Merge tag 'scsi-misc' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[deliverable/linux.git] / arch / sparc / mm / init_64.c
1 /*
2 * arch/sparc64/mm/init.c
3 *
4 * Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
6 */
7
8 #include <linux/module.h>
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
11 #include <linux/string.h>
12 #include <linux/init.h>
13 #include <linux/bootmem.h>
14 #include <linux/mm.h>
15 #include <linux/hugetlb.h>
16 #include <linux/initrd.h>
17 #include <linux/swap.h>
18 #include <linux/pagemap.h>
19 #include <linux/poison.h>
20 #include <linux/fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/kprobes.h>
23 #include <linux/cache.h>
24 #include <linux/sort.h>
25 #include <linux/ioport.h>
26 #include <linux/percpu.h>
27 #include <linux/memblock.h>
28 #include <linux/mmzone.h>
29 #include <linux/gfp.h>
30
31 #include <asm/head.h>
32 #include <asm/page.h>
33 #include <asm/pgalloc.h>
34 #include <asm/pgtable.h>
35 #include <asm/oplib.h>
36 #include <asm/iommu.h>
37 #include <asm/io.h>
38 #include <asm/uaccess.h>
39 #include <asm/mmu_context.h>
40 #include <asm/tlbflush.h>
41 #include <asm/dma.h>
42 #include <asm/starfire.h>
43 #include <asm/tlb.h>
44 #include <asm/spitfire.h>
45 #include <asm/sections.h>
46 #include <asm/tsb.h>
47 #include <asm/hypervisor.h>
48 #include <asm/prom.h>
49 #include <asm/mdesc.h>
50 #include <asm/cpudata.h>
51 #include <asm/setup.h>
52 #include <asm/irq.h>
53
54 #include "init_64.h"
55
56 unsigned long kern_linear_pte_xor[4] __read_mostly;
57 static unsigned long page_cache4v_flag;
58
59 /* A bitmap, two bits for every 256MB of physical memory. These two
60 * bits determine what page size we use for kernel linear
61 * translations. They form an index into kern_linear_pte_xor[]. The
62 * value in the indexed slot is XOR'd with the TLB miss virtual
63 * address to form the resulting TTE. The mapping is:
64 *
65 * 0 ==> 4MB
66 * 1 ==> 256MB
67 * 2 ==> 2GB
68 * 3 ==> 16GB
69 *
70 * All sun4v chips support 256MB pages. Only SPARC-T4 and later
71 * support 2GB pages, and hopefully future cpus will support the 16GB
72 * pages as well. For slots 2 and 3, we encode a 256MB TTE xor there
73 * if these larger page sizes are not supported by the cpu.
74 *
75 * It would be nice to determine this from the machine description
76 * 'cpu' properties, but we need to have this table setup before the
77 * MDESC is initialized.
78 */
79
80 #ifndef CONFIG_DEBUG_PAGEALLOC
81 /* A special kernel TSB for 4MB, 256MB, 2GB and 16GB linear mappings.
82 * Space is allocated for this right after the trap table in
83 * arch/sparc64/kernel/head.S
84 */
85 extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
86 #endif
87 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
88
89 static unsigned long cpu_pgsz_mask;
90
91 #define MAX_BANKS 1024
92
93 static struct linux_prom64_registers pavail[MAX_BANKS];
94 static int pavail_ents;
95
96 u64 numa_latency[MAX_NUMNODES][MAX_NUMNODES];
97
98 static int cmp_p64(const void *a, const void *b)
99 {
100 const struct linux_prom64_registers *x = a, *y = b;
101
102 if (x->phys_addr > y->phys_addr)
103 return 1;
104 if (x->phys_addr < y->phys_addr)
105 return -1;
106 return 0;
107 }
108
109 static void __init read_obp_memory(const char *property,
110 struct linux_prom64_registers *regs,
111 int *num_ents)
112 {
113 phandle node = prom_finddevice("/memory");
114 int prop_size = prom_getproplen(node, property);
115 int ents, ret, i;
116
117 ents = prop_size / sizeof(struct linux_prom64_registers);
118 if (ents > MAX_BANKS) {
119 prom_printf("The machine has more %s property entries than "
120 "this kernel can support (%d).\n",
121 property, MAX_BANKS);
122 prom_halt();
123 }
124
125 ret = prom_getproperty(node, property, (char *) regs, prop_size);
126 if (ret == -1) {
127 prom_printf("Couldn't get %s property from /memory.\n",
128 property);
129 prom_halt();
130 }
131
132 /* Sanitize what we got from the firmware, by page aligning
133 * everything.
134 */
135 for (i = 0; i < ents; i++) {
136 unsigned long base, size;
137
138 base = regs[i].phys_addr;
139 size = regs[i].reg_size;
140
141 size &= PAGE_MASK;
142 if (base & ~PAGE_MASK) {
143 unsigned long new_base = PAGE_ALIGN(base);
144
145 size -= new_base - base;
146 if ((long) size < 0L)
147 size = 0UL;
148 base = new_base;
149 }
150 if (size == 0UL) {
151 /* If it is empty, simply get rid of it.
152 * This simplifies the logic of the other
153 * functions that process these arrays.
154 */
155 memmove(&regs[i], &regs[i + 1],
156 (ents - i - 1) * sizeof(regs[0]));
157 i--;
158 ents--;
159 continue;
160 }
161 regs[i].phys_addr = base;
162 regs[i].reg_size = size;
163 }
164
165 *num_ents = ents;
166
167 sort(regs, ents, sizeof(struct linux_prom64_registers),
168 cmp_p64, NULL);
169 }
170
171 /* Kernel physical address base and size in bytes. */
172 unsigned long kern_base __read_mostly;
173 unsigned long kern_size __read_mostly;
174
175 /* Initial ramdisk setup */
176 extern unsigned long sparc_ramdisk_image64;
177 extern unsigned int sparc_ramdisk_image;
178 extern unsigned int sparc_ramdisk_size;
179
180 struct page *mem_map_zero __read_mostly;
181 EXPORT_SYMBOL(mem_map_zero);
182
183 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
184
185 unsigned long sparc64_kern_pri_context __read_mostly;
186 unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
187 unsigned long sparc64_kern_sec_context __read_mostly;
188
189 int num_kernel_image_mappings;
190
191 #ifdef CONFIG_DEBUG_DCFLUSH
192 atomic_t dcpage_flushes = ATOMIC_INIT(0);
193 #ifdef CONFIG_SMP
194 atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
195 #endif
196 #endif
197
198 inline void flush_dcache_page_impl(struct page *page)
199 {
200 BUG_ON(tlb_type == hypervisor);
201 #ifdef CONFIG_DEBUG_DCFLUSH
202 atomic_inc(&dcpage_flushes);
203 #endif
204
205 #ifdef DCACHE_ALIASING_POSSIBLE
206 __flush_dcache_page(page_address(page),
207 ((tlb_type == spitfire) &&
208 page_mapping(page) != NULL));
209 #else
210 if (page_mapping(page) != NULL &&
211 tlb_type == spitfire)
212 __flush_icache_page(__pa(page_address(page)));
213 #endif
214 }
215
216 #define PG_dcache_dirty PG_arch_1
217 #define PG_dcache_cpu_shift 32UL
218 #define PG_dcache_cpu_mask \
219 ((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
220
221 #define dcache_dirty_cpu(page) \
222 (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
223
224 static inline void set_dcache_dirty(struct page *page, int this_cpu)
225 {
226 unsigned long mask = this_cpu;
227 unsigned long non_cpu_bits;
228
229 non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
230 mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
231
232 __asm__ __volatile__("1:\n\t"
233 "ldx [%2], %%g7\n\t"
234 "and %%g7, %1, %%g1\n\t"
235 "or %%g1, %0, %%g1\n\t"
236 "casx [%2], %%g7, %%g1\n\t"
237 "cmp %%g7, %%g1\n\t"
238 "bne,pn %%xcc, 1b\n\t"
239 " nop"
240 : /* no outputs */
241 : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
242 : "g1", "g7");
243 }
244
245 static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
246 {
247 unsigned long mask = (1UL << PG_dcache_dirty);
248
249 __asm__ __volatile__("! test_and_clear_dcache_dirty\n"
250 "1:\n\t"
251 "ldx [%2], %%g7\n\t"
252 "srlx %%g7, %4, %%g1\n\t"
253 "and %%g1, %3, %%g1\n\t"
254 "cmp %%g1, %0\n\t"
255 "bne,pn %%icc, 2f\n\t"
256 " andn %%g7, %1, %%g1\n\t"
257 "casx [%2], %%g7, %%g1\n\t"
258 "cmp %%g7, %%g1\n\t"
259 "bne,pn %%xcc, 1b\n\t"
260 " nop\n"
261 "2:"
262 : /* no outputs */
263 : "r" (cpu), "r" (mask), "r" (&page->flags),
264 "i" (PG_dcache_cpu_mask),
265 "i" (PG_dcache_cpu_shift)
266 : "g1", "g7");
267 }
268
269 static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
270 {
271 unsigned long tsb_addr = (unsigned long) ent;
272
273 if (tlb_type == cheetah_plus || tlb_type == hypervisor)
274 tsb_addr = __pa(tsb_addr);
275
276 __tsb_insert(tsb_addr, tag, pte);
277 }
278
279 unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
280
281 static void flush_dcache(unsigned long pfn)
282 {
283 struct page *page;
284
285 page = pfn_to_page(pfn);
286 if (page) {
287 unsigned long pg_flags;
288
289 pg_flags = page->flags;
290 if (pg_flags & (1UL << PG_dcache_dirty)) {
291 int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
292 PG_dcache_cpu_mask);
293 int this_cpu = get_cpu();
294
295 /* This is just to optimize away some function calls
296 * in the SMP case.
297 */
298 if (cpu == this_cpu)
299 flush_dcache_page_impl(page);
300 else
301 smp_flush_dcache_page_impl(page, cpu);
302
303 clear_dcache_dirty_cpu(page, cpu);
304
305 put_cpu();
306 }
307 }
308 }
309
310 /* mm->context.lock must be held */
311 static void __update_mmu_tsb_insert(struct mm_struct *mm, unsigned long tsb_index,
312 unsigned long tsb_hash_shift, unsigned long address,
313 unsigned long tte)
314 {
315 struct tsb *tsb = mm->context.tsb_block[tsb_index].tsb;
316 unsigned long tag;
317
318 if (unlikely(!tsb))
319 return;
320
321 tsb += ((address >> tsb_hash_shift) &
322 (mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
323 tag = (address >> 22UL);
324 tsb_insert(tsb, tag, tte);
325 }
326
327 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
328 static inline bool is_hugetlb_pte(pte_t pte)
329 {
330 if ((tlb_type == hypervisor &&
331 (pte_val(pte) & _PAGE_SZALL_4V) == _PAGE_SZHUGE_4V) ||
332 (tlb_type != hypervisor &&
333 (pte_val(pte) & _PAGE_SZALL_4U) == _PAGE_SZHUGE_4U))
334 return true;
335 return false;
336 }
337 #endif
338
339 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
340 {
341 struct mm_struct *mm;
342 unsigned long flags;
343 pte_t pte = *ptep;
344
345 if (tlb_type != hypervisor) {
346 unsigned long pfn = pte_pfn(pte);
347
348 if (pfn_valid(pfn))
349 flush_dcache(pfn);
350 }
351
352 mm = vma->vm_mm;
353
354 /* Don't insert a non-valid PTE into the TSB, we'll deadlock. */
355 if (!pte_accessible(mm, pte))
356 return;
357
358 spin_lock_irqsave(&mm->context.lock, flags);
359
360 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
361 if (mm->context.huge_pte_count && is_hugetlb_pte(pte))
362 __update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT,
363 address, pte_val(pte));
364 else
365 #endif
366 __update_mmu_tsb_insert(mm, MM_TSB_BASE, PAGE_SHIFT,
367 address, pte_val(pte));
368
369 spin_unlock_irqrestore(&mm->context.lock, flags);
370 }
371
372 void flush_dcache_page(struct page *page)
373 {
374 struct address_space *mapping;
375 int this_cpu;
376
377 if (tlb_type == hypervisor)
378 return;
379
380 /* Do not bother with the expensive D-cache flush if it
381 * is merely the zero page. The 'bigcore' testcase in GDB
382 * causes this case to run millions of times.
