Merge branch 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / arch / sparc / mm / srmmu.c
1 /*
2 * srmmu.c: SRMMU specific routines for memory management.
3 *
4 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
6 * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
7 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
8 * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
9 */
10
11 #include <linux/seq_file.h>
12 #include <linux/spinlock.h>
13 #include <linux/bootmem.h>
14 #include <linux/pagemap.h>
15 #include <linux/vmalloc.h>
16 #include <linux/kdebug.h>
17 #include <linux/export.h>
18 #include <linux/kernel.h>
19 #include <linux/init.h>
20 #include <linux/log2.h>
21 #include <linux/gfp.h>
22 #include <linux/fs.h>
23 #include <linux/mm.h>
24
25 #include <asm/mmu_context.h>
26 #include <asm/cacheflush.h>
27 #include <asm/tlbflush.h>
28 #include <asm/io-unit.h>
29 #include <asm/pgalloc.h>
30 #include <asm/pgtable.h>
31 #include <asm/bitext.h>
32 #include <asm/vaddrs.h>
33 #include <asm/cache.h>
34 #include <asm/traps.h>
35 #include <asm/oplib.h>
36 #include <asm/mbus.h>
37 #include <asm/page.h>
38 #include <asm/asi.h>
39 #include <asm/msi.h>
40 #include <asm/smp.h>
41 #include <asm/io.h>
42
43 /* Now the cpu specific definitions. */
44 #include <asm/turbosparc.h>
45 #include <asm/tsunami.h>
46 #include <asm/viking.h>
47 #include <asm/swift.h>
48 #include <asm/leon.h>
49 #include <asm/mxcc.h>
50 #include <asm/ross.h>
51
52 #include "mm_32.h"
53
54 enum mbus_module srmmu_modtype;
55 static unsigned int hwbug_bitmask;
56 int vac_cache_size;
57 int vac_line_size;
58
59 extern struct resource sparc_iomap;
60
61 extern unsigned long last_valid_pfn;
62
63 static pgd_t *srmmu_swapper_pg_dir;
64
65 const struct sparc32_cachetlb_ops *sparc32_cachetlb_ops;
66 EXPORT_SYMBOL(sparc32_cachetlb_ops);
67
68 #ifdef CONFIG_SMP
69 const struct sparc32_cachetlb_ops *local_ops;
70
71 #define FLUSH_BEGIN(mm)
72 #define FLUSH_END
73 #else
74 #define FLUSH_BEGIN(mm) if ((mm)->context != NO_CONTEXT) {
75 #define FLUSH_END }
76 #endif
77
78 int flush_page_for_dma_global = 1;
79
80 char *srmmu_name;
81
82 ctxd_t *srmmu_ctx_table_phys;
83 static ctxd_t *srmmu_context_table;
84
85 int viking_mxcc_present;
86 static DEFINE_SPINLOCK(srmmu_context_spinlock);
87
88 static int is_hypersparc;
89
90 static int srmmu_cache_pagetables;
91
92 /* these will be initialized in srmmu_nocache_calcsize() */
93 static unsigned long srmmu_nocache_size;
94 static unsigned long srmmu_nocache_end;
95
96 /* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
97 #define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
98
99 /* The context table is a nocache user with the biggest alignment needs. */
100 #define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
101
102 void *srmmu_nocache_pool;
103 static struct bit_map srmmu_nocache_map;
104
105 static inline int srmmu_pmd_none(pmd_t pmd)
106 { return !(pmd_val(pmd) & 0xFFFFFFF); }
107
108 /* XXX should we hyper_flush_whole_icache here - Anton */
109 static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp)
110 { set_pte((pte_t *)ctxp, (SRMMU_ET_PTD | (__nocache_pa((unsigned long) pgdp) >> 4))); }
111
112 void pmd_set(pmd_t *pmdp, pte_t *ptep)
113 {
114 unsigned long ptp; /* Physical address, shifted right by 4 */
115 int i;
116
117 ptp = __nocache_pa((unsigned long) ptep) >> 4;
118 for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
119 set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
120 ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
121 }
122 }
123
124 void pmd_populate(struct mm_struct *mm, pmd_t *pmdp, struct page *ptep)
125 {
126 unsigned long ptp; /* Physical address, shifted right by 4 */
127 int i;
128
129 ptp = page_to_pfn(ptep) << (PAGE_SHIFT-4); /* watch for overflow */
130 for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
131 set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
132 ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
133 }
134 }
135
136 /* Find an entry in the third-level page table.. */
137 pte_t *pte_offset_kernel(pmd_t *dir, unsigned long address)
138 {
139 void *pte;
140
141 pte = __nocache_va((dir->pmdv[0] & SRMMU_PTD_PMASK) << 4);
142 return (pte_t *) pte +
143 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
144 }
145
146 /*
147 * size: bytes to allocate in the nocache area.
148 * align: bytes, number to align at.
149 * Returns the virtual address of the allocated area.
150 */
151 static void *__srmmu_get_nocache(int size, int align)
152 {
153 int offset;
154 unsigned long addr;
155
156 if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
157 printk(KERN_ERR "Size 0x%x too small for nocache request\n",
158 size);
159 size = SRMMU_NOCACHE_BITMAP_SHIFT;
160 }
161 if (size & (SRMMU_NOCACHE_BITMAP_SHIFT - 1)) {
162 printk(KERN_ERR "Size 0x%x unaligned int nocache request\n",
163 size);
164 size += SRMMU_NOCACHE_BITMAP_SHIFT - 1;
165 }
166 BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX);
167
168 offset = bit_map_string_get(&srmmu_nocache_map,
169 size >> SRMMU_NOCACHE_BITMAP_SHIFT,
170 align >> SRMMU_NOCACHE_BITMAP_SHIFT);
171 if (offset == -1) {
172 printk(KERN_ERR "srmmu: out of nocache %d: %d/%d\n",
173 size, (int) srmmu_nocache_size,
174 srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
175 return NULL;
176 }
177
178 addr = SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT);
179 return (void *)addr;
180 }
181
182 void *srmmu_get_nocache(int size, int align)
183 {
184 void *tmp;
185
186 tmp = __srmmu_get_nocache(size, align);
187
188 if (tmp)
189 memset(tmp, 0, size);
190
191 return tmp;
192 }
193
194 void srmmu_free_nocache(void *addr, int size)
195 {
196 unsigned long vaddr;
197 int offset;
198
199 vaddr = (unsigned long)addr;
200 if (vaddr < SRMMU_NOCACHE_VADDR) {
201 printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
202 vaddr, (unsigned long)SRMMU_NOCACHE_VADDR);
203 BUG();
204 }
205 if (vaddr + size > srmmu_nocache_end) {
206 printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
207 vaddr, srmmu_nocache_end);
208 BUG();
209 }
210 if (!is_power_of_2(size)) {
211 printk("Size 0x%x is not a power of 2\n", size);
212 BUG();
213 }
214 if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
215 printk("Size 0x%x is too small\n", size);
216 BUG();
217 }
218 if (vaddr & (size - 1)) {
219 printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size);
220 BUG();
221 }
222
223 offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT;
224 size = size >> SRMMU_NOCACHE_BITMAP_SHIFT;
225
226 bit_map_clear(&srmmu_nocache_map, offset, size);
227 }
228
229 static void srmmu_early_allocate_ptable_skeleton(unsigned long start,
230 unsigned long end);
231
232 /* Return how much physical memory we have. */
233 static unsigned long __init probe_memory(void)
234 {
235 unsigned long total = 0;
236 int i;
237
238 for (i = 0; sp_banks[i].num_bytes; i++)
239 total += sp_banks[i].num_bytes;
240
241 return total;
242 }
243
244 /*
245 * Reserve nocache dynamically proportionally to the amount of
246 * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
247 */
248 static void __init srmmu_nocache_calcsize(void)
249 {
250 unsigned long sysmemavail = probe_memory() / 1024;
251 int srmmu_nocache_npages;
252
253 srmmu_nocache_npages =
254 sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256;
255
256 /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
257 // if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
258 if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES)
259 srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES;
260
261 /* anything above 1280 blows up */
262 if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES)
263 srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES;
264
265 srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE;
266 srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size;
267 }
268
269 static void __init srmmu_nocache_init(void)
270 {
271 void *srmmu_nocache_bitmap;
272 unsigned int bitmap_bits;
273 pgd_t *pgd;
274 pmd_t *pmd;
275 pte_t *pte;
276 unsigned long paddr, vaddr;
277 unsigned long pteval;
278
279 bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT;
280
281 srmmu_nocache_pool = __alloc_bootmem(srmmu_nocache_size,
282 SRMMU_NOCACHE_ALIGN_MAX, 0UL);
283 memset(srmmu_nocache_pool, 0, srmmu_nocache_size);
284
285 srmmu_nocache_bitmap =
286 __alloc_bootmem(BITS_TO_LONGS(bitmap_bits) * sizeof(long),
287 SMP_CACHE_BYTES, 0UL);
288 bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits);
289
290 srmmu_swapper_pg_dir = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
291 memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE);
292 init_mm.pgd = srmmu_swapper_pg_dir;
293
294 srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end);
295
296 paddr = __pa((unsigned long)srmmu_nocache_pool);
297 vaddr = SRMMU_NOCACHE_VADDR;
298
299 while (vaddr < srmmu_nocache_end) {
300 pgd = pgd_offset_k(vaddr);
301 pmd = pmd_offset(__nocache_fix(pgd), vaddr);
302 pte = pte_offset_kernel(__nocache_fix(pmd), vaddr);
303
304 pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV);
305
306 if (srmmu_cache_pagetables)
307 pteval |= SRMMU_CACHE;
308
309 set_pte(__nocache_fix(pte), __pte(pteval));
310
311 vaddr += PAGE_SIZE;
312 paddr += PAGE_SIZE;
313 }
314
315 flush_cache_all();
316 flush_tlb_all();
317 }
318
319 pgd_t *get_pgd_fast(void)
320 {
321 pgd_t *pgd = NULL;
322
323 pgd = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
324 if (pgd) {
325 pgd_t *init = pgd_offset_k(0);
326 memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
327 memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
328 (PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
329 }
330
331 return pgd;
332 }
333
334 /*
335 * Hardware needs alignment to 256 only, but we align to whole page size
336 * to reduce fragmentation problems due to the buddy principle.
