[SPARC64]: Kill cpudata->idle_volume.
[deliverable/linux.git] / arch / sparc64 / kernel / smp.c
1 /* smp.c: Sparc64 SMP support.
2 *
3 * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
4 */
5
6 #include <linux/module.h>
7 #include <linux/kernel.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/pagemap.h>
11 #include <linux/threads.h>
12 #include <linux/smp.h>
13 #include <linux/smp_lock.h>
14 #include <linux/interrupt.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/delay.h>
17 #include <linux/init.h>
18 #include <linux/spinlock.h>
19 #include <linux/fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/cache.h>
22 #include <linux/jiffies.h>
23 #include <linux/profile.h>
24 #include <linux/bootmem.h>
25
26 #include <asm/head.h>
27 #include <asm/ptrace.h>
28 #include <asm/atomic.h>
29 #include <asm/tlbflush.h>
30 #include <asm/mmu_context.h>
31 #include <asm/cpudata.h>
32
33 #include <asm/irq.h>
34 #include <asm/page.h>
35 #include <asm/pgtable.h>
36 #include <asm/oplib.h>
37 #include <asm/uaccess.h>
38 #include <asm/timer.h>
39 #include <asm/starfire.h>
40 #include <asm/tlb.h>
41 #include <asm/sections.h>
42
43 extern void calibrate_delay(void);
44
45 /* Please don't make this stuff initdata!!! --DaveM */
46 static unsigned char boot_cpu_id;
47
48 cpumask_t cpu_online_map __read_mostly = CPU_MASK_NONE;
49 cpumask_t phys_cpu_present_map __read_mostly = CPU_MASK_NONE;
50 static cpumask_t smp_commenced_mask;
51 static cpumask_t cpu_callout_map;
52
53 void smp_info(struct seq_file *m)
54 {
55 int i;
56
57 seq_printf(m, "State:\n");
58 for (i = 0; i < NR_CPUS; i++) {
59 if (cpu_online(i))
60 seq_printf(m,
61 "CPU%d:\t\tonline\n", i);
62 }
63 }
64
65 void smp_bogo(struct seq_file *m)
66 {
67 int i;
68
69 for (i = 0; i < NR_CPUS; i++)
70 if (cpu_online(i))
71 seq_printf(m,
72 "Cpu%dBogo\t: %lu.%02lu\n"
73 "Cpu%dClkTck\t: %016lx\n",
74 i, cpu_data(i).udelay_val / (500000/HZ),
75 (cpu_data(i).udelay_val / (5000/HZ)) % 100,
76 i, cpu_data(i).clock_tick);
77 }
78
79 void __init smp_store_cpu_info(int id)
80 {
81 int cpu_node, def;
82
83 /* multiplier and counter set by
84 smp_setup_percpu_timer() */
85 cpu_data(id).udelay_val = loops_per_jiffy;
86
87 cpu_find_by_mid(id, &cpu_node);
88 cpu_data(id).clock_tick = prom_getintdefault(cpu_node,
89 "clock-frequency", 0);
90
91 def = ((tlb_type == hypervisor) ? (8 * 1024) : (16 * 1024));
92 cpu_data(id).dcache_size = prom_getintdefault(cpu_node, "dcache-size",
93 def);
94
95 def = 32;
96 cpu_data(id).dcache_line_size =
97 prom_getintdefault(cpu_node, "dcache-line-size", def);
98
99 def = 16 * 1024;
100 cpu_data(id).icache_size = prom_getintdefault(cpu_node, "icache-size",
101 def);
102
103 def = 32;
104 cpu_data(id).icache_line_size =
105 prom_getintdefault(cpu_node, "icache-line-size", def);
106
107 def = ((tlb_type == hypervisor) ?
108 (3 * 1024 * 1024) :
109 (4 * 1024 * 1024));
110 cpu_data(id).ecache_size = prom_getintdefault(cpu_node, "ecache-size",
111 def);
112
113 def = 64;
114 cpu_data(id).ecache_line_size =
115 prom_getintdefault(cpu_node, "ecache-line-size", def);
116
117 printk("CPU[%d]: Caches "
118 "D[sz(%d):line_sz(%d)] "
119 "I[sz(%d):line_sz(%d)] "
120 "E[sz(%d):line_sz(%d)]\n",
121 id,
122 cpu_data(id).dcache_size, cpu_data(id).dcache_line_size,
123 cpu_data(id).icache_size, cpu_data(id).icache_line_size,
124 cpu_data(id).ecache_size, cpu_data(id).ecache_line_size);
125 }
126
127 static void smp_setup_percpu_timer(void);
128
129 static volatile unsigned long callin_flag = 0;
130
131 void __init smp_callin(void)
132 {
133 int cpuid = hard_smp_processor_id();
134
135 __local_per_cpu_offset = __per_cpu_offset(cpuid);
136
137 if (tlb_type == hypervisor)
138 sun4v_ktsb_register();
139
140 __flush_tlb_all();
141
142 smp_setup_percpu_timer();
143
144 if (cheetah_pcache_forced_on)
145 cheetah_enable_pcache();
146
147 local_irq_enable();
148
149 calibrate_delay();
150 smp_store_cpu_info(cpuid);
151 callin_flag = 1;
152 __asm__ __volatile__("membar #Sync\n\t"
153 "flush %%g6" : : : "memory");
154
155 /* Clear this or we will die instantly when we
156 * schedule back to this idler...
