2d63d7689962edba455edfe4c44e45eb72ef708c
[deliverable/linux.git] / arch / sparc64 / kernel / time.c
1 /* $Id: time.c,v 1.42 2002/01/23 14:33:55 davem Exp $
2 * time.c: UltraSparc timer and TOD clock support.
3 *
4 * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1998 Eddie C. Dost (ecd@skynet.be)
6 *
7 * Based largely on code which is:
8 *
9 * Copyright (C) 1996 Thomas K. Dyas (tdyas@eden.rutgers.edu)
10 */
11
12 #include <linux/errno.h>
13 #include <linux/module.h>
14 #include <linux/sched.h>
15 #include <linux/kernel.h>
16 #include <linux/param.h>
17 #include <linux/string.h>
18 #include <linux/mm.h>
19 #include <linux/interrupt.h>
20 #include <linux/time.h>
21 #include <linux/timex.h>
22 #include <linux/init.h>
23 #include <linux/ioport.h>
24 #include <linux/mc146818rtc.h>
25 #include <linux/delay.h>
26 #include <linux/profile.h>
27 #include <linux/bcd.h>
28 #include <linux/jiffies.h>
29 #include <linux/cpufreq.h>
30 #include <linux/percpu.h>
31 #include <linux/profile.h>
32 #include <linux/miscdevice.h>
33 #include <linux/rtc.h>
34 #include <linux/kernel_stat.h>
35 #include <linux/clockchips.h>
36 #include <linux/clocksource.h>
37
38 #include <asm/oplib.h>
39 #include <asm/mostek.h>
40 #include <asm/timer.h>
41 #include <asm/irq.h>
42 #include <asm/io.h>
43 #include <asm/prom.h>
44 #include <asm/of_device.h>
45 #include <asm/starfire.h>
46 #include <asm/smp.h>
47 #include <asm/sections.h>
48 #include <asm/cpudata.h>
49 #include <asm/uaccess.h>
50 #include <asm/prom.h>
51 #include <asm/irq_regs.h>
52
53 DEFINE_SPINLOCK(mostek_lock);
54 DEFINE_SPINLOCK(rtc_lock);
55 void __iomem *mstk48t02_regs = NULL;
56 #ifdef CONFIG_PCI
57 unsigned long ds1287_regs = 0UL;
58 static void __iomem *bq4802_regs;
59 #endif
60
61 static void __iomem *mstk48t08_regs;
62 static void __iomem *mstk48t59_regs;
63
64 static int set_rtc_mmss(unsigned long);
65
66 #define TICK_PRIV_BIT (1UL << 63)
67 #define TICKCMP_IRQ_BIT (1UL << 63)
68
69 #ifdef CONFIG_SMP
70 unsigned long profile_pc(struct pt_regs *regs)
71 {
72 unsigned long pc = instruction_pointer(regs);
73
74 if (in_lock_functions(pc))
75 return regs->u_regs[UREG_RETPC];
76 return pc;
77 }
78 EXPORT_SYMBOL(profile_pc);
79 #endif
80
81 static void tick_disable_protection(void)
82 {
83 /* Set things up so user can access tick register for profiling
84 * purposes. Also workaround BB_ERRATA_1 by doing a dummy
85 * read back of %tick after writing it.
86 */
87 __asm__ __volatile__(
88 " ba,pt %%xcc, 1f\n"
89 " nop\n"
90 " .align 64\n"
91 "1: rd %%tick, %%g2\n"
92 " add %%g2, 6, %%g2\n"
93 " andn %%g2, %0, %%g2\n"
94 " wrpr %%g2, 0, %%tick\n"
95 " rdpr %%tick, %%g0"
96 : /* no outputs */
97 : "r" (TICK_PRIV_BIT)
98 : "g2");
99 }
100
101 static void tick_disable_irq(void)
102 {
103 __asm__ __volatile__(
104 " ba,pt %%xcc, 1f\n"
105 " nop\n"
106 " .align 64\n"
107 "1: wr %0, 0x0, %%tick_cmpr\n"
108 " rd %%tick_cmpr, %%g0"
109 : /* no outputs */
110 : "r" (TICKCMP_IRQ_BIT));
111 }
112
113 static void tick_init_tick(void)
114 {
115 tick_disable_protection();
116 tick_disable_irq();
117 }
118
119 static unsigned long tick_get_tick(void)
120 {
121 unsigned long ret;
122
123 __asm__ __volatile__("rd %%tick, %0\n\t"
124 "mov %0, %0"
125 : "=r" (ret));
126
127 return ret & ~TICK_PRIV_BIT;
128 }
129
130 static int tick_add_compare(unsigned long adj)
131 {
132 unsigned long orig_tick, new_tick, new_compare;
133
134 __asm__ __volatile__("rd %%tick, %0"
135 : "=r" (orig_tick));
136
137 orig_tick &= ~TICKCMP_IRQ_BIT;
138
139 /* Workaround for Spitfire Errata (#54 I think??), I discovered
140 * this via Sun BugID 4008234, mentioned in Solaris-2.5.1 patch
141 * number 103640.
142 *
143 * On Blackbird writes to %tick_cmpr can fail, the
144 * workaround seems to be to execute the wr instruction
145 * at the start of an I-cache line, and perform a dummy
146 * read back from %tick_cmpr right after writing to it. -DaveM
147 */
148 __asm__ __volatile__("ba,pt %%xcc, 1f\n\t"
149 " add %1, %2, %0\n\t"
150 ".align 64\n"
151 "1:\n\t"
152 "wr %0, 0, %%tick_cmpr\n\t"
153 "rd %%tick_cmpr, %%g0\n\t"
154 : "=r" (new_compare)
155 : "r" (orig_tick), "r" (adj));
156
157 __asm__ __volatile__("rd %%tick, %0"
158 : "=r" (new_tick));
159 new_tick &= ~TICKCMP_IRQ_BIT;
160
161 return ((long)(new_tick - (orig_tick+adj))) > 0L;
162 }
163
164 static unsigned long tick_add_tick(unsigned long adj)
165 {
166 unsigned long new_tick;
167
168 /* Also need to handle Blackbird bug here too. */
169 __asm__ __volatile__("rd %%tick, %0\n\t"
170 "add %0, %1, %0\n\t"
171 "wrpr %0, 0, %%tick\n\t"
172 : "=&r" (new_tick)
173 : "r" (adj));
174
175 return new_tick;
176 }
177
178 static struct sparc64_tick_ops tick_operations __read_mostly = {
179 .name = "tick",
180 .init_tick = tick_init_tick,
181 .disable_irq = tick_disable_irq,
182 .get_tick = tick_get_tick,
183 .add_tick = tick_add_tick,
184 .add_compare = tick_add_compare,
185 .softint_mask = 1UL << 0,
186 };
187
188 struct sparc64_tick_ops *tick_ops __read_mostly = &tick_operations;
189
190 static void stick_disable_irq(void)
191 {
192 __asm__ __volatile__(
193 "wr %0, 0x0, %%asr25"
194 : /* no outputs */
195 : "r" (TICKCMP_IRQ_BIT));
196 }
197
198 static void stick_init_tick(void)
199 {
200 /* Writes to the %tick and %stick register are not
201 * allowed on sun4v. The Hypervisor controls that
202 * bit, per-strand.
