Merge remote-tracking branches 'asoc/topic/samsung' and 'asoc/topic/wm8750' into...
[deliverable/linux.git] / arch / sparc / kernel / time_32.c
1 /* linux/arch/sparc/kernel/time.c
2 *
3 * Copyright (C) 1995 David S. Miller (davem@davemloft.net)
4 * Copyright (C) 1996 Thomas K. Dyas (tdyas@eden.rutgers.edu)
5 *
6 * Chris Davis (cdavis@cois.on.ca) 03/27/1998
7 * Added support for the intersil on the sun4/4200
8 *
9 * Gleb Raiko (rajko@mech.math.msu.su) 08/18/1998
10 * Support for MicroSPARC-IIep, PCI CPU.
11 *
12 * This file handles the Sparc specific time handling details.
13 *
14 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
15 * "A Kernel Model for Precision Timekeeping" by Dave Mills
16 */
17 #include <linux/errno.h>
18 #include <linux/module.h>
19 #include <linux/sched.h>
20 #include <linux/kernel.h>
21 #include <linux/param.h>
22 #include <linux/string.h>
23 #include <linux/mm.h>
24 #include <linux/interrupt.h>
25 #include <linux/time.h>
26 #include <linux/rtc.h>
27 #include <linux/rtc/m48t59.h>
28 #include <linux/timex.h>
29 #include <linux/clocksource.h>
30 #include <linux/clockchips.h>
31 #include <linux/init.h>
32 #include <linux/pci.h>
33 #include <linux/ioport.h>
34 #include <linux/profile.h>
35 #include <linux/of.h>
36 #include <linux/of_device.h>
37 #include <linux/platform_device.h>
38
39 #include <asm/mc146818rtc.h>
40 #include <asm/oplib.h>
41 #include <asm/timex.h>
42 #include <asm/timer.h>
43 #include <asm/irq.h>
44 #include <asm/io.h>
45 #include <asm/idprom.h>
46 #include <asm/page.h>
47 #include <asm/pcic.h>
48 #include <asm/irq_regs.h>
49 #include <asm/setup.h>
50
51 #include "kernel.h"
52 #include "irq.h"
53
54 static __cacheline_aligned_in_smp DEFINE_SEQLOCK(timer_cs_lock);
55 static __volatile__ u64 timer_cs_internal_counter = 0;
56 static char timer_cs_enabled = 0;
57
58 static struct clock_event_device timer_ce;
59 static char timer_ce_enabled = 0;
60
61 #ifdef CONFIG_SMP
62 DEFINE_PER_CPU(struct clock_event_device, sparc32_clockevent);
63 #endif
64
65 DEFINE_SPINLOCK(rtc_lock);
66 EXPORT_SYMBOL(rtc_lock);
67
68 static int set_rtc_mmss(unsigned long);
69
70 unsigned long profile_pc(struct pt_regs *regs)
71 {
72 extern char __copy_user_begin[], __copy_user_end[];
73 extern char __bzero_begin[], __bzero_end[];
74
75 unsigned long pc = regs->pc;
76
77 if (in_lock_functions(pc) ||
78 (pc >= (unsigned long) __copy_user_begin &&
79 pc < (unsigned long) __copy_user_end) ||
80 (pc >= (unsigned long) __bzero_begin &&
81 pc < (unsigned long) __bzero_end))
82 pc = regs->u_regs[UREG_RETPC];
83 return pc;
84 }
85
86 EXPORT_SYMBOL(profile_pc);
87
88 volatile u32 __iomem *master_l10_counter;
89
90 int update_persistent_clock(struct timespec now)
91 {
92 return set_rtc_mmss(now.tv_sec);
93 }
94
95 irqreturn_t notrace timer_interrupt(int dummy, void *dev_id)
96 {
97 if (timer_cs_enabled) {
98 write_seqlock(&timer_cs_lock);
99 timer_cs_internal_counter++;
100 sparc_config.clear_clock_irq();
101 write_sequnlock(&timer_cs_lock);
102 } else {
103 sparc_config.clear_clock_irq();
104 }
105
106 if (timer_ce_enabled)
107 timer_ce.event_handler(&timer_ce);
108
109 return IRQ_HANDLED;
110 }
111
112 static void timer_ce_set_mode(enum clock_event_mode mode,
113 struct clock_event_device *evt)
114 {
115 switch (mode) {
116 case CLOCK_EVT_MODE_PERIODIC:
117 case CLOCK_EVT_MODE_RESUME:
118 timer_ce_enabled = 1;
119 break;
120 case CLOCK_EVT_MODE_SHUTDOWN:
121 timer_ce_enabled = 0;
122 break;
123 default:
124 break;
125 }
126 smp_mb();
127 }
128
129 static __init void setup_timer_ce(void)
130 {
131 struct clock_event_device *ce = &timer_ce;
132
133 BUG_ON(smp_processor_id() != boot_cpu_id);
134
135 ce->name = "timer_ce";
136 ce->rating = 100;
137 ce->features = CLOCK_EVT_FEAT_PERIODIC;
138 ce->set_mode = timer_ce_set_mode;
139 ce->cpumask = cpu_possible_mask;
140 ce->shift = 32;
141 ce->mult = div_sc(sparc_config.clock_rate, NSEC_PER_SEC,
142 ce->shift);
143 clockevents_register_device(ce);
144 }
145
146 static unsigned int sbus_cycles_offset(void)
147 {
148 u32 val, offset;
149
150 val = sbus_readl(master_l10_counter);
151 offset = (val >> TIMER_VALUE_SHIFT) & TIMER_VALUE_MASK;
152
153 /* Limit hit? */
154 if (val & TIMER_LIMIT_BIT)
155 offset += sparc_config.cs_period;
156
157 return offset;
158 }
159
160 static cycle_t timer_cs_read(struct clocksource *cs)
161 {
162 unsigned int seq, offset;
163 u64 cycles;
164
165 do {
166 seq = read_seqbegin(&timer_cs_lock);
167
168 cycles = timer_cs_internal_counter;
169 offset = sparc_config.get_cycles_offset();
170 } while (read_seqretry(&timer_cs_lock, seq));
171
172 /* Count absolute cycles */
173 cycles *= sparc_config.cs_period;
174 cycles += offset;
175
176 return cycles;
177 }
178
179 static struct clocksource timer_cs = {
180 .name = "timer_cs",
181 .rating = 100,
182 .read = timer_cs_read,
183 .mask = CLOCKSOURCE_MASK(64),
184 .shift = 2,
185 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
186 };
187
188 static __init int setup_timer_cs(void)
189 {
190 timer_cs_enabled = 1;
191 timer_cs.mult = clocksource_hz2mult(sparc_config.clock_rate,
192 timer_cs.shift);
193
194 return clocksource_register(&timer_cs);
195 }
196
197 #ifdef CONFIG_SMP
198 static void percpu_ce_setup(enum clock_event_mode mode,
199 struct clock_event_device *evt)
200 {
201 int cpu = __first_cpu(evt->cpumask);
202
203 switch (mode) {
204 case CLOCK_EVT_MODE_PERIODIC:
205 sparc_config.load_profile_irq(cpu,
206 SBUS_CLOCK_RATE / HZ);
207 break;
208 case CLOCK_EVT_MODE_ONESHOT:
209 case CLOCK_EVT_MODE_SHUTDOWN:
210 case CLOCK_EVT_MODE_UNUSED:
211 sparc_config.load_profile_irq(cpu, 0);
212 break;
213 default:
214 break;
215 }
216 }
217
218 static int percpu_ce_set_next_event(unsigned long delta,
219 struct clock_event_device *evt)
220 {
221 int cpu = __first_cpu(evt->cpumask);
222 unsigned int next = (unsigned int)delta;
223
224 sparc_config.load_profile_irq(cpu, next);
225 return 0;
226 }
227
228 void register_percpu_ce(int cpu)
229 {
230 struct clock_event_device *ce = &per_cpu(sparc32_clockevent, cpu);
231 unsigned int features = CLOCK_EVT_FEAT_PERIODIC;
232
233 if (sparc_config.features & FEAT_L14_ONESHOT)
234 features |= CLOCK_EVT_FEAT_ONESHOT;
235
236 ce->name = "percpu_ce";
237 ce->rating = 200;
238 ce->features = features;
239 ce->set_mode = percpu_ce_setup;
240 ce->set_next_event = percpu_ce_set_next_event;
241 ce->cpumask = cpumask_of(cpu);
242 ce->shift = 32;
243 ce->mult = div_sc(sparc_config.clock_rate, NSEC_PER_SEC,
244 ce->shift);
245 ce->max_delta_ns = clockevent_delta2ns(sparc_config.clock_rate, ce);
246 ce->min_delta_ns = clockevent_delta2ns(100, ce);
247
248 clockevents_register_device(ce);
249 }
250 #endif
251
252 static unsigned char mostek_read_byte(struct device *dev, u32 ofs)