383 */
384 if (page == ZERO_PAGE(0))
385 return;
386
387 this_cpu = get_cpu();
388
389 mapping = page_mapping(page);
390 if (mapping && !mapping_mapped(mapping)) {
391 int dirty = test_bit(PG_dcache_dirty, &page->flags);
392 if (dirty) {
393 int dirty_cpu = dcache_dirty_cpu(page);
394
395 if (dirty_cpu == this_cpu)
396 goto out;
397 smp_flush_dcache_page_impl(page, dirty_cpu);
398 }
399 set_dcache_dirty(page, this_cpu);
400 } else {
401 /* We could delay the flush for the !page_mapping
402 * case too. But that case is for exec env/arg
403 * pages and those are %99 certainly going to get
404 * faulted into the tlb (and thus flushed) anyways.
405 */
406 flush_dcache_page_impl(page);
407 }
408
409 out:
410 put_cpu();
411 }
412 EXPORT_SYMBOL(flush_dcache_page);
413
414 void __kprobes flush_icache_range(unsigned long start, unsigned long end)
415 {
416 /* Cheetah and Hypervisor platform cpus have coherent I-cache. */
417 if (tlb_type == spitfire) {
418 unsigned long kaddr;
419
420 /* This code only runs on Spitfire cpus so this is
421 * why we can assume _PAGE_PADDR_4U.
422 */
423 for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
424 unsigned long paddr, mask = _PAGE_PADDR_4U;
425
426 if (kaddr >= PAGE_OFFSET)
427 paddr = kaddr & mask;
428 else {
429 pgd_t *pgdp = pgd_offset_k(kaddr);
430 pud_t *pudp = pud_offset(pgdp, kaddr);
431 pmd_t *pmdp = pmd_offset(pudp, kaddr);
432 pte_t *ptep = pte_offset_kernel(pmdp, kaddr);
433
434 paddr = pte_val(*ptep) & mask;
435 }
436 __flush_icache_page(paddr);
437 }
438 }
439 }
440 EXPORT_SYMBOL(flush_icache_range);
441
442 void mmu_info(struct seq_file *m)
443 {
444 static const char *pgsz_strings[] = {
445 "8K", "64K", "512K", "4MB", "32MB",
446 "256MB", "2GB", "16GB",
447 };
448 int i, printed;
449
450 if (tlb_type == cheetah)
451 seq_printf(m, "MMU Type\t: Cheetah\n");
452 else if (tlb_type == cheetah_plus)
453 seq_printf(m, "MMU Type\t: Cheetah+\n");
454 else if (tlb_type == spitfire)
455 seq_printf(m, "MMU Type\t: Spitfire\n");
456 else if (tlb_type == hypervisor)
457 seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
458 else
459 seq_printf(m, "MMU Type\t: ???\n");
460
461 seq_printf(m, "MMU PGSZs\t: ");
462 printed = 0;
463 for (i = 0; i < ARRAY_SIZE(pgsz_strings); i++) {
464 if (cpu_pgsz_mask & (1UL << i)) {
465 seq_printf(m, "%s%s",
466 printed ? "," : "", pgsz_strings[i]);
467 printed++;
468 }
469 }
470 seq_putc(m, '\n');
471
472 #ifdef CONFIG_DEBUG_DCFLUSH
473 seq_printf(m, "DCPageFlushes\t: %d\n",
474 atomic_read(&dcpage_flushes));
475 #ifdef CONFIG_SMP
476 seq_printf(m, "DCPageFlushesXC\t: %d\n",
477 atomic_read(&dcpage_flushes_xcall));
478 #endif /* CONFIG_SMP */
479 #endif /* CONFIG_DEBUG_DCFLUSH */
480 }
481
482 struct linux_prom_translation prom_trans[512] __read_mostly;
483 unsigned int prom_trans_ents __read_mostly;
484
485 unsigned long kern_locked_tte_data;
486
487 /* The obp translations are saved based on 8k pagesize, since obp can
488 * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
489 * HI_OBP_ADDRESS range are handled in ktlb.S.
490 */
491 static inline int in_obp_range(unsigned long vaddr)
492 {
493 return (vaddr >= LOW_OBP_ADDRESS &&
494 vaddr < HI_OBP_ADDRESS);
495 }
496
497 static int cmp_ptrans(const void *a, const void *b)
498 {
499 const struct linux_prom_translation *x = a, *y = b;
500
501 if (x->virt > y->virt)
502 return 1;
503 if (x->virt < y->virt)
504 return -1;
505 return 0;
506 }
507
508 /* Read OBP translations property into 'prom_trans[]'. */
509 static void __init read_obp_translations(void)
510 {
511 int n, node, ents, first, last, i;
512
513 node = prom_finddevice("/virtual-memory");
514 n = prom_getproplen(node, "translations");
515 if (unlikely(n == 0 || n == -1)) {
516 prom_printf("prom_mappings: Couldn't get size.\n");
517 prom_halt();
518 }
519 if (unlikely(n > sizeof(prom_trans))) {
520 prom_printf("prom_mappings: Size %d is too big.\n", n);
521 prom_halt();
522 }
523
524 if ((n = prom_getproperty(node, "translations",
525 (char *)&prom_trans[0],
526 sizeof(prom_trans))) == -1) {
527 prom_printf("prom_mappings: Couldn't get property.\n");
528 prom_halt();
529 }
530
531 n = n / sizeof(struct linux_prom_translation);
532
533 ents = n;
534
535 sort(prom_trans, ents, sizeof(struct linux_prom_translation),
536 cmp_ptrans, NULL);
537
538 /* Now kick out all the non-OBP entries. */
539 for (i = 0; i < ents; i++) {
540 if (in_obp_range(prom_trans[i].virt))
541 break;
542 }
543 first = i;
544 for (; i < ents; i++) {
545 if (!in_obp_range(prom_trans[i].virt))
546 break;
547 }
548 last = i;
549
550 for (i = 0; i < (last - first); i++) {
551 struct linux_prom_translation *src = &prom_trans[i + first];
552 struct linux_prom_translation *dest = &prom_trans[i];
553
554 *dest = *src;
555 }
556 for (; i < ents; i++) {
557 struct linux_prom_translation *dest = &prom_trans[i];
558 dest->virt = dest->size = dest->data = 0x0UL;
559 }
560
561 prom_trans_ents = last - first;
562
563 if (tlb_type == spitfire) {
564 /* Clear diag TTE bits. */
565 for (i = 0; i < prom_trans_ents; i++)
566 prom_trans[i].data &= ~0x0003fe0000000000UL;
567 }
568
569 /* Force execute bit on. */
570 for (i = 0; i < prom_trans_ents; i++)
571 prom_trans[i].data |= (tlb_type == hypervisor ?
572 _PAGE_EXEC_4V : _PAGE_EXEC_4U);
573 }
574
575 static void __init hypervisor_tlb_lock(unsigned long vaddr,
576 unsigned long pte,
577 unsigned long mmu)
578 {
579 unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
580
581 if (ret != 0) {
582 prom_printf("hypervisor_tlb_lock[%lx:%x:%lx:%lx]: "
583 "errors with %lx\n", vaddr, 0, pte, mmu, ret);
584 prom_halt();
585 }
586 }
587
588 static unsigned long kern_large_tte(unsigned long paddr);
589
590 static void __init remap_kernel(void)
591 {
592 unsigned long phys_page, tte_vaddr, tte_data;
593 int i, tlb_ent = sparc64_highest_locked_tlbent();
594
595 tte_vaddr = (unsigned long) KERNBASE;
596 phys_page = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
597 tte_data = kern_large_tte(phys_page);
598
599 kern_locked_tte_data = tte_data;
600
601 /* Now lock us into the TLBs via Hypervisor or OBP. */
602 if (tlb_type == hypervisor) {
603 for (i = 0; i < num_kernel_image_mappings; i++) {
604 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
605 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
606 tte_vaddr += 0x400000;
607 tte_data += 0x400000;
608 }
609 } else {
610 for (i = 0; i < num_kernel_image_mappings; i++) {
611 prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
612 prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
613 tte_vaddr += 0x400000;
614 tte_data += 0x400000;
615 }
616 sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
617 }
618 if (tlb_type == cheetah_plus) {
619 sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
620 CTX_CHEETAH_PLUS_NUC);
621 sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
622 sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
623 }
624 }
625
626
627 static void __init inherit_prom_mappings(void)
628 {
629 /* Now fixup OBP's idea about where we really are mapped. */
630 printk("Remapping the kernel... ");
631 remap_kernel();
632 printk("done.\n");
633 }
634
635 void prom_world(int enter)
636 {
637 if (!enter)
638 set_fs(get_fs());
639
640 __asm__ __volatile__("flushw");
641 }
642
643 void __flush_dcache_range(unsigned long start, unsigned long end)
644 {
645 unsigned long va;
646
647 if (tlb_type == spitfire) {
648 int n = 0;
649
650 for (va = start; va < end; va += 32) {
651 spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
652 if (++n >= 512)
653 break;
654 }
655 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
656 start = __pa(start);
657 end = __pa(end);
658 for (va = start; va < end; va += 32)
659 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
660 "membar #Sync"
661 : /* no outputs */
662 : "r" (va),
663 "i" (ASI_DCACHE_INVALIDATE));
664 }
665 }
666 EXPORT_SYMBOL(__flush_dcache_range);
667
668 /* get_new_mmu_context() uses "cache + 1". */
669 DEFINE_SPINLOCK(ctx_alloc_lock);
670 unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
671 #define MAX_CTX_NR (1UL << CTX_NR_BITS)
672 #define CTX_BMAP_SLOTS BITS_TO_LONGS(MAX_CTX_NR)
673 DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
674
675 /* Caller does TLB context flushing on local CPU if necessary.
676 * The caller also ensures that CTX_VALID(mm->context) is false.
677 *
678 * We must be careful about boundary cases so that we never
679 * let the user have CTX 0 (nucleus) or we ever use a CTX
680 * version of zero (and thus NO_CONTEXT would not be caught
681 * by version mis-match tests in mmu_context.h).
682 *
683 * Always invoked with interrupts disabled.
684 */
685 void get_new_mmu_context(struct mm_struct *mm)
686 {
687 unsigned long ctx, new_ctx;
688 unsigned long orig_pgsz_bits;
689 int new_version;
690
691 spin_lock(&ctx_alloc_lock);
692 orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
693 ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
694 new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
695 new_version = 0;
696 if (new_ctx >= (1 << CTX_NR_BITS)) {
697 new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
698 if (new_ctx >= ctx) {
699 int i;
700 new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
701 CTX_FIRST_VERSION;
702 if (new_ctx == 1)
703 new_ctx = CTX_FIRST_VERSION;
704
705 /* Don't call memset, for 16 entries that's just
706 * plain silly...
707 */
708 mmu_context_bmap[0] = 3;
709 mmu_context_bmap[1] = 0;
710 mmu_context_bmap[2] = 0;
711 mmu_context_bmap[3] = 0;
712 for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
713 mmu_context_bmap[i + 0] = 0;
714 mmu_context_bmap[i + 1] = 0;
715 mmu_context_bmap[i + 2] = 0;
716 mmu_context_bmap[i + 3] = 0;
717 }
718 new_version = 1;
719 goto out;
720 }
721 }
722 mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
723 new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
724 out:
725 tlb_context_cache = new_ctx;
726 mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
727 spin_unlock(&ctx_alloc_lock);
728
729 if (unlikely(new_version))
730 smp_new_mmu_context_version();
731 }
732
733 static int numa_enabled = 1;
734 static int numa_debug;
735
736 static int __init early_numa(char *p)
737 {
738 if (!p)
739 return 0;
740
741 if (strstr(p, "off"))
742 numa_enabled = 0;
743
744 if (strstr(p, "debug"))
745 numa_debug = 1;
746
747 return 0;
748 }
749 early_param("numa", early_numa);
750
751 #define numadbg(f, a...) \
752 do { if (numa_debug) \
753 printk(KERN_INFO f, ## a); \
754 } while (0)
755
756 static void __init find_ramdisk(unsigned long phys_base)
757 {
758 #ifdef CONFIG_BLK_DEV_INITRD
759 if (sparc_ramdisk_image || sparc_ramdisk_image64) {
760 unsigned long ramdisk_image;
761
762 /* Older versions of the bootloader only supported a
763 * 32-bit physical address for the ramdisk image
764 * location, stored at sparc_ramdisk_image. Newer
765 * SILO versions set sparc_ramdisk_image to zero and
766 * provide a full 64-bit physical address at
767 * sparc_ramdisk_image64.