337 * XXX Provide actual fragmentation statistics in /proc.
338 *
339 * Alignments up to the page size are the same for physical and virtual
340 * addresses of the nocache area.
341 */
342 pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
343 {
344 unsigned long pte;
345 struct page *page;
346
347 if ((pte = (unsigned long)pte_alloc_one_kernel(mm, address)) == 0)
348 return NULL;
349 page = pfn_to_page(__nocache_pa(pte) >> PAGE_SHIFT);
350 if (!pgtable_page_ctor(page)) {
351 __free_page(page);
352 return NULL;
353 }
354 return page;
355 }
356
357 void pte_free(struct mm_struct *mm, pgtable_t pte)
358 {
359 unsigned long p;
360
361 pgtable_page_dtor(pte);
362 p = (unsigned long)page_address(pte); /* Cached address (for test) */
363 if (p == 0)
364 BUG();
365 p = page_to_pfn(pte) << PAGE_SHIFT; /* Physical address */
366
367 /* free non cached virtual address*/
368 srmmu_free_nocache(__nocache_va(p), PTE_SIZE);
369 }
370
371 /* context handling - a dynamically sized pool is used */
372 #define NO_CONTEXT -1
373
374 struct ctx_list {
375 struct ctx_list *next;
376 struct ctx_list *prev;
377 unsigned int ctx_number;
378 struct mm_struct *ctx_mm;
379 };
380
381 static struct ctx_list *ctx_list_pool;
382 static struct ctx_list ctx_free;
383 static struct ctx_list ctx_used;
384
385 /* At boot time we determine the number of contexts */
386 static int num_contexts;
387
388 static inline void remove_from_ctx_list(struct ctx_list *entry)
389 {
390 entry->next->prev = entry->prev;
391 entry->prev->next = entry->next;
392 }
393
394 static inline void add_to_ctx_list(struct ctx_list *head, struct ctx_list *entry)
395 {
396 entry->next = head;
397 (entry->prev = head->prev)->next = entry;
398 head->prev = entry;
399 }
400 #define add_to_free_ctxlist(entry) add_to_ctx_list(&ctx_free, entry)
401 #define add_to_used_ctxlist(entry) add_to_ctx_list(&ctx_used, entry)
402
403
404 static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm)
405 {
406 struct ctx_list *ctxp;
407
408 ctxp = ctx_free.next;
409 if (ctxp != &ctx_free) {
410 remove_from_ctx_list(ctxp);
411 add_to_used_ctxlist(ctxp);
412 mm->context = ctxp->ctx_number;
413 ctxp->ctx_mm = mm;
414 return;
415 }
416 ctxp = ctx_used.next;
417 if (ctxp->ctx_mm == old_mm)
418 ctxp = ctxp->next;
419 if (ctxp == &ctx_used)
420 panic("out of mmu contexts");
421 flush_cache_mm(ctxp->ctx_mm);
422 flush_tlb_mm(ctxp->ctx_mm);
423 remove_from_ctx_list(ctxp);
424 add_to_used_ctxlist(ctxp);
425 ctxp->ctx_mm->context = NO_CONTEXT;
426 ctxp->ctx_mm = mm;
427 mm->context = ctxp->ctx_number;
428 }
429
430 static inline void free_context(int context)
431 {
432 struct ctx_list *ctx_old;
433
434 ctx_old = ctx_list_pool + context;
435 remove_from_ctx_list(ctx_old);
436 add_to_free_ctxlist(ctx_old);
437 }
438
439 static void __init sparc_context_init(int numctx)
440 {
441 int ctx;
442 unsigned long size;
443
444 size = numctx * sizeof(struct ctx_list);
445 ctx_list_pool = __alloc_bootmem(size, SMP_CACHE_BYTES, 0UL);
446
447 for (ctx = 0; ctx < numctx; ctx++) {
448 struct ctx_list *clist;
449
450 clist = (ctx_list_pool + ctx);
451 clist->ctx_number = ctx;
452 clist->ctx_mm = NULL;
453 }
454 ctx_free.next = ctx_free.prev = &ctx_free;
455 ctx_used.next = ctx_used.prev = &ctx_used;
456 for (ctx = 0; ctx < numctx; ctx++)
457 add_to_free_ctxlist(ctx_list_pool + ctx);
458 }
459
460 void switch_mm(struct mm_struct *old_mm, struct mm_struct *mm,
461 struct task_struct *tsk)
462 {
463 unsigned long flags;
464
465 if (mm->context == NO_CONTEXT) {
466 spin_lock_irqsave(&srmmu_context_spinlock, flags);
467 alloc_context(old_mm, mm);
468 spin_unlock_irqrestore(&srmmu_context_spinlock, flags);
469 srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd);
470 }
471
472 if (sparc_cpu_model == sparc_leon)
473 leon_switch_mm();
474
475 if (is_hypersparc)
476 hyper_flush_whole_icache();
477
478 srmmu_set_context(mm->context);
479 }
480
481 /* Low level IO area allocation on the SRMMU. */
482 static inline void srmmu_mapioaddr(unsigned long physaddr,
483 unsigned long virt_addr, int bus_type)
484 {
485 pgd_t *pgdp;
486 pmd_t *pmdp;
487 pte_t *ptep;
488 unsigned long tmp;
489
490 physaddr &= PAGE_MASK;
491 pgdp = pgd_offset_k(virt_addr);
492 pmdp = pmd_offset(pgdp, virt_addr);
493 ptep = pte_offset_kernel(pmdp, virt_addr);
494 tmp = (physaddr >> 4) | SRMMU_ET_PTE;
495
496 /* I need to test whether this is consistent over all
497 * sun4m's. The bus_type represents the upper 4 bits of
498 * 36-bit physical address on the I/O space lines...