203 */
204 if (tlb_type != hypervisor) {
205 tick_disable_protection();
206 tick_disable_irq();
207
208 /* Let the user get at STICK too. */
209 __asm__ __volatile__(
210 " rd %%asr24, %%g2\n"
211 " andn %%g2, %0, %%g2\n"
212 " wr %%g2, 0, %%asr24"
213 : /* no outputs */
214 : "r" (TICK_PRIV_BIT)
215 : "g1", "g2");
216 }
217
218 stick_disable_irq();
219 }
220
221 static unsigned long stick_get_tick(void)
222 {
223 unsigned long ret;
224
225 __asm__ __volatile__("rd %%asr24, %0"
226 : "=r" (ret));
227
228 return ret & ~TICK_PRIV_BIT;
229 }
230
231 static unsigned long stick_add_tick(unsigned long adj)
232 {
233 unsigned long new_tick;
234
235 __asm__ __volatile__("rd %%asr24, %0\n\t"
236 "add %0, %1, %0\n\t"
237 "wr %0, 0, %%asr24\n\t"
238 : "=&r" (new_tick)
239 : "r" (adj));
240
241 return new_tick;
242 }
243
244 static int stick_add_compare(unsigned long adj)
245 {
246 unsigned long orig_tick, new_tick;
247
248 __asm__ __volatile__("rd %%asr24, %0"
249 : "=r" (orig_tick));
250 orig_tick &= ~TICKCMP_IRQ_BIT;
251
252 __asm__ __volatile__("wr %0, 0, %%asr25"
253 : /* no outputs */
254 : "r" (orig_tick + adj));
255
256 __asm__ __volatile__("rd %%asr24, %0"
257 : "=r" (new_tick));
258 new_tick &= ~TICKCMP_IRQ_BIT;
259
260 return ((long)(new_tick - (orig_tick+adj))) > 0L;
261 }
262
263 static struct sparc64_tick_ops stick_operations __read_mostly = {
264 .name = "stick",
265 .init_tick = stick_init_tick,
266 .disable_irq = stick_disable_irq,
267 .get_tick = stick_get_tick,
268 .add_tick = stick_add_tick,
269 .add_compare = stick_add_compare,
270 .softint_mask = 1UL << 16,
271 };
272
273 /* On Hummingbird the STICK/STICK_CMPR register is implemented
274 * in I/O space. There are two 64-bit registers each, the
275 * first holds the low 32-bits of the value and the second holds
276 * the high 32-bits.
277 *
278 * Since STICK is constantly updating, we have to access it carefully.
279 *
280 * The sequence we use to read is:
281 * 1) read high
282 * 2) read low
283 * 3) read high again, if it rolled re-read both low and high again.
284 *
285 * Writing STICK safely is also tricky:
286 * 1) write low to zero
287 * 2) write high
288 * 3) write low
289 */
290 #define HBIRD_STICKCMP_ADDR 0x1fe0000f060UL
291 #define HBIRD_STICK_ADDR 0x1fe0000f070UL
292
293 static unsigned long __hbird_read_stick(void)
294 {
295 unsigned long ret, tmp1, tmp2, tmp3;
296 unsigned long addr = HBIRD_STICK_ADDR+8;
297
298 __asm__ __volatile__("ldxa [%1] %5, %2\n"
299 "1:\n\t"
300 "sub %1, 0x8, %1\n\t"
301 "ldxa [%1] %5, %3\n\t"
302 "add %1, 0x8, %1\n\t"
303 "ldxa [%1] %5, %4\n\t"
304 "cmp %4, %2\n\t"
305 "bne,a,pn %%xcc, 1b\n\t"
306 " mov %4, %2\n\t"
307 "sllx %4, 32, %4\n\t"
308 "or %3, %4, %0\n\t"
309 : "=&r" (ret), "=&r" (addr),
310 "=&r" (tmp1), "=&r" (tmp2), "=&r" (tmp3)
311 : "i" (ASI_PHYS_BYPASS_EC_E), "1" (addr));
312
313 return ret;
314 }
315
316 static void __hbird_write_stick(unsigned long val)
317 {
318 unsigned long low = (val & 0xffffffffUL);
319 unsigned long high = (val >> 32UL);
320 unsigned long addr = HBIRD_STICK_ADDR;
321
322 __asm__ __volatile__("stxa %%g0, [%0] %4\n\t"
323 "add %0, 0x8, %0\n\t"
324 "stxa %3, [%0] %4\n\t"
325 "sub %0, 0x8, %0\n\t"
326 "stxa %2, [%0] %4"
327 : "=&r" (addr)
328 : "0" (addr), "r" (low), "r" (high),
329 "i" (ASI_PHYS_BYPASS_EC_E));
330 }
331
332 static void __hbird_write_compare(unsigned long val)
333 {
334 unsigned long low = (val & 0xffffffffUL);
335 unsigned long high = (val >> 32UL);
336 unsigned long addr = HBIRD_STICKCMP_ADDR + 0x8UL;
337
338 __asm__ __volatile__("stxa %3, [%0] %4\n\t"
339 "sub %0, 0x8, %0\n\t"
340 "stxa %2, [%0] %4"
341 : "=&r" (addr)
342 : "0" (addr), "r" (low), "r" (high),
343 "i" (ASI_PHYS_BYPASS_EC_E));
344 }
345
346 static void hbtick_disable_irq(void)
347 {
348 __hbird_write_compare(TICKCMP_IRQ_BIT);
349 }
350
351 static void hbtick_init_tick(void)
352 {
353 tick_disable_protection();
354
355 /* XXX This seems to be necessary to 'jumpstart' Hummingbird
356 * XXX into actually sending STICK interrupts. I think because
357 * XXX of how we store %tick_cmpr in head.S this somehow resets the
358 * XXX {TICK + STICK} interrupt mux. -DaveM
359 */
360 __hbird_write_stick(__hbird_read_stick());
361
362 hbtick_disable_irq();
363 }
364
365 static unsigned long hbtick_get_tick(void)
366 {
367 return __hbird_read_stick() & ~TICK_PRIV_BIT;
368 }
369
370 static unsigned long hbtick_add_tick(unsigned long adj)
371 {
372 unsigned long val;
373
374 val = __hbird_read_stick() + adj;
375 __hbird_write_stick(val);
376
377 return val;
378 }
379
380 static int hbtick_add_compare(unsigned long adj)
381 {
382 unsigned long val = __hbird_read_stick();
383 unsigned long val2;
384
385 val &= ~TICKCMP_IRQ_BIT;
386 val += adj;
387 __hbird_write_compare(val);
388
389 val2 = __hbird_read_stick() & ~TICKCMP_IRQ_BIT;
390
391 return ((long)(val2 - val)) > 0L;
392 }
393
394 static struct sparc64_tick_ops hbtick_operations __read_mostly = {
395 .name = "hbtick",
396 .init_tick = hbtick_init_tick,
397 .disable_irq = hbtick_disable_irq,
398 .get_tick = hbtick_get_tick,
399 .add_tick = hbtick_add_tick,
400 .add_compare = hbtick_add_compare,
401 .softint_mask = 1UL << 0,
402 };
403
404 static unsigned long timer_ticks_per_nsec_quotient __read_mostly;
405
406 #define TICK_SIZE (tick_nsec / 1000)
407
408 #define USEC_AFTER 500000
409 #define USEC_BEFORE 500000
410
411 static void sync_cmos_clock(unsigned long dummy);
412
413 static DEFINE_TIMER(sync_cmos_timer, sync_cmos_clock, 0, 0);
414
415 static void sync_cmos_clock(unsigned long dummy)
416 {
417 struct timeval now, next;
418 int fail = 1;
419
420 /*
421 * If we have an externally synchronized Linux clock, then update
422 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
423 * called as close as possible to 500 ms before the new second starts.
