Merge branch 'kbuild' of git://git.kernel.org/pub/scm/linux/kernel/git/mmarek/kbuild
[deliverable/linux.git] / arch / sparc / kernel / smp_64.c
1 /* smp.c: Sparc64 SMP support.
2 *
3 * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
4 */
5
6 #include <linux/export.h>
7 #include <linux/kernel.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/pagemap.h>
11 #include <linux/threads.h>
12 #include <linux/smp.h>
13 #include <linux/interrupt.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/delay.h>
16 #include <linux/init.h>
17 #include <linux/spinlock.h>
18 #include <linux/fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/cache.h>
21 #include <linux/jiffies.h>
22 #include <linux/profile.h>
23 #include <linux/bootmem.h>
24 #include <linux/vmalloc.h>
25 #include <linux/ftrace.h>
26 #include <linux/cpu.h>
27 #include <linux/slab.h>
28 #include <linux/kgdb.h>
29
30 #include <asm/head.h>
31 #include <asm/ptrace.h>
32 #include <linux/atomic.h>
33 #include <asm/tlbflush.h>
34 #include <asm/mmu_context.h>
35 #include <asm/cpudata.h>
36 #include <asm/hvtramp.h>
37 #include <asm/io.h>
38 #include <asm/timer.h>
39 #include <asm/setup.h>
40
41 #include <asm/irq.h>
42 #include <asm/irq_regs.h>
43 #include <asm/page.h>
44 #include <asm/pgtable.h>
45 #include <asm/oplib.h>
46 #include <asm/uaccess.h>
47 #include <asm/starfire.h>
48 #include <asm/tlb.h>
49 #include <asm/sections.h>
50 #include <asm/prom.h>
51 #include <asm/mdesc.h>
52 #include <asm/ldc.h>
53 #include <asm/hypervisor.h>
54 #include <asm/pcr.h>
55
56 #include "cpumap.h"
57 #include "kernel.h"
58
59 DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE;
60 cpumask_t cpu_core_map[NR_CPUS] __read_mostly =
61 { [0 ... NR_CPUS-1] = CPU_MASK_NONE };
62
63 cpumask_t cpu_core_sib_map[NR_CPUS] __read_mostly = {
64 [0 ... NR_CPUS-1] = CPU_MASK_NONE };
65
66 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
67 EXPORT_SYMBOL(cpu_core_map);
68 EXPORT_SYMBOL(cpu_core_sib_map);
69
70 static cpumask_t smp_commenced_mask;
71
72 void smp_info(struct seq_file *m)
73 {
74 int i;
75
76 seq_printf(m, "State:\n");
77 for_each_online_cpu(i)
78 seq_printf(m, "CPU%d:\t\tonline\n", i);
79 }
80
81 void smp_bogo(struct seq_file *m)
82 {
83 int i;
84
85 for_each_online_cpu(i)
86 seq_printf(m,
87 "Cpu%dClkTck\t: %016lx\n",
88 i, cpu_data(i).clock_tick);
89 }
90
91 extern void setup_sparc64_timer(void);
92
93 static volatile unsigned long callin_flag = 0;
94
95 void smp_callin(void)
96 {
97 int cpuid = hard_smp_processor_id();
98
99 __local_per_cpu_offset = __per_cpu_offset(cpuid);
100
101 if (tlb_type == hypervisor)
102 sun4v_ktsb_register();
103
104 __flush_tlb_all();
105
106 setup_sparc64_timer();
107
108 if (cheetah_pcache_forced_on)
109 cheetah_enable_pcache();
110
111 callin_flag = 1;
112 __asm__ __volatile__("membar #Sync\n\t"
113 "flush %%g6" : : : "memory");
114
115 /* Clear this or we will die instantly when we
116 * schedule back to this idler...
117 */
118 current_thread_info()->new_child = 0;
119
120 /* Attach to the address space of init_task. */
121 atomic_inc(&init_mm.mm_count);
122 current->active_mm = &init_mm;
123
124 /* inform the notifiers about the new cpu */
125 notify_cpu_starting(cpuid);
126
127 while (!cpumask_test_cpu(cpuid, &smp_commenced_mask))
128 rmb();
129
130 set_cpu_online(cpuid, true);
131
132 /* idle thread is expected to have preempt disabled */
133 preempt_disable();
134
135 local_irq_enable();
136
137 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
138 }
139
140 void cpu_panic(void)
141 {
142 printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
143 panic("SMP bolixed\n");
144 }
145
146 /* This tick register synchronization scheme is taken entirely from
147 * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
148 *
149 * The only change I've made is to rework it so that the master
150 * initiates the synchonization instead of the slave. -DaveM
151 */
152
153 #define MASTER 0
154 #define SLAVE (SMP_CACHE_BYTES/sizeof(unsigned long))
155
156 #define NUM_ROUNDS 64 /* magic value */
157 #define NUM_ITERS 5 /* likewise */
158
159 static DEFINE_RAW_SPINLOCK(itc_sync_lock);
160 static unsigned long go[SLAVE + 1];
161
162 #define DEBUG_TICK_SYNC 0
163
164 static inline long get_delta (long *rt, long *master)
165 {
166 unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
167 unsigned long tcenter, t0, t1, tm;
168 unsigned long i;
169
170 for (i = 0; i < NUM_ITERS; i++) {
171 t0 = tick_ops->get_tick();
172 go[MASTER] = 1;
173 membar_safe("#StoreLoad");
174 while (!(tm = go[SLAVE]))
175 rmb();
176 go[SLAVE] = 0;
177 wmb();
178 t1 = tick_ops->get_tick();
179
180 if (t1 - t0 < best_t1 - best_t0)
181 best_t0 = t0, best_t1 = t1, best_tm = tm;
182 }
183
184 *rt = best_t1 - best_t0;
185 *master = best_tm - best_t0;
186
187 /* average best_t0 and best_t1 without overflow: */
188 tcenter = (best_t0/2 + best_t1/2);
189 if (best_t0 % 2 + best_t1 % 2 == 2)
190 tcenter++;
191 return tcenter - best_tm;
192 }
193
194 void smp_synchronize_tick_client(void)
195 {
196 long i, delta, adj, adjust_latency = 0, done = 0;
197 unsigned long flags, rt, master_time_stamp;
198 #if DEBUG_TICK_SYNC
199 struct {
200 long rt; /* roundtrip time */
201 long master; /* master's timestamp */
