Merge remote-tracking branches 'asoc/fix/max98371', 'asoc/fix/nau8825', 'asoc/fix...
[deliverable/linux.git] / arch / tile / kernel / pci-dma.c
1 /*
2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation, version 2.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 * NON INFRINGEMENT. See the GNU General Public License for
12 * more details.
13 */
14
15 #include <linux/mm.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/swiotlb.h>
18 #include <linux/vmalloc.h>
19 #include <linux/export.h>
20 #include <asm/tlbflush.h>
21 #include <asm/homecache.h>
22
23 /* Generic DMA mapping functions: */
24
25 /*
26 * Allocate what Linux calls "coherent" memory. On TILEPro this is
27 * uncached memory; on TILE-Gx it is hash-for-home memory.
28 */
29 #ifdef __tilepro__
30 #define PAGE_HOME_DMA PAGE_HOME_UNCACHED
31 #else
32 #define PAGE_HOME_DMA PAGE_HOME_HASH
33 #endif
34
35 static void *tile_dma_alloc_coherent(struct device *dev, size_t size,
36 dma_addr_t *dma_handle, gfp_t gfp,
37 unsigned long attrs)
38 {
39 u64 dma_mask = (dev && dev->coherent_dma_mask) ?
40 dev->coherent_dma_mask : DMA_BIT_MASK(32);
41 int node = dev ? dev_to_node(dev) : 0;
42 int order = get_order(size);
43 struct page *pg;
44 dma_addr_t addr;
45
46 gfp |= __GFP_ZERO;
47
48 /*
49 * If the mask specifies that the memory be in the first 4 GB, then
50 * we force the allocation to come from the DMA zone. We also
51 * force the node to 0 since that's the only node where the DMA
52 * zone isn't empty. If the mask size is smaller than 32 bits, we
53 * may still not be able to guarantee a suitable memory address, in
54 * which case we will return NULL. But such devices are uncommon.
55 */
56 if (dma_mask <= DMA_BIT_MASK(32)) {
57 gfp |= GFP_DMA;
58 node = 0;
59 }
60
61 pg = homecache_alloc_pages_node(node, gfp, order, PAGE_HOME_DMA);
62 if (pg == NULL)
63 return NULL;
64
65 addr = page_to_phys(pg);
66 if (addr + size > dma_mask) {
67 __homecache_free_pages(pg, order);
68 return NULL;
69 }
70
71 *dma_handle = addr;
72
73 return page_address(pg);
74 }
75
76 /*
77 * Free memory that was allocated with tile_dma_alloc_coherent.
78 */
79 static void tile_dma_free_coherent(struct device *dev, size_t size,
80 void *vaddr, dma_addr_t dma_handle,
81 unsigned long attrs)
82 {
83 homecache_free_pages((unsigned long)vaddr, get_order(size));
84 }
85
86 /*
87 * The map routines "map" the specified address range for DMA
88 * accesses. The memory belongs to the device after this call is
89 * issued, until it is unmapped with dma_unmap_single.
90 *
91 * We don't need to do any mapping, we just flush the address range
92 * out of the cache and return a DMA address.
93 *
94 * The unmap routines do whatever is necessary before the processor
95 * accesses the memory again, and must be called before the driver
96 * touches the memory. We can get away with a cache invalidate if we
97 * can count on nothing having been touched.
98 */
99
100 /* Set up a single page for DMA access. */
101 static void __dma_prep_page(struct page *page, unsigned long offset,
102 size_t size, enum dma_data_direction direction)
103 {
104 /*
105 * Flush the page from cache if necessary.
106 * On tilegx, data is delivered to hash-for-home L3; on tilepro,
107 * data is delivered direct to memory.
108 *
109 * NOTE: If we were just doing DMA_TO_DEVICE we could optimize
110 * this to be a "flush" not a "finv" and keep some of the
111 * state in cache across the DMA operation, but it doesn't seem
112 * worth creating the necessary flush_buffer_xxx() infrastructure.