499 */
500 tmp |= (bus_type << 28);
501 tmp |= SRMMU_PRIV;
502 __flush_page_to_ram(virt_addr);
503 set_pte(ptep, __pte(tmp));
504 }
505
506 void srmmu_mapiorange(unsigned int bus, unsigned long xpa,
507 unsigned long xva, unsigned int len)
508 {
509 while (len != 0) {
510 len -= PAGE_SIZE;
511 srmmu_mapioaddr(xpa, xva, bus);
512 xva += PAGE_SIZE;
513 xpa += PAGE_SIZE;
514 }
515 flush_tlb_all();
516 }
517
518 static inline void srmmu_unmapioaddr(unsigned long virt_addr)
519 {
520 pgd_t *pgdp;
521 pmd_t *pmdp;
522 pte_t *ptep;
523
524 pgdp = pgd_offset_k(virt_addr);
525 pmdp = pmd_offset(pgdp, virt_addr);
526 ptep = pte_offset_kernel(pmdp, virt_addr);
527
528 /* No need to flush uncacheable page. */
529 __pte_clear(ptep);
530 }
531
532 void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len)
533 {
534 while (len != 0) {
535 len -= PAGE_SIZE;
536 srmmu_unmapioaddr(virt_addr);
537 virt_addr += PAGE_SIZE;
538 }
539 flush_tlb_all();
540 }
541
542 /* tsunami.S */
543 extern void tsunami_flush_cache_all(void);
544 extern void tsunami_flush_cache_mm(struct mm_struct *mm);
545 extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
546 extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
547 extern void tsunami_flush_page_to_ram(unsigned long page);
548 extern void tsunami_flush_page_for_dma(unsigned long page);
549 extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
550 extern void tsunami_flush_tlb_all(void);
551 extern void tsunami_flush_tlb_mm(struct mm_struct *mm);
552 extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
553 extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
554 extern void tsunami_setup_blockops(void);
555
556 /* swift.S */
557 extern void swift_flush_cache_all(void);
558 extern void swift_flush_cache_mm(struct mm_struct *mm);
559 extern void swift_flush_cache_range(struct vm_area_struct *vma,
560 unsigned long start, unsigned long end);
561 extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
562 extern void swift_flush_page_to_ram(unsigned long page);
563 extern void swift_flush_page_for_dma(unsigned long page);
564 extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
565 extern void swift_flush_tlb_all(void);
566 extern void swift_flush_tlb_mm(struct mm_struct *mm);
567 extern void swift_flush_tlb_range(struct vm_area_struct *vma,
568 unsigned long start, unsigned long end);
569 extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
570
571 #if 0 /* P3: deadwood to debug precise flushes on Swift. */
572 void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
573 {
574 int cctx, ctx1;
575
576 page &= PAGE_MASK;
577 if ((ctx1 = vma->vm_mm->context) != -1) {
578 cctx = srmmu_get_context();
579 /* Is context # ever different from current context? P3 */
580 if (cctx != ctx1) {
581 printk("flush ctx %02x curr %02x\n", ctx1, cctx);
582 srmmu_set_context(ctx1);
583 swift_flush_page(page);
584 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
585 "r" (page), "i" (ASI_M_FLUSH_PROBE));
586 srmmu_set_context(cctx);
587 } else {
588 /* Rm. prot. bits from virt. c. */
589 /* swift_flush_cache_all(); */
590 /* swift_flush_cache_page(vma, page); */
591 swift_flush_page(page);
592
593 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
594 "r" (page), "i" (ASI_M_FLUSH_PROBE));
595 /* same as above: srmmu_flush_tlb_page() */
596 }
597 }
598 }
599 #endif
600
601 /*
602 * The following are all MBUS based SRMMU modules, and therefore could
603 * be found in a multiprocessor configuration. On the whole, these
604 * chips seems to be much more touchy about DVMA and page tables
605 * with respect to cache coherency.
606 */
607
608 /* viking.S */
609 extern void viking_flush_cache_all(void);
610 extern void viking_flush_cache_mm(struct mm_struct *mm);
611 extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
612 unsigned long end);
613 extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
614 extern void viking_flush_page_to_ram(unsigned long page);
615 extern void viking_flush_page_for_dma(unsigned long page);
616 extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr);
617 extern void viking_flush_page(unsigned long page);
618 extern void viking_mxcc_flush_page(unsigned long page);
619 extern void viking_flush_tlb_all(void);
620 extern void viking_flush_tlb_mm(struct mm_struct *mm);
621 extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
622 unsigned long end);
623 extern void viking_flush_tlb_page(struct vm_area_struct *vma,
624 unsigned long page);
625 extern void sun4dsmp_flush_tlb_all(void);
626 extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm);
627 extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
628 unsigned long end);
629 extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma,
630 unsigned long page);
631
632 /* hypersparc.S */
633 extern void hypersparc_flush_cache_all(void);
634 extern void hypersparc_flush_cache_mm(struct mm_struct *mm);
635 extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
636 extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
637 extern void hypersparc_flush_page_to_ram(unsigned long page);
638 extern void hypersparc_flush_page_for_dma(unsigned long page);
639 extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
640 extern void hypersparc_flush_tlb_all(void);
641 extern void hypersparc_flush_tlb_mm(struct mm_struct *mm);
642 extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
643 extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
644 extern void hypersparc_setup_blockops(void);
645
646 /*
647 * NOTE: All of this startup code assumes the low 16mb (approx.) of
648 * kernel mappings are done with one single contiguous chunk of
649 * ram. On small ram machines (classics mainly) we only get
650 * around 8mb mapped for us.
651 */
652
653 static void __init early_pgtable_allocfail(char *type)
654 {
655 prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type);
656 prom_halt();
657 }
658
659 static void __init srmmu_early_allocate_ptable_skeleton(unsigned long start,
660 unsigned long end)
661 {
662 pgd_t *pgdp;
663 pmd_t *pmdp;
664 pte_t *ptep;
665
666 while (start < end) {
667 pgdp = pgd_offset_k(start);
668 if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
669 pmdp = __srmmu_get_nocache(
670 SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
671 if (pmdp == NULL)
672 early_pgtable_allocfail("pmd");
673 memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
674 pgd_set(__nocache_fix(pgdp), pmdp);
675 }
676 pmdp = pmd_offset(__nocache_fix(pgdp), start);
677 if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
678 ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
679 if (ptep == NULL)
680 early_pgtable_allocfail("pte");
681 memset(__nocache_fix(ptep), 0, PTE_SIZE);
682 pmd_set(__nocache_fix(pmdp), ptep);
683 }
684 if (start > (0xffffffffUL - PMD_SIZE))
685 break;
686 start = (start + PMD_SIZE) & PMD_MASK;
687 }
688 }
689
690 static void __init srmmu_allocate_ptable_skeleton(unsigned long start,
691 unsigned long end)
692 {
693 pgd_t *pgdp;
694 pmd_t *pmdp;
695 pte_t *ptep;
696
697 while (start < end) {
698 pgdp = pgd_offset_k(start);
699 if (pgd_none(*pgdp)) {
700 pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
701 if (pmdp == NULL)
702 early_pgtable_allocfail("pmd");
703 memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE);
704 pgd_set(pgdp, pmdp);
705 }
706 pmdp = pmd_offset(pgdp, start);
707 if (srmmu_pmd_none(*pmdp)) {
708 ptep = __srmmu_get_nocache(PTE_SIZE,
709 PTE_SIZE);
710 if (ptep == NULL)
711 early_pgtable_allocfail("pte");
712 memset(ptep, 0, PTE_SIZE);
713 pmd_set(pmdp, ptep);
714 }
715 if (start > (0xffffffffUL - PMD_SIZE))
716 break;
717 start = (start + PMD_SIZE) & PMD_MASK;
718 }
719 }
720
721 /* These flush types are not available on all chips... */
722 static inline unsigned long srmmu_probe(unsigned long vaddr)
723 {
724 unsigned long retval;
725
726 if (sparc_cpu_model != sparc_leon) {
727
728 vaddr &= PAGE_MASK;
729 __asm__ __volatile__("lda [%1] %2, %0\n\t" :
730 "=r" (retval) :
731 "r" (vaddr | 0x400), "i" (ASI_M_FLUSH_PROBE));
732 } else {
733 retval = leon_swprobe(vaddr, NULL);
734 }
735 return retval;
736 }
737
738 /*
739 * This is much cleaner than poking around physical address space
740 * looking at the prom's page table directly which is what most
741 * other OS's do. Yuck... this is much better.