202 long diff; /* difference between midpoint and master's timestamp */
203 long lat; /* estimate of itc adjustment latency */
204 } t[NUM_ROUNDS];
205 #endif
206
207 go[MASTER] = 1;
208
209 while (go[MASTER])
210 rmb();
211
212 local_irq_save(flags);
213 {
214 for (i = 0; i < NUM_ROUNDS; i++) {
215 delta = get_delta(&rt, &master_time_stamp);
216 if (delta == 0)
217 done = 1; /* let's lock on to this... */
218
219 if (!done) {
220 if (i > 0) {
221 adjust_latency += -delta;
222 adj = -delta + adjust_latency/4;
223 } else
224 adj = -delta;
225
226 tick_ops->add_tick(adj);
227 }
228 #if DEBUG_TICK_SYNC
229 t[i].rt = rt;
230 t[i].master = master_time_stamp;
231 t[i].diff = delta;
232 t[i].lat = adjust_latency/4;
233 #endif
234 }
235 }
236 local_irq_restore(flags);
237
238 #if DEBUG_TICK_SYNC
239 for (i = 0; i < NUM_ROUNDS; i++)
240 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
241 t[i].rt, t[i].master, t[i].diff, t[i].lat);
242 #endif
243
244 printk(KERN_INFO "CPU %d: synchronized TICK with master CPU "
245 "(last diff %ld cycles, maxerr %lu cycles)\n",
246 smp_processor_id(), delta, rt);
247 }
248
249 static void smp_start_sync_tick_client(int cpu);
250
251 static void smp_synchronize_one_tick(int cpu)
252 {
253 unsigned long flags, i;
254
255 go[MASTER] = 0;
256
257 smp_start_sync_tick_client(cpu);
258
259 /* wait for client to be ready */
260 while (!go[MASTER])
261 rmb();
262
263 /* now let the client proceed into his loop */
264 go[MASTER] = 0;
265 membar_safe("#StoreLoad");
266
267 raw_spin_lock_irqsave(&itc_sync_lock, flags);
268 {
269 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
270 while (!go[MASTER])
271 rmb();
272 go[MASTER] = 0;
273 wmb();
274 go[SLAVE] = tick_ops->get_tick();
275 membar_safe("#StoreLoad");
276 }
277 }
278 raw_spin_unlock_irqrestore(&itc_sync_lock, flags);
279 }
280
281 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
282 static void ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg,
283 void **descrp)
284 {
285 extern unsigned long sparc64_ttable_tl0;
286 extern unsigned long kern_locked_tte_data;
287 struct hvtramp_descr *hdesc;
288 unsigned long trampoline_ra;
289 struct trap_per_cpu *tb;
290 u64 tte_vaddr, tte_data;
291 unsigned long hv_err;
292 int i;
293
294 hdesc = kzalloc(sizeof(*hdesc) +
295 (sizeof(struct hvtramp_mapping) *
296 num_kernel_image_mappings - 1),
297 GFP_KERNEL);
298 if (!hdesc) {
299 printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate "
300 "hvtramp_descr.\n");
301 return;
302 }
303 *descrp = hdesc;
304
305 hdesc->cpu = cpu;
306 hdesc->num_mappings = num_kernel_image_mappings;
307
308 tb = &trap_block[cpu];
309
310 hdesc->fault_info_va = (unsigned long) &tb->fault_info;
311 hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info);
312
313 hdesc->thread_reg = thread_reg;
314
315 tte_vaddr = (unsigned long) KERNBASE;
316 tte_data = kern_locked_tte_data;
317
318 for (i = 0; i < hdesc->num_mappings; i++) {
319 hdesc->maps[i].vaddr = tte_vaddr;
320 hdesc->maps[i].tte = tte_data;
321 tte_vaddr += 0x400000;
322 tte_data += 0x400000;
323 }
324
325 trampoline_ra = kimage_addr_to_ra(hv_cpu_startup);
326
327 hv_err = sun4v_cpu_start(cpu, trampoline_ra,
328 kimage_addr_to_ra(&sparc64_ttable_tl0),
329 __pa(hdesc));
330 if (hv_err)
331 printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() "
332 "gives error %lu\n", hv_err);
333 }
334 #endif
335
336 extern unsigned long sparc64_cpu_startup;
337
338 /* The OBP cpu startup callback truncates the 3rd arg cookie to
339 * 32-bits (I think) so to be safe we have it read the pointer
340 * contained here so we work on >4GB machines. -DaveM
341 */
342 static struct thread_info *cpu_new_thread = NULL;
343
344 static int smp_boot_one_cpu(unsigned int cpu, struct task_struct *idle)
345 {
346 unsigned long entry =
347 (unsigned long)(&sparc64_cpu_startup);
348 unsigned long cookie =
349 (unsigned long)(&cpu_new_thread);
350 void *descr = NULL;
351 int timeout, ret;
352
353 callin_flag = 0;
354 cpu_new_thread = task_thread_info(idle);
355
356 if (tlb_type == hypervisor) {
357 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
358 if (ldom_domaining_enabled)
359 ldom_startcpu_cpuid(cpu,
360 (unsigned long) cpu_new_thread,
361 &descr);
362 else
363 #endif
364 prom_startcpu_cpuid(cpu, entry, cookie);
365 } else {
366 struct device_node *dp = of_find_node_by_cpuid(cpu);
367
368 prom_startcpu(dp->phandle, entry, cookie);
369 }
370
371 for (timeout = 0; timeout < 50000; timeout++) {
372 if (callin_flag)
373 break;
374 udelay(100);
375 }
376
377 if (callin_flag) {
378 ret = 0;
379 } else {
380 printk("Processor %d is stuck.\n", cpu);
381 ret = -ENODEV;
382 }
383 cpu_new_thread = NULL;
384
385 kfree(descr);
386
387 return ret;
388 }
389
390 static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
391 {
392 u64 result, target;
393 int stuck, tmp;
394
395 if (this_is_starfire) {
396 /* map to real upaid */
397 cpu = (((cpu & 0x3c) << 1) |
398 ((cpu & 0x40) >> 4) |
399 (cpu & 0x3));
400 }
401
402 target = (cpu << 14) | 0x70;
403 again:
404 /* Ok, this is the real Spitfire Errata #54.
405 * One must read back from a UDB internal register
406 * after writes to the UDB interrupt dispatch, but
407 * before the membar Sync for that write.