424 * This code is run on a timer. If the clock is set, that timer
425 * may not expire at the correct time. Thus, we adjust...
426 */
427 if (!ntp_synced())
428 /*
429 * Not synced, exit, do not restart a timer (if one is
430 * running, let it run out).
431 */
432 return;
433
434 do_gettimeofday(&now);
435 if (now.tv_usec >= USEC_AFTER - ((unsigned) TICK_SIZE) / 2 &&
436 now.tv_usec <= USEC_BEFORE + ((unsigned) TICK_SIZE) / 2)
437 fail = set_rtc_mmss(now.tv_sec);
438
439 next.tv_usec = USEC_AFTER - now.tv_usec;
440 if (next.tv_usec <= 0)
441 next.tv_usec += USEC_PER_SEC;
442
443 if (!fail)
444 next.tv_sec = 659;
445 else
446 next.tv_sec = 0;
447
448 if (next.tv_usec >= USEC_PER_SEC) {
449 next.tv_sec++;
450 next.tv_usec -= USEC_PER_SEC;
451 }
452 mod_timer(&sync_cmos_timer, jiffies + timeval_to_jiffies(&next));
453 }
454
455 void notify_arch_cmos_timer(void)
456 {
457 mod_timer(&sync_cmos_timer, jiffies + 1);
458 }
459
460 /* Kick start a stopped clock (procedure from the Sun NVRAM/hostid FAQ). */
461 static void __init kick_start_clock(void)
462 {
463 void __iomem *regs = mstk48t02_regs;
464 u8 sec, tmp;
465 int i, count;
466
467 prom_printf("CLOCK: Clock was stopped. Kick start ");
468
469 spin_lock_irq(&mostek_lock);
470
471 /* Turn on the kick start bit to start the oscillator. */
472 tmp = mostek_read(regs + MOSTEK_CREG);
473 tmp |= MSTK_CREG_WRITE;
474 mostek_write(regs + MOSTEK_CREG, tmp);
475 tmp = mostek_read(regs + MOSTEK_SEC);
476 tmp &= ~MSTK_STOP;
477 mostek_write(regs + MOSTEK_SEC, tmp);
478 tmp = mostek_read(regs + MOSTEK_HOUR);
479 tmp |= MSTK_KICK_START;
480 mostek_write(regs + MOSTEK_HOUR, tmp);
481 tmp = mostek_read(regs + MOSTEK_CREG);
482 tmp &= ~MSTK_CREG_WRITE;
483 mostek_write(regs + MOSTEK_CREG, tmp);
484
485 spin_unlock_irq(&mostek_lock);
486
487 /* Delay to allow the clock oscillator to start. */
488 sec = MSTK_REG_SEC(regs);
489 for (i = 0; i < 3; i++) {
490 while (sec == MSTK_REG_SEC(regs))
491 for (count = 0; count < 100000; count++)
492 /* nothing */ ;
493 prom_printf(".");
494 sec = MSTK_REG_SEC(regs);
495 }
496 prom_printf("\n");
497
498 spin_lock_irq(&mostek_lock);
499
500 /* Turn off kick start and set a "valid" time and date. */
501 tmp = mostek_read(regs + MOSTEK_CREG);
502 tmp |= MSTK_CREG_WRITE;
503 mostek_write(regs + MOSTEK_CREG, tmp);
504 tmp = mostek_read(regs + MOSTEK_HOUR);
505 tmp &= ~MSTK_KICK_START;
506 mostek_write(regs + MOSTEK_HOUR, tmp);
507 MSTK_SET_REG_SEC(regs,0);
508 MSTK_SET_REG_MIN(regs,0);
509 MSTK_SET_REG_HOUR(regs,0);
510 MSTK_SET_REG_DOW(regs,5);
511 MSTK_SET_REG_DOM(regs,1);
512 MSTK_SET_REG_MONTH(regs,8);
513 MSTK_SET_REG_YEAR(regs,1996 - MSTK_YEAR_ZERO);
514 tmp = mostek_read(regs + MOSTEK_CREG);
515 tmp &= ~MSTK_CREG_WRITE;
516 mostek_write(regs + MOSTEK_CREG, tmp);
517
518 spin_unlock_irq(&mostek_lock);
519
520 /* Ensure the kick start bit is off. If it isn't, turn it off. */
521 while (mostek_read(regs + MOSTEK_HOUR) & MSTK_KICK_START) {
522 prom_printf("CLOCK: Kick start still on!\n");
523
524 spin_lock_irq(&mostek_lock);
525
526 tmp = mostek_read(regs + MOSTEK_CREG);
527 tmp |= MSTK_CREG_WRITE;
528 mostek_write(regs + MOSTEK_CREG, tmp);
529
530 tmp = mostek_read(regs + MOSTEK_HOUR);
531 tmp &= ~MSTK_KICK_START;
532 mostek_write(regs + MOSTEK_HOUR, tmp);
533
534 tmp = mostek_read(regs + MOSTEK_CREG);
535 tmp &= ~MSTK_CREG_WRITE;
536 mostek_write(regs + MOSTEK_CREG, tmp);
537
538 spin_unlock_irq(&mostek_lock);
539 }
540
541 prom_printf("CLOCK: Kick start procedure successful.\n");
542 }
543
544 /* Return nonzero if the clock chip battery is low. */
545 static int __init has_low_battery(void)
546 {
547 void __iomem *regs = mstk48t02_regs;
548 u8 data1, data2;
549
550 spin_lock_irq(&mostek_lock);
551
552 data1 = mostek_read(regs + MOSTEK_EEPROM); /* Read some data. */
553 mostek_write(regs + MOSTEK_EEPROM, ~data1); /* Write back the complement. */
554 data2 = mostek_read(regs + MOSTEK_EEPROM); /* Read back the complement. */
555 mostek_write(regs + MOSTEK_EEPROM, data1); /* Restore original value. */
556
557 spin_unlock_irq(&mostek_lock);
558
559 return (data1 == data2); /* Was the write blocked? */
560 }
561
562 /* Probe for the real time clock chip. */
563 static void __init set_system_time(void)
564 {
565 unsigned int year, mon, day, hour, min, sec;
566 void __iomem *mregs = mstk48t02_regs;
567 #ifdef CONFIG_PCI
568 unsigned long dregs = ds1287_regs;
569 void __iomem *bregs = bq4802_regs;
570 #else
571 unsigned long dregs = 0UL;
572 void __iomem *bregs = 0UL;
573 #endif
574 u8 tmp;
575
576 if (!mregs && !dregs && !bregs) {
577 prom_printf("Something wrong, clock regs not mapped yet.\n");
578 prom_halt();
579 }
580
581 if (mregs) {
582 spin_lock_irq(&mostek_lock);
583