157 */
158 current_thread_info()->new_child = 0;
159
160 /* Attach to the address space of init_task. */
161 atomic_inc(&init_mm.mm_count);
162 current->active_mm = &init_mm;
163
164 while (!cpu_isset(cpuid, smp_commenced_mask))
165 rmb();
166
167 cpu_set(cpuid, cpu_online_map);
168
169 /* idle thread is expected to have preempt disabled */
170 preempt_disable();
171 }
172
173 void cpu_panic(void)
174 {
175 printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
176 panic("SMP bolixed\n");
177 }
178
179 static unsigned long current_tick_offset __read_mostly;
180
181 /* This tick register synchronization scheme is taken entirely from
182 * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
183 *
184 * The only change I've made is to rework it so that the master
185 * initiates the synchonization instead of the slave. -DaveM
186 */
187
188 #define MASTER 0
189 #define SLAVE (SMP_CACHE_BYTES/sizeof(unsigned long))
190
191 #define NUM_ROUNDS 64 /* magic value */
192 #define NUM_ITERS 5 /* likewise */
193
194 static DEFINE_SPINLOCK(itc_sync_lock);
195 static unsigned long go[SLAVE + 1];
196
197 #define DEBUG_TICK_SYNC 0
198
199 static inline long get_delta (long *rt, long *master)
200 {
201 unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
202 unsigned long tcenter, t0, t1, tm;
203 unsigned long i;
204
205 for (i = 0; i < NUM_ITERS; i++) {
206 t0 = tick_ops->get_tick();
207 go[MASTER] = 1;
208 membar_storeload();
209 while (!(tm = go[SLAVE]))
210 rmb();
211 go[SLAVE] = 0;
212 wmb();
213 t1 = tick_ops->get_tick();
214
215 if (t1 - t0 < best_t1 - best_t0)
216 best_t0 = t0, best_t1 = t1, best_tm = tm;
217 }
218
219 *rt = best_t1 - best_t0;
220 *master = best_tm - best_t0;
221
222 /* average best_t0 and best_t1 without overflow: */
223 tcenter = (best_t0/2 + best_t1/2);
224 if (best_t0 % 2 + best_t1 % 2 == 2)
225 tcenter++;
226 return tcenter - best_tm;
227 }
228
229 void smp_synchronize_tick_client(void)
230 {
231 long i, delta, adj, adjust_latency = 0, done = 0;
232 unsigned long flags, rt, master_time_stamp, bound;
233 #if DEBUG_TICK_SYNC
234 struct {
235 long rt; /* roundtrip time */
236 long master; /* master's timestamp */
237 long diff; /* difference between midpoint and master's timestamp */
238 long lat; /* estimate of itc adjustment latency */
239 } t[NUM_ROUNDS];
240 #endif
241
242 go[MASTER] = 1;
243
244 while (go[MASTER])
245 rmb();
246
247 local_irq_save(flags);
248 {
249 for (i = 0; i < NUM_ROUNDS; i++) {
250 delta = get_delta(&rt, &master_time_stamp);
251 if (delta == 0) {
252 done = 1; /* let's lock on to this... */
253 bound = rt;
254 }
255
256 if (!done) {
257 if (i > 0) {
258 adjust_latency += -delta;
259 adj = -delta + adjust_latency/4;
260 } else
261 adj = -delta;
262
263 tick_ops->add_tick(adj, current_tick_offset);
264 }
265 #if DEBUG_TICK_SYNC
266 t[i].rt = rt;
267 t[i].master = master_time_stamp;
268 t[i].diff = delta;
269 t[i].lat = adjust_latency/4;
270 #endif
271 }
272 }
273 local_irq_restore(flags);
274
275 #if DEBUG_TICK_SYNC
276 for (i = 0; i < NUM_ROUNDS; i++)
277 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
278 t[i].rt, t[i].master, t[i].diff, t[i].lat);
279 #endif
280
281 printk(KERN_INFO "CPU %d: synchronized TICK with master CPU (last diff %ld cycles,"
282 "maxerr %lu cycles)\n", smp_processor_id(), delta, rt);
283 }
284
285 static void smp_start_sync_tick_client(int cpu);
286
287 static void smp_synchronize_one_tick(int cpu)
288 {
289 unsigned long flags, i;
290
291 go[MASTER] = 0;
292
293 smp_start_sync_tick_client(cpu);
294
295 /* wait for client to be ready */
296 while (!go[MASTER])
297 rmb();
298
299 /* now let the client proceed into his loop */
300 go[MASTER] = 0;
301 membar_storeload();
302
303 spin_lock_irqsave(&itc_sync_lock, flags);
304 {
305 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
306 while (!go[MASTER])
307 rmb();
308 go[MASTER] = 0;
309 wmb();
310 go[SLAVE] = tick_ops->get_tick();
311 membar_storeload();
312 }
313 }
314 spin_unlock_irqrestore(&itc_sync_lock, flags);
315 }
316
317 extern void sun4v_init_mondo_queues(int use_bootmem, int cpu, int alloc, int load);
318
319 extern unsigned long sparc64_cpu_startup;
320
321 /* The OBP cpu startup callback truncates the 3rd arg cookie to
322 * 32-bits (I think) so to be safe we have it read the pointer
323 * contained here so we work on >4GB machines. -DaveM
324 */
325 static struct thread_info *cpu_new_thread = NULL;
326
327 static int __devinit smp_boot_one_cpu(unsigned int cpu)
328 {
329 unsigned long entry =
330 (unsigned long)(&sparc64_cpu_startup);
331 unsigned long cookie =
332 (unsigned long)(&cpu_new_thread);
333 struct task_struct *p;
334 int timeout, ret;
335
336 p = fork_idle(cpu);
337 callin_flag = 0;
338 cpu_new_thread = task_thread_info(p);
339 cpu_set(cpu, cpu_callout_map);
340
341 if (tlb_type == hypervisor) {