408 * So we use the high UDB control register (ASI 0x7f,
409 * ADDR 0x20) for the dummy read. -DaveM
410 */
411 tmp = 0x40;
412 __asm__ __volatile__(
413 "wrpr %1, %2, %%pstate\n\t"
414 "stxa %4, [%0] %3\n\t"
415 "stxa %5, [%0+%8] %3\n\t"
416 "add %0, %8, %0\n\t"
417 "stxa %6, [%0+%8] %3\n\t"
418 "membar #Sync\n\t"
419 "stxa %%g0, [%7] %3\n\t"
420 "membar #Sync\n\t"
421 "mov 0x20, %%g1\n\t"
422 "ldxa [%%g1] 0x7f, %%g0\n\t"
423 "membar #Sync"
424 : "=r" (tmp)
425 : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
426 "r" (data0), "r" (data1), "r" (data2), "r" (target),
427 "r" (0x10), "0" (tmp)
428 : "g1");
429
430 /* NOTE: PSTATE_IE is still clear. */
431 stuck = 100000;
432 do {
433 __asm__ __volatile__("ldxa [%%g0] %1, %0"
434 : "=r" (result)
435 : "i" (ASI_INTR_DISPATCH_STAT));
436 if (result == 0) {
437 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
438 : : "r" (pstate));
439 return;
440 }
441 stuck -= 1;
442 if (stuck == 0)
443 break;
444 } while (result & 0x1);
445 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
446 : : "r" (pstate));
447 if (stuck == 0) {
448 printk("CPU[%d]: mondo stuckage result[%016llx]\n",
449 smp_processor_id(), result);
450 } else {
451 udelay(2);
452 goto again;
453 }
454 }
455
456 static void spitfire_xcall_deliver(struct trap_per_cpu *tb, int cnt)
457 {
458 u64 *mondo, data0, data1, data2;
459 u16 *cpu_list;
460 u64 pstate;
461 int i;
462
463 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
464 cpu_list = __va(tb->cpu_list_pa);
465 mondo = __va(tb->cpu_mondo_block_pa);
466 data0 = mondo[0];
467 data1 = mondo[1];
468 data2 = mondo[2];
469 for (i = 0; i < cnt; i++)
470 spitfire_xcall_helper(data0, data1, data2, pstate, cpu_list[i]);
471 }
472
473 /* Cheetah now allows to send the whole 64-bytes of data in the interrupt
474 * packet, but we have no use for that. However we do take advantage of
475 * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
476 */
477 static void cheetah_xcall_deliver(struct trap_per_cpu *tb, int cnt)
478 {
479 int nack_busy_id, is_jbus, need_more;
480 u64 *mondo, pstate, ver, busy_mask;
481 u16 *cpu_list;
482
483 cpu_list = __va(tb->cpu_list_pa);
484 mondo = __va(tb->cpu_mondo_block_pa);
485
486 /* Unfortunately, someone at Sun had the brilliant idea to make the
487 * busy/nack fields hard-coded by ITID number for this Ultra-III
488 * derivative processor.
489 */
490 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
491 is_jbus = ((ver >> 32) == __JALAPENO_ID ||
492 (ver >> 32) == __SERRANO_ID);
493
494 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
495
496 retry:
497 need_more = 0;
498 __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
499 : : "r" (pstate), "i" (PSTATE_IE));
500
501 /* Setup the dispatch data registers. */
502 __asm__ __volatile__("stxa %0, [%3] %6\n\t"
503 "stxa %1, [%4] %6\n\t"
504 "stxa %2, [%5] %6\n\t"
505 "membar #Sync\n\t"
506 : /* no outputs */
507 : "r" (mondo[0]), "r" (mondo[1]), "r" (mondo[2]),
508 "r" (0x40), "r" (0x50), "r" (0x60),
509 "i" (ASI_INTR_W));
510
511 nack_busy_id = 0;
512 busy_mask = 0;
513 {
514 int i;
515
516 for (i = 0; i < cnt; i++) {
517 u64 target, nr;
518
519 nr = cpu_list[i];
520 if (nr == 0xffff)
521 continue;
522
523 target = (nr << 14) | 0x70;
524 if (is_jbus) {
525 busy_mask |= (0x1UL << (nr * 2));
526 } else {
527 target |= (nack_busy_id << 24);
528 busy_mask |= (0x1UL <<
529 (nack_busy_id * 2));
530 }
531 __asm__ __volatile__(
532 "stxa %%g0, [%0] %1\n\t"
533 "membar #Sync\n\t"
534 : /* no outputs */
535 : "r" (target), "i" (ASI_INTR_W));
536 nack_busy_id++;
537 if (nack_busy_id == 32) {
538 need_more = 1;
539 break;
540 }
541 }
542 }
543
544 /* Now, poll for completion. */
545 {
546 u64 dispatch_stat, nack_mask;
547 long stuck;
548
549 stuck = 100000 * nack_busy_id;
550 nack_mask = busy_mask << 1;
551 do {
552 __asm__ __volatile__("ldxa [%%g0] %1, %0"
553 : "=r" (dispatch_stat)
554 : "i" (ASI_INTR_DISPATCH_STAT));
555 if (!(dispatch_stat & (busy_mask | nack_mask))) {
556 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
557 : : "r" (pstate));
558 if (unlikely(need_more)) {
559 int i, this_cnt = 0;
560 for (i = 0; i < cnt; i++) {
561 if (cpu_list[i] == 0xffff)
562 continue;
563 cpu_list[i] = 0xffff;
564 this_cnt++;
565 if (this_cnt == 32)
566 break;
567 }
568 goto retry;
569 }
570 return;
571 }
572 if (!--stuck)
573 break;
574 } while (dispatch_stat & busy_mask);
575
576 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
577 : : "r" (pstate));
578
579 if (dispatch_stat & busy_mask) {
580 /* Busy bits will not clear, continue instead
581 * of freezing up on this cpu.
582 */
583 printk("CPU[%d]: mondo stuckage result[%016llx]\n",
584 smp_processor_id(), dispatch_stat);
585 } else {
586 int i, this_busy_nack = 0;
587
588 /* Delay some random time with interrupts enabled
589 * to prevent deadlock.
590 */
591 udelay(2 * nack_busy_id);
592
593 /* Clear out the mask bits for cpus which did not
594 * NACK us.