584 /* Traditional Mostek chip. */
585 tmp = mostek_read(mregs + MOSTEK_CREG);
586 tmp |= MSTK_CREG_READ;
587 mostek_write(mregs + MOSTEK_CREG, tmp);
588
589 sec = MSTK_REG_SEC(mregs);
590 min = MSTK_REG_MIN(mregs);
591 hour = MSTK_REG_HOUR(mregs);
592 day = MSTK_REG_DOM(mregs);
593 mon = MSTK_REG_MONTH(mregs);
594 year = MSTK_CVT_YEAR( MSTK_REG_YEAR(mregs) );
595 } else if (bregs) {
596 unsigned char val = readb(bregs + 0x0e);
597 unsigned int century;
598
599 /* BQ4802 RTC chip. */
600
601 writeb(val | 0x08, bregs + 0x0e);
602
603 sec = readb(bregs + 0x00);
604 min = readb(bregs + 0x02);
605 hour = readb(bregs + 0x04);
606 day = readb(bregs + 0x06);
607 mon = readb(bregs + 0x09);
608 year = readb(bregs + 0x0a);
609 century = readb(bregs + 0x0f);
610
611 writeb(val, bregs + 0x0e);
612
613 BCD_TO_BIN(sec);
614 BCD_TO_BIN(min);
615 BCD_TO_BIN(hour);
616 BCD_TO_BIN(day);
617 BCD_TO_BIN(mon);
618 BCD_TO_BIN(year);
619 BCD_TO_BIN(century);
620
621 year += (century * 100);
622 } else {
623 /* Dallas 12887 RTC chip. */
624
625 do {
626 sec = CMOS_READ(RTC_SECONDS);
627 min = CMOS_READ(RTC_MINUTES);
628 hour = CMOS_READ(RTC_HOURS);
629 day = CMOS_READ(RTC_DAY_OF_MONTH);
630 mon = CMOS_READ(RTC_MONTH);
631 year = CMOS_READ(RTC_YEAR);
632 } while (sec != CMOS_READ(RTC_SECONDS));
633
634 if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
635 BCD_TO_BIN(sec);
636 BCD_TO_BIN(min);
637 BCD_TO_BIN(hour);
638 BCD_TO_BIN(day);
639 BCD_TO_BIN(mon);
640 BCD_TO_BIN(year);
641 }
642 if ((year += 1900) < 1970)
643 year += 100;
644 }
645
646 xtime.tv_sec = mktime(year, mon, day, hour, min, sec);
647 xtime.tv_nsec = (INITIAL_JIFFIES % HZ) * (NSEC_PER_SEC / HZ);
648 set_normalized_timespec(&wall_to_monotonic,
649 -xtime.tv_sec, -xtime.tv_nsec);
650
651 if (mregs) {
652 tmp = mostek_read(mregs + MOSTEK_CREG);
653 tmp &= ~MSTK_CREG_READ;
654 mostek_write(mregs + MOSTEK_CREG, tmp);
655
656 spin_unlock_irq(&mostek_lock);
657 }
658 }
659
660 /* davem suggests we keep this within the 4M locked kernel image */
661 static u32 starfire_get_time(void)
662 {
663 static char obp_gettod[32];
664 static u32 unix_tod;
665
666 sprintf(obp_gettod, "h# %08x unix-gettod",
667 (unsigned int) (long) &unix_tod);
668 prom_feval(obp_gettod);
669
670 return unix_tod;
671 }
672
673 static int starfire_set_time(u32 val)
674 {
675 /* Do nothing, time is set using the service processor
676 * console on this platform.
677 */
678 return 0;
679 }
680
681 static u32 hypervisor_get_time(void)
682 {
683 register unsigned long func asm("%o5");
684 register unsigned long arg0 asm("%o0");
685 register unsigned long arg1 asm("%o1");
686 int retries = 10000;
687
688 retry:
689 func = HV_FAST_TOD_GET;
690 arg0 = 0;
691 arg1 = 0;
692 __asm__ __volatile__("ta %6"
693 : "=&r" (func), "=&r" (arg0), "=&r" (arg1)
694 : "0" (func), "1" (arg0), "2" (arg1),
695 "i" (HV_FAST_TRAP));
696 if (arg0 == HV_EOK)
697 return arg1;
698 if (arg0 == HV_EWOULDBLOCK) {
699 if (--retries > 0) {
700 udelay(100);
701 goto retry;
702 }
703 printk(KERN_WARNING "SUN4V: tod_get() timed out.\n");
704 return 0;
705 }
706 printk(KERN_WARNING "SUN4V: tod_get() not supported.\n");
707 return 0;
708 }
709
710 static int hypervisor_set_time(u32 secs)
711 {
712 register unsigned long func asm("%o5");
713 register unsigned long arg0 asm("%o0");
714 int retries = 10000;
715
716 retry:
717 func = HV_FAST_TOD_SET;
718 arg0 = secs;
719 __asm__ __volatile__("ta %4"
720 : "=&r" (func), "=&r" (arg0)
721 : "0" (func), "1" (arg0),
722 "i" (HV_FAST_TRAP));
723 if (arg0 == HV_EOK)
724 return 0;
725 if (arg0 == HV_EWOULDBLOCK) {
726 if (--retries > 0) {
727 udelay(100);
728 goto retry;
729 }
730 printk(KERN_WARNING "SUN4V: tod_set() timed out.\n");
731 return -EAGAIN;
732 }
733 printk(KERN_WARNING "SUN4V: tod_set() not supported.\n");
734 return -EOPNOTSUPP;
735 }
736
737 static int __init clock_model_matches(const char *model)
738 {
739 if (strcmp(model, "mk48t02") &&
740 strcmp(model, "mk48t08") &&
741 strcmp(model, "mk48t59") &&
742 strcmp(model, "m5819") &&
743 strcmp(model, "m5819p") &&
744 strcmp(model, "m5823") &&
745 strcmp(model, "ds1287") &&
746 strcmp(model, "bq4802"))
747 return 0;
748
749 return 1;
750 }
751
752 static int __devinit clock_probe(struct of_device *op, const struct of_device_id *match)
753 {
754 struct device_node *dp = op->node;
755 const char *model = of_get_property(dp, "model", NULL);
756 const char *compat = of_get_property(dp, "compatible", NULL);
757 unsigned long size, flags;
758 void __iomem *regs;
759
760 if (!model)
761 model = compat;
762
763 if (!model || !clock_model_matches(model))
764 return -ENODEV;
765
766 /* On an Enterprise system there can be multiple mostek clocks.
767 * We should only match the one that is on the central FHC bus.