342 /* Alloc the mondo queues, cpu will load them. */
343 sun4v_init_mondo_queues(0, cpu, 1, 0);
344
345 prom_startcpu_cpuid(cpu, entry, cookie);
346 } else {
347 int cpu_node;
348
349 cpu_find_by_mid(cpu, &cpu_node);
350 prom_startcpu(cpu_node, entry, cookie);
351 }
352
353 for (timeout = 0; timeout < 5000000; timeout++) {
354 if (callin_flag)
355 break;
356 udelay(100);
357 }
358
359 if (callin_flag) {
360 ret = 0;
361 } else {
362 printk("Processor %d is stuck.\n", cpu);
363 cpu_clear(cpu, cpu_callout_map);
364 ret = -ENODEV;
365 }
366 cpu_new_thread = NULL;
367
368 return ret;
369 }
370
371 static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
372 {
373 u64 result, target;
374 int stuck, tmp;
375
376 if (this_is_starfire) {
377 /* map to real upaid */
378 cpu = (((cpu & 0x3c) << 1) |
379 ((cpu & 0x40) >> 4) |
380 (cpu & 0x3));
381 }
382
383 target = (cpu << 14) | 0x70;
384 again:
385 /* Ok, this is the real Spitfire Errata #54.
386 * One must read back from a UDB internal register
387 * after writes to the UDB interrupt dispatch, but
388 * before the membar Sync for that write.
389 * So we use the high UDB control register (ASI 0x7f,
390 * ADDR 0x20) for the dummy read. -DaveM
391 */
392 tmp = 0x40;
393 __asm__ __volatile__(
394 "wrpr %1, %2, %%pstate\n\t"
395 "stxa %4, [%0] %3\n\t"
396 "stxa %5, [%0+%8] %3\n\t"
397 "add %0, %8, %0\n\t"
398 "stxa %6, [%0+%8] %3\n\t"
399 "membar #Sync\n\t"
400 "stxa %%g0, [%7] %3\n\t"
401 "membar #Sync\n\t"
402 "mov 0x20, %%g1\n\t"
403 "ldxa [%%g1] 0x7f, %%g0\n\t"
404 "membar #Sync"
405 : "=r" (tmp)
406 : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
407 "r" (data0), "r" (data1), "r" (data2), "r" (target),
408 "r" (0x10), "0" (tmp)
409 : "g1");
410
411 /* NOTE: PSTATE_IE is still clear. */
412 stuck = 100000;
413 do {
414 __asm__ __volatile__("ldxa [%%g0] %1, %0"
415 : "=r" (result)
416 : "i" (ASI_INTR_DISPATCH_STAT));
417 if (result == 0) {
418 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
419 : : "r" (pstate));
420 return;
421 }
422 stuck -= 1;
423 if (stuck == 0)
424 break;
425 } while (result & 0x1);
426 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
427 : : "r" (pstate));
428 if (stuck == 0) {
429 printk("CPU[%d]: mondo stuckage result[%016lx]\n",
430 smp_processor_id(), result);
431 } else {
432 udelay(2);
433 goto again;
434 }
435 }
436
437 static __inline__ void spitfire_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
438 {
439 u64 pstate;
440 int i;
441
442 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
443 for_each_cpu_mask(i, mask)
444 spitfire_xcall_helper(data0, data1, data2, pstate, i);
445 }
446
447 /* Cheetah now allows to send the whole 64-bytes of data in the interrupt
448 * packet, but we have no use for that. However we do take advantage of
449 * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
450 */
451 static void cheetah_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
452 {
453 u64 pstate, ver;
454 int nack_busy_id, is_jbus;
455
456 if (cpus_empty(mask))
457 return;
458
459 /* Unfortunately, someone at Sun had the brilliant idea to make the
460 * busy/nack fields hard-coded by ITID number for this Ultra-III
461 * derivative processor.
462 */
463 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
464 is_jbus = ((ver >> 32) == __JALAPENO_ID ||
465 (ver >> 32) == __SERRANO_ID);
466
467 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
468
469 retry:
470 __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
471 : : "r" (pstate), "i" (PSTATE_IE));
472
473 /* Setup the dispatch data registers. */
474 __asm__ __volatile__("stxa %0, [%3] %6\n\t"
475 "stxa %1, [%4] %6\n\t"
476 "stxa %2, [%5] %6\n\t"
477 "membar #Sync\n\t"
478 : /* no outputs */
479 : "r" (data0), "r" (data1), "r" (data2),
480 "r" (0x40), "r" (0x50), "r" (0x60),
481 "i" (ASI_INTR_W));
482
483 nack_busy_id = 0;
484 {
485 int i;
486
487 for_each_cpu_mask(i, mask) {
488 u64 target = (i << 14) | 0x70;
489
490 if (!is_jbus)
491 target |= (nack_busy_id << 24);
492 __asm__ __volatile__(
493 "stxa %%g0, [%0] %1\n\t"
494 "membar #Sync\n\t"
495 : /* no outputs */
496 : "r" (target), "i" (ASI_INTR_W));
497 nack_busy_id++;
498 }
499 }
500
501 /* Now, poll for completion. */
502 {
503 u64 dispatch_stat;
504 long stuck;
505
506 stuck = 100000 * nack_busy_id;
507 do {
508 __asm__ __volatile__("ldxa [%%g0] %1, %0"
509 : "=r" (dispatch_stat)
510 : "i" (ASI_INTR_DISPATCH_STAT));
511 if (dispatch_stat == 0UL) {
512 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
513 : : "r" (pstate));
514 return;
515 }
516 if (!--stuck)
517 break;
518 } while (dispatch_stat & 0x5555555555555555UL);
519
520 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
521 : : "r" (pstate));
522
523 if ((dispatch_stat & ~(0x5555555555555555UL)) == 0) {
524 /* Busy bits will not clear, continue instead
525 * of freezing up on this cpu.
