 }
131
132 set_fs (old_fs);
133 printk("l0: %08x l1: %08x l2: %08x l3: %08x "
134 "l4: %08x l5: %08x l6: %08x l7: %08x\n",
135 r_w.locals[0], r_w.locals[1], r_w.locals[2], r_w.locals[3],
136 r_w.locals[4], r_w.locals[5], r_w.locals[6], r_w.locals[7]);
137 printk("i0: %08x i1: %08x i2: %08x i3: %08x "
138 "i4: %08x i5: %08x i6: %08x i7: %08x\n",
139 r_w.ins[0], r_w.ins[1], r_w.ins[2], r_w.ins[3],
140 r_w.ins[4], r_w.ins[5], r_w.ins[6], r_w.ins[7]);
141 }
142 #else
143 #define show_regwindow32(regs) do { } while (0)
144 #endif
145
146 static void show_regwindow(struct pt_regs *regs)
147 {
148 struct reg_window __user *rw;
149 struct reg_window *rwk;
150 struct reg_window r_w;
151 mm_segment_t old_fs;
152
153 if ((regs->tstate & TSTATE_PRIV) || !(test_thread_flag(TIF_32BIT))) {
154 __asm__ __volatile__ ("flushw");
155 rw = (struct reg_window __user *)
156 (regs->u_regs[14] + STACK_BIAS);
157 rwk = (struct reg_window *)
158 (regs->u_regs[14] + STACK_BIAS);
159 if (!(regs->tstate & TSTATE_PRIV)) {
160 old_fs = get_fs();
161 set_fs (USER_DS);
162 if (copy_from_user (&r_w, rw, sizeof(r_w))) {
163 set_fs (old_fs);
164 return;
165 }
166 rwk = &r_w;
167 set_fs (old_fs);
168 }
169 } else {
170 show_regwindow32(regs);
171 return;
172 }
173 printk("l0: %016lx l1: %016lx l2: %016lx l3: %016lx\n",
174 rwk->locals[0], rwk->locals[1], rwk->locals[2], rwk->locals[3]);
175 printk("l4: %016lx l5: %016lx l6: %016lx l7: %016lx\n",
176 rwk->locals[4], rwk->locals[5], rwk->locals[6], rwk->locals[7]);
177 printk("i0: %016lx i1: %016lx i2: %016lx i3: %016lx\n",
178 rwk->ins[0], rwk->ins[1], rwk->ins[2], rwk->ins[3]);
179 printk("i4: %016lx i5: %016lx i6: %016lx i7: %016lx\n",
180 rwk->ins[4], rwk->ins[5], rwk->ins[6], rwk->ins[7]);
181 if (regs->tstate & TSTATE_PRIV)
182 printk("I7: <%pS>\n", (void *) rwk->ins[7]);
183 }
184
185 void show_regs(struct pt_regs *regs)
186 {
187 printk("TSTATE: %016lx TPC: %016lx TNPC: %016lx Y: %08x %s\n", regs->tstate,
188 regs->tpc, regs->tnpc, regs->y, print_tainted());
189 printk("TPC: <%pS>\n", (void *) regs->tpc);
190 printk("g0: %016lx g1: %016lx g2: %016lx g3: %016lx\n",
191 regs->u_regs[0], regs->u_regs[1], regs->u_regs[2],
192 regs->u_regs[3]);
193 printk("g4: %016lx g5: %016lx g6: %016lx g7: %016lx\n",
194 regs->u_regs[4], regs->u_regs[5], regs->u_regs[6],
195 regs->u_regs[7]);
196 printk("o0: %016lx o1: %016lx o2: %016lx o3: %016lx\n",
197 regs->u_regs[8], regs->u_regs[9], regs->u_regs[10],
198 regs->u_regs[11]);
199 printk("o4: %016lx o5: %016lx sp: %016lx ret_pc: %016lx\n",
200 regs->u_regs[12], regs->u_regs[13], regs->u_regs[14],
201 regs->u_regs[15]);
202 printk("RPC: <%pS>\n", (void *) regs->u_regs[15]);
203 show_regwindow(regs);
204 show_stack(current, (unsigned long *) regs->u_regs[UREG_FP]);
205 }
206
207 struct global_reg_snapshot global_reg_snapshot[NR_CPUS];
208 static DEFINE_SPINLOCK(global_reg_snapshot_lock);
209
210 static void __global_reg_self(struct thread_info *tp, struct pt_regs *regs,
211 int this_cpu)
212 {
213 flushw_all();
214
215 global_reg_snapshot[this_cpu].tstate = regs->tstate;
216 global_reg_snapshot[this_cpu].tpc = regs->tpc;