768 */
769 if (!strcmp(dp->parent->name, "fhc") &&
770 strcmp(dp->parent->parent->name, "central") != 0)
771 return -ENODEV;
772
773 size = (op->resource[0].end - op->resource[0].start) + 1;
774 regs = of_ioremap(&op->resource[0], 0, size, "clock");
775 if (!regs)
776 return -ENOMEM;
777
778 #ifdef CONFIG_PCI
779 if (!strcmp(model, "ds1287") ||
780 !strcmp(model, "m5819") ||
781 !strcmp(model, "m5819p") ||
782 !strcmp(model, "m5823")) {
783 ds1287_regs = (unsigned long) regs;
784 } else if (!strcmp(model, "bq4802")) {
785 bq4802_regs = regs;
786 } else
787 #endif
788 if (model[5] == '0' && model[6] == '2') {
789 mstk48t02_regs = regs;
790 } else if(model[5] == '0' && model[6] == '8') {
791 mstk48t08_regs = regs;
792 mstk48t02_regs = mstk48t08_regs + MOSTEK_48T08_48T02;
793 } else {
794 mstk48t59_regs = regs;
795 mstk48t02_regs = mstk48t59_regs + MOSTEK_48T59_48T02;
796 }
797
798 printk(KERN_INFO "%s: Clock regs at %p\n", dp->full_name, regs);
799
800 local_irq_save(flags);
801
802 if (mstk48t02_regs != NULL) {
803 /* Report a low battery voltage condition. */
804 if (has_low_battery())
805 prom_printf("NVRAM: Low battery voltage!\n");
806
807 /* Kick start the clock if it is completely stopped. */
808 if (mostek_read(mstk48t02_regs + MOSTEK_SEC) & MSTK_STOP)
809 kick_start_clock();
810 }
811
812 set_system_time();
813
814 local_irq_restore(flags);
815
816 return 0;
817 }
818
819 static struct of_device_id clock_match[] = {
820 {
821 .name = "eeprom",
822 },
823 {
824 .name = "rtc",
825 },
826 {},
827 };
828
829 static struct of_platform_driver clock_driver = {
830 .name = "clock",
831 .match_table = clock_match,
832 .probe = clock_probe,
833 };
834
835 static int __init clock_init(void)
836 {
837 if (this_is_starfire) {
838 xtime.tv_sec = starfire_get_time();
839 xtime.tv_nsec = (INITIAL_JIFFIES % HZ) * (NSEC_PER_SEC / HZ);
840 set_normalized_timespec(&wall_to_monotonic,
841 -xtime.tv_sec, -xtime.tv_nsec);
842 return 0;
843 }
844 if (tlb_type == hypervisor) {
845 xtime.tv_sec = hypervisor_get_time();
846 xtime.tv_nsec = (INITIAL_JIFFIES % HZ) * (NSEC_PER_SEC / HZ);
847 set_normalized_timespec(&wall_to_monotonic,
848 -xtime.tv_sec, -xtime.tv_nsec);
849 return 0;
850 }
851
852 return of_register_driver(&clock_driver, &of_bus_type);
853 }
854
855 /* Must be after subsys_initcall() so that busses are probed. Must
856 * be before device_initcall() because things like the RTC driver
857 * need to see the clock registers.
858 */
859 fs_initcall(clock_init);
860
861 /* This is gets the master TICK_INT timer going. */
862 static unsigned long sparc64_init_timers(void)
863 {
864 struct device_node *dp;
865 struct property *prop;
866 unsigned long clock;
867 #ifdef CONFIG_SMP
868 extern void smp_tick_init(void);
869 #endif
870
871 dp = of_find_node_by_path("/");
872 if (tlb_type == spitfire) {
873 unsigned long ver, manuf, impl;
874
875 __asm__ __volatile__ ("rdpr %%ver, %0"
876 : "=&r" (ver));
877 manuf = ((ver >> 48) & 0xffff);
878 impl = ((ver >> 32) & 0xffff);
879 if (manuf == 0x17 && impl == 0x13) {
880 /* Hummingbird, aka Ultra-IIe */
881 tick_ops = &hbtick_operations;
882 prop = of_find_property(dp, "stick-frequency", NULL);
883 } else {
884 tick_ops = &tick_operations;
885 cpu_find_by_instance(0, &dp, NULL);
886 prop = of_find_property(dp, "clock-frequency", NULL);
887 }
888 } else {
889 tick_ops = &stick_operations;
890 prop = of_find_property(dp, "stick-frequency", NULL);
891 }
892 clock = *(unsigned int *) prop->value;
893
894 #ifdef CONFIG_SMP
895 smp_tick_init();
896 #endif
897
898 return clock;
899 }
900
901 struct freq_table {
902 unsigned long clock_tick_ref;
903 unsigned int ref_freq;
904 };
905 static DEFINE_PER_CPU(struct freq_table, sparc64_freq_table) = { 0, 0 };
906
907 unsigned long sparc64_get_clock_tick(unsigned int cpu)
908 {
909 struct freq_table *ft = &per_cpu(sparc64_freq_table, cpu);
910
911 if (ft->clock_tick_ref)
912 return ft->clock_tick_ref;
913 return cpu_data(cpu).clock_tick;
914 }
915
916 #ifdef CONFIG_CPU_FREQ
917
918 static int sparc64_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
919 void *data)
920 {
921 struct cpufreq_freqs *freq = data;
922 unsigned int cpu = freq->cpu;
923 struct freq_table *ft = &per_cpu(sparc64_freq_table, cpu);
924
925 if (!ft->ref_freq) {
926 ft->ref_freq = freq->old;
927 ft->clock_tick_ref = cpu_data(cpu).clock_tick;
928 }
929 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
930 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
931 (val == CPUFREQ_RESUMECHANGE)) {
932 cpu_data(cpu).clock_tick =
933 cpufreq_scale(ft->clock_tick_ref,
934 ft->ref_freq,
935 freq->new);
936 }
937
938 return 0;
939 }
940
941 static struct notifier_block sparc64_cpufreq_notifier_block = {
942 .notifier_call = sparc64_cpufreq_notifier
943 };
944
945 #endif /* CONFIG_CPU_FREQ */
946
947 static int sparc64_next_event(unsigned long delta,
948 struct clock_event_device *evt)
949 {
950 return tick_ops->add_compare(delta) ? -ETIME : 0;
951 }
952
953 static void sparc64_timer_setup(enum clock_event_mode mode,
954 struct clock_event_device *evt)
955 {
956 switch (mode) {
957 case CLOCK_EVT_MODE_ONESHOT:
958 break;
959
960 case CLOCK_EVT_MODE_SHUTDOWN:
961 tick_ops->disable_irq();
962 break;
963
964 case CLOCK_EVT_MODE_PERIODIC:
965 case CLOCK_EVT_MODE_UNUSED:
966 WARN_ON(1);
967 break;
968 };
969 }
970
971 static struct clock_event_device sparc64_clockevent = {
972 .features = CLOCK_EVT_FEAT_ONESHOT,
973 .set_mode = sparc64_timer_setup,
974 .set_next_event = sparc64_next_event,
975 .rating = 100,
976 .shift = 30,
977 .irq = -1,
978 };
979 static DEFINE_PER_CPU(struct clock_event_device, sparc64_events);
980
981 void timer_interrupt(int irq, struct pt_regs *regs)
982 {
983 struct pt_regs *old_regs = set_irq_regs(regs);
984 unsigned long tick_mask = tick_ops->softint_mask;
985 int cpu = smp_processor_id();
986 struct clock_event_device *evt = &per_cpu(sparc64_events, cpu);
987
988 clear_softint(tick_mask);
989
990 irq_enter();
991
992 kstat_this_cpu.irqs[0]++;
993
994 if (unlikely(!evt->event_handler)) {
995 printk(KERN_WARNING
996 "Spurious SPARC64 timer interrupt on cpu %d\n", cpu);
997 } else
998 evt->event_handler(evt);
999
1000 irq_exit();
1001
1002 set_irq_regs(old_regs);
1003 }
1004
1005 void __devinit setup_sparc64_timer(void)
1006 {
1007 struct clock_event_device *sevt;
1008 unsigned long pstate;
1009
1010 /* Guarantee that the following sequences execute
1011 * uninterrupted.