768 */
769 ramdisk_image = sparc_ramdisk_image;
770 if (!ramdisk_image)
771 ramdisk_image = sparc_ramdisk_image64;
772
773 /* Another bootloader quirk. The bootloader normalizes
774 * the physical address to KERNBASE, so we have to
775 * factor that back out and add in the lowest valid
776 * physical page address to get the true physical address.
777 */
778 ramdisk_image -= KERNBASE;
779 ramdisk_image += phys_base;
780
781 numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
782 ramdisk_image, sparc_ramdisk_size);
783
784 initrd_start = ramdisk_image;
785 initrd_end = ramdisk_image + sparc_ramdisk_size;
786
787 memblock_reserve(initrd_start, sparc_ramdisk_size);
788
789 initrd_start += PAGE_OFFSET;
790 initrd_end += PAGE_OFFSET;
791 }
792 #endif
793 }
794
795 struct node_mem_mask {
796 unsigned long mask;
797 unsigned long val;
798 };
799 static struct node_mem_mask node_masks[MAX_NUMNODES];
800 static int num_node_masks;
801
802 #ifdef CONFIG_NEED_MULTIPLE_NODES
803
804 int numa_cpu_lookup_table[NR_CPUS];
805 cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
806
807 struct mdesc_mblock {
808 u64 base;
809 u64 size;
810 u64 offset; /* RA-to-PA */
811 };
812 static struct mdesc_mblock *mblocks;
813 static int num_mblocks;
814
815 static unsigned long ra_to_pa(unsigned long addr)
816 {
817 int i;
818
819 for (i = 0; i < num_mblocks; i++) {
820 struct mdesc_mblock *m = &mblocks[i];
821
822 if (addr >= m->base &&
823 addr < (m->base + m->size)) {
824 addr += m->offset;
825 break;
826 }
827 }
828 return addr;
829 }
830
831 static int find_node(unsigned long addr)
832 {
833 int i;
834
835 addr = ra_to_pa(addr);
836 for (i = 0; i < num_node_masks; i++) {
837 struct node_mem_mask *p = &node_masks[i];
838
839 if ((addr & p->mask) == p->val)
840 return i;
841 }
842 /* The following condition has been observed on LDOM guests.*/
843 WARN_ONCE(1, "find_node: A physical address doesn't match a NUMA node"
844 " rule. Some physical memory will be owned by node 0.");
845 return 0;
846 }
847
848 static u64 memblock_nid_range(u64 start, u64 end, int *nid)
849 {
850 *nid = find_node(start);
851 start += PAGE_SIZE;
852 while (start < end) {
853 int n = find_node(start);
854
855 if (n != *nid)
856 break;
857 start += PAGE_SIZE;
858 }
859
860 if (start > end)
861 start = end;
862
863 return start;
864 }
865 #endif
866
867 /* This must be invoked after performing all of the necessary
868 * memblock_set_node() calls for 'nid'. We need to be able to get
869 * correct data from get_pfn_range_for_nid().
870 */
871 static void __init allocate_node_data(int nid)
872 {
873 struct pglist_data *p;
874 unsigned long start_pfn, end_pfn;
875 #ifdef CONFIG_NEED_MULTIPLE_NODES
876 unsigned long paddr;
877
878 paddr = memblock_alloc_try_nid(sizeof(struct pglist_data), SMP_CACHE_BYTES, nid);
879 if (!paddr) {
880 prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
881 prom_halt();
882 }
883 NODE_DATA(nid) = __va(paddr);
884 memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
885
886 NODE_DATA(nid)->node_id = nid;
887 #endif
888
889 p = NODE_DATA(nid);
890
891 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
892 p->node_start_pfn = start_pfn;
893 p->node_spanned_pages = end_pfn - start_pfn;
894 }
895
896 static void init_node_masks_nonnuma(void)
897 {
898 #ifdef CONFIG_NEED_MULTIPLE_NODES
899 int i;
900 #endif
901
902 numadbg("Initializing tables for non-numa.\n");
903
904 node_masks[0].mask = node_masks[0].val = 0;
905 num_node_masks = 1;
906
907 #ifdef CONFIG_NEED_MULTIPLE_NODES
908 for (i = 0; i < NR_CPUS; i++)
909 numa_cpu_lookup_table[i] = 0;
910
911 cpumask_setall(&numa_cpumask_lookup_table[0]);
912 #endif
913 }
914
915 #ifdef CONFIG_NEED_MULTIPLE_NODES
916 struct pglist_data *node_data[MAX_NUMNODES];
917
918 EXPORT_SYMBOL(numa_cpu_lookup_table);
919 EXPORT_SYMBOL(numa_cpumask_lookup_table);
920 EXPORT_SYMBOL(node_data);
921
922 struct mdesc_mlgroup {
923 u64 node;
924 u64 latency;
925 u64 match;
926 u64 mask;
927 };
928 static struct mdesc_mlgroup *mlgroups;
929 static int num_mlgroups;
930
931 static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
932 u32 cfg_handle)
933 {
934 u64 arc;
935
936 mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
937 u64 target = mdesc_arc_target(md, arc);
938 const u64 *val;
939
940 val = mdesc_get_property(md, target,
941 "cfg-handle", NULL);
942 if (val && *val == cfg_handle)
943 return 0;
944 }
945 return -ENODEV;
946 }
947
948 static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
949 u32 cfg_handle)
950 {
951 u64 arc, candidate, best_latency = ~(u64)0;
952
953 candidate = MDESC_NODE_NULL;
954 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
955 u64 target = mdesc_arc_target(md, arc);
956 const char *name = mdesc_node_name(md, target);
957 const u64 *val;
958
959 if (strcmp(name, "pio-latency-group"))
960 continue;
961
962 val = mdesc_get_property(md, target, "latency", NULL);
963 if (!val)
964 continue;
965
966 if (*val < best_latency) {
967 candidate = target;
968 best_latency = *val;
969 }
970 }
971
972 if (candidate == MDESC_NODE_NULL)
973 return -ENODEV;
974
975 return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
976 }
977
978 int of_node_to_nid(struct device_node *dp)
979 {
980 const struct linux_prom64_registers *regs;
981 struct mdesc_handle *md;
982 u32 cfg_handle;
983 int count, nid;
984 u64 grp;
985
986 /* This is the right thing to do on currently supported
987 * SUN4U NUMA platforms as well, as the PCI controller does
988 * not sit behind any particular memory controller.
989 */
990 if (!mlgroups)
991 return -1;
992
993 regs = of_get_property(dp, "reg", NULL);
994 if (!regs)
995 return -1;
996
997 cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
998
999 md = mdesc_grab();
1000
1001 count = 0;
1002 nid = -1;
1003 mdesc_for_each_node_by_name(md, grp, "group") {
1004 if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
1005 nid = count;
1006 break;
1007 }
1008 count++;
1009 }
1010
1011 mdesc_release(md);
1012
1013 return nid;
1014 }
1015
1016 static void __init add_node_ranges(void)
1017 {
1018 struct memblock_region *reg;
1019
1020 for_each_memblock(memory, reg) {
1021 unsigned long size = reg->size;
1022 unsigned long start, end;
1023
1024 start = reg->base;
1025 end = start + size;
1026 while (start < end) {
1027 unsigned long this_end;
1028 int nid;
1029
1030 this_end = memblock_nid_range(start, end, &nid);
1031
1032 numadbg("Setting memblock NUMA node nid[%d] "
1033 "start[%lx] end[%lx]\n",
1034 nid, start, this_end);
1035
1036 memblock_set_node(start, this_end - start,
1037 &memblock.memory, nid);
1038 start = this_end;
1039 }
1040 }
1041 }
1042
1043 static int __init grab_mlgroups(struct mdesc_handle *md)
1044 {
1045 unsigned long paddr;
1046 int count = 0;
1047 u64 node;
1048
1049 mdesc_for_each_node_by_name(md, node, "memory-latency-group")
1050 count++;
1051 if (!count)
1052 return -ENOENT;
1053
1054 paddr = memblock_alloc(count * sizeof(struct mdesc_mlgroup),
1055 SMP_CACHE_BYTES);
1056 if (!paddr)
1057 return -ENOMEM;
1058
1059 mlgroups = __va(paddr);
1060 num_mlgroups = count;
1061
1062 count = 0;
1063 mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
1064 struct mdesc_mlgroup *m = &mlgroups[count++];
1065 const u64 *val;
1066
1067 m->node = node;
1068
1069 val = mdesc_get_property(md, node, "latency", NULL);
1070 m->latency = *val;
1071 val = mdesc_get_property(md, node, "address-match", NULL);
1072 m->match = *val;
1073 val = mdesc_get_property(md, node, "address-mask", NULL);
1074 m->mask = *val;
1075
1076 numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
1077 "match[%llx] mask[%llx]\n",
1078 count - 1, m->node, m->latency, m->match, m->mask);
1079 }
1080
1081 return 0;
1082 }
1083
1084 static int __init grab_mblocks(struct mdesc_handle *md)
1085 {
1086 unsigned long paddr;
1087 int count = 0;
1088 u64 node;
1089
1090 mdesc_for_each_node_by_name(md, node, "mblock")
1091 count++;
1092 if (!count)
1093 return -ENOENT;
1094
1095 paddr = memblock_alloc(count * sizeof(struct mdesc_mblock),
1096 SMP_CACHE_BYTES);
1097 if (!paddr)
1098 return -ENOMEM;
1099
1100 mblocks = __va(paddr);
1101 num_mblocks = count;
1102
1103 count = 0;
1104 mdesc_for_each_node_by_name(md, node, "mblock") {
1105 struct mdesc_mblock *m = &mblocks[count++];
1106 const u64 *val;
1107
1108 val = mdesc_get_property(md, node, "base", NULL);
1109 m->base = *val;
1110 val = mdesc_get_property(md, node, "size", NULL);
1111 m->size = *val;
1112 val = mdesc_get_property(md, node,
1113 "address-congruence-offset", NULL);
1114
1115 /* The address-congruence-offset property is optional.
1116 * Explicity zero it be identifty this.