742 */
743 static void __init srmmu_inherit_prom_mappings(unsigned long start,
744 unsigned long end)
745 {
746 unsigned long probed;
747 unsigned long addr;
748 pgd_t *pgdp;
749 pmd_t *pmdp;
750 pte_t *ptep;
751 int what; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
752
753 while (start <= end) {
754 if (start == 0)
755 break; /* probably wrap around */
756 if (start == 0xfef00000)
757 start = KADB_DEBUGGER_BEGVM;
758 probed = srmmu_probe(start);
759 if (!probed) {
760 /* continue probing until we find an entry */
761 start += PAGE_SIZE;
762 continue;
763 }
764
765 /* A red snapper, see what it really is. */
766 what = 0;
767 addr = start - PAGE_SIZE;
768
769 if (!(start & ~(SRMMU_REAL_PMD_MASK))) {
770 if (srmmu_probe(addr + SRMMU_REAL_PMD_SIZE) == probed)
771 what = 1;
772 }
773
774 if (!(start & ~(SRMMU_PGDIR_MASK))) {
775 if (srmmu_probe(addr + SRMMU_PGDIR_SIZE) == probed)
776 what = 2;
777 }
778
779 pgdp = pgd_offset_k(start);
780 if (what == 2) {
781 *(pgd_t *)__nocache_fix(pgdp) = __pgd(probed);
782 start += SRMMU_PGDIR_SIZE;
783 continue;
784 }
785 if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
786 pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE,
787 SRMMU_PMD_TABLE_SIZE);
788 if (pmdp == NULL)
789 early_pgtable_allocfail("pmd");
790 memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
791 pgd_set(__nocache_fix(pgdp), pmdp);
792 }
793 pmdp = pmd_offset(__nocache_fix(pgdp), start);
794 if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
795 ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
796 if (ptep == NULL)
797 early_pgtable_allocfail("pte");
798 memset(__nocache_fix(ptep), 0, PTE_SIZE);
799 pmd_set(__nocache_fix(pmdp), ptep);
800 }
801 if (what == 1) {
802 /* We bend the rule where all 16 PTPs in a pmd_t point
803 * inside the same PTE page, and we leak a perfectly
804 * good hardware PTE piece. Alternatives seem worse.
805 */
806 unsigned int x; /* Index of HW PMD in soft cluster */
807 unsigned long *val;
808 x = (start >> PMD_SHIFT) & 15;
809 val = &pmdp->pmdv[x];
810 *(unsigned long *)__nocache_fix(val) = probed;
811 start += SRMMU_REAL_PMD_SIZE;
812 continue;
813 }
814 ptep = pte_offset_kernel(__nocache_fix(pmdp), start);
815 *(pte_t *)__nocache_fix(ptep) = __pte(probed);
816 start += PAGE_SIZE;
817 }
818 }
819
820 #define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
821
822 /* Create a third-level SRMMU 16MB page mapping. */
823 static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base)
824 {
825 pgd_t *pgdp = pgd_offset_k(vaddr);
826 unsigned long big_pte;
827
828 big_pte = KERNEL_PTE(phys_base >> 4);
829 *(pgd_t *)__nocache_fix(pgdp) = __pgd(big_pte);
830 }
831
832 /* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
833 static unsigned long __init map_spbank(unsigned long vbase, int sp_entry)
834 {
835 unsigned long pstart = (sp_banks[sp_entry].base_addr & SRMMU_PGDIR_MASK);
836 unsigned long vstart = (vbase & SRMMU_PGDIR_MASK);
837 unsigned long vend = SRMMU_PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes);
838 /* Map "low" memory only */
839 const unsigned long min_vaddr = PAGE_OFFSET;
840 const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM;
841
842 if (vstart < min_vaddr || vstart >= max_vaddr)
843 return vstart;
844
845 if (vend > max_vaddr || vend < min_vaddr)
846 vend = max_vaddr;
847
848 while (vstart < vend) {
849 do_large_mapping(vstart, pstart);
850 vstart += SRMMU_PGDIR_SIZE; pstart += SRMMU_PGDIR_SIZE;
851 }
852 return vstart;
853 }
854
855 static void __init map_kernel(void)
856 {
857 int i;
858
859 if (phys_base > 0) {
860 do_large_mapping(PAGE_OFFSET, phys_base);
861 }
862
863 for (i = 0; sp_banks[i].num_bytes != 0; i++) {
864 map_spbank((unsigned long)__va(sp_banks[i].base_addr), i);
865 }
866 }
867
868 void (*poke_srmmu)(void) = NULL;
869
870 void __init srmmu_paging_init(void)
871 {
872 int i;
873 phandle cpunode;
874 char node_str[128];
875 pgd_t *pgd;
876 pmd_t *pmd;
877 pte_t *pte;
878 unsigned long pages_avail;
879
880 init_mm.context = (unsigned long) NO_CONTEXT;
881 sparc_iomap.start = SUN4M_IOBASE_VADDR; /* 16MB of IOSPACE on all sun4m's. */
882
883 if (sparc_cpu_model == sun4d)
884 num_contexts = 65536; /* We know it is Viking */
885 else {
886 /* Find the number of contexts on the srmmu. */
887 cpunode = prom_getchild(prom_root_node);
888 num_contexts = 0;
889 while (cpunode != 0) {
890 prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
891 if (!strcmp(node_str, "cpu")) {
892 num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8);
893 break;
894 }
895 cpunode = prom_getsibling(cpunode);
896 }
897 }
898
899 if (!num_contexts) {
900 prom_printf("Something wrong, can't find cpu node in paging_init.\n");
901 prom_halt();
902 }
903
904 pages_avail = 0;
905 last_valid_pfn = bootmem_init(&pages_avail);
906
907 srmmu_nocache_calcsize();
908 srmmu_nocache_init();
909 srmmu_inherit_prom_mappings(0xfe400000, (LINUX_OPPROM_ENDVM - PAGE_SIZE));
910 map_kernel();
911
912 /* ctx table has to be physically aligned to its size */
913 srmmu_context_table = __srmmu_get_nocache(num_contexts * sizeof(ctxd_t), num_contexts * sizeof(ctxd_t));
914 srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa((unsigned long)srmmu_context_table);
915
916 for (i = 0; i < num_contexts; i++)
917 srmmu_ctxd_set((ctxd_t *)__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir);
918
919 flush_cache_all();
920 srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys);
921 #ifdef CONFIG_SMP
922 /* Stop from hanging here... */
923 local_ops->tlb_all();
924 #else
925 flush_tlb_all();
926 #endif
927 poke_srmmu();
928
929 srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END);
930 srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END);
931
932 srmmu_allocate_ptable_skeleton(
933 __fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP);
934 srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END);
935
936 pgd = pgd_offset_k(PKMAP_BASE);
937 pmd = pmd_offset(pgd, PKMAP_BASE);
938 pte = pte_offset_kernel(pmd, PKMAP_BASE);
939 pkmap_page_table = pte;
940
941 flush_cache_all();
942 flush_tlb_all();
943
944 sparc_context_init(num_contexts);
945
946 kmap_init();
947
948 {
949 unsigned long zones_size[MAX_NR_ZONES];
950 unsigned long zholes_size[MAX_NR_ZONES];
951 unsigned long npages;
952 int znum;
953
954 for (znum = 0; znum < MAX_NR_ZONES; znum++)
955 zones_size[znum] = zholes_size[znum] = 0;
956
957 npages = max_low_pfn - pfn_base;
958
959 zones_size[ZONE_DMA] = npages;
960 zholes_size[ZONE_DMA] = npages - pages_avail;
961
962 npages = highend_pfn - max_low_pfn;
963 zones_size[ZONE_HIGHMEM] = npages;