1012 */
1013 __asm__ __volatile__("rdpr %%pstate, %0\n\t"
1014 "wrpr %0, %1, %%pstate"
1015 : "=r" (pstate)
1016 : "i" (PSTATE_IE));
1017
1018 tick_ops->init_tick();
1019
1020 /* Restore PSTATE_IE. */
1021 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
1022 : /* no outputs */
1023 : "r" (pstate));
1024
1025 sevt = &__get_cpu_var(sparc64_events);
1026
1027 memcpy(sevt, &sparc64_clockevent, sizeof(*sevt));
1028 sevt->cpumask = cpumask_of_cpu(smp_processor_id());
1029
1030 clockevents_register_device(sevt);
1031 }
1032
1033 #define SPARC64_NSEC_PER_CYC_SHIFT 10UL
1034
1035 static struct clocksource clocksource_tick = {
1036 .rating = 100,
1037 .mask = CLOCKSOURCE_MASK(64),
1038 .shift = 16,
1039 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
1040 };
1041
1042 static void __init setup_clockevent_multiplier(unsigned long hz)
1043 {
1044 unsigned long mult, shift = 32;
1045
1046 while (1) {
1047 mult = div_sc(hz, NSEC_PER_SEC, shift);
1048 if (mult && (mult >> 32UL) == 0UL)
1049 break;
1050
1051 shift--;
1052 }
1053
1054 sparc64_clockevent.shift = shift;
1055 sparc64_clockevent.mult = mult;
1056 }
1057
1058 void __init time_init(void)
1059 {
1060 unsigned long clock = sparc64_init_timers();
1061
1062 timer_ticks_per_nsec_quotient =
1063 clocksource_hz2mult(clock, SPARC64_NSEC_PER_CYC_SHIFT);
1064
1065 clocksource_tick.name = tick_ops->name;
1066 clocksource_tick.mult =
1067 clocksource_hz2mult(clock,
1068 clocksource_tick.shift);
1069 clocksource_tick.read = tick_ops->get_tick;
1070
1071 printk("clocksource: mult[%x] shift[%d]\n",
1072 clocksource_tick.mult, clocksource_tick.shift);
1073
1074 clocksource_register(&clocksource_tick);
1075
1076 sparc64_clockevent.name = tick_ops->name;
1077
1078 setup_clockevent_multiplier(clock);
1079
1080 sparc64_clockevent.max_delta_ns =
1081 clockevent_delta2ns(0x7fffffffffffffff, &sparc64_clockevent);
1082 sparc64_clockevent.min_delta_ns =
1083 clockevent_delta2ns(0xF, &sparc64_clockevent);
1084
1085 printk("clockevent: mult[%lx] shift[%d]\n",
1086 sparc64_clockevent.mult, sparc64_clockevent.shift);
1087
1088 setup_sparc64_timer();
1089
1090 #ifdef CONFIG_CPU_FREQ
1091 cpufreq_register_notifier(&sparc64_cpufreq_notifier_block,
1092 CPUFREQ_TRANSITION_NOTIFIER);
1093 #endif
1094 }
1095
1096 unsigned long long sched_clock(void)
1097 {
1098 unsigned long ticks = tick_ops->get_tick();
1099
1100 return (ticks * timer_ticks_per_nsec_quotient)
1101 >> SPARC64_NSEC_PER_CYC_SHIFT;
1102 }
1103
1104 static int set_rtc_mmss(unsigned long nowtime)
1105 {
1106 int real_seconds, real_minutes, chip_minutes;
1107 void __iomem *mregs = mstk48t02_regs;
1108 #ifdef CONFIG_PCI
1109 unsigned long dregs = ds1287_regs;
1110 void __iomem *bregs = bq4802_regs;
1111 #else
1112 unsigned long dregs = 0UL;
1113 void __iomem *bregs = 0UL;
1114 #endif
1115 unsigned long flags;
1116 u8 tmp;
1117
1118 /*
1119 * Not having a register set can lead to trouble.
1120 * Also starfire doesn't have a tod clock.
1121 */
1122 if (!mregs && !dregs & !bregs)
1123 return -1;
1124
1125 if (mregs) {
1126 spin_lock_irqsave(&mostek_lock, flags);
1127
1128 /* Read the current RTC minutes. */
1129 tmp = mostek_read(mregs + MOSTEK_CREG);
1130 tmp |= MSTK_CREG_READ;
1131 mostek_write(mregs + MOSTEK_CREG, tmp);
1132
1133 chip_minutes = MSTK_REG_MIN(mregs);
1134
1135 tmp = mostek_read(mregs + MOSTEK_CREG);
1136 tmp &= ~MSTK_CREG_READ;
1137 mostek_write(mregs + MOSTEK_CREG, tmp);
1138
1139 /*
1140 * since we're only adjusting minutes and seconds,
1141 * don't interfere with hour overflow. This avoids
1142 * messing with unknown time zones but requires your
1143 * RTC not to be off by more than 15 minutes
1144 */
1145 real_seconds = nowtime % 60;
1146 real_minutes = nowtime / 60;
1147 if (((abs(real_minutes - chip_minutes) + 15)/30) & 1)
1148 real_minutes += 30; /* correct for half hour time zone */
1149 real_minutes %= 60;
1150
1151 if (abs(real_minutes - chip_minutes) < 30) {
1152 tmp = mostek_read(mregs + MOSTEK_CREG);
1153 tmp |= MSTK_CREG_WRITE;
1154 mostek_write(mregs + MOSTEK_CREG, tmp);
1155
1156 MSTK_SET_REG_SEC(mregs,real_seconds);
1157 MSTK_SET_REG_MIN(mregs,real_minutes);
1158
1159 tmp = mostek_read(mregs + MOSTEK_CREG);
1160 tmp &= ~MSTK_CREG_WRITE;
1161 mostek_write(mregs + MOSTEK_CREG, tmp);
1162
1163 spin_unlock_irqrestore(&mostek_lock, flags);
1164
1165 return 0;
1166 } else {
1167 spin_unlock_irqrestore(&mostek_lock, flags);
1168
1169 return -1;
1170 }
1171 } else if (bregs) {
1172 int retval = 0;
1173 unsigned char val = readb(bregs + 0x0e);
1174
1175 /* BQ4802 RTC chip. */
1176
1177 writeb(val | 0x08, bregs + 0x0e);
1178
1179 chip_minutes = readb(bregs + 0x02);
1180 BCD_TO_BIN(chip_minutes);
1181 real_seconds = nowtime % 60;
1182 real_minutes = nowtime / 60;
1183 if (((abs(real_minutes - chip_minutes) + 15)/30) & 1)
1184 real_minutes += 30;
1185 real_minutes %= 60;
1186
1187 if (abs(real_minutes - chip_minutes) < 30) {
1188 BIN_TO_BCD(real_seconds);
1189 BIN_TO_BCD(real_minutes);
1190 writeb(real_seconds, bregs + 0x00);
1191 writeb(real_minutes, bregs + 0x02);
1192 } else {
1193 printk(KERN_WARNING
1194 "set_rtc_mmss: can't update from %d to %d\n",
1195 chip_minutes, real_minutes);
1196 retval = -1;
1197 }
1198
1199 writeb(val, bregs + 0x0e);
1200
1201 return retval;
1202 } else {
1203 int retval = 0;
1204 unsigned char save_control, save_freq_select;
1205
1206 /* Stolen from arch/i386/kernel/time.c, see there for
1207 * credits and descriptive comments.