1117 */
1118 if (val)
1119 m->offset = *val;
1120 else
1121 m->offset = 0UL;
1122
1123 numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
1124 count - 1, m->base, m->size, m->offset);
1125 }
1126
1127 return 0;
1128 }
1129
1130 static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
1131 u64 grp, cpumask_t *mask)
1132 {
1133 u64 arc;
1134
1135 cpumask_clear(mask);
1136
1137 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
1138 u64 target = mdesc_arc_target(md, arc);
1139 const char *name = mdesc_node_name(md, target);
1140 const u64 *id;
1141
1142 if (strcmp(name, "cpu"))
1143 continue;
1144 id = mdesc_get_property(md, target, "id", NULL);
1145 if (*id < nr_cpu_ids)
1146 cpumask_set_cpu(*id, mask);
1147 }
1148 }
1149
1150 static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
1151 {
1152 int i;
1153
1154 for (i = 0; i < num_mlgroups; i++) {
1155 struct mdesc_mlgroup *m = &mlgroups[i];
1156 if (m->node == node)
1157 return m;
1158 }
1159 return NULL;
1160 }
1161
1162 int __node_distance(int from, int to)
1163 {
1164 if ((from >= MAX_NUMNODES) || (to >= MAX_NUMNODES)) {
1165 pr_warn("Returning default NUMA distance value for %d->%d\n",
1166 from, to);
1167 return (from == to) ? LOCAL_DISTANCE : REMOTE_DISTANCE;
1168 }
1169 return numa_latency[from][to];
1170 }
1171
1172 static int find_best_numa_node_for_mlgroup(struct mdesc_mlgroup *grp)
1173 {
1174 int i;
1175
1176 for (i = 0; i < MAX_NUMNODES; i++) {
1177 struct node_mem_mask *n = &node_masks[i];
1178
1179 if ((grp->mask == n->mask) && (grp->match == n->val))
1180 break;
1181 }
1182 return i;
1183 }
1184
1185 static void find_numa_latencies_for_group(struct mdesc_handle *md, u64 grp,
1186 int index)
1187 {
1188 u64 arc;
1189
1190 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1191 int tnode;
1192 u64 target = mdesc_arc_target(md, arc);
1193 struct mdesc_mlgroup *m = find_mlgroup(target);
1194
1195 if (!m)
1196 continue;
1197 tnode = find_best_numa_node_for_mlgroup(m);
1198 if (tnode == MAX_NUMNODES)
1199 continue;
1200 numa_latency[index][tnode] = m->latency;
1201 }
1202 }
1203
1204 static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
1205 int index)
1206 {
1207 struct mdesc_mlgroup *candidate = NULL;
1208 u64 arc, best_latency = ~(u64)0;
1209 struct node_mem_mask *n;
1210
1211 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1212 u64 target = mdesc_arc_target(md, arc);
1213 struct mdesc_mlgroup *m = find_mlgroup(target);
1214 if (!m)
1215 continue;
1216 if (m->latency < best_latency) {
1217 candidate = m;
1218 best_latency = m->latency;
1219 }
1220 }
1221 if (!candidate)
1222 return -ENOENT;
1223
1224 if (num_node_masks != index) {
1225 printk(KERN_ERR "Inconsistent NUMA state, "
1226 "index[%d] != num_node_masks[%d]\n",
1227 index, num_node_masks);
1228 return -EINVAL;
1229 }
1230
1231 n = &node_masks[num_node_masks++];
1232
1233 n->mask = candidate->mask;
1234 n->val = candidate->match;
1235
1236 numadbg("NUMA NODE[%d]: mask[%lx] val[%lx] (latency[%llx])\n",
1237 index, n->mask, n->val, candidate->latency);
1238
1239 return 0;
1240 }
1241
1242 static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
1243 int index)
1244 {
1245 cpumask_t mask;
1246 int cpu;
1247
1248 numa_parse_mdesc_group_cpus(md, grp, &mask);
1249
1250 for_each_cpu(cpu, &mask)
1251 numa_cpu_lookup_table[cpu] = index;
1252 cpumask_copy(&numa_cpumask_lookup_table[index], &mask);
1253
1254 if (numa_debug) {
1255 printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
1256 for_each_cpu(cpu, &mask)
1257 printk("%d ", cpu);
1258 printk("]\n");
1259 }
1260
1261 return numa_attach_mlgroup(md, grp, index);
1262 }
1263
1264 static int __init numa_parse_mdesc(void)
1265 {
1266 struct mdesc_handle *md = mdesc_grab();
1267 int i, j, err, count;
1268 u64 node;
1269
1270 /* Some sane defaults for numa latency values */
1271 for (i = 0; i < MAX_NUMNODES; i++) {
1272 for (j = 0; j < MAX_NUMNODES; j++)
1273 numa_latency[i][j] = (i == j) ?
1274 LOCAL_DISTANCE : REMOTE_DISTANCE;
1275 }
1276
1277 node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
1278 if (node == MDESC_NODE_NULL) {
1279 mdesc_release(md);
1280 return -ENOENT;
1281 }
1282
1283 err = grab_mblocks(md);
1284 if (err < 0)
1285 goto out;
1286
1287 err = grab_mlgroups(md);
1288 if (err < 0)
1289 goto out;
1290
1291 count = 0;
1292 mdesc_for_each_node_by_name(md, node, "group") {
1293 err = numa_parse_mdesc_group(md, node, count);
1294 if (err < 0)
1295 break;
1296 count++;
1297 }
1298
1299 count = 0;
1300 mdesc_for_each_node_by_name(md, node, "group") {
1301 find_numa_latencies_for_group(md, node, count);
1302 count++;
1303 }
1304
1305 /* Normalize numa latency matrix according to ACPI SLIT spec. */
1306 for (i = 0; i < MAX_NUMNODES; i++) {
1307 u64 self_latency = numa_latency[i][i];
1308
1309 for (j = 0; j < MAX_NUMNODES; j++) {
1310 numa_latency[i][j] =
1311 (numa_latency[i][j] * LOCAL_DISTANCE) /
1312 self_latency;
1313 }
1314 }
1315
1316 add_node_ranges();
1317
1318 for (i = 0; i < num_node_masks; i++) {
1319 allocate_node_data(i);
1320 node_set_online(i);
1321 }
1322
1323 err = 0;
1324 out:
1325 mdesc_release(md);
1326 return err;
1327 }
1328
1329 static int __init numa_parse_jbus(void)
1330 {
1331 unsigned long cpu, index;
1332
1333 /* NUMA node id is encoded in bits 36 and higher, and there is
1334 * a 1-to-1 mapping from CPU ID to NUMA node ID.
1335 */
1336 index = 0;
1337 for_each_present_cpu(cpu) {
1338 numa_cpu_lookup_table[cpu] = index;
1339 cpumask_copy(&numa_cpumask_lookup_table[index], cpumask_of(cpu));
1340 node_masks[index].mask = ~((1UL << 36UL) - 1UL);
1341 node_masks[index].val = cpu << 36UL;
1342
1343 index++;
1344 }
1345 num_node_masks = index;
1346
1347 add_node_ranges();
1348
1349 for (index = 0; index < num_node_masks; index++) {
1350 allocate_node_data(index);
1351 node_set_online(index);
1352 }
1353
1354 return 0;
1355 }
1356
1357 static int __init numa_parse_sun4u(void)
1358 {
1359 if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1360 unsigned long ver;
1361
1362 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
1363 if ((ver >> 32UL) == __JALAPENO_ID ||
1364 (ver >> 32UL) == __SERRANO_ID)
1365 return numa_parse_jbus();
1366 }
1367 return -1;
1368 }
1369
1370 static int __init bootmem_init_numa(void)
1371 {
1372 int err = -1;
1373
1374 numadbg("bootmem_init_numa()\n");
1375
1376 if (numa_enabled) {
1377 if (tlb_type == hypervisor)
1378 err = numa_parse_mdesc();
1379 else
1380 err = numa_parse_sun4u();
1381 }
1382 return err;
1383 }
1384
1385 #else
1386
1387 static int bootmem_init_numa(void)
1388 {
1389 return -1;
1390 }
1391
1392 #endif
1393
1394 static void __init bootmem_init_nonnuma(void)
1395 {
1396 unsigned long top_of_ram = memblock_end_of_DRAM();
1397 unsigned long total_ram = memblock_phys_mem_size();
1398
1399 numadbg("bootmem_init_nonnuma()\n");
1400
1401 printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1402 top_of_ram, total_ram);
1403 printk(KERN_INFO "Memory hole size: %ldMB\n",
1404 (top_of_ram - total_ram) >> 20);
1405
1406 init_node_masks_nonnuma();
1407 memblock_set_node(0, (phys_addr_t)ULLONG_MAX, &memblock.memory, 0);
1408 allocate_node_data(0);
1409 node_set_online(0);
1410 }
1411
1412 static unsigned long __init bootmem_init(unsigned long phys_base)
1413 {
1414 unsigned long end_pfn;
1415
1416 end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1417 max_pfn = max_low_pfn = end_pfn;
1418 min_low_pfn = (phys_base >> PAGE_SHIFT);
1419
1420 if (bootmem_init_numa() < 0)
1421 bootmem_init_nonnuma();
1422
1423 /* Dump memblock with node info. */
1424 memblock_dump_all();
1425
1426 /* XXX cpu notifier XXX */
1427
1428 sparse_memory_present_with_active_regions(MAX_NUMNODES);
1429 sparse_init();
1430
1431 return end_pfn;
1432 }
1433
1434 static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1435 static int pall_ents __initdata;
1436
1437 static unsigned long max_phys_bits = 40;
1438
1439 bool kern_addr_valid(unsigned long addr)
1440 {
1441 pgd_t *pgd;
1442 pud_t *pud;
1443 pmd_t *pmd;
1444 pte_t *pte;
1445
1446 if ((long)addr < 0L) {
1447 unsigned long pa = __pa(addr);
1448
1449 if ((addr >> max_phys_bits) != 0UL)
1450 return false;
1451
1452 return pfn_valid(pa >> PAGE_SHIFT);
1453 }
1454
1455 if (addr >= (unsigned long) KERNBASE &&
1456 addr < (unsigned long)&_end)
1457 return true;
1458
1459 pgd = pgd_offset_k(addr);
1460 if (pgd_none(*pgd))
1461 return 0;
1462
1463 pud = pud_offset(pgd, addr);
1464 if (pud_none(*pud))
1465 return 0;
1466
1467 if (pud_large(*pud))
1468 return pfn_valid(pud_pfn(*pud));
1469
1470 pmd = pmd_offset(pud, addr);
1471 if (pmd_none(*pmd))
1472 return 0;
1473
1474 if (pmd_large(*pmd))
1475 return pfn_valid(pmd_pfn(*pmd));
1476
1477 pte = pte_offset_kernel(pmd, addr);
1478 if (pte_none(*pte))
1479 return 0;
1480
1481 return pfn_valid(pte_pfn(*pte));
1482 }
1483 EXPORT_SYMBOL(kern_addr_valid);
1484
1485 static unsigned long __ref kernel_map_hugepud(unsigned long vstart,
1486 unsigned long vend,
1487 pud_t *pud)
1488 {
1489 const unsigned long mask16gb = (1UL << 34) - 1UL;
1490 u64 pte_val = vstart;
1491
1492 /* Each PUD is 8GB */
1493 if ((vstart & mask16gb) ||
1494 (vend - vstart <= mask16gb)) {
1495 pte_val ^= kern_linear_pte_xor[2];
1496 pud_val(*pud) = pte_val | _PAGE_PUD_HUGE;
1497
1498 return vstart + PUD_SIZE;
1499 }
1500
1501 pte_val ^= kern_linear_pte_xor[3];
1502 pte_val |= _PAGE_PUD_HUGE;
1503
1504 vend = vstart + mask16gb + 1UL;
1505 while (vstart < vend) {