964 zholes_size[ZONE_HIGHMEM] = npages - calc_highpages();
965
966 free_area_init_node(0, zones_size, pfn_base, zholes_size);
967 }
968 }
969
970 void mmu_info(struct seq_file *m)
971 {
972 seq_printf(m,
973 "MMU type\t: %s\n"
974 "contexts\t: %d\n"
975 "nocache total\t: %ld\n"
976 "nocache used\t: %d\n",
977 srmmu_name,
978 num_contexts,
979 srmmu_nocache_size,
980 srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
981 }
982
983 int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
984 {
985 mm->context = NO_CONTEXT;
986 return 0;
987 }
988
989 void destroy_context(struct mm_struct *mm)
990 {
991 unsigned long flags;
992
993 if (mm->context != NO_CONTEXT) {
994 flush_cache_mm(mm);
995 srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir);
996 flush_tlb_mm(mm);
997 spin_lock_irqsave(&srmmu_context_spinlock, flags);
998 free_context(mm->context);
999 spin_unlock_irqrestore(&srmmu_context_spinlock, flags);
1000 mm->context = NO_CONTEXT;
1001 }
1002 }
1003
1004 /* Init various srmmu chip types. */
1005 static void __init srmmu_is_bad(void)
1006 {
1007 prom_printf("Could not determine SRMMU chip type.\n");
1008 prom_halt();
1009 }
1010
1011 static void __init init_vac_layout(void)
1012 {
1013 phandle nd;
1014 int cache_lines;
1015 char node_str[128];
1016 #ifdef CONFIG_SMP
1017 int cpu = 0;
1018 unsigned long max_size = 0;
1019 unsigned long min_line_size = 0x10000000;
1020 #endif
1021
1022 nd = prom_getchild(prom_root_node);
1023 while ((nd = prom_getsibling(nd)) != 0) {
1024 prom_getstring(nd, "device_type", node_str, sizeof(node_str));
1025 if (!strcmp(node_str, "cpu")) {
1026 vac_line_size = prom_getint(nd, "cache-line-size");
1027 if (vac_line_size == -1) {
1028 prom_printf("can't determine cache-line-size, halting.\n");
1029 prom_halt();
1030 }
1031 cache_lines = prom_getint(nd, "cache-nlines");
1032 if (cache_lines == -1) {
1033 prom_printf("can't determine cache-nlines, halting.\n");
1034 prom_halt();
1035 }
1036
1037 vac_cache_size = cache_lines * vac_line_size;
1038 #ifdef CONFIG_SMP
1039 if (vac_cache_size > max_size)
1040 max_size = vac_cache_size;
1041 if (vac_line_size < min_line_size)
1042 min_line_size = vac_line_size;
1043 //FIXME: cpus not contiguous!!
1044 cpu++;
1045 if (cpu >= nr_cpu_ids || !cpu_online(cpu))
1046 break;
1047 #else
1048 break;
1049 #endif
1050 }
1051 }
1052 if (nd == 0) {
1053 prom_printf("No CPU nodes found, halting.\n");
1054 prom_halt();
1055 }
1056 #ifdef CONFIG_SMP
1057 vac_cache_size = max_size;
1058 vac_line_size = min_line_size;
1059 #endif
1060 printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
1061 (int)vac_cache_size, (int)vac_line_size);
1062 }
1063
1064 static void poke_hypersparc(void)
1065 {
1066 volatile unsigned long clear;
1067 unsigned long mreg = srmmu_get_mmureg();
1068
1069 hyper_flush_unconditional_combined();
1070
1071 mreg &= ~(HYPERSPARC_CWENABLE);
1072 mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE);
1073 mreg |= (HYPERSPARC_CMODE);
1074
1075 srmmu_set_mmureg(mreg);
1076
1077 #if 0 /* XXX I think this is bad news... -DaveM */
1078 hyper_clear_all_tags();
1079 #endif
1080
1081 put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE);
1082 hyper_flush_whole_icache();
1083 clear = srmmu_get_faddr();
1084 clear = srmmu_get_fstatus();
1085 }
1086
1087 static const struct sparc32_cachetlb_ops hypersparc_ops = {
1088 .cache_all = hypersparc_flush_cache_all,
1089 .cache_mm = hypersparc_flush_cache_mm,
1090 .cache_page = hypersparc_flush_cache_page,
1091 .cache_range = hypersparc_flush_cache_range,
1092 .tlb_all = hypersparc_flush_tlb_all,
1093 .tlb_mm = hypersparc_flush_tlb_mm,
1094 .tlb_page = hypersparc_flush_tlb_page,
1095 .tlb_range = hypersparc_flush_tlb_range,
1096 .page_to_ram = hypersparc_flush_page_to_ram,
1097 .sig_insns = hypersparc_flush_sig_insns,
1098 .page_for_dma = hypersparc_flush_page_for_dma,
1099 };
1100
1101 static void __init init_hypersparc(void)
1102 {
1103 srmmu_name = "ROSS HyperSparc";
1104 srmmu_modtype = HyperSparc;
1105
1106 init_vac_layout();
1107
1108 is_hypersparc = 1;
1109 sparc32_cachetlb_ops = &hypersparc_ops;
1110
1111 poke_srmmu = poke_hypersparc;
1112
1113 hypersparc_setup_blockops();
1114 }
1115
1116 static void poke_swift(void)
1117 {
1118 unsigned long mreg;
1119
1120 /* Clear any crap from the cache or else... */
1121 swift_flush_cache_all();
1122
1123 /* Enable I & D caches */
1124 mreg = srmmu_get_mmureg();
1125 mreg |= (SWIFT_IE | SWIFT_DE);
1126 /*
1127 * The Swift branch folding logic is completely broken. At
1128 * trap time, if things are just right, if can mistakenly
1129 * think that a trap is coming from kernel mode when in fact
1130 * it is coming from user mode (it mis-executes the branch in
1131 * the trap code). So you see things like crashme completely
1132 * hosing your machine which is completely unacceptable. Turn
1133 * this shit off... nice job Fujitsu.
1134 */
1135 mreg &= ~(SWIFT_BF);
1136 srmmu_set_mmureg(mreg);
1137 }
1138
1139 static const struct sparc32_cachetlb_ops swift_ops = {
1140 .cache_all = swift_flush_cache_all,
1141 .cache_mm = swift_flush_cache_mm,
1142 .cache_page = swift_flush_cache_page,
1143 .cache_range = swift_flush_cache_range,
1144 .tlb_all = swift_flush_tlb_all,
1145 .tlb_mm = swift_flush_tlb_mm,
1146 .tlb_page = swift_flush_tlb_page,
1147 .tlb_range = swift_flush_tlb_range,
1148 .page_to_ram = swift_flush_page_to_ram,
1149 .sig_insns = swift_flush_sig_insns,
1150 .page_for_dma = swift_flush_page_for_dma,
1151 };
1152
1153 #define SWIFT_MASKID_ADDR 0x10003018
1154 static void __init init_swift(void)
1155 {
1156 unsigned long swift_rev;
1157
1158 __asm__ __volatile__("lda [%1] %2, %0\n\t"
1159 "srl %0, 0x18, %0\n\t" :
1160 "=r" (swift_rev) :
1161 "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS));
1162 srmmu_name = "Fujitsu Swift";
1163 switch (swift_rev) {
1164 case 0x11:
1165 case 0x20:
1166 case 0x23:
1167 case 0x30:
1168 srmmu_modtype = Swift_lots_o_bugs;
1169 hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN);
1170 /*
1171 * Gee george, I wonder why Sun is so hush hush about
1172 * this hardware bug... really braindamage stuff going
1173 * on here. However I think we can find a way to avoid
1174 * all of the workaround overhead under Linux. Basically,
1175 * any page fault can cause kernel pages to become user
1176 * accessible (the mmu gets confused and clears some of
1177 * the ACC bits in kernel ptes). Aha, sounds pretty
1178 * horrible eh? But wait, after extensive testing it appears
1179 * that if you use pgd_t level large kernel pte's (like the
1180 * 4MB pages on the Pentium) the bug does not get tripped
1181 * at all. This avoids almost all of the major overhead.