526 */
527 printk("CPU[%d]: mondo stuckage result[%016lx]\n",
528 smp_processor_id(), dispatch_stat);
529 } else {
530 int i, this_busy_nack = 0;
531
532 /* Delay some random time with interrupts enabled
533 * to prevent deadlock.
534 */
535 udelay(2 * nack_busy_id);
536
537 /* Clear out the mask bits for cpus which did not
538 * NACK us.
539 */
540 for_each_cpu_mask(i, mask) {
541 u64 check_mask;
542
543 if (is_jbus)
544 check_mask = (0x2UL << (2*i));
545 else
546 check_mask = (0x2UL <<
547 this_busy_nack);
548 if ((dispatch_stat & check_mask) == 0)
549 cpu_clear(i, mask);
550 this_busy_nack += 2;
551 }
552
553 goto retry;
554 }
555 }
556 }
557
558 /* Multi-cpu list version. */
559 static int init_cpu_list(u16 *list, cpumask_t mask)
560 {
561 int i, cnt;
562
563 cnt = 0;
564 for_each_cpu_mask(i, mask)
565 list[cnt++] = i;
566
567 return cnt;
568 }
569
570 static int update_cpu_list(u16 *list, int orig_cnt, cpumask_t mask)
571 {
572 int i;
573
574 for (i = 0; i < orig_cnt; i++) {
575 if (list[i] == 0xffff)
576 cpu_clear(i, mask);
577 }
578
579 return init_cpu_list(list, mask);
580 }
581
582 static void hypervisor_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
583 {
584 int this_cpu = get_cpu();
585 struct trap_per_cpu *tb = &trap_block[this_cpu];
586 u64 *mondo = __va(tb->cpu_mondo_block_pa);
587 u16 *cpu_list = __va(tb->cpu_list_pa);
588 int cnt, retries;
589
590 mondo[0] = data0;
591 mondo[1] = data1;
592 mondo[2] = data2;
593 wmb();
594
595 retries = 0;
596 cnt = init_cpu_list(cpu_list, mask);
597 do {
598 register unsigned long func __asm__("%o5");
599 register unsigned long arg0 __asm__("%o0");
600 register unsigned long arg1 __asm__("%o1");
601 register unsigned long arg2 __asm__("%o2");
602
603 func = HV_FAST_CPU_MONDO_SEND;
604 arg0 = cnt;
605 arg1 = tb->cpu_list_pa;
606 arg2 = tb->cpu_mondo_block_pa;
607
608 __asm__ __volatile__("ta %8"
609 : "=&r" (func), "=&r" (arg0),
610 "=&r" (arg1), "=&r" (arg2)
611 : "0" (func), "1" (arg0),
612 "2" (arg1), "3" (arg2),
613 "i" (HV_FAST_TRAP)
614 : "memory");
615 if (likely(arg0 == HV_EOK))
616 break;
617
618 if (unlikely(++retries > 100)) {
619 printk("CPU[%d]: sun4v mondo error %lu\n",
620 this_cpu, func);
621 break;
622 }
623
624 cnt = update_cpu_list(cpu_list, cnt, mask);
625
626 udelay(2 * cnt);
627 } while (1);
628
629 put_cpu();
630 }
631
632 /* Send cross call to all processors mentioned in MASK
633 * except self.
634 */
635 static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, cpumask_t mask)
636 {
637 u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
638 int this_cpu = get_cpu();
639
640 cpus_and(mask, mask, cpu_online_map);
641 cpu_clear(this_cpu, mask);
642
643 if (tlb_type == spitfire)
644 spitfire_xcall_deliver(data0, data1, data2, mask);
645 else if (tlb_type == cheetah || tlb_type == cheetah_plus)
646 cheetah_xcall_deliver(data0, data1, data2, mask);
647 else
648 hypervisor_xcall_deliver(data0, data1, data2, mask);
649 /* NOTE: Caller runs local copy on master. */
650
651 put_cpu();
652 }
653
654 extern unsigned long xcall_sync_tick;
655
656 static void smp_start_sync_tick_client(int cpu)
657 {
658 cpumask_t mask = cpumask_of_cpu(cpu);
659
660 smp_cross_call_masked(&xcall_sync_tick,
661 0, 0, 0, mask);
662 }
663
664 /* Send cross call to all processors except self. */
665 #define smp_cross_call(func, ctx, data1, data2) \
666 smp_cross_call_masked(func, ctx, data1, data2, cpu_online_map)
667
668 struct call_data_struct {
669 void (*func) (void *info);
670 void *info;
671 atomic_t finished;
672 int wait;
673 };
674
675 static DEFINE_SPINLOCK(call_lock);
676 static struct call_data_struct *call_data;
677
678 extern unsigned long xcall_call_function;
679
680 /*
681 * You must not call this function with disabled interrupts or from a
682 * hardware interrupt handler or from a bottom half handler.
