arch/tile: core support for Tilera 32-bit chips.
[deliverable/linux.git] / arch / tile / include / asm / pgtable.h
1 /*
2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation, version 2.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 * NON INFRINGEMENT. See the GNU General Public License for
12 * more details.
13 *
14 * This file contains the functions and defines necessary to modify and use
15 * the TILE page table tree.
16 */
17
18 #ifndef _ASM_TILE_PGTABLE_H
19 #define _ASM_TILE_PGTABLE_H
20
21 #include <hv/hypervisor.h>
22
23 #ifndef __ASSEMBLY__
24
25 #include <linux/bitops.h>
26 #include <linux/threads.h>
27 #include <linux/slab.h>
28 #include <linux/list.h>
29 #include <linux/spinlock.h>
30 #include <asm/processor.h>
31 #include <asm/fixmap.h>
32 #include <asm/system.h>
33
34 struct mm_struct;
35 struct vm_area_struct;
36
37 /*
38 * ZERO_PAGE is a global shared page that is always zero: used
39 * for zero-mapped memory areas etc..
40 */
41 extern unsigned long empty_zero_page[PAGE_SIZE/sizeof(unsigned long)];
42 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
43
44 extern pgd_t swapper_pg_dir[];
45 extern pgprot_t swapper_pgprot;
46 extern struct kmem_cache *pgd_cache;
47 extern spinlock_t pgd_lock;
48 extern struct list_head pgd_list;
49
50 /*
51 * The very last slots in the pgd_t are for addresses unusable by Linux
52 * (pgd_addr_invalid() returns true). So we use them for the list structure.
53 * The x86 code we are modelled on uses the page->private/index fields
54 * (older 2.6 kernels) or the lru list (newer 2.6 kernels), but since
55 * our pgds are so much smaller than a page, it seems a waste to
56 * spend a whole page on each pgd.
57 */
58 #define PGD_LIST_OFFSET \
59 ((PTRS_PER_PGD * sizeof(pgd_t)) - sizeof(struct list_head))
60 #define pgd_to_list(pgd) \
61 ((struct list_head *)((char *)(pgd) + PGD_LIST_OFFSET))
62 #define list_to_pgd(list) \
63 ((pgd_t *)((char *)(list) - PGD_LIST_OFFSET))
64
65 extern void pgtable_cache_init(void);
66 extern void paging_init(void);
67 extern void set_page_homes(void);
68
69 #define FIRST_USER_ADDRESS 0
70
71 #define _PAGE_PRESENT HV_PTE_PRESENT
72 #define _PAGE_HUGE_PAGE HV_PTE_PAGE
73 #define _PAGE_READABLE HV_PTE_READABLE
74 #define _PAGE_WRITABLE HV_PTE_WRITABLE
75 #define _PAGE_EXECUTABLE HV_PTE_EXECUTABLE
76 #define _PAGE_ACCESSED HV_PTE_ACCESSED
77 #define _PAGE_DIRTY HV_PTE_DIRTY
78 #define _PAGE_GLOBAL HV_PTE_GLOBAL
79 #define _PAGE_USER HV_PTE_USER
80
81 /*
82 * All the "standard" bits. Cache-control bits are managed elsewhere.
83 * This is used to test for valid level-2 page table pointers by checking
84 * all the bits, and to mask away the cache control bits for mprotect.