253 {
254 struct platform_device *pdev = to_platform_device(dev);
255 struct m48t59_plat_data *pdata = pdev->dev.platform_data;
256
257 return readb(pdata->ioaddr + ofs);
258 }
259
260 static void mostek_write_byte(struct device *dev, u32 ofs, u8 val)
261 {
262 struct platform_device *pdev = to_platform_device(dev);
263 struct m48t59_plat_data *pdata = pdev->dev.platform_data;
264
265 writeb(val, pdata->ioaddr + ofs);
266 }
267
268 static struct m48t59_plat_data m48t59_data = {
269 .read_byte = mostek_read_byte,
270 .write_byte = mostek_write_byte,
271 };
272
273 /* resource is set at runtime */
274 static struct platform_device m48t59_rtc = {
275 .name = "rtc-m48t59",
276 .id = 0,
277 .num_resources = 1,
278 .dev = {
279 .platform_data = &m48t59_data,
280 },
281 };
282
283 static int clock_probe(struct platform_device *op)
284 {
285 struct device_node *dp = op->dev.of_node;
286 const char *model = of_get_property(dp, "model", NULL);
287
288 if (!model)
289 return -ENODEV;
290
291 /* Only the primary RTC has an address property */
292 if (!of_find_property(dp, "address", NULL))
293 return -ENODEV;
294
295 m48t59_rtc.resource = &op->resource[0];
296 if (!strcmp(model, "mk48t02")) {
297 /* Map the clock register io area read-only */
298 m48t59_data.ioaddr = of_ioremap(&op->resource[0], 0,
299 2048, "rtc-m48t59");
300 m48t59_data.type = M48T59RTC_TYPE_M48T02;
301 } else if (!strcmp(model, "mk48t08")) {
302 m48t59_data.ioaddr = of_ioremap(&op->resource[0], 0,
303 8192, "rtc-m48t59");
304 m48t59_data.type = M48T59RTC_TYPE_M48T08;
305 } else
306 return -ENODEV;
307
308 if (platform_device_register(&m48t59_rtc) < 0)
309 printk(KERN_ERR "Registering RTC device failed\n");
310
311 return 0;
312 }
313
314 static struct of_device_id clock_match[] = {
315 {
316 .name = "eeprom",
317 },
318 {},
319 };
320
321 static struct platform_driver clock_driver = {
322 .probe = clock_probe,
323 .driver = {
324 .name = "rtc",
325 .of_match_table = clock_match,
326 },
327 };
328
329
330 /* Probe for the mostek real time clock chip. */
331 static int __init clock_init(void)
332 {
333 return platform_driver_register(&clock_driver);
334 }
335 /* Must be after subsys_initcall() so that busses are probed. Must
336 * be before device_initcall() because things like the RTC driver
337 * need to see the clock registers.
338 */
339 fs_initcall(clock_init);
340
341 static void __init sparc32_late_time_init(void)
342 {
343 if (sparc_config.features & FEAT_L10_CLOCKEVENT)
344 setup_timer_ce();
345 if (sparc_config.features & FEAT_L10_CLOCKSOURCE)
346 setup_timer_cs();
347 #ifdef CONFIG_SMP
348 register_percpu_ce(smp_processor_id());
349 #endif
350 }
351
352 static void __init sbus_time_init(void)
353 {
354 sparc_config.get_cycles_offset = sbus_cycles_offset;
355 sparc_config.init_timers();
356 }
357
358 void __init time_init(void)
359 {
360 sparc_config.features = 0;
361 late_time_init = sparc32_late_time_init;
362
363 if (pcic_present())
364 pci_time_init();
365 else
366 sbus_time_init();
367 }
368
369
370 static int set_rtc_mmss(unsigned long secs)
371 {
372 struct rtc_device *rtc = rtc_class_open("rtc0");
373 int err = -1;
374
375 if (rtc) {
376 err = rtc_set_mmss(rtc, secs);
377 rtc_class_close(rtc);
378 }
379
380 return err;
381 }
This page took 0.038208 seconds and 6 git commands to generate.