683 */
684 static int smp_call_function_mask(void (*func)(void *info), void *info,
685 int nonatomic, int wait, cpumask_t mask)
686 {
687 struct call_data_struct data;
688 int cpus = cpus_weight(mask) - 1;
689 long timeout;
690
691 if (!cpus)
692 return 0;
693
694 /* Can deadlock when called with interrupts disabled */
695 WARN_ON(irqs_disabled());
696
697 data.func = func;
698 data.info = info;
699 atomic_set(&data.finished, 0);
700 data.wait = wait;
701
702 spin_lock(&call_lock);
703
704 call_data = &data;
705
706 smp_cross_call_masked(&xcall_call_function, 0, 0, 0, mask);
707
708 /*
709 * Wait for other cpus to complete function or at
710 * least snap the call data.
711 */
712 timeout = 1000000;
713 while (atomic_read(&data.finished) != cpus) {
714 if (--timeout <= 0)
715 goto out_timeout;
716 barrier();
717 udelay(1);
718 }
719
720 spin_unlock(&call_lock);
721
722 return 0;
723
724 out_timeout:
725 spin_unlock(&call_lock);
726 printk("XCALL: Remote cpus not responding, ncpus=%ld finished=%ld\n",
727 (long) num_online_cpus() - 1L,
728 (long) atomic_read(&data.finished));
729 return 0;
730 }
731
732 int smp_call_function(void (*func)(void *info), void *info,
733 int nonatomic, int wait)
734 {
735 return smp_call_function_mask(func, info, nonatomic, wait,
736 cpu_online_map);
737 }
738
739 void smp_call_function_client(int irq, struct pt_regs *regs)
740 {
741 void (*func) (void *info) = call_data->func;
742 void *info = call_data->info;
743
744 clear_softint(1 << irq);
745 if (call_data->wait) {
746 /* let initiator proceed only after completion */
747 func(info);
748 atomic_inc(&call_data->finished);
749 } else {
750 /* let initiator proceed after getting data */
751 atomic_inc(&call_data->finished);
752 func(info);
753 }
754 }
755
756 static void tsb_sync(void *info)
757 {
758 struct mm_struct *mm = info;
759
760 if (current->active_mm == mm)
761 tsb_context_switch(mm);
762 }
763
764 void smp_tsb_sync(struct mm_struct *mm)
765 {
766 smp_call_function_mask(tsb_sync, mm, 0, 1, mm->cpu_vm_mask);
767 }
768
769 extern unsigned long xcall_flush_tlb_mm;
770 extern unsigned long xcall_flush_tlb_pending;
771 extern unsigned long xcall_flush_tlb_kernel_range;
772 extern unsigned long xcall_report_regs;
773 extern unsigned long xcall_receive_signal;
774
775 #ifdef DCACHE_ALIASING_POSSIBLE
776 extern unsigned long xcall_flush_dcache_page_cheetah;
777 #endif
778 extern unsigned long xcall_flush_dcache_page_spitfire;
779
780 #ifdef CONFIG_DEBUG_DCFLUSH
781 extern atomic_t dcpage_flushes;
782 extern atomic_t dcpage_flushes_xcall;
783 #endif
784
785 static __inline__ void __local_flush_dcache_page(struct page *page)
786 {
787 #ifdef DCACHE_ALIASING_POSSIBLE
788 __flush_dcache_page(page_address(page),
789 ((tlb_type == spitfire) &&
790 page_mapping(page) != NULL));
791 #else
792 if (page_mapping(page) != NULL &&
793 tlb_type == spitfire)
794 __flush_icache_page(__pa(page_address(page)));
795 #endif
796 }
797
798 void smp_flush_dcache_page_impl(struct page *page, int cpu)
799 {
800 cpumask_t mask = cpumask_of_cpu(cpu);
801 int this_cpu;
802
803 if (tlb_type == hypervisor)
804 return;
805
806 #ifdef CONFIG_DEBUG_DCFLUSH
807 atomic_inc(&dcpage_flushes);
808 #endif
809
810 this_cpu = get_cpu();
811
812 if (cpu == this_cpu) {
813 __local_flush_dcache_page(page);
814 } else if (cpu_online(cpu)) {
815 void *pg_addr = page_address(page);
816 u64 data0;
817
818 if (tlb_type == spitfire) {
819 data0 =
820 ((u64)&xcall_flush_dcache_page_spitfire);
821 if (page_mapping(page) != NULL)
822 data0 |= ((u64)1 << 32);
823 spitfire_xcall_deliver(data0,
824 __pa(pg_addr),
825 (u64) pg_addr,
826 mask);
827 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
828 #ifdef DCACHE_ALIASING_POSSIBLE
829 data0 =
830 ((u64)&xcall_flush_dcache_page_cheetah);
831 cheetah_xcall_deliver(data0,
832 __pa(pg_addr),
833 0, mask);
834 #endif
835 }
836 #ifdef CONFIG_DEBUG_DCFLUSH