217 global_reg_snapshot[this_cpu].tnpc = regs->tnpc;
218 global_reg_snapshot[this_cpu].o7 = regs->u_regs[UREG_I7];
219
220 if (regs->tstate & TSTATE_PRIV) {
221 struct reg_window *rw;
222
223 rw = (struct reg_window *)
224 (regs->u_regs[UREG_FP] + STACK_BIAS);
225 if (kstack_valid(tp, (unsigned long) rw)) {
226 global_reg_snapshot[this_cpu].i7 = rw->ins[7];
227 rw = (struct reg_window *)
228 (rw->ins[6] + STACK_BIAS);
229 if (kstack_valid(tp, (unsigned long) rw))
230 global_reg_snapshot[this_cpu].rpc = rw->ins[7];
231 }
232 } else {
233 global_reg_snapshot[this_cpu].i7 = 0;
234 global_reg_snapshot[this_cpu].rpc = 0;
235 }
236 global_reg_snapshot[this_cpu].thread = tp;
237 }
238
239 /* In order to avoid hangs we do not try to synchronize with the
240 * global register dump client cpus. The last store they make is to
241 * the thread pointer, so do a short poll waiting for that to become
242 * non-NULL.
243 */
244 static void __global_reg_poll(struct global_reg_snapshot *gp)
245 {
246 int limit = 0;
247
248 while (!gp->thread && ++limit < 100) {
249 barrier();
250 udelay(1);
251 }
252 }
253
254 void arch_trigger_all_cpu_backtrace(void)
255 {
256 struct thread_info *tp = current_thread_info();
257 struct pt_regs *regs = get_irq_regs();
258 unsigned long flags;
259 int this_cpu, cpu;
260
261 if (!regs)
262 regs = tp->kregs;
263
264 spin_lock_irqsave(&global_reg_snapshot_lock, flags);
265
266 memset(global_reg_snapshot, 0, sizeof(global_reg_snapshot));
267
268 this_cpu = raw_smp_processor_id();
269
270 __global_reg_self(tp, regs, this_cpu);
271
272 smp_fetch_global_regs();
273
274 for_each_online_cpu(cpu) {
275 struct global_reg_snapshot *gp = &global_reg_snapshot[cpu];
276
277 __global_reg_poll(gp);
278
279 tp = gp->thread;
280 printk("%c CPU[%3d]: TSTATE[%016lx] TPC[%016lx] TNPC[%016lx] TASK[%s:%d]\n",
281 (cpu == this_cpu ? '*' : ' '), cpu,
282 gp->tstate, gp->tpc, gp->tnpc,
283 ((tp && tp->task) ? tp->task->comm : "NULL"),
284 ((tp && tp->task) ? tp->task->pid : -1));
285
286 if (gp->tstate & TSTATE_PRIV) {
287 printk(" TPC[%pS] O7[%pS] I7[%pS] RPC[%pS]\n",
288 (void *) gp->tpc,
289 (void *) gp->o7,
290 (void *) gp->i7,
291 (void *) gp->rpc);
292 } else {
293 printk(" TPC[%lx] O7[%lx] I7[%lx] RPC[%lx]\n",
294 gp->tpc, gp->o7, gp->i7, gp->rpc);
295 }
296 }
297
298 memset(global_reg_snapshot, 0, sizeof(global_reg_snapshot));
299
300 spin_unlock_irqrestore(&global_reg_snapshot_lock, flags);
301 }
302
303 #ifdef CONFIG_MAGIC_SYSRQ
304
305 static void sysrq_handle_globreg(int key)
306 {
307 arch_trigger_all_cpu_backtrace();
308 }
309
310 static struct sysrq_key_op sparc_globalreg_op = {
311 .handler = sysrq_handle_globreg,
312 .help_msg = "Globalregs",
313 .action_msg = "Show Global CPU Regs",
314 };
315
316 static int __init sparc_globreg_init(void)
317 {
318 return register_sysrq_key('y', &sparc_globalreg_op);
319 }
320
321 core_initcall(sparc_globreg_init);
322
323 #endif
324
325 unsigned long thread_saved_pc(struct task_struct *tsk)
326 {
327 struct thread_info *ti = task_thread_info(tsk);
328 unsigned long ret = 0xdeadbeefUL;
329
330 if (ti && ti->ksp) {
331 unsigned long *sp;
332 sp = (unsigned long *)(ti->ksp + STACK_BIAS);