113 */
114 int home = page_home(page);
115 switch (home) {
116 case PAGE_HOME_HASH:
117 #ifdef __tilegx__
118 return;
119 #endif
120 break;
121 case PAGE_HOME_UNCACHED:
122 #ifdef __tilepro__
123 return;
124 #endif
125 break;
126 case PAGE_HOME_IMMUTABLE:
127 /* Should be going to the device only. */
128 BUG_ON(direction == DMA_FROM_DEVICE ||
129 direction == DMA_BIDIRECTIONAL);
130 return;
131 case PAGE_HOME_INCOHERENT:
132 /* Incoherent anyway, so no need to work hard here. */
133 return;
134 default:
135 BUG_ON(home < 0 || home >= NR_CPUS);
136 break;
137 }
138 homecache_finv_page(page);
139
140 #ifdef DEBUG_ALIGNMENT
141 /* Warn if the region isn't cacheline aligned. */
142 if (offset & (L2_CACHE_BYTES - 1) || (size & (L2_CACHE_BYTES - 1)))
143 pr_warn("Unaligned DMA to non-hfh memory: PA %#llx/%#lx\n",
144 PFN_PHYS(page_to_pfn(page)) + offset, size);
145 #endif
146 }
147
148 /* Make the page ready to be read by the core. */
149 static void __dma_complete_page(struct page *page, unsigned long offset,
150 size_t size, enum dma_data_direction direction)
151 {
152 #ifdef __tilegx__
153 switch (page_home(page)) {
154 case PAGE_HOME_HASH:
155 /* I/O device delivered data the way the cpu wanted it. */
156 break;
157 case PAGE_HOME_INCOHERENT:
158 /* Incoherent anyway, so no need to work hard here. */
159 break;
160 case PAGE_HOME_IMMUTABLE:
161 /* Extra read-only copies are not a problem. */
162 break;
163 default:
164 /* Flush the bogus hash-for-home I/O entries to memory. */
165 homecache_finv_map_page(page, PAGE_HOME_HASH);
166 break;
167 }
168 #endif
169 }
170
171 static void __dma_prep_pa_range(dma_addr_t dma_addr, size_t size,
172 enum dma_data_direction direction)
173 {
174 struct page *page = pfn_to_page(PFN_DOWN(dma_addr));
175 unsigned long offset = dma_addr & (PAGE_SIZE - 1);
176 size_t bytes = min(size, (size_t)(PAGE_SIZE - offset));
177
178 while (size != 0) {
179 __dma_prep_page(page, offset, bytes, direction);
180 size -= bytes;
181 ++page;
182 offset = 0;
183 bytes = min((size_t)PAGE_SIZE, size);
184 }
185 }
186
187 static void __dma_complete_pa_range(dma_addr_t dma_addr, size_t size,
188 enum dma_data_direction direction)
189 {
190 struct page *page = pfn_to_page(PFN_DOWN(dma_addr));
191 unsigned long offset = dma_addr & (PAGE_SIZE - 1);
192 size_t bytes = min(size, (size_t)(PAGE_SIZE - offset));
193
194 while (size != 0) {
195 __dma_complete_page(page, offset, bytes, direction);
196 size -= bytes;
197 ++page;
198 offset = 0;
199 bytes = min((size_t)PAGE_SIZE, size);
200 }
201 }
202
203 static int tile_dma_map_sg(struct device *dev, struct scatterlist *sglist,
204 int nents, enum dma_data_direction direction,
205 unsigned long attrs)
206 {
207 struct scatterlist *sg;
208 int i;
209
210 BUG_ON(!valid_dma_direction(direction));
211
212 WARN_ON(nents == 0 || sglist->length == 0);
213
214 for_each_sg(sglist, sg, nents, i) {
215 sg->dma_address = sg_phys(sg);
216 __dma_prep_pa_range(sg->dma_address, sg->length, direction);
217 #ifdef CONFIG_NEED_SG_DMA_LENGTH
218 sg->dma_length = sg->length;
219 #endif
220 }
221
222 return nents;
223 }
224
225 static void tile_dma_unmap_sg(struct device *dev, struct scatterlist *sglist,
226 int nents, enum dma_data_direction direction,
227 unsigned long attrs)
228 {
229 struct scatterlist *sg;
230 int i;
231
232 BUG_ON(!valid_dma_direction(direction));
233 for_each_sg(sglist, sg, nents, i) {
234 sg->dma_address = sg_phys(sg);
235 __dma_complete_pa_range(sg->dma_address, sg->length,
236 direction);
237 }
238 }
239
240 static dma_addr_t tile_dma_map_page(struct device *dev, struct page *page,