1182 * Welcome to a world where your vendor tells you to,
1183 * "apply this kernel patch" instead of "sorry for the
1184 * broken hardware, send it back and we'll give you
1185 * properly functioning parts"
1186 */
1187 break;
1188 case 0x25:
1189 case 0x31:
1190 srmmu_modtype = Swift_bad_c;
1191 hwbug_bitmask |= HWBUG_KERN_CBITBROKEN;
1192 /*
1193 * You see Sun allude to this hardware bug but never
1194 * admit things directly, they'll say things like,
1195 * "the Swift chip cache problems" or similar.
1196 */
1197 break;
1198 default:
1199 srmmu_modtype = Swift_ok;
1200 break;
1201 }
1202
1203 sparc32_cachetlb_ops = &swift_ops;
1204 flush_page_for_dma_global = 0;
1205
1206 /*
1207 * Are you now convinced that the Swift is one of the
1208 * biggest VLSI abortions of all time? Bravo Fujitsu!
1209 * Fujitsu, the !#?!%$'d up processor people. I bet if
1210 * you examined the microcode of the Swift you'd find
1211 * XXX's all over the place.
1212 */
1213 poke_srmmu = poke_swift;
1214 }
1215
1216 static void turbosparc_flush_cache_all(void)
1217 {
1218 flush_user_windows();
1219 turbosparc_idflash_clear();
1220 }
1221
1222 static void turbosparc_flush_cache_mm(struct mm_struct *mm)
1223 {
1224 FLUSH_BEGIN(mm)
1225 flush_user_windows();
1226 turbosparc_idflash_clear();
1227 FLUSH_END
1228 }
1229
1230 static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1231 {
1232 FLUSH_BEGIN(vma->vm_mm)
1233 flush_user_windows();
1234 turbosparc_idflash_clear();
1235 FLUSH_END
1236 }
1237
1238 static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1239 {
1240 FLUSH_BEGIN(vma->vm_mm)
1241 flush_user_windows();
1242 if (vma->vm_flags & VM_EXEC)
1243 turbosparc_flush_icache();
1244 turbosparc_flush_dcache();
1245 FLUSH_END
1246 }
1247
1248 /* TurboSparc is copy-back, if we turn it on, but this does not work. */
1249 static void turbosparc_flush_page_to_ram(unsigned long page)
1250 {
1251 #ifdef TURBOSPARC_WRITEBACK
1252 volatile unsigned long clear;
1253
1254 if (srmmu_probe(page))
1255 turbosparc_flush_page_cache(page);
1256 clear = srmmu_get_fstatus();
1257 #endif
1258 }
1259
1260 static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1261 {
1262 }
1263
1264 static void turbosparc_flush_page_for_dma(unsigned long page)
1265 {
1266 turbosparc_flush_dcache();
1267 }
1268
1269 static void turbosparc_flush_tlb_all(void)
1270 {
1271 srmmu_flush_whole_tlb();
1272 }
1273
1274 static void turbosparc_flush_tlb_mm(struct mm_struct *mm)
1275 {
1276 FLUSH_BEGIN(mm)
1277 srmmu_flush_whole_tlb();
1278 FLUSH_END
1279 }
1280
1281 static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1282 {
1283 FLUSH_BEGIN(vma->vm_mm)
1284 srmmu_flush_whole_tlb();
1285 FLUSH_END
1286 }
1287
1288 static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1289 {
1290 FLUSH_BEGIN(vma->vm_mm)
1291 srmmu_flush_whole_tlb();
1292 FLUSH_END
1293 }
1294
1295
1296 static void poke_turbosparc(void)
1297 {
1298 unsigned long mreg = srmmu_get_mmureg();
1299 unsigned long ccreg;
1300
1301 /* Clear any crap from the cache or else... */
1302 turbosparc_flush_cache_all();
1303 /* Temporarily disable I & D caches */
1304 mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE);
1305 mreg &= ~(TURBOSPARC_PCENABLE); /* Don't check parity */
1306 srmmu_set_mmureg(mreg);
1307
1308 ccreg = turbosparc_get_ccreg();
1309
1310 #ifdef TURBOSPARC_WRITEBACK
1311 ccreg |= (TURBOSPARC_SNENABLE); /* Do DVMA snooping in Dcache */
1312 ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE);
1313 /* Write-back D-cache, emulate VLSI
1314 * abortion number three, not number one */
1315 #else
1316 /* For now let's play safe, optimize later */
1317 ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE);
1318 /* Do DVMA snooping in Dcache, Write-thru D-cache */
1319 ccreg &= ~(TURBOSPARC_uS2);
1320 /* Emulate VLSI abortion number three, not number one */
1321 #endif
1322
1323 switch (ccreg & 7) {
1324 case 0: /* No SE cache */
1325 case 7: /* Test mode */
1326 break;
1327 default:
1328 ccreg |= (TURBOSPARC_SCENABLE);
1329 }
1330 turbosparc_set_ccreg(ccreg);
1331
1332 mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */
1333 mreg |= (TURBOSPARC_ICSNOOP); /* Icache snooping on */
1334 srmmu_set_mmureg(mreg);
1335 }
1336
1337 static const struct sparc32_cachetlb_ops turbosparc_ops = {
1338 .cache_all = turbosparc_flush_cache_all,
1339 .cache_mm = turbosparc_flush_cache_mm,
1340 .cache_page = turbosparc_flush_cache_page,
1341 .cache_range = turbosparc_flush_cache_range,
1342 .tlb_all = turbosparc_flush_tlb_all,
1343 .tlb_mm = turbosparc_flush_tlb_mm,
1344 .tlb_page = turbosparc_flush_tlb_page,
1345 .tlb_range = turbosparc_flush_tlb_range,
1346 .page_to_ram = turbosparc_flush_page_to_ram,
1347 .sig_insns = turbosparc_flush_sig_insns,
1348 .page_for_dma = turbosparc_flush_page_for_dma,
1349 };
1350
1351 static void __init init_turbosparc(void)
1352 {
1353 srmmu_name = "Fujitsu TurboSparc";
1354 srmmu_modtype = TurboSparc;
1355 sparc32_cachetlb_ops = &turbosparc_ops;
1356 poke_srmmu = poke_turbosparc;
1357 }
1358
1359 static void poke_tsunami(void)
1360 {
1361 unsigned long mreg = srmmu_get_mmureg();
1362
1363 tsunami_flush_icache();
1364 tsunami_flush_dcache();
1365 mreg &= ~TSUNAMI_ITD;
1366 mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB);
1367 srmmu_set_mmureg(mreg);
1368 }
1369
1370 static const struct sparc32_cachetlb_ops tsunami_ops = {
1371 .cache_all = tsunami_flush_cache_all,
1372 .cache_mm = tsunami_flush_cache_mm,
1373 .cache_page = tsunami_flush_cache_page,
1374 .cache_range = tsunami_flush_cache_range,
1375 .tlb_all = tsunami_flush_tlb_all,
1376 .tlb_mm = tsunami_flush_tlb_mm,
1377 .tlb_page = tsunami_flush_tlb_page,
1378 .tlb_range = tsunami_flush_tlb_range,
1379 .page_to_ram = tsunami_flush_page_to_ram,
1380 .sig_insns = tsunami_flush_sig_insns,
1381 .page_for_dma = tsunami_flush_page_for_dma,
1382 };
1383
1384 static void __init init_tsunami(void)
1385 {
1386 /*
1387 * Tsunami's pretty sane, Sun and TI actually got it
1388 * somewhat right this time. Fujitsu should have
1389 * taken some lessons from them.