1506 pud_val(*pud) = pte_val;
1507
1508 pte_val += PUD_SIZE;
1509 vstart += PUD_SIZE;
1510 pud++;
1511 }
1512 return vstart;
1513 }
1514
1515 static bool kernel_can_map_hugepud(unsigned long vstart, unsigned long vend,
1516 bool guard)
1517 {
1518 if (guard && !(vstart & ~PUD_MASK) && (vend - vstart) >= PUD_SIZE)
1519 return true;
1520
1521 return false;
1522 }
1523
1524 static unsigned long __ref kernel_map_hugepmd(unsigned long vstart,
1525 unsigned long vend,
1526 pmd_t *pmd)
1527 {
1528 const unsigned long mask256mb = (1UL << 28) - 1UL;
1529 const unsigned long mask2gb = (1UL << 31) - 1UL;
1530 u64 pte_val = vstart;
1531
1532 /* Each PMD is 8MB */
1533 if ((vstart & mask256mb) ||
1534 (vend - vstart <= mask256mb)) {
1535 pte_val ^= kern_linear_pte_xor[0];
1536 pmd_val(*pmd) = pte_val | _PAGE_PMD_HUGE;
1537
1538 return vstart + PMD_SIZE;
1539 }
1540
1541 if ((vstart & mask2gb) ||
1542 (vend - vstart <= mask2gb)) {
1543 pte_val ^= kern_linear_pte_xor[1];
1544 pte_val |= _PAGE_PMD_HUGE;
1545 vend = vstart + mask256mb + 1UL;
1546 } else {
1547 pte_val ^= kern_linear_pte_xor[2];
1548 pte_val |= _PAGE_PMD_HUGE;
1549 vend = vstart + mask2gb + 1UL;
1550 }
1551
1552 while (vstart < vend) {
1553 pmd_val(*pmd) = pte_val;
1554
1555 pte_val += PMD_SIZE;
1556 vstart += PMD_SIZE;
1557 pmd++;
1558 }
1559
1560 return vstart;
1561 }
1562
1563 static bool kernel_can_map_hugepmd(unsigned long vstart, unsigned long vend,
1564 bool guard)
1565 {
1566 if (guard && !(vstart & ~PMD_MASK) && (vend - vstart) >= PMD_SIZE)
1567 return true;
1568
1569 return false;
1570 }
1571
1572 static unsigned long __ref kernel_map_range(unsigned long pstart,
1573 unsigned long pend, pgprot_t prot,
1574 bool use_huge)
1575 {
1576 unsigned long vstart = PAGE_OFFSET + pstart;
1577 unsigned long vend = PAGE_OFFSET + pend;
1578 unsigned long alloc_bytes = 0UL;
1579
1580 if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1581 prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1582 vstart, vend);
1583 prom_halt();
1584 }
1585
1586 while (vstart < vend) {
1587 unsigned long this_end, paddr = __pa(vstart);
1588 pgd_t *pgd = pgd_offset_k(vstart);
1589 pud_t *pud;
1590 pmd_t *pmd;
1591 pte_t *pte;
1592
1593 if (pgd_none(*pgd)) {
1594 pud_t *new;
1595
1596 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1597 alloc_bytes += PAGE_SIZE;
1598 pgd_populate(&init_mm, pgd, new);
1599 }
1600 pud = pud_offset(pgd, vstart);
1601 if (pud_none(*pud)) {
1602 pmd_t *new;
1603
1604 if (kernel_can_map_hugepud(vstart, vend, use_huge)) {
1605 vstart = kernel_map_hugepud(vstart, vend, pud);
1606 continue;
1607 }
1608 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1609 alloc_bytes += PAGE_SIZE;
1610 pud_populate(&init_mm, pud, new);
1611 }
1612
1613 pmd = pmd_offset(pud, vstart);
1614 if (pmd_none(*pmd)) {
1615 pte_t *new;
1616
1617 if (kernel_can_map_hugepmd(vstart, vend, use_huge)) {
1618 vstart = kernel_map_hugepmd(vstart, vend, pmd);
1619 continue;
1620 }
1621 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1622 alloc_bytes += PAGE_SIZE;
1623 pmd_populate_kernel(&init_mm, pmd, new);
1624 }
1625
1626 pte = pte_offset_kernel(pmd, vstart);
1627 this_end = (vstart + PMD_SIZE) & PMD_MASK;
1628 if (this_end > vend)
1629 this_end = vend;
1630
1631 while (vstart < this_end) {
1632 pte_val(*pte) = (paddr | pgprot_val(prot));
1633
1634 vstart += PAGE_SIZE;
1635 paddr += PAGE_SIZE;
1636 pte++;
1637 }
1638 }
1639
1640 return alloc_bytes;
1641 }
1642
1643 static void __init flush_all_kernel_tsbs(void)
1644 {
1645 int i;
1646
1647 for (i = 0; i < KERNEL_TSB_NENTRIES; i++) {
1648 struct tsb *ent = &swapper_tsb[i];
1649
1650 ent->tag = (1UL << TSB_TAG_INVALID_BIT);
1651 }
1652 #ifndef CONFIG_DEBUG_PAGEALLOC
1653 for (i = 0; i < KERNEL_TSB4M_NENTRIES; i++) {
1654 struct tsb *ent = &swapper_4m_tsb[i];
1655
1656 ent->tag = (1UL << TSB_TAG_INVALID_BIT);
1657 }
1658 #endif
1659 }
1660
1661 extern unsigned int kvmap_linear_patch[1];
1662
1663 static void __init kernel_physical_mapping_init(void)
1664 {
1665 unsigned long i, mem_alloced = 0UL;
1666 bool use_huge = true;
1667
1668 #ifdef CONFIG_DEBUG_PAGEALLOC
1669 use_huge = false;
1670 #endif
1671 for (i = 0; i < pall_ents; i++) {
1672 unsigned long phys_start, phys_end;
1673
1674 phys_start = pall[i].phys_addr;
1675 phys_end = phys_start + pall[i].reg_size;
1676
1677 mem_alloced += kernel_map_range(phys_start, phys_end,
1678 PAGE_KERNEL, use_huge);
1679 }
1680
1681 printk("Allocated %ld bytes for kernel page tables.\n",
1682 mem_alloced);
1683
1684 kvmap_linear_patch[0] = 0x01000000; /* nop */
1685 flushi(&kvmap_linear_patch[0]);
1686
1687 flush_all_kernel_tsbs();
1688
1689 __flush_tlb_all();
1690 }
1691
1692 #ifdef CONFIG_DEBUG_PAGEALLOC
1693 void __kernel_map_pages(struct page *page, int numpages, int enable)
1694 {
1695 unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1696 unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1697
1698 kernel_map_range(phys_start, phys_end,
1699 (enable ? PAGE_KERNEL : __pgprot(0)), false);
1700
1701 flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1702 PAGE_OFFSET + phys_end);
1703
1704 /* we should perform an IPI and flush all tlbs,
1705 * but that can deadlock->flush only current cpu.
1706 */
1707 __flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1708 PAGE_OFFSET + phys_end);
1709 }
1710 #endif
1711
1712 unsigned long __init find_ecache_flush_span(unsigned long size)
1713 {
1714 int i;
1715
1716 for (i = 0; i < pavail_ents; i++) {
1717 if (pavail[i].reg_size >= size)
1718 return pavail[i].phys_addr;
1719 }
1720
1721 return ~0UL;
1722 }
1723
1724 unsigned long PAGE_OFFSET;
1725 EXPORT_SYMBOL(PAGE_OFFSET);
1726
1727 unsigned long VMALLOC_END = 0x0000010000000000UL;
1728 EXPORT_SYMBOL(VMALLOC_END);
1729
1730 unsigned long sparc64_va_hole_top = 0xfffff80000000000UL;
1731 unsigned long sparc64_va_hole_bottom = 0x0000080000000000UL;
1732
1733 static void __init setup_page_offset(void)
1734 {
1735 if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1736 /* Cheetah/Panther support a full 64-bit virtual
1737 * address, so we can use all that our page tables
1738 * support.
1739 */
1740 sparc64_va_hole_top = 0xfff0000000000000UL;
1741 sparc64_va_hole_bottom = 0x0010000000000000UL;
1742
1743 max_phys_bits = 42;
1744 } else if (tlb_type == hypervisor) {
1745 switch (sun4v_chip_type) {
1746 case SUN4V_CHIP_NIAGARA1:
1747 case SUN4V_CHIP_NIAGARA2:
1748 /* T1 and T2 support 48-bit virtual addresses. */
1749 sparc64_va_hole_top = 0xffff800000000000UL;
1750 sparc64_va_hole_bottom = 0x0000800000000000UL;
1751
1752 max_phys_bits = 39;
1753 break;
1754 case SUN4V_CHIP_NIAGARA3:
1755 /* T3 supports 48-bit virtual addresses. */
1756 sparc64_va_hole_top = 0xffff800000000000UL;
1757 sparc64_va_hole_bottom = 0x0000800000000000UL;
1758
1759 max_phys_bits = 43;
1760 break;
1761 case SUN4V_CHIP_NIAGARA4:
1762 case SUN4V_CHIP_NIAGARA5:
1763 case SUN4V_CHIP_SPARC64X:
1764 case SUN4V_CHIP_SPARC_M6:
1765 /* T4 and later support 52-bit virtual addresses. */
1766 sparc64_va_hole_top = 0xfff8000000000000UL;
1767 sparc64_va_hole_bottom = 0x0008000000000000UL;
1768 max_phys_bits = 47;
1769 break;
1770 case SUN4V_CHIP_SPARC_M7:
1771 default:
1772 /* M7 and later support 52-bit virtual addresses. */
1773 sparc64_va_hole_top = 0xfff8000000000000UL;
1774 sparc64_va_hole_bottom = 0x0008000000000000UL;
1775 max_phys_bits = 49;
1776 break;
1777 }
1778 }
1779
1780 if (max_phys_bits > MAX_PHYS_ADDRESS_BITS) {
1781 prom_printf("MAX_PHYS_ADDRESS_BITS is too small, need %lu\n",
1782 max_phys_bits);
1783 prom_halt();
1784 }
1785
1786 PAGE_OFFSET = sparc64_va_hole_top;
1787 VMALLOC_END = ((sparc64_va_hole_bottom >> 1) +
1788 (sparc64_va_hole_bottom >> 2));
1789
1790 pr_info("MM: PAGE_OFFSET is 0x%016lx (max_phys_bits == %lu)\n",
1791 PAGE_OFFSET, max_phys_bits);
1792 pr_info("MM: VMALLOC [0x%016lx --> 0x%016lx]\n",
1793 VMALLOC_START, VMALLOC_END);
1794 pr_info("MM: VMEMMAP [0x%016lx --> 0x%016lx]\n",
1795 VMEMMAP_BASE, VMEMMAP_BASE << 1);
1796 }
1797
1798 static void __init tsb_phys_patch(void)
1799 {
1800 struct tsb_ldquad_phys_patch_entry *pquad;
1801 struct tsb_phys_patch_entry *p;
1802
1803 pquad = &__tsb_ldquad_phys_patch;
1804 while (pquad < &__tsb_ldquad_phys_patch_end) {
1805 unsigned long addr = pquad->addr;
1806
1807 if (tlb_type == hypervisor)
1808 *(unsigned int *) addr = pquad->sun4v_insn;
1809 else
1810 *(unsigned int *) addr = pquad->sun4u_insn;
1811 wmb();
1812 __asm__ __volatile__("flush %0"
1813 : /* no outputs */
1814 : "r" (addr));
1815
1816 pquad++;
1817 }
1818
1819 p = &__tsb_phys_patch;
1820 while (p < &__tsb_phys_patch_end) {
1821 unsigned long addr = p->addr;
1822
1823 *(unsigned int *) addr = p->insn;
1824 wmb();
1825 __asm__ __volatile__("flush %0"
1826 : /* no outputs */
1827 : "r" (addr));
1828
1829 p++;
1830 }
1831 }
1832
1833 /* Don't mark as init, we give this to the Hypervisor. */
1834 #ifndef CONFIG_DEBUG_PAGEALLOC
1835 #define NUM_KTSB_DESCR 2
1836 #else
1837 #define NUM_KTSB_DESCR 1
1838 #endif
1839 static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
1840
1841 /* The swapper TSBs are loaded with a base sequence of:
1842 *
1843 * sethi %uhi(SYMBOL), REG1
1844 * sethi %hi(SYMBOL), REG2
1845 * or REG1, %ulo(SYMBOL), REG1
1846 * or REG2, %lo(SYMBOL), REG2
1847 * sllx REG1, 32, REG1
1848 * or REG1, REG2, REG1
1849 *
1850 * When we use physical addressing for the TSB accesses, we patch the
1851 * first four instructions in the above sequence.