241 unsigned long offset, size_t size,
242 enum dma_data_direction direction,
243 unsigned long attrs)
244 {
245 BUG_ON(!valid_dma_direction(direction));
246
247 BUG_ON(offset + size > PAGE_SIZE);
248 __dma_prep_page(page, offset, size, direction);
249
250 return page_to_pa(page) + offset;
251 }
252
253 static void tile_dma_unmap_page(struct device *dev, dma_addr_t dma_address,
254 size_t size, enum dma_data_direction direction,
255 unsigned long attrs)
256 {
257 BUG_ON(!valid_dma_direction(direction));
258
259 __dma_complete_page(pfn_to_page(PFN_DOWN(dma_address)),
260 dma_address & (PAGE_SIZE - 1), size, direction);
261 }
262
263 static void tile_dma_sync_single_for_cpu(struct device *dev,
264 dma_addr_t dma_handle,
265 size_t size,
266 enum dma_data_direction direction)
267 {
268 BUG_ON(!valid_dma_direction(direction));
269
270 __dma_complete_pa_range(dma_handle, size, direction);
271 }
272
273 static void tile_dma_sync_single_for_device(struct device *dev,
274 dma_addr_t dma_handle, size_t size,
275 enum dma_data_direction direction)
276 {
277 __dma_prep_pa_range(dma_handle, size, direction);
278 }
279
280 static void tile_dma_sync_sg_for_cpu(struct device *dev,
281 struct scatterlist *sglist, int nelems,
282 enum dma_data_direction direction)
283 {
284 struct scatterlist *sg;
285 int i;
286
287 BUG_ON(!valid_dma_direction(direction));
288 WARN_ON(nelems == 0 || sglist->length == 0);
289
290 for_each_sg(sglist, sg, nelems, i) {
291 dma_sync_single_for_cpu(dev, sg->dma_address,
292 sg_dma_len(sg), direction);
293 }
294 }
295
296 static void tile_dma_sync_sg_for_device(struct device *dev,
297 struct scatterlist *sglist, int nelems,
298 enum dma_data_direction direction)
299 {
300 struct scatterlist *sg;
301 int i;
302
303 BUG_ON(!valid_dma_direction(direction));
304 WARN_ON(nelems == 0 || sglist->length == 0);
305
306 for_each_sg(sglist, sg, nelems, i) {
307 dma_sync_single_for_device(dev, sg->dma_address,
308 sg_dma_len(sg), direction);
309 }
310 }
311
312 static inline int
313 tile_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
314 {
315 return 0;
316 }
317
318 static inline int
319 tile_dma_supported(struct device *dev, u64 mask)
320 {
321 return 1;
322 }
323
324 static struct dma_map_ops tile_default_dma_map_ops = {
325 .alloc = tile_dma_alloc_coherent,
326 .free = tile_dma_free_coherent,
327 .map_page = tile_dma_map_page,
328 .unmap_page = tile_dma_unmap_page,
329 .map_sg = tile_dma_map_sg,
330 .unmap_sg = tile_dma_unmap_sg,
331 .sync_single_for_cpu = tile_dma_sync_single_for_cpu,
332 .sync_single_for_device = tile_dma_sync_single_for_device,
333 .sync_sg_for_cpu = tile_dma_sync_sg_for_cpu,
334 .sync_sg_for_device = tile_dma_sync_sg_for_device,
335 .mapping_error = tile_dma_mapping_error,
336 .dma_supported = tile_dma_supported
337 };
338
339 struct dma_map_ops *tile_dma_map_ops = &tile_default_dma_map_ops;
340 EXPORT_SYMBOL(tile_dma_map_ops);
341
342 /* Generic PCI DMA mapping functions */
343
344 static void *tile_pci_dma_alloc_coherent(struct device *dev, size_t size,
345 dma_addr_t *dma_handle, gfp_t gfp,
346 unsigned long attrs)
347 {
348 int node = dev_to_node(dev);
349 int order = get_order(size);
350 struct page *pg;
351 dma_addr_t addr;
352
353 gfp |= __GFP_ZERO;
354
355 pg = homecache_alloc_pages_node(node, gfp, order, PAGE_HOME_DMA);
356 if (pg == NULL)
357 return NULL;
358
359 addr = page_to_phys(pg);
360
361 *dma_handle = addr + get_dma_offset(dev);
362
363 return page_address(pg);
364 }
365
366 /*
367 * Free memory that was allocated with tile_pci_dma_alloc_coherent.