333 if (((unsigned long)sp & (sizeof(long) - 1)) == 0UL &&
334 sp[14]) {
335 unsigned long *fp;
336 fp = (unsigned long *)(sp[14] + STACK_BIAS);
337 if (((unsigned long)fp & (sizeof(long) - 1)) == 0UL)
338 ret = fp[15];
339 }
340 }
341 return ret;
342 }
343
344 /* Free current thread data structures etc.. */
345 void exit_thread(void)
346 {
347 struct thread_info *t = current_thread_info();
348
349 if (t->utraps) {
350 if (t->utraps[0] < 2)
351 kfree (t->utraps);
352 else
353 t->utraps[0]--;
354 }
355 }
356
357 void flush_thread(void)
358 {
359 struct thread_info *t = current_thread_info();
360 struct mm_struct *mm;
361
362 mm = t->task->mm;
363 if (mm)
364 tsb_context_switch(mm);
365
366 set_thread_wsaved(0);
367
368 /* Clear FPU register state. */
369 t->fpsaved[0] = 0;
370 }
371
372 /* It's a bit more tricky when 64-bit tasks are involved... */
373 static unsigned long clone_stackframe(unsigned long csp, unsigned long psp)
374 {
375 unsigned long fp, distance, rval;
376
377 if (!(test_thread_flag(TIF_32BIT))) {
378 csp += STACK_BIAS;
379 psp += STACK_BIAS;
380 __get_user(fp, &(((struct reg_window __user *)psp)->ins[6]));
381 fp += STACK_BIAS;
382 } else
383 __get_user(fp, &(((struct reg_window32 __user *)psp)->ins[6]));
384
385 /* Now align the stack as this is mandatory in the Sparc ABI
386 * due to how register windows work. This hides the
387 * restriction from thread libraries etc.
388 */
389 csp &= ~15UL;
390
391 distance = fp - psp;
392 rval = (csp - distance);
393 if (copy_in_user((void __user *) rval, (void __user *) psp, distance))
394 rval = 0;
395 else if (test_thread_flag(TIF_32BIT)) {
396 if (put_user(((u32)csp),
397 &(((struct reg_window32 __user *)rval)->ins[6])))
398 rval = 0;
399 } else {
400 if (put_user(((u64)csp - STACK_BIAS),
401 &(((struct reg_window __user *)rval)->ins[6])))
402 rval = 0;
403 else
404 rval = rval - STACK_BIAS;
405 }
406
407 return rval;
408 }
409
410 /* Standard stuff. */
411 static inline void shift_window_buffer(int first_win, int last_win,
412 struct thread_info *t)
413 {
414 int i;
415
416 for (i = first_win; i < last_win; i++) {
417 t->rwbuf_stkptrs[i] = t->rwbuf_stkptrs[i+1];
418 memcpy(&t->reg_window[i], &t->reg_window[i+1],
419 sizeof(struct reg_window));
420 }
421 }
422
423 void synchronize_user_stack(void)
424 {
425 struct thread_info *t = current_thread_info();
426 unsigned long window;
427
428 flush_user_windows();
429 if ((window = get_thread_wsaved()) != 0) {
430 int winsize = sizeof(struct reg_window);
431 int bias = 0;
432
433 if (test_thread_flag(TIF_32BIT))
434 winsize = sizeof(struct reg_window32);
435 else
436 bias = STACK_BIAS;
437
438 window -= 1;
439 do {
440 unsigned long sp = (t->rwbuf_stkptrs[window] + bias);
441 struct reg_window *rwin = &t->reg_window[window];
442
443 if (!copy_to_user((char __user *)sp, rwin, winsize)) {
444 shift_window_buffer(window, get_thread_wsaved() - 1, t);
445 set_thread_wsaved(get_thread_wsaved() - 1);
446 }
447 } while (window--);
448 }
449 }
450
451 static void stack_unaligned(unsigned long sp)
452 {
453 siginfo_t info;
454
455 info.si_signo = SIGBUS;
456 info.si_errno = 0;
457 info.si_code = BUS_ADRALN;