1208 */
1209 spin_lock_irqsave(&rtc_lock, flags);
1210 save_control = CMOS_READ(RTC_CONTROL); /* tell the clock it's being set */
1211 CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
1212
1213 save_freq_select = CMOS_READ(RTC_FREQ_SELECT); /* stop and reset prescaler */
1214 CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
1215
1216 chip_minutes = CMOS_READ(RTC_MINUTES);
1217 if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
1218 BCD_TO_BIN(chip_minutes);
1219 real_seconds = nowtime % 60;
1220 real_minutes = nowtime / 60;
1221 if (((abs(real_minutes - chip_minutes) + 15)/30) & 1)
1222 real_minutes += 30;
1223 real_minutes %= 60;
1224
1225 if (abs(real_minutes - chip_minutes) < 30) {
1226 if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
1227 BIN_TO_BCD(real_seconds);
1228 BIN_TO_BCD(real_minutes);
1229 }
1230 CMOS_WRITE(real_seconds,RTC_SECONDS);
1231 CMOS_WRITE(real_minutes,RTC_MINUTES);
1232 } else {
1233 printk(KERN_WARNING
1234 "set_rtc_mmss: can't update from %d to %d\n",
1235 chip_minutes, real_minutes);
1236 retval = -1;
1237 }
1238
1239 CMOS_WRITE(save_control, RTC_CONTROL);
1240 CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
1241 spin_unlock_irqrestore(&rtc_lock, flags);
1242
1243 return retval;
1244 }
1245 }
1246
1247 #define RTC_IS_OPEN 0x01 /* means /dev/rtc is in use */
1248 static unsigned char mini_rtc_status; /* bitmapped status byte. */
1249
1250 #define FEBRUARY 2
1251 #define STARTOFTIME 1970
1252 #define SECDAY 86400L
1253 #define SECYR (SECDAY * 365)
1254 #define leapyear(year) ((year) % 4 == 0 && \
1255 ((year) % 100 != 0 || (year) % 400 == 0))
1256 #define days_in_year(a) (leapyear(a) ? 366 : 365)
1257 #define days_in_month(a) (month_days[(a) - 1])
1258
1259 static int month_days[12] = {
1260 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
1261 };
1262
1263 /*
1264 * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
1265 */
1266 static void GregorianDay(struct rtc_time * tm)
1267 {
1268 int leapsToDate;
1269 int lastYear;
1270 int day;
1271 int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
1272
1273 lastYear = tm->tm_year - 1;
1274
1275 /*
1276 * Number of leap corrections to apply up to end of last year
1277 */
1278 leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
1279
1280 /*
1281 * This year is a leap year if it is divisible by 4 except when it is
1282 * divisible by 100 unless it is divisible by 400
1283 *
1284 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
1285 */
1286 day = tm->tm_mon > 2 && leapyear(tm->tm_year);
1287
1288 day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
1289 tm->tm_mday;
1290
1291 tm->tm_wday = day % 7;
1292 }
1293
1294 static void to_tm(int tim, struct rtc_time *tm)
1295 {
1296 register int i;
1297 register long hms, day;
1298
1299 day = tim / SECDAY;
1300 hms = tim % SECDAY;
1301
1302 /* Hours, minutes, seconds are easy */
1303 tm->tm_hour = hms / 3600;
1304 tm->tm_min = (hms % 3600) / 60;
1305 tm->tm_sec = (hms % 3600) % 60;
1306
1307 /* Number of years in days */
1308 for (i = STARTOFTIME; day >= days_in_year(i); i++)
1309 day -= days_in_year(i);
1310 tm->tm_year = i;
1311
1312 /* Number of months in days left */
1313 if (leapyear(tm->tm_year))
1314 days_in_month(FEBRUARY) = 29;
1315 for (i = 1; day >= days_in_month(i); i++)
1316 day -= days_in_month(i);
1317 days_in_month(FEBRUARY) = 28;
1318 tm->tm_mon = i;
1319
1320 /* Days are what is left over (+1) from all that. */
1321 tm->tm_mday = day + 1;
1322
1323 /*
1324 * Determine the day of week
1325 */
1326 GregorianDay(tm);
1327 }
1328
1329 /* Both Starfire and SUN4V give us seconds since Jan 1st, 1970,
1330 * aka Unix time. So we have to convert to/from rtc_time.
1331 */
1332 static void starfire_get_rtc_time(struct rtc_time *time)
1333 {
1334 u32 seconds = starfire_get_time();
1335
1336 to_tm(seconds, time);
1337 time->tm_year -= 1900;
1338 time->tm_mon -= 1;
1339 }
1340
1341 static int starfire_set_rtc_time(struct rtc_time *time)
1342 {
1343 u32 seconds = mktime(time->tm_year + 1900, time->tm_mon + 1,
1344 time->tm_mday, time->tm_hour,
1345 time->tm_min, time->tm_sec);
1346
1347 return starfire_set_time(seconds);
1348 }
1349
1350 static void hypervisor_get_rtc_time(struct rtc_time *time)
1351 {
1352 u32 seconds = hypervisor_get_time();
1353
1354 to_tm(seconds, time);
1355 time->tm_year -= 1900;
1356 time->tm_mon -= 1;
1357 }
1358
1359 static int hypervisor_set_rtc_time(struct rtc_time *time)
1360 {
1361 u32 seconds = mktime(time->tm_year + 1900, time->tm_mon + 1,
1362 time->tm_mday, time->tm_hour,
1363 time->tm_min, time->tm_sec);
1364
1365 return hypervisor_set_time(seconds);
1366 }
1367
1368 static void bq4802_get_rtc_time(struct rtc_time *time)
1369 {
1370 unsigned char val = readb(bq4802_regs + 0x0e);
1371 unsigned int century;
1372
1373 writeb(val | 0x08, bq4802_regs + 0x0e);
1374
1375 time->tm_sec = readb(bq4802_regs + 0x00);
1376 time->tm_min = readb(bq4802_regs + 0x02);
1377 time->tm_hour = readb(bq4802_regs + 0x04);
1378 time->tm_mday = readb(bq4802_regs + 0x06);
1379 time->tm_mon = readb(bq4802_regs + 0x09);
1380 time->tm_year = readb(bq4802_regs + 0x0a);
1381 time->tm_wday = readb(bq4802_regs + 0x08);
1382 century = readb(bq4802_regs + 0x0f);
1383
1384 writeb(val, bq4802_regs + 0x0e);
1385
1386 BCD_TO_BIN(time->tm_sec);
1387 BCD_TO_BIN(time->tm_min);
1388 BCD_TO_BIN(time->tm_hour);