368 */
369 static void tile_pci_dma_free_coherent(struct device *dev, size_t size,
370 void *vaddr, dma_addr_t dma_handle,
371 unsigned long attrs)
372 {
373 homecache_free_pages((unsigned long)vaddr, get_order(size));
374 }
375
376 static int tile_pci_dma_map_sg(struct device *dev, struct scatterlist *sglist,
377 int nents, enum dma_data_direction direction,
378 unsigned long attrs)
379 {
380 struct scatterlist *sg;
381 int i;
382
383 BUG_ON(!valid_dma_direction(direction));
384
385 WARN_ON(nents == 0 || sglist->length == 0);
386
387 for_each_sg(sglist, sg, nents, i) {
388 sg->dma_address = sg_phys(sg);
389 __dma_prep_pa_range(sg->dma_address, sg->length, direction);
390
391 sg->dma_address = sg->dma_address + get_dma_offset(dev);
392 #ifdef CONFIG_NEED_SG_DMA_LENGTH
393 sg->dma_length = sg->length;
394 #endif
395 }
396
397 return nents;
398 }
399
400 static void tile_pci_dma_unmap_sg(struct device *dev,
401 struct scatterlist *sglist, int nents,
402 enum dma_data_direction direction,
403 unsigned long attrs)
404 {
405 struct scatterlist *sg;
406 int i;
407
408 BUG_ON(!valid_dma_direction(direction));
409 for_each_sg(sglist, sg, nents, i) {
410 sg->dma_address = sg_phys(sg);
411 __dma_complete_pa_range(sg->dma_address, sg->length,
412 direction);
413 }
414 }
415
416 static dma_addr_t tile_pci_dma_map_page(struct device *dev, struct page *page,
417 unsigned long offset, size_t size,
418 enum dma_data_direction direction,
419 unsigned long attrs)
420 {
421 BUG_ON(!valid_dma_direction(direction));
422
423 BUG_ON(offset + size > PAGE_SIZE);
424 __dma_prep_page(page, offset, size, direction);
425
426 return page_to_pa(page) + offset + get_dma_offset(dev);
427 }
428
429 static void tile_pci_dma_unmap_page(struct device *dev, dma_addr_t dma_address,
430 size_t size,
431 enum dma_data_direction direction,
432 unsigned long attrs)
433 {
434 BUG_ON(!valid_dma_direction(direction));
435
436 dma_address -= get_dma_offset(dev);
437
438 __dma_complete_page(pfn_to_page(PFN_DOWN(dma_address)),
439 dma_address & (PAGE_SIZE - 1), size, direction);
440 }
441
442 static void tile_pci_dma_sync_single_for_cpu(struct device *dev,
443 dma_addr_t dma_handle,
444 size_t size,
445 enum dma_data_direction direction)
446 {
447 BUG_ON(!valid_dma_direction(direction));
448
449 dma_handle -= get_dma_offset(dev);
450
451 __dma_complete_pa_range(dma_handle, size, direction);
452 }
453
454 static void tile_pci_dma_sync_single_for_device(struct device *dev,
455 dma_addr_t dma_handle,
456 size_t size,
457 enum dma_data_direction
458 direction)
459 {
460 dma_handle -= get_dma_offset(dev);
461
462 __dma_prep_pa_range(dma_handle, size, direction);
463 }
464
465 static void tile_pci_dma_sync_sg_for_cpu(struct device *dev,
466 struct scatterlist *sglist,
467 int nelems,
468 enum dma_data_direction direction)
469 {
470 struct scatterlist *sg;
471 int i;
472
473 BUG_ON(!valid_dma_direction(direction));
474 WARN_ON(nelems == 0 || sglist->length == 0);
475
476 for_each_sg(sglist, sg, nelems, i) {
477 dma_sync_single_for_cpu(dev, sg->dma_address,
478 sg_dma_len(sg), direction);
479 }
480 }
481
482 static void tile_pci_dma_sync_sg_for_device(struct device *dev,
483 struct scatterlist *sglist,
484 int nelems,
485 enum dma_data_direction direction)
486 {
487 struct scatterlist *sg;
488 int i;
489
490 BUG_ON(!valid_dma_direction(direction));
491 WARN_ON(nelems == 0 || sglist->length == 0);
492
493 for_each_sg(sglist, sg, nelems, i) {
494 dma_sync_single_for_device(dev, sg->dma_address,
495 sg_dma_len(sg), direction);