595 */
596 for (i = 0; i < cnt; i++) {
597 u64 check_mask, nr;
598
599 nr = cpu_list[i];
600 if (nr == 0xffff)
601 continue;
602
603 if (is_jbus)
604 check_mask = (0x2UL << (2*nr));
605 else
606 check_mask = (0x2UL <<
607 this_busy_nack);
608 if ((dispatch_stat & check_mask) == 0)
609 cpu_list[i] = 0xffff;
610 this_busy_nack += 2;
611 if (this_busy_nack == 64)
612 break;
613 }
614
615 goto retry;
616 }
617 }
618 }
619
620 /* Multi-cpu list version. */
621 static void hypervisor_xcall_deliver(struct trap_per_cpu *tb, int cnt)
622 {
623 int retries, this_cpu, prev_sent, i, saw_cpu_error;
624 unsigned long status;
625 u16 *cpu_list;
626
627 this_cpu = smp_processor_id();
628
629 cpu_list = __va(tb->cpu_list_pa);
630
631 saw_cpu_error = 0;
632 retries = 0;
633 prev_sent = 0;
634 do {
635 int forward_progress, n_sent;
636
637 status = sun4v_cpu_mondo_send(cnt,
638 tb->cpu_list_pa,
639 tb->cpu_mondo_block_pa);
640
641 /* HV_EOK means all cpus received the xcall, we're done. */
642 if (likely(status == HV_EOK))
643 break;
644
645 /* First, see if we made any forward progress.
646 *
647 * The hypervisor indicates successful sends by setting
648 * cpu list entries to the value 0xffff.
649 */
650 n_sent = 0;
651 for (i = 0; i < cnt; i++) {
652 if (likely(cpu_list[i] == 0xffff))
653 n_sent++;
654 }
655
656 forward_progress = 0;
657 if (n_sent > prev_sent)
658 forward_progress = 1;
659
660 prev_sent = n_sent;
661
662 /* If we get a HV_ECPUERROR, then one or more of the cpus
663 * in the list are in error state. Use the cpu_state()
664 * hypervisor call to find out which cpus are in error state.
665 */
666 if (unlikely(status == HV_ECPUERROR)) {
667 for (i = 0; i < cnt; i++) {
668 long err;
669 u16 cpu;
670
671 cpu = cpu_list[i];
672 if (cpu == 0xffff)
673 continue;
674
675 err = sun4v_cpu_state(cpu);
676 if (err == HV_CPU_STATE_ERROR) {
677 saw_cpu_error = (cpu + 1);
678 cpu_list[i] = 0xffff;
679 }
680 }
681 } else if (unlikely(status != HV_EWOULDBLOCK))
682 goto fatal_mondo_error;
683
684 /* Don't bother rewriting the CPU list, just leave the
685 * 0xffff and non-0xffff entries in there and the
686 * hypervisor will do the right thing.
687 *
688 * Only advance timeout state if we didn't make any
689 * forward progress.
690 */
691 if (unlikely(!forward_progress)) {
692 if (unlikely(++retries > 10000))
693 goto fatal_mondo_timeout;
694
695 /* Delay a little bit to let other cpus catch up
696 * on their cpu mondo queue work.
697 */
698 udelay(2 * cnt);
699 }
700 } while (1);
701
702 if (unlikely(saw_cpu_error))
703 goto fatal_mondo_cpu_error;
704
705 return;
706
707 fatal_mondo_cpu_error:
708 printk(KERN_CRIT "CPU[%d]: SUN4V mondo cpu error, some target cpus "
709 "(including %d) were in error state\n",
710 this_cpu, saw_cpu_error - 1);
711 return;
712
713 fatal_mondo_timeout:
714 printk(KERN_CRIT "CPU[%d]: SUN4V mondo timeout, no forward "
715 " progress after %d retries.\n",
716 this_cpu, retries);
717 goto dump_cpu_list_and_out;
718
719 fatal_mondo_error:
720 printk(KERN_CRIT "CPU[%d]: Unexpected SUN4V mondo error %lu\n",
721 this_cpu, status);
722 printk(KERN_CRIT "CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) "
723 "mondo_block_pa(%lx)\n",
724 this_cpu, cnt, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
725
726 dump_cpu_list_and_out:
727 printk(KERN_CRIT "CPU[%d]: CPU list [ ", this_cpu);
728 for (i = 0; i < cnt; i++)
729 printk("%u ", cpu_list[i]);
730 printk("]\n");
731 }
732
733 static void (*xcall_deliver_impl)(struct trap_per_cpu *, int);
734
735 static void xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask)
736 {
737 struct trap_per_cpu *tb;
738 int this_cpu, i, cnt;
739 unsigned long flags;
740 u16 *cpu_list;
741 u64 *mondo;
742
743 /* We have to do this whole thing with interrupts fully disabled.
744 * Otherwise if we send an xcall from interrupt context it will
745 * corrupt both our mondo block and cpu list state.
746 *
747 * One consequence of this is that we cannot use timeout mechanisms
748 * that depend upon interrupts being delivered locally. So, for
749 * example, we cannot sample jiffies and expect it to advance.
750 *
751 * Fortunately, udelay() uses %stick/%tick so we can use that.
752 */
753 local_irq_save(flags);
754
755 this_cpu = smp_processor_id();
756 tb = &trap_block[this_cpu];
757
758 mondo = __va(tb->cpu_mondo_block_pa);
759 mondo[0] = data0;
760 mondo[1] = data1;
761 mondo[2] = data2;
762 wmb();
763
764 cpu_list = __va(tb->cpu_list_pa);
765
766 /* Setup the initial cpu list. */
767 cnt = 0;
768 for_each_cpu(i, mask) {
769 if (i == this_cpu || !cpu_online(i))
770 continue;
771 cpu_list[cnt++] = i;
772 }
773
774 if (cnt)
775 xcall_deliver_impl(tb, cnt);
776
777 local_irq_restore(flags);
778 }
779
780 /* Send cross call to all processors mentioned in MASK_P
781 * except self. Really, there are only two cases currently,
782 * "cpu_online_mask" and "mm_cpumask(mm)".