1390 */
1391
1392 srmmu_name = "TI Tsunami";
1393 srmmu_modtype = Tsunami;
1394 sparc32_cachetlb_ops = &tsunami_ops;
1395 poke_srmmu = poke_tsunami;
1396
1397 tsunami_setup_blockops();
1398 }
1399
1400 static void poke_viking(void)
1401 {
1402 unsigned long mreg = srmmu_get_mmureg();
1403 static int smp_catch;
1404
1405 if (viking_mxcc_present) {
1406 unsigned long mxcc_control = mxcc_get_creg();
1407
1408 mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE);
1409 mxcc_control &= ~(MXCC_CTL_RRC);
1410 mxcc_set_creg(mxcc_control);
1411
1412 /*
1413 * We don't need memory parity checks.
1414 * XXX This is a mess, have to dig out later. ecd.
1415 viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
1416 */
1417
1418 /* We do cache ptables on MXCC. */
1419 mreg |= VIKING_TCENABLE;
1420 } else {
1421 unsigned long bpreg;
1422
1423 mreg &= ~(VIKING_TCENABLE);
1424 if (smp_catch++) {
1425 /* Must disable mixed-cmd mode here for other cpu's. */
1426 bpreg = viking_get_bpreg();
1427 bpreg &= ~(VIKING_ACTION_MIX);
1428 viking_set_bpreg(bpreg);
1429
1430 /* Just in case PROM does something funny. */
1431 msi_set_sync();
1432 }
1433 }
1434
1435 mreg |= VIKING_SPENABLE;
1436 mreg |= (VIKING_ICENABLE | VIKING_DCENABLE);
1437 mreg |= VIKING_SBENABLE;
1438 mreg &= ~(VIKING_ACENABLE);
1439 srmmu_set_mmureg(mreg);
1440 }
1441
1442 static struct sparc32_cachetlb_ops viking_ops = {
1443 .cache_all = viking_flush_cache_all,
1444 .cache_mm = viking_flush_cache_mm,
1445 .cache_page = viking_flush_cache_page,
1446 .cache_range = viking_flush_cache_range,
1447 .tlb_all = viking_flush_tlb_all,
1448 .tlb_mm = viking_flush_tlb_mm,
1449 .tlb_page = viking_flush_tlb_page,
1450 .tlb_range = viking_flush_tlb_range,
1451 .page_to_ram = viking_flush_page_to_ram,
1452 .sig_insns = viking_flush_sig_insns,
1453 .page_for_dma = viking_flush_page_for_dma,
1454 };
1455
1456 #ifdef CONFIG_SMP
1457 /* On sun4d the cpu broadcasts local TLB flushes, so we can just
1458 * perform the local TLB flush and all the other cpus will see it.
1459 * But, unfortunately, there is a bug in the sun4d XBUS backplane
1460 * that requires that we add some synchronization to these flushes.
1461 *
1462 * The bug is that the fifo which keeps track of all the pending TLB
1463 * broadcasts in the system is an entry or two too small, so if we
1464 * have too many going at once we'll overflow that fifo and lose a TLB
1465 * flush resulting in corruption.
1466 *
1467 * Our workaround is to take a global spinlock around the TLB flushes,
1468 * which guarentees we won't ever have too many pending. It's a big
1469 * hammer, but a semaphore like system to make sure we only have N TLB
1470 * flushes going at once will require SMP locking anyways so there's
1471 * no real value in trying any harder than this.
1472 */
1473 static struct sparc32_cachetlb_ops viking_sun4d_smp_ops = {
1474 .cache_all = viking_flush_cache_all,
1475 .cache_mm = viking_flush_cache_mm,
1476 .cache_page = viking_flush_cache_page,
1477 .cache_range = viking_flush_cache_range,
1478 .tlb_all = sun4dsmp_flush_tlb_all,
1479 .tlb_mm = sun4dsmp_flush_tlb_mm,
1480 .tlb_page = sun4dsmp_flush_tlb_page,
1481 .tlb_range = sun4dsmp_flush_tlb_range,
1482 .page_to_ram = viking_flush_page_to_ram,
1483 .sig_insns = viking_flush_sig_insns,
1484 .page_for_dma = viking_flush_page_for_dma,
1485 };
1486 #endif
1487
1488 static void __init init_viking(void)
1489 {
1490 unsigned long mreg = srmmu_get_mmureg();
1491
1492 /* Ahhh, the viking. SRMMU VLSI abortion number two... */
1493 if (mreg & VIKING_MMODE) {
1494 srmmu_name = "TI Viking";
1495 viking_mxcc_present = 0;
1496 msi_set_sync();
1497
1498 /*
1499 * We need this to make sure old viking takes no hits
1500 * on it's cache for dma snoops to workaround the
1501 * "load from non-cacheable memory" interrupt bug.
1502 * This is only necessary because of the new way in
1503 * which we use the IOMMU.
1504 */
1505 viking_ops.page_for_dma = viking_flush_page;
1506 #ifdef CONFIG_SMP
1507 viking_sun4d_smp_ops.page_for_dma = viking_flush_page;
1508 #endif
1509 flush_page_for_dma_global = 0;
1510 } else {
1511 srmmu_name = "TI Viking/MXCC";
1512 viking_mxcc_present = 1;
1513 srmmu_cache_pagetables = 1;
1514 }
1515
1516 sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1517 &viking_ops;
1518 #ifdef CONFIG_SMP
1519 if (sparc_cpu_model == sun4d)
1520 sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1521 &viking_sun4d_smp_ops;
1522 #endif
1523
1524 poke_srmmu = poke_viking;
1525 }
1526
1527 /* Probe for the srmmu chip version. */
1528 static void __init get_srmmu_type(void)
1529 {
1530 unsigned long mreg, psr;
1531 unsigned long mod_typ, mod_rev, psr_typ, psr_vers;
1532
1533 srmmu_modtype = SRMMU_INVAL_MOD;
1534 hwbug_bitmask = 0;
1535
1536 mreg = srmmu_get_mmureg(); psr = get_psr();
1537 mod_typ = (mreg & 0xf0000000) >> 28;
1538 mod_rev = (mreg & 0x0f000000) >> 24;
1539 psr_typ = (psr >> 28) & 0xf;
1540 psr_vers = (psr >> 24) & 0xf;
1541
1542 /* First, check for sparc-leon. */
1543 if (sparc_cpu_model == sparc_leon) {
1544 init_leon();
1545 return;
1546 }
1547
1548 /* Second, check for HyperSparc or Cypress. */
1549 if (mod_typ == 1) {
1550 switch (mod_rev) {
1551 case 7:
1552 /* UP or MP Hypersparc */
1553 init_hypersparc();
1554 break;
1555 case 0:
1556 case 2:
1557 case 10:
1558 case 11:
1559 case 12:
1560 case 13:
1561 case 14:
1562 case 15:
1563 default:
1564 prom_printf("Sparc-Linux Cypress support does not longer exit.\n");
1565 prom_halt();
1566 break;
1567 }
1568 return;
1569 }
1570
1571 /* Now Fujitsu TurboSparc. It might happen that it is
1572 * in Swift emulation mode, so we will check later...