837 atomic_inc(&dcpage_flushes_xcall);
838 #endif
839 }
840
841 put_cpu();
842 }
843
844 void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
845 {
846 void *pg_addr = page_address(page);
847 cpumask_t mask = cpu_online_map;
848 u64 data0;
849 int this_cpu;
850
851 if (tlb_type == hypervisor)
852 return;
853
854 this_cpu = get_cpu();
855
856 cpu_clear(this_cpu, mask);
857
858 #ifdef CONFIG_DEBUG_DCFLUSH
859 atomic_inc(&dcpage_flushes);
860 #endif
861 if (cpus_empty(mask))
862 goto flush_self;
863 if (tlb_type == spitfire) {
864 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
865 if (page_mapping(page) != NULL)
866 data0 |= ((u64)1 << 32);
867 spitfire_xcall_deliver(data0,
868 __pa(pg_addr),
869 (u64) pg_addr,
870 mask);
871 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
872 #ifdef DCACHE_ALIASING_POSSIBLE
873 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
874 cheetah_xcall_deliver(data0,
875 __pa(pg_addr),
876 0, mask);
877 #endif
878 }
879 #ifdef CONFIG_DEBUG_DCFLUSH
880 atomic_inc(&dcpage_flushes_xcall);
881 #endif
882 flush_self:
883 __local_flush_dcache_page(page);
884
885 put_cpu();
886 }
887
888 void smp_receive_signal(int cpu)
889 {
890 cpumask_t mask = cpumask_of_cpu(cpu);
891
892 if (cpu_online(cpu)) {
893 u64 data0 = (((u64)&xcall_receive_signal) & 0xffffffff);
894
895 if (tlb_type == spitfire)
896 spitfire_xcall_deliver(data0, 0, 0, mask);
897 else if (tlb_type == cheetah || tlb_type == cheetah_plus)
898 cheetah_xcall_deliver(data0, 0, 0, mask);
899 else if (tlb_type == hypervisor)
900 hypervisor_xcall_deliver(data0, 0, 0, mask);
901 }
902 }
903
904 void smp_receive_signal_client(int irq, struct pt_regs *regs)
905 {
906 /* Just return, rtrap takes care of the rest. */
907 clear_softint(1 << irq);
908 }
909
910 void smp_report_regs(void)
911 {
912 smp_cross_call(&xcall_report_regs, 0, 0, 0);
913 }
914
915 /* We know that the window frames of the user have been flushed
916 * to the stack before we get here because all callers of us
917 * are flush_tlb_*() routines, and these run after flush_cache_*()
918 * which performs the flushw.
919 *
920 * The SMP TLB coherency scheme we use works as follows:
921 *
922 * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
923 * space has (potentially) executed on, this is the heuristic
924 * we use to avoid doing cross calls.
925 *
926 * Also, for flushing from kswapd and also for clones, we
927 * use cpu_vm_mask as the list of cpus to make run the TLB.
928 *
929 * 2) TLB context numbers are shared globally across all processors
930 * in the system, this allows us to play several games to avoid
931 * cross calls.
932 *
933 * One invariant is that when a cpu switches to a process, and
934 * that processes tsk->active_mm->cpu_vm_mask does not have the
935 * current cpu's bit set, that tlb context is flushed locally.
936 *
937 * If the address space is non-shared (ie. mm->count == 1) we avoid
938 * cross calls when we want to flush the currently running process's
939 * tlb state. This is done by clearing all cpu bits except the current
940 * processor's in current->active_mm->cpu_vm_mask and performing the
941 * flush locally only. This will force any subsequent cpus which run
942 * this task to flush the context from the local tlb if the process
943 * migrates to another cpu (again).
944 *
945 * 3) For shared address spaces (threads) and swapping we bite the
946 * bullet for most cases and perform the cross call (but only to
947 * the cpus listed in cpu_vm_mask).
948 *
949 * The performance gain from "optimizing" away the cross call for threads is
950 * questionable (in theory the big win for threads is the massive sharing of
951 * address space state across processors).
952 */
953
954 /* This currently is only used by the hugetlb arch pre-fault
955 * hook on UltraSPARC-III+ and later when changing the pagesize
956 * bits of the context register for an address space.