85 */
86 #define _PAGE_ALL (\
87 _PAGE_PRESENT | \
88 _PAGE_HUGE_PAGE | \
89 _PAGE_READABLE | \
90 _PAGE_WRITABLE | \
91 _PAGE_EXECUTABLE | \
92 _PAGE_ACCESSED | \
93 _PAGE_DIRTY | \
94 _PAGE_GLOBAL | \
95 _PAGE_USER \
96 )
97
98 #define PAGE_NONE \
99 __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED)
100 #define PAGE_SHARED \
101 __pgprot(_PAGE_PRESENT | _PAGE_READABLE | _PAGE_WRITABLE | \
102 _PAGE_USER | _PAGE_ACCESSED)
103
104 #define PAGE_SHARED_EXEC \
105 __pgprot(_PAGE_PRESENT | _PAGE_READABLE | _PAGE_WRITABLE | \
106 _PAGE_EXECUTABLE | _PAGE_USER | _PAGE_ACCESSED)
107 #define PAGE_COPY_NOEXEC \
108 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | _PAGE_READABLE)
109 #define PAGE_COPY_EXEC \
110 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | \
111 _PAGE_READABLE | _PAGE_EXECUTABLE)
112 #define PAGE_COPY \
113 PAGE_COPY_NOEXEC
114 #define PAGE_READONLY \
115 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | _PAGE_READABLE)
116 #define PAGE_READONLY_EXEC \
117 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | \
118 _PAGE_READABLE | _PAGE_EXECUTABLE)
119
120 #define _PAGE_KERNEL_RO \
121 (_PAGE_PRESENT | _PAGE_GLOBAL | _PAGE_READABLE | _PAGE_ACCESSED)
122 #define _PAGE_KERNEL \
123 (_PAGE_KERNEL_RO | _PAGE_WRITABLE | _PAGE_DIRTY)
124 #define _PAGE_KERNEL_EXEC (_PAGE_KERNEL_RO | _PAGE_EXECUTABLE)
125
126 #define PAGE_KERNEL __pgprot(_PAGE_KERNEL)
127 #define PAGE_KERNEL_RO __pgprot(_PAGE_KERNEL_RO)
128 #define PAGE_KERNEL_EXEC __pgprot(_PAGE_KERNEL_EXEC)
129
130 #define page_to_kpgprot(p) PAGE_KERNEL
131
132 /*
133 * We could tighten these up, but for now writable or executable
134 * implies readable.
135 */
136 #define __P000 PAGE_NONE
137 #define __P001 PAGE_READONLY
138 #define __P010 PAGE_COPY /* this is write-only, which we won't support */
139 #define __P011 PAGE_COPY
140 #define __P100 PAGE_READONLY_EXEC
141 #define __P101 PAGE_READONLY_EXEC
142 #define __P110 PAGE_COPY_EXEC
143 #define __P111 PAGE_COPY_EXEC
144
145 #define __S000 PAGE_NONE
146 #define __S001 PAGE_READONLY
147 #define __S010 PAGE_SHARED
148 #define __S011 PAGE_SHARED
149 #define __S100 PAGE_READONLY_EXEC
150 #define __S101 PAGE_READONLY_EXEC
151 #define __S110 PAGE_SHARED_EXEC
152 #define __S111 PAGE_SHARED_EXEC
153
154 /*
155 * All the normal _PAGE_ALL bits are ignored for PMDs, except PAGE_PRESENT
156 * and PAGE_HUGE_PAGE, which must be one and zero, respectively.
157 * We set the ignored bits to zero.
158 */
159 #define _PAGE_TABLE _PAGE_PRESENT
160
161 /* Inherit the caching flags from the old protection bits. */
162 #define pgprot_modify(oldprot, newprot) \
163 (pgprot_t) { ((oldprot).val & ~_PAGE_ALL) | (newprot).val }
164
165 /* Just setting the PFN to zero suffices. */
166 #define pte_pgprot(x) hv_pte_set_pfn((x), 0)
167
168 /*
169 * For PTEs and PDEs, we must clear the Present bit first when
170 * clearing a page table entry, so clear the bottom half first and
171 * enforce ordering with a barrier.
172 */
173 static inline void __pte_clear(pte_t *ptep)
174 {
175 #ifdef __tilegx__
176 ptep->val = 0;
177 #else
178 u32 *tmp = (u32 *)ptep;
179 tmp[0] = 0;
180 barrier();
181 tmp[1] = 0;
182 #endif
183 }
184 #define pte_clear(mm, addr, ptep) __pte_clear(ptep)
185
186 /*
187 * The following only work if pte_present() is true.