1852 */
1853
1854 static void patch_one_ktsb_phys(unsigned int *start, unsigned int *end, unsigned long pa)
1855 {
1856 unsigned long high_bits, low_bits;
1857
1858 high_bits = (pa >> 32) & 0xffffffff;
1859 low_bits = (pa >> 0) & 0xffffffff;
1860
1861 while (start < end) {
1862 unsigned int *ia = (unsigned int *)(unsigned long)*start;
1863
1864 ia[0] = (ia[0] & ~0x3fffff) | (high_bits >> 10);
1865 __asm__ __volatile__("flush %0" : : "r" (ia));
1866
1867 ia[1] = (ia[1] & ~0x3fffff) | (low_bits >> 10);
1868 __asm__ __volatile__("flush %0" : : "r" (ia + 1));
1869
1870 ia[2] = (ia[2] & ~0x1fff) | (high_bits & 0x3ff);
1871 __asm__ __volatile__("flush %0" : : "r" (ia + 2));
1872
1873 ia[3] = (ia[3] & ~0x1fff) | (low_bits & 0x3ff);
1874 __asm__ __volatile__("flush %0" : : "r" (ia + 3));
1875
1876 start++;
1877 }
1878 }
1879
1880 static void ktsb_phys_patch(void)
1881 {
1882 extern unsigned int __swapper_tsb_phys_patch;
1883 extern unsigned int __swapper_tsb_phys_patch_end;
1884 unsigned long ktsb_pa;
1885
1886 ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1887 patch_one_ktsb_phys(&__swapper_tsb_phys_patch,
1888 &__swapper_tsb_phys_patch_end, ktsb_pa);
1889 #ifndef CONFIG_DEBUG_PAGEALLOC
1890 {
1891 extern unsigned int __swapper_4m_tsb_phys_patch;
1892 extern unsigned int __swapper_4m_tsb_phys_patch_end;
1893 ktsb_pa = (kern_base +
1894 ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1895 patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch,
1896 &__swapper_4m_tsb_phys_patch_end, ktsb_pa);
1897 }
1898 #endif
1899 }
1900
1901 static void __init sun4v_ktsb_init(void)
1902 {
1903 unsigned long ktsb_pa;
1904
1905 /* First KTSB for PAGE_SIZE mappings. */
1906 ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1907
1908 switch (PAGE_SIZE) {
1909 case 8 * 1024:
1910 default:
1911 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
1912 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
1913 break;
1914
1915 case 64 * 1024:
1916 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
1917 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
1918 break;
1919
1920 case 512 * 1024:
1921 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
1922 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
1923 break;
1924
1925 case 4 * 1024 * 1024:
1926 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
1927 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
1928 break;
1929 }
1930
1931 ktsb_descr[0].assoc = 1;
1932 ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
1933 ktsb_descr[0].ctx_idx = 0;
1934 ktsb_descr[0].tsb_base = ktsb_pa;
1935 ktsb_descr[0].resv = 0;
1936
1937 #ifndef CONFIG_DEBUG_PAGEALLOC
1938 /* Second KTSB for 4MB/256MB/2GB/16GB mappings. */
1939 ktsb_pa = (kern_base +
1940 ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1941
1942 ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
1943 ktsb_descr[1].pgsz_mask = ((HV_PGSZ_MASK_4MB |
1944 HV_PGSZ_MASK_256MB |
1945 HV_PGSZ_MASK_2GB |
1946 HV_PGSZ_MASK_16GB) &
1947 cpu_pgsz_mask);
1948 ktsb_descr[1].assoc = 1;
1949 ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
1950 ktsb_descr[1].ctx_idx = 0;
1951 ktsb_descr[1].tsb_base = ktsb_pa;
1952 ktsb_descr[1].resv = 0;
1953 #endif
1954 }
1955
1956 void sun4v_ktsb_register(void)
1957 {
1958 unsigned long pa, ret;
1959
1960 pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
1961
1962 ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
1963 if (ret != 0) {
1964 prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
1965 "errors with %lx\n", pa, ret);
1966 prom_halt();
1967 }
1968 }
1969
1970 static void __init sun4u_linear_pte_xor_finalize(void)
1971 {
1972 #ifndef CONFIG_DEBUG_PAGEALLOC
1973 /* This is where we would add Panther support for
1974 * 32MB and 256MB pages.
1975 */
1976 #endif
1977 }
1978
1979 static void __init sun4v_linear_pte_xor_finalize(void)
1980 {
1981 unsigned long pagecv_flag;
1982
1983 /* Bit 9 of TTE is no longer CV bit on M7 processor and it instead
1984 * enables MCD error. Do not set bit 9 on M7 processor.
1985 */
1986 switch (sun4v_chip_type) {
1987 case SUN4V_CHIP_SPARC_M7:
1988 pagecv_flag = 0x00;
1989 break;
1990 default:
1991 pagecv_flag = _PAGE_CV_4V;
1992 break;
1993 }
1994 #ifndef CONFIG_DEBUG_PAGEALLOC
1995 if (cpu_pgsz_mask & HV_PGSZ_MASK_256MB) {
1996 kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
1997 PAGE_OFFSET;
1998 kern_linear_pte_xor[1] |= (_PAGE_CP_4V | pagecv_flag |
1999 _PAGE_P_4V | _PAGE_W_4V);
2000 } else {
2001 kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
2002 }
2003
2004 if (cpu_pgsz_mask & HV_PGSZ_MASK_2GB) {
2005 kern_linear_pte_xor[2] = (_PAGE_VALID | _PAGE_SZ2GB_4V) ^
2006 PAGE_OFFSET;
2007 kern_linear_pte_xor[2] |= (_PAGE_CP_4V | pagecv_flag |
2008 _PAGE_P_4V | _PAGE_W_4V);
2009 } else {
2010 kern_linear_pte_xor[2] = kern_linear_pte_xor[1];
2011 }
2012
2013 if (cpu_pgsz_mask & HV_PGSZ_MASK_16GB) {
2014 kern_linear_pte_xor[3] = (_PAGE_VALID | _PAGE_SZ16GB_4V) ^
2015 PAGE_OFFSET;
2016 kern_linear_pte_xor[3] |= (_PAGE_CP_4V | pagecv_flag |
2017 _PAGE_P_4V | _PAGE_W_4V);
2018 } else {
2019 kern_linear_pte_xor[3] = kern_linear_pte_xor[2];
2020 }
2021 #endif
2022 }
2023
2024 /* paging_init() sets up the page tables */
2025
2026 static unsigned long last_valid_pfn;
2027
2028 static void sun4u_pgprot_init(void);
2029 static void sun4v_pgprot_init(void);
2030
2031 static phys_addr_t __init available_memory(void)
2032 {
2033 phys_addr_t available = 0ULL;
2034 phys_addr_t pa_start, pa_end;
2035 u64 i;
2036
2037 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &pa_start,
2038 &pa_end, NULL)
2039 available = available + (pa_end - pa_start);
2040
2041 return available;
2042 }
2043
2044 #define _PAGE_CACHE_4U (_PAGE_CP_4U | _PAGE_CV_4U)
2045 #define _PAGE_CACHE_4V (_PAGE_CP_4V | _PAGE_CV_4V)
2046 #define __DIRTY_BITS_4U (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
2047 #define __DIRTY_BITS_4V (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
2048 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
2049 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
2050
2051 /* We need to exclude reserved regions. This exclusion will include
2052 * vmlinux and initrd. To be more precise the initrd size could be used to
2053 * compute a new lower limit because it is freed later during initialization.
2054 */
2055 static void __init reduce_memory(phys_addr_t limit_ram)
2056 {
2057 phys_addr_t avail_ram = available_memory();
2058 phys_addr_t pa_start, pa_end;
2059 u64 i;
2060
2061 if (limit_ram >= avail_ram)
2062 return;
2063
2064 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &pa_start,
2065 &pa_end, NULL) {
2066 phys_addr_t region_size = pa_end - pa_start;
2067 phys_addr_t clip_start = pa_start;
2068
2069 avail_ram = avail_ram - region_size;
2070 /* Are we consuming too much? */
2071 if (avail_ram < limit_ram) {
2072 phys_addr_t give_back = limit_ram - avail_ram;
2073
2074 region_size = region_size - give_back;
2075 clip_start = clip_start + give_back;
2076 }
2077
2078 memblock_remove(clip_start, region_size);
2079
2080 if (avail_ram <= limit_ram)
2081 break;
2082 i = 0UL;
2083 }
2084 }
2085
2086 void __init paging_init(void)
2087 {
2088 unsigned long end_pfn, shift, phys_base;
2089 unsigned long real_end, i;
2090 int node;
2091
2092 setup_page_offset();
2093
2094 /* These build time checkes make sure that the dcache_dirty_cpu()
2095 * page->flags usage will work.
2096 *
2097 * When a page gets marked as dcache-dirty, we store the
2098 * cpu number starting at bit 32 in the page->flags. Also,
2099 * functions like clear_dcache_dirty_cpu use the cpu mask
2100 * in 13-bit signed-immediate instruction fields.
2101 */
2102
2103 /*
2104 * Page flags must not reach into upper 32 bits that are used
2105 * for the cpu number
2106 */
2107 BUILD_BUG_ON(NR_PAGEFLAGS > 32);
2108
2109 /*
2110 * The bit fields placed in the high range must not reach below
2111 * the 32 bit boundary. Otherwise we cannot place the cpu field
2112 * at the 32 bit boundary.
2113 */
2114 BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
2115 ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
2116
2117 BUILD_BUG_ON(NR_CPUS > 4096);
2118
2119 kern_base = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
2120 kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
2121
2122 /* Invalidate both kernel TSBs. */
2123 memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
2124 #ifndef CONFIG_DEBUG_PAGEALLOC
2125 memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2126 #endif
2127
2128 /* TTE.cv bit on sparc v9 occupies the same position as TTE.mcde
2129 * bit on M7 processor. This is a conflicting usage of the same
2130 * bit. Enabling TTE.cv on M7 would turn on Memory Corruption
2131 * Detection error on all pages and this will lead to problems
2132 * later. Kernel does not run with MCD enabled and hence rest
2133 * of the required steps to fully configure memory corruption
2134 * detection are not taken. We need to ensure TTE.mcde is not
2135 * set on M7 processor. Compute the value of cacheability
2136 * flag for use later taking this into consideration.
2137 */
2138 switch (sun4v_chip_type) {
2139 case SUN4V_CHIP_SPARC_M7:
2140 page_cache4v_flag = _PAGE_CP_4V;
2141 break;
2142 default:
2143 page_cache4v_flag = _PAGE_CACHE_4V;
2144 break;
2145 }
2146
2147 if (tlb_type == hypervisor)
2148 sun4v_pgprot_init();
2149 else
2150 sun4u_pgprot_init();
2151
2152 if (tlb_type == cheetah_plus ||
2153 tlb_type == hypervisor) {
2154 tsb_phys_patch();
2155 ktsb_phys_patch();
2156 }
2157
2158 if (tlb_type == hypervisor)
2159 sun4v_patch_tlb_handlers();
2160
2161 /* Find available physical memory...
2162 *
2163 * Read it twice in order to work around a bug in openfirmware.
2164 * The call to grab this table itself can cause openfirmware to
2165 * allocate memory, which in turn can take away some space from
2166 * the list of available memory. Reading it twice makes sure
2167 * we really do get the final value.
2168 */
2169 read_obp_translations();
2170 read_obp_memory("reg", &pall[0], &pall_ents);
2171 read_obp_memory("available", &pavail[0], &pavail_ents);
2172 read_obp_memory("available", &pavail[0], &pavail_ents);
2173
2174 phys_base = 0xffffffffffffffffUL;
2175 for (i = 0; i < pavail_ents; i++) {
2176 phys_base = min(phys_base, pavail[i].phys_addr);
2177 memblock_add(pavail[i].phys_addr, pavail[i].reg_size);
2178 }
2179
2180 memblock_reserve(kern_base, kern_size);
2181
2182 find_ramdisk(phys_base);
2183
2184 if (cmdline_memory_size)
2185 reduce_memory(cmdline_memory_size);
2186
2187 memblock_allow_resize();
2188 memblock_dump_all();
2189
2190 set_bit(0, mmu_context_bmap);
2191
2192 shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
2193
2194 real_end = (unsigned long)_end;
2195 num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << ILOG2_4MB);
2196 printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
2197 num_kernel_image_mappings);
2198
2199 /* Set kernel pgd to upper alias so physical page computations
2200 * work.