783 */
784 static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, const cpumask_t *mask)
785 {
786 u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
787
788 xcall_deliver(data0, data1, data2, mask);
789 }
790
791 /* Send cross call to all processors except self. */
792 static void smp_cross_call(unsigned long *func, u32 ctx, u64 data1, u64 data2)
793 {
794 smp_cross_call_masked(func, ctx, data1, data2, cpu_online_mask);
795 }
796
797 extern unsigned long xcall_sync_tick;
798
799 static void smp_start_sync_tick_client(int cpu)
800 {
801 xcall_deliver((u64) &xcall_sync_tick, 0, 0,
802 cpumask_of(cpu));
803 }
804
805 extern unsigned long xcall_call_function;
806
807 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
808 {
809 xcall_deliver((u64) &xcall_call_function, 0, 0, mask);
810 }
811
812 extern unsigned long xcall_call_function_single;
813
814 void arch_send_call_function_single_ipi(int cpu)
815 {
816 xcall_deliver((u64) &xcall_call_function_single, 0, 0,
817 cpumask_of(cpu));
818 }
819
820 void __irq_entry smp_call_function_client(int irq, struct pt_regs *regs)
821 {
822 clear_softint(1 << irq);
823 irq_enter();
824 generic_smp_call_function_interrupt();
825 irq_exit();
826 }
827
828 void __irq_entry smp_call_function_single_client(int irq, struct pt_regs *regs)
829 {
830 clear_softint(1 << irq);
831 irq_enter();
832 generic_smp_call_function_single_interrupt();
833 irq_exit();
834 }
835
836 static void tsb_sync(void *info)
837 {
838 struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
839 struct mm_struct *mm = info;
840
841 /* It is not valid to test "current->active_mm == mm" here.
842 *
843 * The value of "current" is not changed atomically with
844 * switch_mm(). But that's OK, we just need to check the
845 * current cpu's trap block PGD physical address.
846 */
847 if (tp->pgd_paddr == __pa(mm->pgd))
848 tsb_context_switch(mm);
849 }
850
851 void smp_tsb_sync(struct mm_struct *mm)
852 {
853 smp_call_function_many(mm_cpumask(mm), tsb_sync, mm, 1);
854 }
855
856 extern unsigned long xcall_flush_tlb_mm;
857 extern unsigned long xcall_flush_tlb_page;
858 extern unsigned long xcall_flush_tlb_kernel_range;
859 extern unsigned long xcall_fetch_glob_regs;
860 extern unsigned long xcall_fetch_glob_pmu;
861 extern unsigned long xcall_fetch_glob_pmu_n4;
862 extern unsigned long xcall_receive_signal;
863 extern unsigned long xcall_new_mmu_context_version;
864 #ifdef CONFIG_KGDB
865 extern unsigned long xcall_kgdb_capture;
866 #endif
867
868 #ifdef DCACHE_ALIASING_POSSIBLE
869 extern unsigned long xcall_flush_dcache_page_cheetah;
870 #endif
871 extern unsigned long xcall_flush_dcache_page_spitfire;
872
873 static inline void __local_flush_dcache_page(struct page *page)
874 {
875 #ifdef DCACHE_ALIASING_POSSIBLE
876 __flush_dcache_page(page_address(page),
877 ((tlb_type == spitfire) &&
878 page_mapping(page) != NULL));
879 #else
880 if (page_mapping(page) != NULL &&
881 tlb_type == spitfire)
882 __flush_icache_page(__pa(page_address(page)));
883 #endif
884 }
885
886 void smp_flush_dcache_page_impl(struct page *page, int cpu)
887 {
888 int this_cpu;
889
890 if (tlb_type == hypervisor)
891 return;
892
893 #ifdef CONFIG_DEBUG_DCFLUSH
894 atomic_inc(&dcpage_flushes);
895 #endif
896
897 this_cpu = get_cpu();
898
899 if (cpu == this_cpu) {
900 __local_flush_dcache_page(page);
901 } else if (cpu_online(cpu)) {
902 void *pg_addr = page_address(page);
903 u64 data0 = 0;
904
905 if (tlb_type == spitfire) {
906 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
907 if (page_mapping(page) != NULL)
908 data0 |= ((u64)1 << 32);
909 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
910 #ifdef DCACHE_ALIASING_POSSIBLE
911 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
912 #endif
913 }
914 if (data0) {
915 xcall_deliver(data0, __pa(pg_addr),
916 (u64) pg_addr, cpumask_of(cpu));
917 #ifdef CONFIG_DEBUG_DCFLUSH
918 atomic_inc(&dcpage_flushes_xcall);
919 #endif
920 }
921 }
922
923 put_cpu();
924 }
925
926 void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
927 {
928 void *pg_addr;
929 u64 data0;
930
931 if (tlb_type == hypervisor)
932 return;
933
934 preempt_disable();
935
936 #ifdef CONFIG_DEBUG_DCFLUSH
937 atomic_inc(&dcpage_flushes);
938 #endif
939 data0 = 0;
940 pg_addr = page_address(page);
941 if (tlb_type == spitfire) {
942 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
943 if (page_mapping(page) != NULL)
944 data0 |= ((u64)1 << 32);
945 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
946 #ifdef DCACHE_ALIASING_POSSIBLE
947 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
948 #endif
949 }
950 if (data0) {
951 xcall_deliver(data0, __pa(pg_addr),
952 (u64) pg_addr, cpu_online_mask);
953 #ifdef CONFIG_DEBUG_DCFLUSH
954 atomic_inc(&dcpage_flushes_xcall);
955 #endif
956 }
957 __local_flush_dcache_page(page);
958
959 preempt_enable();
960 }
961
962 void __irq_entry smp_new_mmu_context_version_client(int irq, struct pt_regs *regs)
963 {
964 struct mm_struct *mm;
965 unsigned long flags;
966
967 clear_softint(1 << irq);
968
969 /* See if we need to allocate a new TLB context because
970 * the version of the one we are using is now out of date.
971 */
972 mm = current->active_mm;
973 if (unlikely(!mm || (mm == &init_mm)))
974 return;
975
976 spin_lock_irqsave(&mm->context.lock, flags);
977
978 if (unlikely(!CTX_VALID(mm->context)))
979 get_new_mmu_context(mm);
980
981 spin_unlock_irqrestore(&mm->context.lock, flags);
982
983 load_secondary_context(mm);
984 __flush_tlb_mm(CTX_HWBITS(mm->context),
985 SECONDARY_CONTEXT);
986 }
987
988 void smp_new_mmu_context_version(void)
989 {
990 smp_cross_call(&xcall_new_mmu_context_version, 0, 0, 0);
991 }
992
993 #ifdef CONFIG_KGDB
994 void kgdb_roundup_cpus(unsigned long flags)
995 {
996 smp_cross_call(&xcall_kgdb_capture, 0, 0, 0);
997 }
998 #endif
999
1000 void smp_fetch_global_regs(void)
1001 {
1002 smp_cross_call(&xcall_fetch_glob_regs, 0, 0, 0);
1003 }
1004
1005 void smp_fetch_global_pmu(void)
1006 {
1007 if (tlb_type == hypervisor &&
1008 sun4v_chip_type >= SUN4V_CHIP_NIAGARA4)
1009 smp_cross_call(&xcall_fetch_glob_pmu_n4, 0, 0, 0);
1010 else
1011 smp_cross_call(&xcall_fetch_glob_pmu, 0, 0, 0);
1012 }
1013
1014 /* We know that the window frames of the user have been flushed
1015 * to the stack before we get here because all callers of us
1016 * are flush_tlb_*() routines, and these run after flush_cache_*()
1017 * which performs the flushw.