188 * Undefined behaviour if not..
189 */
190 #define pte_present hv_pte_get_present
191 #define pte_user hv_pte_get_user
192 #define pte_read hv_pte_get_readable
193 #define pte_dirty hv_pte_get_dirty
194 #define pte_young hv_pte_get_accessed
195 #define pte_write hv_pte_get_writable
196 #define pte_exec hv_pte_get_executable
197 #define pte_huge hv_pte_get_page
198 #define pte_rdprotect hv_pte_clear_readable
199 #define pte_exprotect hv_pte_clear_executable
200 #define pte_mkclean hv_pte_clear_dirty
201 #define pte_mkold hv_pte_clear_accessed
202 #define pte_wrprotect hv_pte_clear_writable
203 #define pte_mksmall hv_pte_clear_page
204 #define pte_mkread hv_pte_set_readable
205 #define pte_mkexec hv_pte_set_executable
206 #define pte_mkdirty hv_pte_set_dirty
207 #define pte_mkyoung hv_pte_set_accessed
208 #define pte_mkwrite hv_pte_set_writable
209 #define pte_mkhuge hv_pte_set_page
210
211 #define pte_special(pte) 0
212 #define pte_mkspecial(pte) (pte)
213
214 /*
215 * Use some spare bits in the PTE for user-caching tags.
216 */
217 #define pte_set_forcecache hv_pte_set_client0
218 #define pte_get_forcecache hv_pte_get_client0
219 #define pte_clear_forcecache hv_pte_clear_client0
220 #define pte_set_anyhome hv_pte_set_client1
221 #define pte_get_anyhome hv_pte_get_client1
222 #define pte_clear_anyhome hv_pte_clear_client1
223
224 /*
225 * A migrating PTE has PAGE_PRESENT clear but all the other bits preserved.
226 */
227 #define pte_migrating hv_pte_get_migrating
228 #define pte_mkmigrate(x) hv_pte_set_migrating(hv_pte_clear_present(x))
229 #define pte_donemigrate(x) hv_pte_set_present(hv_pte_clear_migrating(x))
230
231 #define pte_ERROR(e) \
232 printk("%s:%d: bad pte 0x%016llx.\n", __FILE__, __LINE__, pte_val(e))
233 #define pgd_ERROR(e) \
234 printk("%s:%d: bad pgd 0x%016llx.\n", __FILE__, __LINE__, pgd_val(e))
235
236 /*
237 * set_pte_order() sets the given PTE and also sanity-checks the
238 * requested PTE against the page homecaching. Unspecified parts
239 * of the PTE are filled in when it is written to memory, i.e. all
240 * caching attributes if "!forcecache", or the home cpu if "anyhome".
241 */
242 extern void set_pte_order(pte_t *ptep, pte_t pte, int order);
243
244 #define set_pte(ptep, pteval) set_pte_order(ptep, pteval, 0)
245 #define set_pte_at(mm, addr, ptep, pteval) set_pte(ptep, pteval)
246 #define set_pte_atomic(pteptr, pteval) set_pte(pteptr, pteval)
247
248 #define pte_page(x) pfn_to_page(pte_pfn(x))
249
250 static inline int pte_none(pte_t pte)
251 {
252 return !pte.val;
253 }
254
255 static inline unsigned long pte_pfn(pte_t pte)
256 {
257 return hv_pte_get_pfn(pte);
258 }
259
260 /* Set or get the remote cache cpu in a pgprot with remote caching. */
261 extern pgprot_t set_remote_cache_cpu(pgprot_t prot, int cpu);
262 extern int get_remote_cache_cpu(pgprot_t prot);
263
264 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t prot)
265 {
266 return hv_pte_set_pfn(prot, pfn);
267 }
268
269 /* Support for priority mappings. */
270 extern void start_mm_caching(struct mm_struct *mm);
271 extern void check_mm_caching(struct mm_struct *prev, struct mm_struct *next);
272
273 /*
274 * Support non-linear file mappings (see sys_remap_file_pages).