458 info.si_addr = (void __user *) sp;
459 info.si_trapno = 0;
460 force_sig_info(SIGBUS, &info, current);
461 }
462
463 void fault_in_user_windows(void)
464 {
465 struct thread_info *t = current_thread_info();
466 unsigned long window;
467 int winsize = sizeof(struct reg_window);
468 int bias = 0;
469
470 if (test_thread_flag(TIF_32BIT))
471 winsize = sizeof(struct reg_window32);
472 else
473 bias = STACK_BIAS;
474
475 flush_user_windows();
476 window = get_thread_wsaved();
477
478 if (likely(window != 0)) {
479 window -= 1;
480 do {
481 unsigned long sp = (t->rwbuf_stkptrs[window] + bias);
482 struct reg_window *rwin = &t->reg_window[window];
483
484 if (unlikely(sp & 0x7UL))
485 stack_unaligned(sp);
486
487 if (unlikely(copy_to_user((char __user *)sp,
488 rwin, winsize)))
489 goto barf;
490 } while (window--);
491 }
492 set_thread_wsaved(0);
493 return;
494
495 barf:
496 set_thread_wsaved(window + 1);
497 do_exit(SIGILL);
498 }
499
500 asmlinkage long sparc_do_fork(unsigned long clone_flags,
501 unsigned long stack_start,
502 struct pt_regs *regs,
503 unsigned long stack_size)
504 {
505 int __user *parent_tid_ptr, *child_tid_ptr;
506 unsigned long orig_i1 = regs->u_regs[UREG_I1];
507 long ret;
508
509 #ifdef CONFIG_COMPAT
510 if (test_thread_flag(TIF_32BIT)) {
511 parent_tid_ptr = compat_ptr(regs->u_regs[UREG_I2]);
512 child_tid_ptr = compat_ptr(regs->u_regs[UREG_I4]);
513 } else
514 #endif
515 {
516 parent_tid_ptr = (int __user *) regs->u_regs[UREG_I2];
517 child_tid_ptr = (int __user *) regs->u_regs[UREG_I4];
518 }
519
520 ret = do_fork(clone_flags, stack_start,
521 regs, stack_size,
522 parent_tid_ptr, child_tid_ptr);
523
524 /* If we get an error and potentially restart the system
525 * call, we're screwed because copy_thread() clobbered
526 * the parent's %o1. So detect that case and restore it
527 * here.
528 */
529 if ((unsigned long)ret >= -ERESTART_RESTARTBLOCK)
530 regs->u_regs[UREG_I1] = orig_i1;
531
532 return ret;
533 }
534
535 /* Copy a Sparc thread. The fork() return value conventions
536 * under SunOS are nothing short of bletcherous:
537 * Parent --> %o0 == childs pid, %o1 == 0
538 * Child --> %o0 == parents pid, %o1 == 1
539 */
540 int copy_thread(unsigned long clone_flags, unsigned long sp,
541 unsigned long unused,
542 struct task_struct *p, struct pt_regs *regs)
543 {
544 struct thread_info *t = task_thread_info(p);
545 struct sparc_stackf *parent_sf;
546 unsigned long child_stack_sz;
547 char *child_trap_frame;
548 int kernel_thread;
549
550 kernel_thread = (regs->tstate & TSTATE_PRIV) ? 1 : 0;
551 parent_sf = ((struct sparc_stackf *) regs) - 1;
552
553 /* Calculate offset to stack_frame & pt_regs */
554 child_stack_sz = ((STACKFRAME_SZ + TRACEREG_SZ) +
555 (kernel_thread ? STACKFRAME_SZ : 0));
556 child_trap_frame = (task_stack_page(p) +
557 (THREAD_SIZE - child_stack_sz));
558 memcpy(child_trap_frame, parent_sf, child_stack_sz);
559
560 __thread_flag_byte_ptr(t)[TI_FLAG_BYTE_CWP] =
561 (regs->tstate + 1) & TSTATE_CWP;
562 t->new_child = 1;
563 t->ksp = ((unsigned long) child_trap_frame) - STACK_BIAS;
564 t->kregs = (struct pt_regs *) (child_trap_frame +