2201 */
2202 init_mm.pgd += ((shift) / (sizeof(pgd_t)));
2203
2204 memset(swapper_pg_dir, 0, sizeof(swapper_pg_dir));
2205
2206 inherit_prom_mappings();
2207
2208 /* Ok, we can use our TLB miss and window trap handlers safely. */
2209 setup_tba();
2210
2211 __flush_tlb_all();
2212
2213 prom_build_devicetree();
2214 of_populate_present_mask();
2215 #ifndef CONFIG_SMP
2216 of_fill_in_cpu_data();
2217 #endif
2218
2219 if (tlb_type == hypervisor) {
2220 sun4v_mdesc_init();
2221 mdesc_populate_present_mask(cpu_all_mask);
2222 #ifndef CONFIG_SMP
2223 mdesc_fill_in_cpu_data(cpu_all_mask);
2224 #endif
2225 mdesc_get_page_sizes(cpu_all_mask, &cpu_pgsz_mask);
2226
2227 sun4v_linear_pte_xor_finalize();
2228
2229 sun4v_ktsb_init();
2230 sun4v_ktsb_register();
2231 } else {
2232 unsigned long impl, ver;
2233
2234 cpu_pgsz_mask = (HV_PGSZ_MASK_8K | HV_PGSZ_MASK_64K |
2235 HV_PGSZ_MASK_512K | HV_PGSZ_MASK_4MB);
2236
2237 __asm__ __volatile__("rdpr %%ver, %0" : "=r" (ver));
2238 impl = ((ver >> 32) & 0xffff);
2239 if (impl == PANTHER_IMPL)
2240 cpu_pgsz_mask |= (HV_PGSZ_MASK_32MB |
2241 HV_PGSZ_MASK_256MB);
2242
2243 sun4u_linear_pte_xor_finalize();
2244 }
2245
2246 /* Flush the TLBs and the 4M TSB so that the updated linear
2247 * pte XOR settings are realized for all mappings.
2248 */
2249 __flush_tlb_all();
2250 #ifndef CONFIG_DEBUG_PAGEALLOC
2251 memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2252 #endif
2253 __flush_tlb_all();
2254
2255 /* Setup bootmem... */
2256 last_valid_pfn = end_pfn = bootmem_init(phys_base);
2257
2258 /* Once the OF device tree and MDESC have been setup, we know
2259 * the list of possible cpus. Therefore we can allocate the
2260 * IRQ stacks.
2261 */
2262 for_each_possible_cpu(i) {
2263 node = cpu_to_node(i);
2264
2265 softirq_stack[i] = __alloc_bootmem_node(NODE_DATA(node),
2266 THREAD_SIZE,
2267 THREAD_SIZE, 0);
2268 hardirq_stack[i] = __alloc_bootmem_node(NODE_DATA(node),
2269 THREAD_SIZE,
2270 THREAD_SIZE, 0);
2271 }
2272
2273 kernel_physical_mapping_init();
2274
2275 {
2276 unsigned long max_zone_pfns[MAX_NR_ZONES];
2277
2278 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
2279
2280 max_zone_pfns[ZONE_NORMAL] = end_pfn;
2281
2282 free_area_init_nodes(max_zone_pfns);
2283 }
2284
2285 printk("Booting Linux...\n");
2286 }
2287
2288 int page_in_phys_avail(unsigned long paddr)
2289 {
2290 int i;
2291
2292 paddr &= PAGE_MASK;
2293
2294 for (i = 0; i < pavail_ents; i++) {
2295 unsigned long start, end;
2296
2297 start = pavail[i].phys_addr;
2298 end = start + pavail[i].reg_size;
2299
2300 if (paddr >= start && paddr < end)
2301 return 1;
2302 }
2303 if (paddr >= kern_base && paddr < (kern_base + kern_size))
2304 return 1;
2305 #ifdef CONFIG_BLK_DEV_INITRD
2306 if (paddr >= __pa(initrd_start) &&
2307 paddr < __pa(PAGE_ALIGN(initrd_end)))
2308 return 1;
2309 #endif
2310
2311 return 0;
2312 }
2313
2314 static void __init register_page_bootmem_info(void)
2315 {
2316 #ifdef CONFIG_NEED_MULTIPLE_NODES
2317 int i;
2318
2319 for_each_online_node(i)
2320 if (NODE_DATA(i)->node_spanned_pages)
2321 register_page_bootmem_info_node(NODE_DATA(i));
2322 #endif
2323 }
2324 void __init mem_init(void)
2325 {
2326 high_memory = __va(last_valid_pfn << PAGE_SHIFT);
2327
2328 register_page_bootmem_info();
2329 free_all_bootmem();
2330
2331 /*
2332 * Set up the zero page, mark it reserved, so that page count
2333 * is not manipulated when freeing the page from user ptes.
2334 */
2335 mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
2336 if (mem_map_zero == NULL) {
2337 prom_printf("paging_init: Cannot alloc zero page.\n");
2338 prom_halt();
2339 }
2340 mark_page_reserved(mem_map_zero);
2341
2342 mem_init_print_info(NULL);
2343
2344 if (tlb_type == cheetah || tlb_type == cheetah_plus)
2345 cheetah_ecache_flush_init();
2346 }
2347
2348 void free_initmem(void)
2349 {
2350 unsigned long addr, initend;
2351 int do_free = 1;
2352
2353 /* If the physical memory maps were trimmed by kernel command
2354 * line options, don't even try freeing this initmem stuff up.
2355 * The kernel image could have been in the trimmed out region
2356 * and if so the freeing below will free invalid page structs.
2357 */
2358 if (cmdline_memory_size)
2359 do_free = 0;
2360
2361 /*
2362 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
2363 */
2364 addr = PAGE_ALIGN((unsigned long)(__init_begin));
2365 initend = (unsigned long)(__init_end) & PAGE_MASK;
2366 for (; addr < initend; addr += PAGE_SIZE) {
2367 unsigned long page;
2368
2369 page = (addr +
2370 ((unsigned long) __va(kern_base)) -
2371 ((unsigned long) KERNBASE));
2372 memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
2373
2374 if (do_free)
2375 free_reserved_page(virt_to_page(page));
2376 }
2377 }
2378
2379 #ifdef CONFIG_BLK_DEV_INITRD
2380 void free_initrd_mem(unsigned long start, unsigned long end)
2381 {
2382 free_reserved_area((void *)start, (void *)end, POISON_FREE_INITMEM,
2383 "initrd");
2384 }
2385 #endif
2386
2387 pgprot_t PAGE_KERNEL __read_mostly;
2388 EXPORT_SYMBOL(PAGE_KERNEL);
2389
2390 pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
2391 pgprot_t PAGE_COPY __read_mostly;
2392
2393 pgprot_t PAGE_SHARED __read_mostly;
2394 EXPORT_SYMBOL(PAGE_SHARED);
2395
2396 unsigned long pg_iobits __read_mostly;
2397
2398 unsigned long _PAGE_IE __read_mostly;
2399 EXPORT_SYMBOL(_PAGE_IE);
2400
2401 unsigned long _PAGE_E __read_mostly;
2402 EXPORT_SYMBOL(_PAGE_E);
2403
2404 unsigned long _PAGE_CACHE __read_mostly;
2405 EXPORT_SYMBOL(_PAGE_CACHE);
2406
2407 #ifdef CONFIG_SPARSEMEM_VMEMMAP
2408 int __meminit vmemmap_populate(unsigned long vstart, unsigned long vend,
2409 int node)
2410 {
2411 unsigned long pte_base;
2412
2413 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2414 _PAGE_CP_4U | _PAGE_CV_4U |
2415 _PAGE_P_4U | _PAGE_W_4U);
2416 if (tlb_type == hypervisor)
2417 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2418 page_cache4v_flag | _PAGE_P_4V | _PAGE_W_4V);
2419
2420 pte_base |= _PAGE_PMD_HUGE;
2421
2422 vstart = vstart & PMD_MASK;
2423 vend = ALIGN(vend, PMD_SIZE);
2424 for (; vstart < vend; vstart += PMD_SIZE) {
2425 pgd_t *pgd = pgd_offset_k(vstart);
2426 unsigned long pte;
2427 pud_t *pud;
2428 pmd_t *pmd;
2429
2430 if (pgd_none(*pgd)) {
2431 pud_t *new = vmemmap_alloc_block(PAGE_SIZE, node);
2432
2433 if (!new)
2434 return -ENOMEM;
2435 pgd_populate(&init_mm, pgd, new);
2436 }
2437
2438 pud = pud_offset(pgd, vstart);
2439 if (pud_none(*pud)) {
2440 pmd_t *new = vmemmap_alloc_block(PAGE_SIZE, node);
2441
2442 if (!new)
2443 return -ENOMEM;
2444 pud_populate(&init_mm, pud, new);
2445 }
2446
2447 pmd = pmd_offset(pud, vstart);
2448
2449 pte = pmd_val(*pmd);
2450 if (!(pte & _PAGE_VALID)) {
2451 void *block = vmemmap_alloc_block(PMD_SIZE, node);
2452
2453 if (!block)
2454 return -ENOMEM;
2455
2456 pmd_val(*pmd) = pte_base | __pa(block);
2457 }
2458 }
2459
2460 return 0;
2461 }
2462
2463 void vmemmap_free(unsigned long start, unsigned long end)
2464 {
2465 }
2466 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
2467
2468 static void prot_init_common(unsigned long page_none,
2469 unsigned long page_shared,
2470 unsigned long page_copy,
2471 unsigned long page_readonly,
2472 unsigned long page_exec_bit)
2473 {
2474 PAGE_COPY = __pgprot(page_copy);
2475 PAGE_SHARED = __pgprot(page_shared);
2476
2477 protection_map[0x0] = __pgprot(page_none);
2478 protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
2479 protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
2480 protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
2481 protection_map[0x4] = __pgprot(page_readonly);
2482 protection_map[0x5] = __pgprot(page_readonly);
2483 protection_map[0x6] = __pgprot(page_copy);
2484 protection_map[0x7] = __pgprot(page_copy);
2485 protection_map[0x8] = __pgprot(page_none);
2486 protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
2487 protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
2488 protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
2489 protection_map[0xc] = __pgprot(page_readonly);
2490 protection_map[0xd] = __pgprot(page_readonly);
2491 protection_map[0xe] = __pgprot(page_shared);
2492 protection_map[0xf] = __pgprot(page_shared);
2493 }
2494
2495 static void __init sun4u_pgprot_init(void)
2496 {
2497 unsigned long page_none, page_shared, page_copy, page_readonly;
2498 unsigned long page_exec_bit;
2499 int i;
2500
2501 PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2502 _PAGE_CACHE_4U | _PAGE_P_4U |
2503 __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2504 _PAGE_EXEC_4U);
2505 PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2506 _PAGE_CACHE_4U | _PAGE_P_4U |
2507 __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2508 _PAGE_EXEC_4U | _PAGE_L_4U);
2509
2510 _PAGE_IE = _PAGE_IE_4U;
2511 _PAGE_E = _PAGE_E_4U;
2512 _PAGE_CACHE = _PAGE_CACHE_4U;
2513
2514 pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
2515 __ACCESS_BITS_4U | _PAGE_E_4U);
2516
2517 #ifdef CONFIG_DEBUG_PAGEALLOC
2518 kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
2519 #else
2520 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
2521 PAGE_OFFSET;
2522 #endif
2523 kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
2524 _PAGE_P_4U | _PAGE_W_4U);
2525
2526 for (i = 1; i < 4; i++)
2527 kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2528
2529 _PAGE_ALL_SZ_BITS = (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
2530 _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
2531 _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
2532
2533
2534 page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
2535 page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2536 __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
2537 page_copy = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2538 __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2539 page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2540 __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2541
2542 page_exec_bit = _PAGE_EXEC_4U;
2543
2544 prot_init_common(page_none, page_shared, page_copy, page_readonly,
2545 page_exec_bit);
2546 }
2547
2548 static void __init sun4v_pgprot_init(void)
2549 {
2550 unsigned long page_none, page_shared, page_copy, page_readonly;
2551 unsigned long page_exec_bit;
2552 int i;
2553
2554 PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
2555 page_cache4v_flag | _PAGE_P_4V |
2556 __ACCESS_BITS_4V | __DIRTY_BITS_4V |
2557 _PAGE_EXEC_4V);
2558 PAGE_KERNEL_LOCKED = PAGE_KERNEL;
2559
2560 _PAGE_IE = _PAGE_IE_4V;
2561 _PAGE_E = _PAGE_E_4V;
2562 _PAGE_CACHE = page_cache4v_flag;
2563
2564 #ifdef CONFIG_DEBUG_PAGEALLOC
2565 kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
2566 #else
2567 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
2568 PAGE_OFFSET;
2569 #endif
2570 kern_linear_pte_xor[0] |= (page_cache4v_flag | _PAGE_P_4V |
2571 _PAGE_W_4V);
2572
2573 for (i = 1; i < 4; i++)
2574 kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2575
2576 pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
2577 __ACCESS_BITS_4V | _PAGE_E_4V);
2578
2579 _PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
2580 _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
2581 _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
2582 _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
2583
2584 page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | page_cache4v_flag;
2585 page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2586 __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
2587 page_copy = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2588 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2589 page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2590 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2591
2592 page_exec_bit = _PAGE_EXEC_4V;
2593
2594 prot_init_common(page_none, page_shared, page_copy, page_readonly,
2595 page_exec_bit);
2596 }
2597
2598 unsigned long pte_sz_bits(unsigned long sz)
2599 {
2600 if (tlb_type == hypervisor) {
2601 switch (sz) {
2602 case 8 * 1024:
2603 default:
2604 return _PAGE_SZ8K_4V;
2605 case 64 * 1024:
2606 return _PAGE_SZ64K_4V;
2607 case 512 * 1024:
2608 return _PAGE_SZ512K_4V;
2609 case 4 * 1024 * 1024:
2610 return _PAGE_SZ4MB_4V;
2611 }
2612 } else {
2613 switch (sz) {
2614 case 8 * 1024:
2615 default:
2616 return _PAGE_SZ8K_4U;
2617 case 64 * 1024:
2618 return _PAGE_SZ64K_4U;
2619 case 512 * 1024:
2620 return _PAGE_SZ512K_4U;
2621 case 4 * 1024 * 1024:
2622 return _PAGE_SZ4MB_4U;
2623 }
2624 }
2625 }
2626
2627 pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
2628 {
2629 pte_t pte;
2630
2631 pte_val(pte) = page | pgprot_val(pgprot_noncached(prot));
2632 pte_val(pte) |= (((unsigned long)space) << 32);
2633 pte_val(pte) |= pte_sz_bits(page_size);
2634
2635 return pte;
2636 }
2637
2638 static unsigned long kern_large_tte(unsigned long paddr)
2639 {
2640 unsigned long val;
2641
2642 val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2643 _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
2644 _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
2645 if (tlb_type == hypervisor)
2646 val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2647 page_cache4v_flag | _PAGE_P_4V |
2648 _PAGE_EXEC_4V | _PAGE_W_4V);
2649
2650 return val | paddr;
2651 }
2652
2653 /* If not locked, zap it. */
2654 void __flush_tlb_all(void)
2655 {
2656 unsigned long pstate;
2657 int i;
2658
2659 __asm__ __volatile__("flushw\n\t"
2660 "rdpr %%pstate, %0\n\t"
2661 "wrpr %0, %1, %%pstate"
2662 : "=r" (pstate)
2663 : "i" (PSTATE_IE));
2664 if (tlb_type == hypervisor) {
2665 sun4v_mmu_demap_all();
2666 } else if (tlb_type == spitfire) {
2667 for (i = 0; i < 64; i++) {
2668 /* Spitfire Errata #32 workaround */
2669 /* NOTE: Always runs on spitfire, so no
2670 * cheetah+ page size encodings.