496 }
497 }
498
499 static inline int
500 tile_pci_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
501 {
502 return 0;
503 }
504
505 static inline int
506 tile_pci_dma_supported(struct device *dev, u64 mask)
507 {
508 return 1;
509 }
510
511 static struct dma_map_ops tile_pci_default_dma_map_ops = {
512 .alloc = tile_pci_dma_alloc_coherent,
513 .free = tile_pci_dma_free_coherent,
514 .map_page = tile_pci_dma_map_page,
515 .unmap_page = tile_pci_dma_unmap_page,
516 .map_sg = tile_pci_dma_map_sg,
517 .unmap_sg = tile_pci_dma_unmap_sg,
518 .sync_single_for_cpu = tile_pci_dma_sync_single_for_cpu,
519 .sync_single_for_device = tile_pci_dma_sync_single_for_device,
520 .sync_sg_for_cpu = tile_pci_dma_sync_sg_for_cpu,
521 .sync_sg_for_device = tile_pci_dma_sync_sg_for_device,
522 .mapping_error = tile_pci_dma_mapping_error,
523 .dma_supported = tile_pci_dma_supported
524 };
525
526 struct dma_map_ops *gx_pci_dma_map_ops = &tile_pci_default_dma_map_ops;
527 EXPORT_SYMBOL(gx_pci_dma_map_ops);
528
529 /* PCI DMA mapping functions for legacy PCI devices */
530
531 #ifdef CONFIG_SWIOTLB
532 static void *tile_swiotlb_alloc_coherent(struct device *dev, size_t size,
533 dma_addr_t *dma_handle, gfp_t gfp,
534 unsigned long attrs)
535 {
536 gfp |= GFP_DMA;
537 return swiotlb_alloc_coherent(dev, size, dma_handle, gfp);
538 }
539
540 static void tile_swiotlb_free_coherent(struct device *dev, size_t size,
541 void *vaddr, dma_addr_t dma_addr,
542 unsigned long attrs)
543 {
544 swiotlb_free_coherent(dev, size, vaddr, dma_addr);
545 }
546
547 static struct dma_map_ops pci_swiotlb_dma_ops = {
548 .alloc = tile_swiotlb_alloc_coherent,
549 .free = tile_swiotlb_free_coherent,
550 .map_page = swiotlb_map_page,
551 .unmap_page = swiotlb_unmap_page,
552 .map_sg = swiotlb_map_sg_attrs,
553 .unmap_sg = swiotlb_unmap_sg_attrs,
554 .sync_single_for_cpu = swiotlb_sync_single_for_cpu,
555 .sync_single_for_device = swiotlb_sync_single_for_device,
556 .sync_sg_for_cpu = swiotlb_sync_sg_for_cpu,
557 .sync_sg_for_device = swiotlb_sync_sg_for_device,
558 .dma_supported = swiotlb_dma_supported,
559 .mapping_error = swiotlb_dma_mapping_error,
560 };
561
562 static struct dma_map_ops pci_hybrid_dma_ops = {
563 .alloc = tile_swiotlb_alloc_coherent,
564 .free = tile_swiotlb_free_coherent,
565 .map_page = tile_pci_dma_map_page,
566 .unmap_page = tile_pci_dma_unmap_page,
567 .map_sg = tile_pci_dma_map_sg,
568 .unmap_sg = tile_pci_dma_unmap_sg,
569 .sync_single_for_cpu = tile_pci_dma_sync_single_for_cpu,
570 .sync_single_for_device = tile_pci_dma_sync_single_for_device,
571 .sync_sg_for_cpu = tile_pci_dma_sync_sg_for_cpu,
572 .sync_sg_for_device = tile_pci_dma_sync_sg_for_device,
573 .mapping_error = tile_pci_dma_mapping_error,
574 .dma_supported = tile_pci_dma_supported
575 };
576
577 struct dma_map_ops *gx_legacy_pci_dma_map_ops = &pci_swiotlb_dma_ops;
578 struct dma_map_ops *gx_hybrid_pci_dma_map_ops = &pci_hybrid_dma_ops;
579 #else
580 struct dma_map_ops *gx_legacy_pci_dma_map_ops;
581 struct dma_map_ops *gx_hybrid_pci_dma_map_ops;
582 #endif
583 EXPORT_SYMBOL(gx_legacy_pci_dma_map_ops);
584 EXPORT_SYMBOL(gx_hybrid_pci_dma_map_ops);
585
586 int dma_set_mask(struct device *dev, u64 mask)
587 {
588 struct dma_map_ops *dma_ops = get_dma_ops(dev);
589
590 /*
591 * For PCI devices with 64-bit DMA addressing capability, promote
592 * the dma_ops to hybrid, with the consistent memory DMA space limited
593 * to 32-bit. For 32-bit capable devices, limit the streaming DMA
594 * address range to max_direct_dma_addr.