1018 *
1019 * The SMP TLB coherency scheme we use works as follows:
1020 *
1021 * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
1022 * space has (potentially) executed on, this is the heuristic
1023 * we use to avoid doing cross calls.
1024 *
1025 * Also, for flushing from kswapd and also for clones, we
1026 * use cpu_vm_mask as the list of cpus to make run the TLB.
1027 *
1028 * 2) TLB context numbers are shared globally across all processors
1029 * in the system, this allows us to play several games to avoid
1030 * cross calls.
1031 *
1032 * One invariant is that when a cpu switches to a process, and
1033 * that processes tsk->active_mm->cpu_vm_mask does not have the
1034 * current cpu's bit set, that tlb context is flushed locally.
1035 *
1036 * If the address space is non-shared (ie. mm->count == 1) we avoid
1037 * cross calls when we want to flush the currently running process's
1038 * tlb state. This is done by clearing all cpu bits except the current
1039 * processor's in current->mm->cpu_vm_mask and performing the
1040 * flush locally only. This will force any subsequent cpus which run
1041 * this task to flush the context from the local tlb if the process
1042 * migrates to another cpu (again).
1043 *
1044 * 3) For shared address spaces (threads) and swapping we bite the
1045 * bullet for most cases and perform the cross call (but only to
1046 * the cpus listed in cpu_vm_mask).
1047 *
1048 * The performance gain from "optimizing" away the cross call for threads is
1049 * questionable (in theory the big win for threads is the massive sharing of
1050 * address space state across processors).
1051 */
1052
1053 /* This currently is only used by the hugetlb arch pre-fault
1054 * hook on UltraSPARC-III+ and later when changing the pagesize
1055 * bits of the context register for an address space.
1056 */
1057 void smp_flush_tlb_mm(struct mm_struct *mm)
1058 {
1059 u32 ctx = CTX_HWBITS(mm->context);
1060 int cpu = get_cpu();
1061
1062 if (atomic_read(&mm->mm_users) == 1) {
1063 cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1064 goto local_flush_and_out;
1065 }
1066
1067 smp_cross_call_masked(&xcall_flush_tlb_mm,
1068 ctx, 0, 0,
1069 mm_cpumask(mm));
1070
1071 local_flush_and_out:
1072 __flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1073
1074 put_cpu();
1075 }
1076
1077 struct tlb_pending_info {
1078 unsigned long ctx;
1079 unsigned long nr;
1080 unsigned long *vaddrs;
1081 };
1082
1083 static void tlb_pending_func(void *info)
1084 {
1085 struct tlb_pending_info *t = info;
1086
1087 __flush_tlb_pending(t->ctx, t->nr, t->vaddrs);
1088 }
1089
1090 void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1091 {
1092 u32 ctx = CTX_HWBITS(mm->context);
1093 struct tlb_pending_info info;
1094 int cpu = get_cpu();
1095
1096 info.ctx = ctx;
1097 info.nr = nr;
1098 info.vaddrs = vaddrs;
1099
1100 if (mm == current->mm && atomic_read(&mm->mm_users) == 1)
1101 cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1102 else
1103 smp_call_function_many(mm_cpumask(mm), tlb_pending_func,
1104 &info, 1);
1105
1106 __flush_tlb_pending(ctx, nr, vaddrs);
1107
1108 put_cpu();
1109 }
1110
1111 void smp_flush_tlb_page(struct mm_struct *mm, unsigned long vaddr)
1112 {
1113 unsigned long context = CTX_HWBITS(mm->context);
1114 int cpu = get_cpu();
1115
1116 if (mm == current->mm && atomic_read(&mm->mm_users) == 1)
1117 cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1118 else
1119 smp_cross_call_masked(&xcall_flush_tlb_page,
1120 context, vaddr, 0,
1121 mm_cpumask(mm));
1122 __flush_tlb_page(context, vaddr);
1123
1124 put_cpu();
1125 }
1126
1127 void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1128 {
1129 start &= PAGE_MASK;
1130 end = PAGE_ALIGN(end);
1131 if (start != end) {
1132 smp_cross_call(&xcall_flush_tlb_kernel_range,
1133 0, start, end);
1134
1135 __flush_tlb_kernel_range(start, end);
1136 }
1137 }
1138
1139 /* CPU capture. */
1140 /* #define CAPTURE_DEBUG */
1141 extern unsigned long xcall_capture;
1142
1143 static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1144 static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1145 static unsigned long penguins_are_doing_time;
1146
1147 void smp_capture(void)
1148 {
1149 int result = atomic_add_return(1, &smp_capture_depth);
1150
1151 if (result == 1) {
1152 int ncpus = num_online_cpus();
1153
1154 #ifdef CAPTURE_DEBUG
1155 printk("CPU[%d]: Sending penguins to jail...",
1156 smp_processor_id());
1157 #endif
1158 penguins_are_doing_time = 1;
1159 atomic_inc(&smp_capture_registry);
1160 smp_cross_call(&xcall_capture, 0, 0, 0);
1161 while (atomic_read(&smp_capture_registry) != ncpus)
1162 rmb();
1163 #ifdef CAPTURE_DEBUG
1164 printk("done\n");
1165 #endif
1166 }
1167 }
1168
1169 void smp_release(void)
1170 {
1171 if (atomic_dec_and_test(&smp_capture_depth)) {
1172 #ifdef CAPTURE_DEBUG
1173 printk("CPU[%d]: Giving pardon to "
1174 "imprisoned penguins\n",
1175 smp_processor_id());
1176 #endif
1177 penguins_are_doing_time = 0;
1178 membar_safe("#StoreLoad");
1179 atomic_dec(&smp_capture_registry);
1180 }
1181 }
1182
1183 /* Imprisoned penguins run with %pil == PIL_NORMAL_MAX, but PSTATE_IE
1184 * set, so they can service tlb flush xcalls...