2671 */
2672 __asm__ __volatile__("stxa %0, [%1] %2\n\t"
2673 "flush %%g6"
2674 : /* No outputs */
2675 : "r" (0),
2676 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2677
2678 if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
2679 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2680 "membar #Sync"
2681 : /* no outputs */
2682 : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
2683 spitfire_put_dtlb_data(i, 0x0UL);
2684 }
2685
2686 /* Spitfire Errata #32 workaround */
2687 /* NOTE: Always runs on spitfire, so no
2688 * cheetah+ page size encodings.
2689 */
2690 __asm__ __volatile__("stxa %0, [%1] %2\n\t"
2691 "flush %%g6"
2692 : /* No outputs */
2693 : "r" (0),
2694 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2695
2696 if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
2697 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2698 "membar #Sync"
2699 : /* no outputs */
2700 : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
2701 spitfire_put_itlb_data(i, 0x0UL);
2702 }
2703 }
2704 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
2705 cheetah_flush_dtlb_all();
2706 cheetah_flush_itlb_all();
2707 }
2708 __asm__ __volatile__("wrpr %0, 0, %%pstate"
2709 : : "r" (pstate));
2710 }
2711
2712 pte_t *pte_alloc_one_kernel(struct mm_struct *mm,
2713 unsigned long address)
2714 {
2715 struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK |
2716 __GFP_REPEAT | __GFP_ZERO);
2717 pte_t *pte = NULL;
2718
2719 if (page)
2720 pte = (pte_t *) page_address(page);
2721
2722 return pte;
2723 }
2724
2725 pgtable_t pte_alloc_one(struct mm_struct *mm,
2726 unsigned long address)
2727 {
2728 struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK |
2729 __GFP_REPEAT | __GFP_ZERO);
2730 if (!page)
2731 return NULL;
2732 if (!pgtable_page_ctor(page)) {
2733 free_hot_cold_page(page, 0);
2734 return NULL;
2735 }
2736 return (pte_t *) page_address(page);
2737 }
2738
2739 void pte_free_kernel(struct mm_struct *mm, pte_t *pte)
2740 {
2741 free_page((unsigned long)pte);
2742 }
2743
2744 static void __pte_free(pgtable_t pte)
2745 {
2746 struct page *page = virt_to_page(pte);
2747
2748 pgtable_page_dtor(page);
2749 __free_page(page);
2750 }
2751
2752 void pte_free(struct mm_struct *mm, pgtable_t pte)
2753 {
2754 __pte_free(pte);
2755 }
2756
2757 void pgtable_free(void *table, bool is_page)
2758 {
2759 if (is_page)
2760 __pte_free(table);
2761 else
2762 kmem_cache_free(pgtable_cache, table);
2763 }
2764
2765 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2766 void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
2767 pmd_t *pmd)
2768 {
2769 unsigned long pte, flags;
2770 struct mm_struct *mm;
2771 pmd_t entry = *pmd;
2772
2773 if (!pmd_large(entry) || !pmd_young(entry))
2774 return;
2775
2776 pte = pmd_val(entry);
2777
2778 /* Don't insert a non-valid PMD into the TSB, we'll deadlock. */
2779 if (!(pte & _PAGE_VALID))
2780 return;
2781
2782 /* We are fabricating 8MB pages using 4MB real hw pages. */
2783 pte |= (addr & (1UL << REAL_HPAGE_SHIFT));
2784
2785 mm = vma->vm_mm;
2786
2787 spin_lock_irqsave(&mm->context.lock, flags);
2788
2789 if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL)
2790 __update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT,
2791 addr, pte);
2792
2793 spin_unlock_irqrestore(&mm->context.lock, flags);
2794 }
2795 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2796
2797 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
2798 static void context_reload(void *__data)
2799 {
2800 struct mm_struct *mm = __data;
2801
2802 if (mm == current->mm)
2803 load_secondary_context(mm);
2804 }
2805
2806 void hugetlb_setup(struct pt_regs *regs)
2807 {
2808 struct mm_struct *mm = current->mm;
2809 struct tsb_config *tp;
2810
2811 if (faulthandler_disabled() || !mm) {
2812 const struct exception_table_entry *entry;
2813
2814 entry = search_exception_tables(regs->tpc);
2815 if (entry) {
2816 regs->tpc = entry->fixup;
2817 regs->tnpc = regs->tpc + 4;
2818 return;
2819 }
2820 pr_alert("Unexpected HugeTLB setup in atomic context.\n");
2821 die_if_kernel("HugeTSB in atomic", regs);
2822 }
2823
2824 tp = &mm->context.tsb_block[MM_TSB_HUGE];
2825 if (likely(tp->tsb == NULL))
2826 tsb_grow(mm, MM_TSB_HUGE, 0);
2827
2828 tsb_context_switch(mm);
2829 smp_tsb_sync(mm);
2830
2831 /* On UltraSPARC-III+ and later, configure the second half of
2832 * the Data-TLB for huge pages.
2833 */
2834 if (tlb_type == cheetah_plus) {
2835 unsigned long ctx;
2836
2837 spin_lock(&ctx_alloc_lock);
2838 ctx = mm->context.sparc64_ctx_val;
2839 ctx &= ~CTX_PGSZ_MASK;
2840 ctx |= CTX_PGSZ_BASE << CTX_PGSZ0_SHIFT;
2841 ctx |= CTX_PGSZ_HUGE << CTX_PGSZ1_SHIFT;
2842
2843 if (ctx != mm->context.sparc64_ctx_val) {
2844 /* When changing the page size fields, we
2845 * must perform a context flush so that no
2846 * stale entries match. This flush must
2847 * occur with the original context register
2848 * settings.
2849 */
2850 do_flush_tlb_mm(mm);
2851
2852 /* Reload the context register of all processors
2853 * also executing in this address space.
2854 */
2855 mm->context.sparc64_ctx_val = ctx;
2856 on_each_cpu(context_reload, mm, 0);
2857 }
2858 spin_unlock(&ctx_alloc_lock);
2859 }
2860 }
2861 #endif
2862
2863 static struct resource code_resource = {
2864 .name = "Kernel code",
2865 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
2866 };
2867
2868 static struct resource data_resource = {
2869 .name = "Kernel data",
2870 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
2871 };
2872
2873 static struct resource bss_resource = {
2874 .name = "Kernel bss",
2875 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
2876 };
2877
2878 static inline resource_size_t compute_kern_paddr(void *addr)
2879 {
2880 return (resource_size_t) (addr - KERNBASE + kern_base);
2881 }
2882
2883 static void __init kernel_lds_init(void)
2884 {
2885 code_resource.start = compute_kern_paddr(_text);
2886 code_resource.end = compute_kern_paddr(_etext - 1);
2887 data_resource.start = compute_kern_paddr(_etext);
2888 data_resource.end = compute_kern_paddr(_edata - 1);
2889 bss_resource.start = compute_kern_paddr(__bss_start);
2890 bss_resource.end = compute_kern_paddr(_end - 1);
2891 }
2892
2893 static int __init report_memory(void)
2894 {
2895 int i;
2896 struct resource *res;
2897
2898 kernel_lds_init();
2899
2900 for (i = 0; i < pavail_ents; i++) {
2901 res = kzalloc(sizeof(struct resource), GFP_KERNEL);
2902
2903 if (!res) {
2904 pr_warn("Failed to allocate source.\n");
2905 break;
2906 }
2907
2908 res->name = "System RAM";
2909 res->start = pavail[i].phys_addr;
2910 res->end = pavail[i].phys_addr + pavail[i].reg_size - 1;
2911 res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
2912
2913 if (insert_resource(&iomem_resource, res) < 0) {
2914 pr_warn("Resource insertion failed.\n");
2915 break;
2916 }
2917
2918 insert_resource(res, &code_resource);
2919 insert_resource(res, &data_resource);
2920 insert_resource(res, &bss_resource);
2921 }
2922
2923 return 0;
2924 }
2925 arch_initcall(report_memory);
2926
2927 #ifdef CONFIG_SMP
2928 #define do_flush_tlb_kernel_range smp_flush_tlb_kernel_range
2929 #else
2930 #define do_flush_tlb_kernel_range __flush_tlb_kernel_range
2931 #endif
2932
2933 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
2934 {
2935 if (start < HI_OBP_ADDRESS && end > LOW_OBP_ADDRESS) {
2936 if (start < LOW_OBP_ADDRESS) {
2937 flush_tsb_kernel_range(start, LOW_OBP_ADDRESS);
2938 do_flush_tlb_kernel_range(start, LOW_OBP_ADDRESS);
2939 }
2940 if (end > HI_OBP_ADDRESS) {
2941 flush_tsb_kernel_range(HI_OBP_ADDRESS, end);
2942 do_flush_tlb_kernel_range(HI_OBP_ADDRESS, end);
2943 }
2944 } else {
2945 flush_tsb_kernel_range(start, end);
2946 do_flush_tlb_kernel_range(start, end);
2947 }
2948 }
This page took 0.094025 seconds and 5 git commands to generate.