275 * This is defined by CLIENT1 set but CLIENT0 and _PAGE_PRESENT clear, and the
276 * file offset in the 32 high bits.
277 */
278 #define _PAGE_FILE HV_PTE_CLIENT1
279 #define PTE_FILE_MAX_BITS 32
280 #define pte_file(pte) (hv_pte_get_client1(pte) && !hv_pte_get_client0(pte))
281 #define pte_to_pgoff(pte) ((pte).val >> 32)
282 #define pgoff_to_pte(off) ((pte_t) { (((long long)(off)) << 32) | _PAGE_FILE })
283
284 /*
285 * Encode and de-code a swap entry (see <linux/swapops.h>).
286 * We put the swap file type+offset in the 32 high bits;
287 * I believe we can just leave the low bits clear.
288 */
289 #define __swp_type(swp) ((swp).val & 0x1f)
290 #define __swp_offset(swp) ((swp).val >> 5)
291 #define __swp_entry(type, off) ((swp_entry_t) { (type) | ((off) << 5) })
292 #define __pte_to_swp_entry(pte) ((swp_entry_t) { (pte).val >> 32 })
293 #define __swp_entry_to_pte(swp) ((pte_t) { (((long long) ((swp).val)) << 32) })
294
295 /*
296 * clone_pgd_range(pgd_t *dst, pgd_t *src, int count);
297 *
298 * dst - pointer to pgd range anwhere on a pgd page
299 * src - ""
300 * count - the number of pgds to copy.
301 *
302 * dst and src can be on the same page, but the range must not overlap,
303 * and must not cross a page boundary.
304 */
305 static inline void clone_pgd_range(pgd_t *dst, pgd_t *src, int count)
306 {
307 memcpy(dst, src, count * sizeof(pgd_t));
308 }
309
310 /*
311 * Conversion functions: convert a page and protection to a page entry,
312 * and a page entry and page directory to the page they refer to.
313 */
314
315 #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
316
317 /*
318 * If we are doing an mprotect(), just accept the new vma->vm_page_prot
319 * value and combine it with the PFN from the old PTE to get a new PTE.
320 */
321 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
322 {
323 return pfn_pte(hv_pte_get_pfn(pte), newprot);
324 }
325
326 /*
327 * The pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD]
328 *
329 * This macro returns the index of the entry in the pgd page which would
330 * control the given virtual address.
331 */
332 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
333
334 /*
335 * pgd_offset() returns a (pgd_t *)
336 * pgd_index() is used get the offset into the pgd page's array of pgd_t's.
337 */
338 #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
339
340 /*
341 * A shortcut which implies the use of the kernel's pgd, instead
342 * of a process's.
343 */
344 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
345
346 #if defined(CONFIG_HIGHPTE)
347 extern pte_t *_pte_offset_map(pmd_t *, unsigned long address, enum km_type);
348 #define pte_offset_map(dir, address) \
349 _pte_offset_map(dir, address, KM_PTE0)
350 #define pte_offset_map_nested(dir, address) \
351 _pte_offset_map(dir, address, KM_PTE1)
352 #define pte_unmap(pte) kunmap_atomic(pte, KM_PTE0)
353 #define pte_unmap_nested(pte) kunmap_atomic(pte, KM_PTE1)
354 #else
355 #define pte_offset_map(dir, address) pte_offset_kernel(dir, address)
356 #define pte_offset_map_nested(dir, address) pte_offset_map(dir, address)
357 #define pte_unmap(pte) do { } while (0)
358 #define pte_unmap_nested(pte) do { } while (0)
359 #endif
360
361 /* Clear a non-executable kernel PTE and flush it from the TLB. */
362 #define kpte_clear_flush(ptep, vaddr) \
363 do { \
364 pte_clear(&init_mm, (vaddr), (ptep)); \
365 local_flush_tlb_page(FLUSH_NONEXEC, (vaddr), PAGE_SIZE); \
366 } while (0)
367
368 /*
369 * The kernel page tables contain what we need, and we flush when we
370 * change specific page table entries.