957 */
958 void smp_flush_tlb_mm(struct mm_struct *mm)
959 {
960 u32 ctx = CTX_HWBITS(mm->context);
961 int cpu = get_cpu();
962
963 if (atomic_read(&mm->mm_users) == 1) {
964 mm->cpu_vm_mask = cpumask_of_cpu(cpu);
965 goto local_flush_and_out;
966 }
967
968 smp_cross_call_masked(&xcall_flush_tlb_mm,
969 ctx, 0, 0,
970 mm->cpu_vm_mask);
971
972 local_flush_and_out:
973 __flush_tlb_mm(ctx, SECONDARY_CONTEXT);
974
975 put_cpu();
976 }
977
978 void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
979 {
980 u32 ctx = CTX_HWBITS(mm->context);
981 int cpu = get_cpu();
982
983 if (mm == current->active_mm && atomic_read(&mm->mm_users) == 1)
984 mm->cpu_vm_mask = cpumask_of_cpu(cpu);
985 else
986 smp_cross_call_masked(&xcall_flush_tlb_pending,
987 ctx, nr, (unsigned long) vaddrs,
988 mm->cpu_vm_mask);
989
990 __flush_tlb_pending(ctx, nr, vaddrs);
991
992 put_cpu();
993 }
994
995 void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
996 {
997 start &= PAGE_MASK;
998 end = PAGE_ALIGN(end);
999 if (start != end) {
1000 smp_cross_call(&xcall_flush_tlb_kernel_range,
1001 0, start, end);
1002
1003 __flush_tlb_kernel_range(start, end);
1004 }
1005 }
1006
1007 /* CPU capture. */
1008 /* #define CAPTURE_DEBUG */
1009 extern unsigned long xcall_capture;
1010
1011 static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1012 static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1013 static unsigned long penguins_are_doing_time;
1014
1015 void smp_capture(void)
1016 {
1017 int result = atomic_add_ret(1, &smp_capture_depth);
1018
1019 if (result == 1) {
1020 int ncpus = num_online_cpus();
1021
1022 #ifdef CAPTURE_DEBUG
1023 printk("CPU[%d]: Sending penguins to jail...",
1024 smp_processor_id());
1025 #endif
1026 penguins_are_doing_time = 1;
1027 membar_storestore_loadstore();
1028 atomic_inc(&smp_capture_registry);
1029 smp_cross_call(&xcall_capture, 0, 0, 0);
1030 while (atomic_read(&smp_capture_registry) != ncpus)
1031 rmb();
1032 #ifdef CAPTURE_DEBUG
1033 printk("done\n");
1034 #endif
1035 }
1036 }
1037
1038 void smp_release(void)
1039 {
1040 if (atomic_dec_and_test(&smp_capture_depth)) {
1041 #ifdef CAPTURE_DEBUG
1042 printk("CPU[%d]: Giving pardon to "
1043 "imprisoned penguins\n",
1044 smp_processor_id());
1045 #endif
1046 penguins_are_doing_time = 0;
1047 membar_storeload_storestore();
1048 atomic_dec(&smp_capture_registry);
1049 }
1050 }
1051
1052 /* Imprisoned penguins run with %pil == 15, but PSTATE_IE set, so they
1053 * can service tlb flush xcalls...
1054 */
1055 extern void prom_world(int);
1056
1057 void smp_penguin_jailcell(int irq, struct pt_regs *regs)
1058 {
1059 clear_softint(1 << irq);
1060
1061 preempt_disable();
1062
1063 __asm__ __volatile__("flushw");
1064 prom_world(1);
1065 atomic_inc(&smp_capture_registry);
1066 membar_storeload_storestore();
1067 while (penguins_are_doing_time)
1068 rmb();
1069 atomic_dec(&smp_capture_registry);
1070 prom_world(0);
1071
1072 preempt_enable();
1073 }
1074
1075 #define prof_multiplier(__cpu) cpu_data(__cpu).multiplier
1076 #define prof_counter(__cpu) cpu_data(__cpu).counter
1077
1078 void smp_percpu_timer_interrupt(struct pt_regs *regs)
1079 {
1080 unsigned long compare, tick, pstate;
1081 int cpu = smp_processor_id();
1082 int user = user_mode(regs);
1083
1084 /*
1085 * Check for level 14 softint.
1086 */
1087 {
1088 unsigned long tick_mask = tick_ops->softint_mask;
1089
1090 if (!(get_softint() & tick_mask)) {
1091 extern void handler_irq(int, struct pt_regs *);
1092
1093 handler_irq(14, regs);
1094 return;
1095 }
1096 clear_softint(tick_mask);
1097 }
1098
1099 do {
1100 profile_tick(CPU_PROFILING, regs);
1101 if (!--prof_counter(cpu)) {
1102 irq_enter();
1103
1104 if (cpu == boot_cpu_id) {
1105 kstat_this_cpu.irqs[0]++;
1106 timer_tick_interrupt(regs);
1107 }
1108
1109 update_process_times(user);
1110
1111 irq_exit();
1112
1113 prof_counter(cpu) = prof_multiplier(cpu);
1114 }
1115
1116 /* Guarantee that the following sequences execute
1117 * uninterrupted.
1118 */
1119 __asm__ __volatile__("rdpr %%pstate, %0\n\t"
1120 "wrpr %0, %1, %%pstate"
1121 : "=r" (pstate)
1122 : "i" (PSTATE_IE));
1123
1124 compare = tick_ops->add_compare(current_tick_offset);
1125 tick = tick_ops->get_tick();
1126
1127 /* Restore PSTATE_IE. */
1128 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
1129 : /* no outputs */
1130 : "r" (pstate));
1131 } while (time_after_eq(tick, compare));
1132 }
1133
1134 static void __init smp_setup_percpu_timer(void)
1135 {
1136 int cpu = smp_processor_id();
1137 unsigned long pstate;
1138
1139 prof_counter(cpu) = prof_multiplier(cpu) = 1;
1140
1141 /* Guarantee that the following sequences execute
1142 * uninterrupted.