565 sizeof(struct sparc_stackf));
566 t->fpsaved[0] = 0;
567
568 if (kernel_thread) {
569 struct sparc_stackf *child_sf = (struct sparc_stackf *)
570 (child_trap_frame + (STACKFRAME_SZ + TRACEREG_SZ));
571
572 /* Zero terminate the stack backtrace. */
573 child_sf->fp = NULL;
574 t->kregs->u_regs[UREG_FP] =
575 ((unsigned long) child_sf) - STACK_BIAS;
576
577 t->current_ds = ASI_P;
578 t->kregs->u_regs[UREG_G6] = (unsigned long) t;
579 t->kregs->u_regs[UREG_G4] = (unsigned long) t->task;
580 } else {
581 if (t->flags & _TIF_32BIT) {
582 sp &= 0x00000000ffffffffUL;
583 regs->u_regs[UREG_FP] &= 0x00000000ffffffffUL;
584 }
585 t->kregs->u_regs[UREG_FP] = sp;
586 t->current_ds = ASI_AIUS;
587 if (sp != regs->u_regs[UREG_FP]) {
588 unsigned long csp;
589
590 csp = clone_stackframe(sp, regs->u_regs[UREG_FP]);
591 if (!csp)
592 return -EFAULT;
593 t->kregs->u_regs[UREG_FP] = csp;
594 }
595 if (t->utraps)
596 t->utraps[0]++;
597 }
598
599 /* Set the return value for the child. */
600 t->kregs->u_regs[UREG_I0] = current->pid;
601 t->kregs->u_regs[UREG_I1] = 1;
602
603 /* Set the second return value for the parent. */
604 regs->u_regs[UREG_I1] = 0;
605
606 if (clone_flags & CLONE_SETTLS)
607 t->kregs->u_regs[UREG_G7] = regs->u_regs[UREG_I3];
608
609 return 0;
610 }
611
612 /*
613 * This is the mechanism for creating a new kernel thread.
614 *
615 * NOTE! Only a kernel-only process(ie the swapper or direct descendants
616 * who haven't done an "execve()") should use this: it will work within
617 * a system call from a "real" process, but the process memory space will
618 * not be freed until both the parent and the child have exited.
619 */
620 pid_t kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
621 {
622 long retval;
623
624 /* If the parent runs before fn(arg) is called by the child,
625 * the input registers of this function can be clobbered.
626 * So we stash 'fn' and 'arg' into global registers which
627 * will not be modified by the parent.
628 */
629 __asm__ __volatile__("mov %4, %%g2\n\t" /* Save FN into global */
630 "mov %5, %%g3\n\t" /* Save ARG into global */
631 "mov %1, %%g1\n\t" /* Clone syscall nr. */
632 "mov %2, %%o0\n\t" /* Clone flags. */
633 "mov 0, %%o1\n\t" /* usp arg == 0 */
634 "t 0x6d\n\t" /* Linux/Sparc clone(). */
635 "brz,a,pn %%o1, 1f\n\t" /* Parent, just return. */
636 " mov %%o0, %0\n\t"
637 "jmpl %%g2, %%o7\n\t" /* Call the function. */
638 " mov %%g3, %%o0\n\t" /* Set arg in delay. */
639 "mov %3, %%g1\n\t"
640 "t 0x6d\n\t" /* Linux/Sparc exit(). */
641 /* Notreached by child. */
642 "1:" :
643 "=r" (retval) :
644 "i" (__NR_clone), "r" (flags | CLONE_VM | CLONE_UNTRACED),
645 "i" (__NR_exit), "r" (fn), "r" (arg) :
646 "g1", "g2", "g3", "o0", "o1", "memory", "cc");
647 return retval;
648 }
649 EXPORT_SYMBOL(kernel_thread);
650
651 typedef struct {
652 union {
653 unsigned int pr_regs[32];
654 unsigned long pr_dregs[16];
655 } pr_fr;
656 unsigned int __unused;
657 unsigned int pr_fsr;
658 unsigned char pr_qcnt;
659 unsigned char pr_q_entrysize;
660 unsigned char pr_en;
661 unsigned int pr_q[64];
662 } elf_fpregset_t32;
663
664 /*
665 * fill in the fpu structure for a core dump.