371 */
372 #define update_mmu_cache(vma, address, pte) do { } while (0)
373
374 #ifdef CONFIG_FLATMEM
375 #define kern_addr_valid(addr) (1)
376 #endif /* CONFIG_FLATMEM */
377
378 #define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \
379 remap_pfn_range(vma, vaddr, pfn, size, prot)
380
381 extern void vmalloc_sync_all(void);
382
383 #endif /* !__ASSEMBLY__ */
384
385 #ifdef __tilegx__
386 #include <asm/pgtable_64.h>
387 #else
388 #include <asm/pgtable_32.h>
389 #endif
390
391 #ifndef __ASSEMBLY__
392
393 static inline int pmd_none(pmd_t pmd)
394 {
395 /*
396 * Only check low word on 32-bit platforms, since it might be
397 * out of sync with upper half.
398 */
399 return (unsigned long)pmd_val(pmd) == 0;
400 }
401
402 static inline int pmd_present(pmd_t pmd)
403 {
404 return pmd_val(pmd) & _PAGE_PRESENT;
405 }
406
407 static inline int pmd_bad(pmd_t pmd)
408 {
409 return ((pmd_val(pmd) & _PAGE_ALL) != _PAGE_TABLE);
410 }
411
412 static inline unsigned long pages_to_mb(unsigned long npg)
413 {
414 return npg >> (20 - PAGE_SHIFT);
415 }
416
417 /*
418 * The pmd can be thought of an array like this: pmd_t[PTRS_PER_PMD]
419 *
420 * This function returns the index of the entry in the pmd which would
421 * control the given virtual address.
422 */
423 static inline unsigned long pmd_index(unsigned long address)
424 {
425 return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1);
426 }
427
428 /*
429 * A given kernel pmd_t maps to a specific virtual address (either a
430 * kernel huge page or a kernel pte_t table). Since kernel pte_t
431 * tables can be aligned at sub-page granularity, this function can
432 * return non-page-aligned pointers, despite its name.
433 */
434 static inline unsigned long pmd_page_vaddr(pmd_t pmd)
435 {
436 phys_addr_t pa =
437 (phys_addr_t)pmd_ptfn(pmd) << HV_LOG2_PAGE_TABLE_ALIGN;
438 return (unsigned long)__va(pa);
439 }
440
441 /*
442 * A pmd_t points to the base of a huge page or to a pte_t array.
443 * If a pte_t array, since we can have multiple per page, we don't
444 * have a one-to-one mapping of pmd_t's to pages. However, this is
445 * OK for pte_lockptr(), since we just end up with potentially one
446 * lock being used for several pte_t arrays.
447 */
448 #define pmd_page(pmd) pfn_to_page(HV_PTFN_TO_PFN(pmd_ptfn(pmd)))
449
450 /*
451 * The pte page can be thought of an array like this: pte_t[PTRS_PER_PTE]
452 *
453 * This macro returns the index of the entry in the pte page which would
454 * control the given virtual address.
455 */
456 static inline unsigned long pte_index(unsigned long address)
457 {
458 return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
459 }
460
461 static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address)
462 {
463 return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address);
464 }
465
466 static inline int pmd_huge_page(pmd_t pmd)
467 {
468 return pmd_val(pmd) & _PAGE_HUGE_PAGE;
469 }
470
471 #include <asm-generic/pgtable.h>
472
473 #endif /* !__ASSEMBLY__ */
474
475 #endif /* _ASM_TILE_PGTABLE_H */
This page took 0.052254 seconds and 5 git commands to generate.