1573 */
1574 if (psr_typ == 0 && psr_vers == 5) {
1575 init_turbosparc();
1576 return;
1577 }
1578
1579 /* Next check for Fujitsu Swift. */
1580 if (psr_typ == 0 && psr_vers == 4) {
1581 phandle cpunode;
1582 char node_str[128];
1583
1584 /* Look if it is not a TurboSparc emulating Swift... */
1585 cpunode = prom_getchild(prom_root_node);
1586 while ((cpunode = prom_getsibling(cpunode)) != 0) {
1587 prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
1588 if (!strcmp(node_str, "cpu")) {
1589 if (!prom_getintdefault(cpunode, "psr-implementation", 1) &&
1590 prom_getintdefault(cpunode, "psr-version", 1) == 5) {
1591 init_turbosparc();
1592 return;
1593 }
1594 break;
1595 }
1596 }
1597
1598 init_swift();
1599 return;
1600 }
1601
1602 /* Now the Viking family of srmmu. */
1603 if (psr_typ == 4 &&
1604 ((psr_vers == 0) ||
1605 ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) {
1606 init_viking();
1607 return;
1608 }
1609
1610 /* Finally the Tsunami. */
1611 if (psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) {
1612 init_tsunami();
1613 return;
1614 }
1615
1616 /* Oh well */
1617 srmmu_is_bad();
1618 }
1619
1620 #ifdef CONFIG_SMP
1621 /* Local cross-calls. */
1622 static void smp_flush_page_for_dma(unsigned long page)
1623 {
1624 xc1((smpfunc_t) local_ops->page_for_dma, page);
1625 local_ops->page_for_dma(page);
1626 }
1627
1628 static void smp_flush_cache_all(void)
1629 {
1630 xc0((smpfunc_t) local_ops->cache_all);
1631 local_ops->cache_all();
1632 }
1633
1634 static void smp_flush_tlb_all(void)
1635 {
1636 xc0((smpfunc_t) local_ops->tlb_all);
1637 local_ops->tlb_all();
1638 }
1639
1640 static void smp_flush_cache_mm(struct mm_struct *mm)
1641 {
1642 if (mm->context != NO_CONTEXT) {
1643 cpumask_t cpu_mask;
1644 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1645 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1646 if (!cpumask_empty(&cpu_mask))
1647 xc1((smpfunc_t) local_ops->cache_mm, (unsigned long) mm);
1648 local_ops->cache_mm(mm);
1649 }
1650 }
1651
1652 static void smp_flush_tlb_mm(struct mm_struct *mm)
1653 {
1654 if (mm->context != NO_CONTEXT) {
1655 cpumask_t cpu_mask;
1656 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1657 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1658 if (!cpumask_empty(&cpu_mask)) {
1659 xc1((smpfunc_t) local_ops->tlb_mm, (unsigned long) mm);
1660 if (atomic_read(&mm->mm_users) == 1 && current->active_mm == mm)
1661 cpumask_copy(mm_cpumask(mm),
1662 cpumask_of(smp_processor_id()));
1663 }
1664 local_ops->tlb_mm(mm);
1665 }
1666 }
1667
1668 static void smp_flush_cache_range(struct vm_area_struct *vma,
1669 unsigned long start,
1670 unsigned long end)
1671 {
1672 struct mm_struct *mm = vma->vm_mm;
1673
1674 if (mm->context != NO_CONTEXT) {
1675 cpumask_t cpu_mask;
1676 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1677 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1678 if (!cpumask_empty(&cpu_mask))
1679 xc3((smpfunc_t) local_ops->cache_range,
1680 (unsigned long) vma, start, end);
1681 local_ops->cache_range(vma, start, end);
1682 }
1683 }
1684
1685 static void smp_flush_tlb_range(struct vm_area_struct *vma,
1686 unsigned long start,
1687 unsigned long end)
1688 {
1689 struct mm_struct *mm = vma->vm_mm;
1690
1691 if (mm->context != NO_CONTEXT) {
1692 cpumask_t cpu_mask;
1693 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1694 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1695 if (!cpumask_empty(&cpu_mask))
1696 xc3((smpfunc_t) local_ops->tlb_range,
1697 (unsigned long) vma, start, end);
1698 local_ops->tlb_range(vma, start, end);
1699 }
1700 }
1701
1702 static void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1703 {
1704 struct mm_struct *mm = vma->vm_mm;
1705
1706 if (mm->context != NO_CONTEXT) {
1707 cpumask_t cpu_mask;
1708 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1709 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1710 if (!cpumask_empty(&cpu_mask))
1711 xc2((smpfunc_t) local_ops->cache_page,
1712 (unsigned long) vma, page);
1713 local_ops->cache_page(vma, page);
1714 }
1715 }
1716
1717 static void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1718 {
1719 struct mm_struct *mm = vma->vm_mm;
1720
1721 if (mm->context != NO_CONTEXT) {
1722 cpumask_t cpu_mask;
1723 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1724 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1725 if (!cpumask_empty(&cpu_mask))
1726 xc2((smpfunc_t) local_ops->tlb_page,
1727 (unsigned long) vma, page);
1728 local_ops->tlb_page(vma, page);
1729 }
1730 }
1731
1732 static void smp_flush_page_to_ram(unsigned long page)
1733 {
1734 /* Current theory is that those who call this are the one's
1735 * who have just dirtied their cache with the pages contents
1736 * in kernel space, therefore we only run this on local cpu.
1737 *
1738 * XXX This experiment failed, research further... -DaveM
1739 */
1740 #if 1
1741 xc1((smpfunc_t) local_ops->page_to_ram, page);
1742 #endif
1743 local_ops->page_to_ram(page);
1744 }
1745
1746 static void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1747 {
1748 cpumask_t cpu_mask;
1749 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1750 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1751 if (!cpumask_empty(&cpu_mask))
1752 xc2((smpfunc_t) local_ops->sig_insns,
1753 (unsigned long) mm, insn_addr);
1754 local_ops->sig_insns(mm, insn_addr);
1755 }
1756
1757 static struct sparc32_cachetlb_ops smp_cachetlb_ops = {
1758 .cache_all = smp_flush_cache_all,
1759 .cache_mm = smp_flush_cache_mm,
1760 .cache_page = smp_flush_cache_page,
1761 .cache_range = smp_flush_cache_range,
1762 .tlb_all = smp_flush_tlb_all,
1763 .tlb_mm = smp_flush_tlb_mm,
1764 .tlb_page = smp_flush_tlb_page,
1765 .tlb_range = smp_flush_tlb_range,
1766 .page_to_ram = smp_flush_page_to_ram,
1767 .sig_insns = smp_flush_sig_insns,
1768 .page_for_dma = smp_flush_page_for_dma,
1769 };
1770 #endif
1771
1772 /* Load up routines and constants for sun4m and sun4d mmu */
1773 void __init load_mmu(void)
1774 {
1775 /* Functions */
1776 get_srmmu_type();
1777
1778 #ifdef CONFIG_SMP
1779 /* El switcheroo... */
1780 local_ops = sparc32_cachetlb_ops;
1781
1782 if (sparc_cpu_model == sun4d || sparc_cpu_model == sparc_leon) {
1783 smp_cachetlb_ops.tlb_all = local_ops->tlb_all;
1784 smp_cachetlb_ops.tlb_mm = local_ops->tlb_mm;
1785 smp_cachetlb_ops.tlb_range = local_ops->tlb_range;
1786 smp_cachetlb_ops.tlb_page = local_ops->tlb_page;
1787 }
1788
1789 if (poke_srmmu == poke_viking) {
1790 /* Avoid unnecessary cross calls. */
1791 smp_cachetlb_ops.cache_all = local_ops->cache_all;
1792 smp_cachetlb_ops.cache_mm = local_ops->cache_mm;
1793 smp_cachetlb_ops.cache_range = local_ops->cache_range;
1794 smp_cachetlb_ops.cache_page = local_ops->cache_page;
1795
1796 smp_cachetlb_ops.page_to_ram = local_ops->page_to_ram;
1797 smp_cachetlb_ops.sig_insns = local_ops->sig_insns;
1798 smp_cachetlb_ops.page_for_dma = local_ops->page_for_dma;
1799 }
1800
1801 /* It really is const after this point. */
1802 sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1803 &smp_cachetlb_ops;
1804 #endif
1805
1806 if (sparc_cpu_model == sun4d)
1807 ld_mmu_iounit();
1808 else
1809 ld_mmu_iommu();
1810 #ifdef CONFIG_SMP
1811 if (sparc_cpu_model == sun4d)
1812 sun4d_init_smp();
1813 else if (sparc_cpu_model == sparc_leon)
1814 leon_init_smp();
1815 else
1816 sun4m_init_smp();
1817 #endif
1818 }
This page took 0.095138 seconds and 5 git commands to generate.