1389 BCD_TO_BIN(time->tm_mday);
1390 BCD_TO_BIN(time->tm_mon);
1391 BCD_TO_BIN(time->tm_year);
1392 BCD_TO_BIN(time->tm_wday);
1393 BCD_TO_BIN(century);
1394
1395 time->tm_year += (century * 100);
1396 time->tm_year -= 1900;
1397
1398 time->tm_mon--;
1399 }
1400
1401 static int bq4802_set_rtc_time(struct rtc_time *time)
1402 {
1403 unsigned char val = readb(bq4802_regs + 0x0e);
1404 unsigned char sec, min, hrs, day, mon, yrs, century;
1405 unsigned int year;
1406
1407 year = time->tm_year + 1900;
1408 century = year / 100;
1409 yrs = year % 100;
1410
1411 mon = time->tm_mon + 1; /* tm_mon starts at zero */
1412 day = time->tm_mday;
1413 hrs = time->tm_hour;
1414 min = time->tm_min;
1415 sec = time->tm_sec;
1416
1417 BIN_TO_BCD(sec);
1418 BIN_TO_BCD(min);
1419 BIN_TO_BCD(hrs);
1420 BIN_TO_BCD(day);
1421 BIN_TO_BCD(mon);
1422 BIN_TO_BCD(yrs);
1423 BIN_TO_BCD(century);
1424
1425 writeb(val | 0x08, bq4802_regs + 0x0e);
1426
1427 writeb(sec, bq4802_regs + 0x00);
1428 writeb(min, bq4802_regs + 0x02);
1429 writeb(hrs, bq4802_regs + 0x04);
1430 writeb(day, bq4802_regs + 0x06);
1431 writeb(mon, bq4802_regs + 0x09);
1432 writeb(yrs, bq4802_regs + 0x0a);
1433 writeb(century, bq4802_regs + 0x0f);
1434
1435 writeb(val, bq4802_regs + 0x0e);
1436
1437 return 0;
1438 }
1439
1440 struct mini_rtc_ops {
1441 void (*get_rtc_time)(struct rtc_time *);
1442 int (*set_rtc_time)(struct rtc_time *);
1443 };
1444
1445 static struct mini_rtc_ops starfire_rtc_ops = {
1446 .get_rtc_time = starfire_get_rtc_time,
1447 .set_rtc_time = starfire_set_rtc_time,
1448 };
1449
1450 static struct mini_rtc_ops hypervisor_rtc_ops = {
1451 .get_rtc_time = hypervisor_get_rtc_time,
1452 .set_rtc_time = hypervisor_set_rtc_time,
1453 };
1454
1455 static struct mini_rtc_ops bq4802_rtc_ops = {
1456 .get_rtc_time = bq4802_get_rtc_time,
1457 .set_rtc_time = bq4802_set_rtc_time,
1458 };
1459
1460 static struct mini_rtc_ops *mini_rtc_ops;
1461
1462 static inline void mini_get_rtc_time(struct rtc_time *time)
1463 {
1464 unsigned long flags;
1465
1466 spin_lock_irqsave(&rtc_lock, flags);
1467 mini_rtc_ops->get_rtc_time(time);
1468 spin_unlock_irqrestore(&rtc_lock, flags);
1469 }
1470
1471 static inline int mini_set_rtc_time(struct rtc_time *time)
1472 {
1473 unsigned long flags;
1474 int err;
1475
1476 spin_lock_irqsave(&rtc_lock, flags);
1477 err = mini_rtc_ops->set_rtc_time(time);
1478 spin_unlock_irqrestore(&rtc_lock, flags);
1479
1480 return err;
1481 }
1482
1483 static int mini_rtc_ioctl(struct inode *inode, struct file *file,
1484 unsigned int cmd, unsigned long arg)
1485 {
1486 struct rtc_time wtime;
1487 void __user *argp = (void __user *)arg;
1488
1489 switch (cmd) {
1490
1491 case RTC_PLL_GET:
1492 return -EINVAL;
1493
1494 case RTC_PLL_SET:
1495 return -EINVAL;
1496
1497 case RTC_UIE_OFF: /* disable ints from RTC updates. */
1498 return 0;
1499
1500 case RTC_UIE_ON: /* enable ints for RTC updates. */
1501 return -EINVAL;
1502
1503 case RTC_RD_TIME: /* Read the time/date from RTC */
1504 /* this doesn't get week-day, who cares */
1505 memset(&wtime, 0, sizeof(wtime));
1506 mini_get_rtc_time(&wtime);
1507
1508 return copy_to_user(argp, &wtime, sizeof(wtime)) ? -EFAULT : 0;
1509
1510 case RTC_SET_TIME: /* Set the RTC */
1511 {
1512 int year, days;
1513
1514 if (!capable(CAP_SYS_TIME))
1515 return -EACCES;
1516
1517 if (copy_from_user(&wtime, argp, sizeof(wtime)))
1518 return -EFAULT;
1519
1520 year = wtime.tm_year + 1900;
1521 days = month_days[wtime.tm_mon] +
1522 ((wtime.tm_mon == 1) && leapyear(year));
1523
1524 if ((wtime.tm_mon < 0 || wtime.tm_mon > 11) ||
1525 (wtime.tm_mday < 1))
1526 return -EINVAL;
1527
1528 if (wtime.tm_mday < 0 || wtime.tm_mday > days)
1529 return -EINVAL;
1530
1531 if (wtime.tm_hour < 0 || wtime.tm_hour >= 24 ||
1532 wtime.tm_min < 0 || wtime.tm_min >= 60 ||
1533 wtime.tm_sec < 0 || wtime.tm_sec >= 60)
1534 return -EINVAL;
1535
1536 return mini_set_rtc_time(&wtime);
1537 }
1538 }
1539
1540 return -EINVAL;
1541 }
1542
1543 static int mini_rtc_open(struct inode *inode, struct file *file)
1544 {
1545 if (mini_rtc_status & RTC_IS_OPEN)
1546 return -EBUSY;
1547
1548 mini_rtc_status |= RTC_IS_OPEN;
1549
1550 return 0;
1551 }
1552
1553 static int mini_rtc_release(struct inode *inode, struct file *file)
1554 {
1555 mini_rtc_status &= ~RTC_IS_OPEN;
1556 return 0;
1557 }
1558
1559
1560 static const struct file_operations mini_rtc_fops = {
1561 .owner = THIS_MODULE,
1562 .ioctl = mini_rtc_ioctl,
1563 .open = mini_rtc_open,
1564 .release = mini_rtc_release,
1565 };
1566
1567 static struct miscdevice rtc_mini_dev =
1568 {
1569 .minor = RTC_MINOR,
1570 .name = "rtc",
1571 .fops = &mini_rtc_fops,
1572 };
1573
1574 static int __init rtc_mini_init(void)
1575 {
1576 int retval;
1577
1578 if (tlb_type == hypervisor)
1579 mini_rtc_ops = &hypervisor_rtc_ops;
1580 else if (this_is_starfire)
1581 mini_rtc_ops = &starfire_rtc_ops;
1582 else if (bq4802_regs)
1583 mini_rtc_ops = &bq4802_rtc_ops;
1584 else
1585 return -ENODEV;
1586
1587 printk(KERN_INFO "Mini RTC Driver\n");
1588
1589 retval = misc_register(&rtc_mini_dev);
1590 if (retval < 0)
1591 return retval;
1592
1593 return 0;
1594 }
1595
1596 static void __exit rtc_mini_exit(void)
1597 {
1598 misc_deregister(&rtc_mini_dev);
1599 }
1600
1601
1602 module_init(rtc_mini_init);
1603 module_exit(rtc_mini_exit);
This page took 0.061306 seconds and 4 git commands to generate.