666 */
667 int dump_fpu (struct pt_regs * regs, elf_fpregset_t * fpregs)
668 {
669 unsigned long *kfpregs = current_thread_info()->fpregs;
670 unsigned long fprs = current_thread_info()->fpsaved[0];
671
672 if (test_thread_flag(TIF_32BIT)) {
673 elf_fpregset_t32 *fpregs32 = (elf_fpregset_t32 *)fpregs;
674
675 if (fprs & FPRS_DL)
676 memcpy(&fpregs32->pr_fr.pr_regs[0], kfpregs,
677 sizeof(unsigned int) * 32);
678 else
679 memset(&fpregs32->pr_fr.pr_regs[0], 0,
680 sizeof(unsigned int) * 32);
681 fpregs32->pr_qcnt = 0;
682 fpregs32->pr_q_entrysize = 8;
683 memset(&fpregs32->pr_q[0], 0,
684 (sizeof(unsigned int) * 64));
685 if (fprs & FPRS_FEF) {
686 fpregs32->pr_fsr = (unsigned int) current_thread_info()->xfsr[0];
687 fpregs32->pr_en = 1;
688 } else {
689 fpregs32->pr_fsr = 0;
690 fpregs32->pr_en = 0;
691 }
692 } else {
693 if(fprs & FPRS_DL)
694 memcpy(&fpregs->pr_regs[0], kfpregs,
695 sizeof(unsigned int) * 32);
696 else
697 memset(&fpregs->pr_regs[0], 0,
698 sizeof(unsigned int) * 32);
699 if(fprs & FPRS_DU)
700 memcpy(&fpregs->pr_regs[16], kfpregs+16,
701 sizeof(unsigned int) * 32);
702 else
703 memset(&fpregs->pr_regs[16], 0,
704 sizeof(unsigned int) * 32);
705 if(fprs & FPRS_FEF) {
706 fpregs->pr_fsr = current_thread_info()->xfsr[0];
707 fpregs->pr_gsr = current_thread_info()->gsr[0];
708 } else {
709 fpregs->pr_fsr = fpregs->pr_gsr = 0;
710 }
711 fpregs->pr_fprs = fprs;
712 }
713 return 1;
714 }
715 EXPORT_SYMBOL(dump_fpu);
716
717 /*
718 * sparc_execve() executes a new program after the asm stub has set
719 * things up for us. This should basically do what I want it to.
720 */
721 asmlinkage int sparc_execve(struct pt_regs *regs)
722 {
723 int error, base = 0;
724 struct filename *filename;
725
726 /* User register window flush is done by entry.S */
727
728 /* Check for indirect call. */
729 if (regs->u_regs[UREG_G1] == 0)
730 base = 1;
731
732 filename = getname((char __user *)regs->u_regs[base + UREG_I0]);
733 error = PTR_ERR(filename);
734 if (IS_ERR(filename))
735 goto out;
736 error = do_execve(filename->name,
737 (const char __user *const __user *)
738 regs->u_regs[base + UREG_I1],
739 (const char __user *const __user *)
740 regs->u_regs[base + UREG_I2], regs);
741 putname(filename);
742 if (!error) {
743 fprs_write(0);
744 current_thread_info()->xfsr[0] = 0;
745 current_thread_info()->fpsaved[0] = 0;
746 regs->tstate &= ~TSTATE_PEF;
747 }
748 out:
749 return error;
750 }
751
752 unsigned long get_wchan(struct task_struct *task)
753 {
754 unsigned long pc, fp, bias = 0;
755 struct thread_info *tp;
756 struct reg_window *rw;
757 unsigned long ret = 0;
758 int count = 0;
759
760 if (!task || task == current ||
761 task->state == TASK_RUNNING)
762 goto out;
763
764 tp = task_thread_info(task);
765 bias = STACK_BIAS;
766 fp = task_thread_info(task)->ksp + bias;
767
768 do {
769 if (!kstack_valid(tp, fp))
770 break;
771 rw = (struct reg_window *) fp;
772 pc = rw->ins[7];
773 if (!in_sched_functions(pc)) {
774 ret = pc;
775 goto out;
776 }
777 fp = rw->ins[6] + bias;
778 } while (++count < 16);
779
780 out:
781 return ret;
782 }
This page took 0.04874 seconds and 5 git commands to generate.