1185 */
1186 extern void prom_world(int);
1187
1188 void __irq_entry smp_penguin_jailcell(int irq, struct pt_regs *regs)
1189 {
1190 clear_softint(1 << irq);
1191
1192 preempt_disable();
1193
1194 __asm__ __volatile__("flushw");
1195 prom_world(1);
1196 atomic_inc(&smp_capture_registry);
1197 membar_safe("#StoreLoad");
1198 while (penguins_are_doing_time)
1199 rmb();
1200 atomic_dec(&smp_capture_registry);
1201 prom_world(0);
1202
1203 preempt_enable();
1204 }
1205
1206 /* /proc/profile writes can call this, don't __init it please. */
1207 int setup_profiling_timer(unsigned int multiplier)
1208 {
1209 return -EINVAL;
1210 }
1211
1212 void __init smp_prepare_cpus(unsigned int max_cpus)
1213 {
1214 }
1215
1216 void smp_prepare_boot_cpu(void)
1217 {
1218 }
1219
1220 void __init smp_setup_processor_id(void)
1221 {
1222 if (tlb_type == spitfire)
1223 xcall_deliver_impl = spitfire_xcall_deliver;
1224 else if (tlb_type == cheetah || tlb_type == cheetah_plus)
1225 xcall_deliver_impl = cheetah_xcall_deliver;
1226 else
1227 xcall_deliver_impl = hypervisor_xcall_deliver;
1228 }
1229
1230 void smp_fill_in_sib_core_maps(void)
1231 {
1232 unsigned int i;
1233
1234 for_each_present_cpu(i) {
1235 unsigned int j;
1236
1237 cpumask_clear(&cpu_core_map[i]);
1238 if (cpu_data(i).core_id == 0) {
1239 cpumask_set_cpu(i, &cpu_core_map[i]);
1240 continue;
1241 }
1242
1243 for_each_present_cpu(j) {
1244 if (cpu_data(i).core_id ==
1245 cpu_data(j).core_id)
1246 cpumask_set_cpu(j, &cpu_core_map[i]);
1247 }
1248 }
1249
1250 for_each_present_cpu(i) {
1251 unsigned int j;
1252
1253 for_each_present_cpu(j) {
1254 if (cpu_data(i).sock_id == cpu_data(j).sock_id)
1255 cpumask_set_cpu(j, &cpu_core_sib_map[i]);
1256 }
1257 }
1258
1259 for_each_present_cpu(i) {
1260 unsigned int j;
1261
1262 cpumask_clear(&per_cpu(cpu_sibling_map, i));
1263 if (cpu_data(i).proc_id == -1) {
1264 cpumask_set_cpu(i, &per_cpu(cpu_sibling_map, i));
1265 continue;
1266 }
1267
1268 for_each_present_cpu(j) {
1269 if (cpu_data(i).proc_id ==
1270 cpu_data(j).proc_id)
1271 cpumask_set_cpu(j, &per_cpu(cpu_sibling_map, i));
1272 }
1273 }
1274 }
1275
1276 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
1277 {
1278 int ret = smp_boot_one_cpu(cpu, tidle);
1279
1280 if (!ret) {
1281 cpumask_set_cpu(cpu, &smp_commenced_mask);
1282 while (!cpu_online(cpu))
1283 mb();
1284 if (!cpu_online(cpu)) {
1285 ret = -ENODEV;
1286 } else {
1287 /* On SUN4V, writes to %tick and %stick are
1288 * not allowed.
1289 */
1290 if (tlb_type != hypervisor)
1291 smp_synchronize_one_tick(cpu);
1292 }
1293 }
1294 return ret;
1295 }
1296
1297 #ifdef CONFIG_HOTPLUG_CPU
1298 void cpu_play_dead(void)
1299 {
1300 int cpu = smp_processor_id();
1301 unsigned long pstate;
1302
1303 idle_task_exit();
1304
1305 if (tlb_type == hypervisor) {
1306 struct trap_per_cpu *tb = &trap_block[cpu];
1307
1308 sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO,
1309 tb->cpu_mondo_pa, 0);
1310 sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO,
1311 tb->dev_mondo_pa, 0);
1312 sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR,
1313 tb->resum_mondo_pa, 0);
1314 sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR,
1315 tb->nonresum_mondo_pa, 0);
1316 }
1317
1318 cpumask_clear_cpu(cpu, &smp_commenced_mask);
1319 membar_safe("#Sync");
1320
1321 local_irq_disable();
1322
1323 __asm__ __volatile__(
1324 "rdpr %%pstate, %0\n\t"
1325 "wrpr %0, %1, %%pstate"
1326 : "=r" (pstate)
1327 : "i" (PSTATE_IE));
1328
1329 while (1)
1330 barrier();
1331 }
1332
1333 int __cpu_disable(void)
1334 {
1335 int cpu = smp_processor_id();
1336 cpuinfo_sparc *c;
1337 int i;
1338
1339 for_each_cpu(i, &cpu_core_map[cpu])
1340 cpumask_clear_cpu(cpu, &cpu_core_map[i]);
1341 cpumask_clear(&cpu_core_map[cpu]);
1342
1343 for_each_cpu(i, &per_cpu(cpu_sibling_map, cpu))
1344 cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, i));
1345 cpumask_clear(&per_cpu(cpu_sibling_map, cpu));
1346
1347 c = &cpu_data(cpu);
1348
1349 c->core_id = 0;
1350 c->proc_id = -1;
1351
1352 smp_wmb();
1353
1354 /* Make sure no interrupts point to this cpu. */
1355 fixup_irqs();
1356
1357 local_irq_enable();
1358 mdelay(1);
1359 local_irq_disable();
1360
1361 set_cpu_online(cpu, false);
1362
1363 cpu_map_rebuild();
1364
1365 return 0;
1366 }
1367
1368 void __cpu_die(unsigned int cpu)
1369 {
1370 int i;
1371
1372 for (i = 0; i < 100; i++) {
1373 smp_rmb();
1374 if (!cpumask_test_cpu(cpu, &smp_commenced_mask))
1375 break;
1376 msleep(100);
1377 }
1378 if (cpumask_test_cpu(cpu, &smp_commenced_mask)) {
1379 printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1380 } else {
1381 #if defined(CONFIG_SUN_LDOMS)
1382 unsigned long hv_err;
1383 int limit = 100;
1384
1385 do {
1386 hv_err = sun4v_cpu_stop(cpu);
1387 if (hv_err == HV_EOK) {
1388 set_cpu_present(cpu, false);