595 */
596 if (dma_ops == gx_pci_dma_map_ops ||
597 dma_ops == gx_hybrid_pci_dma_map_ops ||
598 dma_ops == gx_legacy_pci_dma_map_ops) {
599 if (mask == DMA_BIT_MASK(64) &&
600 dma_ops == gx_legacy_pci_dma_map_ops)
601 set_dma_ops(dev, gx_hybrid_pci_dma_map_ops);
602 else if (mask > dev->archdata.max_direct_dma_addr)
603 mask = dev->archdata.max_direct_dma_addr;
604 }
605
606 if (!dev->dma_mask || !dma_supported(dev, mask))
607 return -EIO;
608
609 *dev->dma_mask = mask;
610
611 return 0;
612 }
613 EXPORT_SYMBOL(dma_set_mask);
614
615 #ifdef CONFIG_ARCH_HAS_DMA_SET_COHERENT_MASK
616 int dma_set_coherent_mask(struct device *dev, u64 mask)
617 {
618 struct dma_map_ops *dma_ops = get_dma_ops(dev);
619
620 /*
621 * For PCI devices with 64-bit DMA addressing capability, promote
622 * the dma_ops to full capability for both streams and consistent
623 * memory access. For 32-bit capable devices, limit the consistent
624 * memory DMA range to max_direct_dma_addr.
625 */
626 if (dma_ops == gx_pci_dma_map_ops ||
627 dma_ops == gx_hybrid_pci_dma_map_ops ||
628 dma_ops == gx_legacy_pci_dma_map_ops) {
629 if (mask == DMA_BIT_MASK(64))
630 set_dma_ops(dev, gx_pci_dma_map_ops);
631 else if (mask > dev->archdata.max_direct_dma_addr)
632 mask = dev->archdata.max_direct_dma_addr;
633 }
634
635 if (!dma_supported(dev, mask))
636 return -EIO;
637 dev->coherent_dma_mask = mask;
638 return 0;
639 }
640 EXPORT_SYMBOL(dma_set_coherent_mask);
641 #endif
642
643 #ifdef ARCH_HAS_DMA_GET_REQUIRED_MASK
644 /*
645 * The generic dma_get_required_mask() uses the highest physical address
646 * (max_pfn) to provide the hint to the PCI drivers regarding 32-bit or
647 * 64-bit DMA configuration. Since TILEGx has I/O TLB/MMU, allowing the
648 * DMAs to use the full 64-bit PCI address space and not limited by
649 * the physical memory space, we always let the PCI devices use
650 * 64-bit DMA if they have that capability, by returning the 64-bit
651 * DMA mask here. The device driver has the option to use 32-bit DMA if
652 * the device is not capable of 64-bit DMA.
653 */
654 u64 dma_get_required_mask(struct device *dev)
655 {
656 return DMA_BIT_MASK(64);
657 }
658 EXPORT_SYMBOL_GPL(dma_get_required_mask);
659 #endif
This page took 0.04822 seconds and 6 git commands to generate.