1143 */
1144 __asm__ __volatile__("rdpr %%pstate, %0\n\t"
1145 "wrpr %0, %1, %%pstate"
1146 : "=r" (pstate)
1147 : "i" (PSTATE_IE));
1148
1149 tick_ops->init_tick(current_tick_offset);
1150
1151 /* Restore PSTATE_IE. */
1152 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
1153 : /* no outputs */
1154 : "r" (pstate));
1155 }
1156
1157 void __init smp_tick_init(void)
1158 {
1159 boot_cpu_id = hard_smp_processor_id();
1160 current_tick_offset = timer_tick_offset;
1161
1162 cpu_set(boot_cpu_id, cpu_online_map);
1163 prof_counter(boot_cpu_id) = prof_multiplier(boot_cpu_id) = 1;
1164 }
1165
1166 /* /proc/profile writes can call this, don't __init it please. */
1167 static DEFINE_SPINLOCK(prof_setup_lock);
1168
1169 int setup_profiling_timer(unsigned int multiplier)
1170 {
1171 unsigned long flags;
1172 int i;
1173
1174 if ((!multiplier) || (timer_tick_offset / multiplier) < 1000)
1175 return -EINVAL;
1176
1177 spin_lock_irqsave(&prof_setup_lock, flags);
1178 for (i = 0; i < NR_CPUS; i++)
1179 prof_multiplier(i) = multiplier;
1180 current_tick_offset = (timer_tick_offset / multiplier);
1181 spin_unlock_irqrestore(&prof_setup_lock, flags);
1182
1183 return 0;
1184 }
1185
1186 /* Constrain the number of cpus to max_cpus. */
1187 void __init smp_prepare_cpus(unsigned int max_cpus)
1188 {
1189 if (num_possible_cpus() > max_cpus) {
1190 int instance, mid;
1191
1192 instance = 0;
1193 while (!cpu_find_by_instance(instance, NULL, &mid)) {
1194 if (mid != boot_cpu_id) {
1195 cpu_clear(mid, phys_cpu_present_map);
1196 if (num_possible_cpus() <= max_cpus)
1197 break;
1198 }
1199 instance++;
1200 }
1201 }
1202
1203 smp_store_cpu_info(boot_cpu_id);
1204 }
1205
1206 /* Set this up early so that things like the scheduler can init
1207 * properly. We use the same cpu mask for both the present and
1208 * possible cpu map.
1209 */
1210 void __init smp_setup_cpu_possible_map(void)
1211 {
1212 int instance, mid;
1213
1214 instance = 0;
1215 while (!cpu_find_by_instance(instance, NULL, &mid)) {
1216 if (mid < NR_CPUS)
1217 cpu_set(mid, phys_cpu_present_map);
1218 instance++;
1219 }
1220 }
1221
1222 void __devinit smp_prepare_boot_cpu(void)
1223 {
1224 int cpu = hard_smp_processor_id();
1225
1226 if (cpu >= NR_CPUS) {
1227 prom_printf("Serious problem, boot cpu id >= NR_CPUS\n");
1228 prom_halt();
1229 }
1230
1231 current_thread_info()->cpu = cpu;
1232 __local_per_cpu_offset = __per_cpu_offset(cpu);
1233
1234 cpu_set(smp_processor_id(), cpu_online_map);
1235 cpu_set(smp_processor_id(), phys_cpu_present_map);
1236 }
1237
1238 int __devinit __cpu_up(unsigned int cpu)
1239 {
1240 int ret = smp_boot_one_cpu(cpu);
1241
1242 if (!ret) {
1243 cpu_set(cpu, smp_commenced_mask);
1244 while (!cpu_isset(cpu, cpu_online_map))
1245 mb();
1246 if (!cpu_isset(cpu, cpu_online_map)) {
1247 ret = -ENODEV;
1248 } else {
1249 /* On SUN4V, writes to %tick and %stick are
1250 * not allowed.
1251 */
1252 if (tlb_type != hypervisor)
1253 smp_synchronize_one_tick(cpu);
1254 }
1255 }
1256 return ret;
1257 }
1258
1259 void __init smp_cpus_done(unsigned int max_cpus)
1260 {
1261 unsigned long bogosum = 0;
1262 int i;
1263
1264 for (i = 0; i < NR_CPUS; i++) {
1265 if (cpu_online(i))
1266 bogosum += cpu_data(i).udelay_val;
1267 }
1268 printk("Total of %ld processors activated "
1269 "(%lu.%02lu BogoMIPS).\n",
1270 (long) num_online_cpus(),
1271 bogosum/(500000/HZ),
1272 (bogosum/(5000/HZ))%100);
1273 }
1274
1275 void smp_send_reschedule(int cpu)
1276 {
1277 smp_receive_signal(cpu);
1278 }
1279
1280 /* This is a nop because we capture all other cpus
1281 * anyways when making the PROM active.
1282 */
1283 void smp_send_stop(void)
1284 {
1285 }
1286
1287 unsigned long __per_cpu_base __read_mostly;
1288 unsigned long __per_cpu_shift __read_mostly;
1289
1290 EXPORT_SYMBOL(__per_cpu_base);
1291 EXPORT_SYMBOL(__per_cpu_shift);
1292
1293 void __init setup_per_cpu_areas(void)
1294 {
1295 unsigned long goal, size, i;
1296 char *ptr;
1297
1298 /* Copy section for each CPU (we discard the original) */
1299 goal = ALIGN(__per_cpu_end - __per_cpu_start, SMP_CACHE_BYTES);
1300 #ifdef CONFIG_MODULES
1301 if (goal < PERCPU_ENOUGH_ROOM)
1302 goal = PERCPU_ENOUGH_ROOM;
1303 #endif
1304 __per_cpu_shift = 0;
1305 for (size = 1UL; size < goal; size <<= 1UL)
1306 __per_cpu_shift++;
1307
1308 ptr = alloc_bootmem(size * NR_CPUS);
1309
1310 __per_cpu_base = ptr - __per_cpu_start;
1311
1312 for (i = 0; i < NR_CPUS; i++, ptr += size)
1313 memcpy(ptr, __per_cpu_start, __per_cpu_end - __per_cpu_start);
1314 }
This page took 0.059833 seconds and 5 git commands to generate.