1389 break;
1390 }
1391 } while (--limit > 0);
1392 if (limit <= 0) {
1393 printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n",
1394 hv_err);
1395 }
1396 #endif
1397 }
1398 }
1399 #endif
1400
1401 void __init smp_cpus_done(unsigned int max_cpus)
1402 {
1403 }
1404
1405 void smp_send_reschedule(int cpu)
1406 {
1407 if (cpu == smp_processor_id()) {
1408 WARN_ON_ONCE(preemptible());
1409 set_softint(1 << PIL_SMP_RECEIVE_SIGNAL);
1410 } else {
1411 xcall_deliver((u64) &xcall_receive_signal,
1412 0, 0, cpumask_of(cpu));
1413 }
1414 }
1415
1416 void __irq_entry smp_receive_signal_client(int irq, struct pt_regs *regs)
1417 {
1418 clear_softint(1 << irq);
1419 scheduler_ipi();
1420 }
1421
1422 static void stop_this_cpu(void *dummy)
1423 {
1424 prom_stopself();
1425 }
1426
1427 void smp_send_stop(void)
1428 {
1429 int cpu;
1430
1431 if (tlb_type == hypervisor) {
1432 for_each_online_cpu(cpu) {
1433 if (cpu == smp_processor_id())
1434 continue;
1435 #ifdef CONFIG_SUN_LDOMS
1436 if (ldom_domaining_enabled) {
1437 unsigned long hv_err;
1438 hv_err = sun4v_cpu_stop(cpu);
1439 if (hv_err)
1440 printk(KERN_ERR "sun4v_cpu_stop() "
1441 "failed err=%lu\n", hv_err);
1442 } else
1443 #endif
1444 prom_stopcpu_cpuid(cpu);
1445 }
1446 } else
1447 smp_call_function(stop_this_cpu, NULL, 0);
1448 }
1449
1450 /**
1451 * pcpu_alloc_bootmem - NUMA friendly alloc_bootmem wrapper for percpu
1452 * @cpu: cpu to allocate for
1453 * @size: size allocation in bytes
1454 * @align: alignment
1455 *
1456 * Allocate @size bytes aligned at @align for cpu @cpu. This wrapper
1457 * does the right thing for NUMA regardless of the current
1458 * configuration.
1459 *
1460 * RETURNS:
1461 * Pointer to the allocated area on success, NULL on failure.
1462 */
1463 static void * __init pcpu_alloc_bootmem(unsigned int cpu, size_t size,
1464 size_t align)
1465 {
1466 const unsigned long goal = __pa(MAX_DMA_ADDRESS);
1467 #ifdef CONFIG_NEED_MULTIPLE_NODES
1468 int node = cpu_to_node(cpu);
1469 void *ptr;
1470
1471 if (!node_online(node) || !NODE_DATA(node)) {
1472 ptr = __alloc_bootmem(size, align, goal);
1473 pr_info("cpu %d has no node %d or node-local memory\n",
1474 cpu, node);
1475 pr_debug("per cpu data for cpu%d %lu bytes at %016lx\n",
1476 cpu, size, __pa(ptr));
1477 } else {
1478 ptr = __alloc_bootmem_node(NODE_DATA(node),
1479 size, align, goal);
1480 pr_debug("per cpu data for cpu%d %lu bytes on node%d at "
1481 "%016lx\n", cpu, size, node, __pa(ptr));
1482 }
1483 return ptr;
1484 #else
1485 return __alloc_bootmem(size, align, goal);
1486 #endif
1487 }
1488
1489 static void __init pcpu_free_bootmem(void *ptr, size_t size)
1490 {
1491 free_bootmem(__pa(ptr), size);
1492 }
1493
1494 static int __init pcpu_cpu_distance(unsigned int from, unsigned int to)
1495 {
1496 if (cpu_to_node(from) == cpu_to_node(to))
1497 return LOCAL_DISTANCE;
1498 else
1499 return REMOTE_DISTANCE;
1500 }
1501
1502 static void __init pcpu_populate_pte(unsigned long addr)
1503 {
1504 pgd_t *pgd = pgd_offset_k(addr);
1505 pud_t *pud;
1506 pmd_t *pmd;
1507
1508 if (pgd_none(*pgd)) {
1509 pud_t *new;
1510
1511 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1512 pgd_populate(&init_mm, pgd, new);
1513 }
1514
1515 pud = pud_offset(pgd, addr);
1516 if (pud_none(*pud)) {
1517 pmd_t *new;
1518
1519 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1520 pud_populate(&init_mm, pud, new);
1521 }
1522
1523 pmd = pmd_offset(pud, addr);
1524 if (!pmd_present(*pmd)) {
1525 pte_t *new;
1526
1527 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1528 pmd_populate_kernel(&init_mm, pmd, new);
1529 }
1530 }
1531
1532 void __init setup_per_cpu_areas(void)
1533 {
1534 unsigned long delta;
1535 unsigned int cpu;
1536 int rc = -EINVAL;
1537
1538 if (pcpu_chosen_fc != PCPU_FC_PAGE) {
1539 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
1540 PERCPU_DYNAMIC_RESERVE, 4 << 20,
1541 pcpu_cpu_distance,
1542 pcpu_alloc_bootmem,
1543 pcpu_free_bootmem);
1544 if (rc)
1545 pr_warning("PERCPU: %s allocator failed (%d), "
1546 "falling back to page size\n",
1547 pcpu_fc_names[pcpu_chosen_fc], rc);
1548 }
1549 if (rc < 0)
1550 rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE,
1551 pcpu_alloc_bootmem,
1552 pcpu_free_bootmem,
1553 pcpu_populate_pte);
1554 if (rc < 0)
1555 panic("cannot initialize percpu area (err=%d)", rc);
1556
1557 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1558 for_each_possible_cpu(cpu)
1559 __per_cpu_offset(cpu) = delta + pcpu_unit_offsets[cpu];
1560
1561 /* Setup %g5 for the boot cpu. */
1562 __local_per_cpu_offset = __per_cpu_offset(smp_processor_id());
1563
1564 of_fill_in_cpu_data();
1565 if (tlb_type == hypervisor)
1566 mdesc_fill_in_cpu_data(cpu_all_mask);
1567 }
This page took 0.064326 seconds and 6 git commands to generate.