tile: Use the more common pr_warn instead of pr_warning
[deliverable/linux.git] / arch / tile / kernel / setup.c
1 /*
2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation, version 2.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 * NON INFRINGEMENT. See the GNU General Public License for
12 * more details.
13 */
14
15 #include <linux/sched.h>
16 #include <linux/kernel.h>
17 #include <linux/mmzone.h>
18 #include <linux/bootmem.h>
19 #include <linux/module.h>
20 #include <linux/node.h>
21 #include <linux/cpu.h>
22 #include <linux/ioport.h>
23 #include <linux/irq.h>
24 #include <linux/kexec.h>
25 #include <linux/pci.h>
26 #include <linux/swiotlb.h>
27 #include <linux/initrd.h>
28 #include <linux/io.h>
29 #include <linux/highmem.h>
30 #include <linux/smp.h>
31 #include <linux/timex.h>
32 #include <linux/hugetlb.h>
33 #include <linux/start_kernel.h>
34 #include <linux/screen_info.h>
35 #include <asm/setup.h>
36 #include <asm/sections.h>
37 #include <asm/cacheflush.h>
38 #include <asm/pgalloc.h>
39 #include <asm/mmu_context.h>
40 #include <hv/hypervisor.h>
41 #include <arch/interrupts.h>
42
43 /* <linux/smp.h> doesn't provide this definition. */
44 #ifndef CONFIG_SMP
45 #define setup_max_cpus 1
46 #endif
47
48 static inline int ABS(int x) { return x >= 0 ? x : -x; }
49
50 /* Chip information */
51 char chip_model[64] __write_once;
52
53 #ifdef CONFIG_VT
54 struct screen_info screen_info;
55 #endif
56
57 struct pglist_data node_data[MAX_NUMNODES] __read_mostly;
58 EXPORT_SYMBOL(node_data);
59
60 /* Information on the NUMA nodes that we compute early */
61 unsigned long node_start_pfn[MAX_NUMNODES];
62 unsigned long node_end_pfn[MAX_NUMNODES];
63 unsigned long __initdata node_memmap_pfn[MAX_NUMNODES];
64 unsigned long __initdata node_percpu_pfn[MAX_NUMNODES];
65 unsigned long __initdata node_free_pfn[MAX_NUMNODES];
66
67 static unsigned long __initdata node_percpu[MAX_NUMNODES];
68
69 /*
70 * per-CPU stack and boot info.
71 */
72 DEFINE_PER_CPU(unsigned long, boot_sp) =
73 (unsigned long)init_stack + THREAD_SIZE;
74
75 #ifdef CONFIG_SMP
76 DEFINE_PER_CPU(unsigned long, boot_pc) = (unsigned long)start_kernel;
77 #else
78 /*
79 * The variable must be __initdata since it references __init code.
80 * With CONFIG_SMP it is per-cpu data, which is exempt from validation.
81 */
82 unsigned long __initdata boot_pc = (unsigned long)start_kernel;
83 #endif
84
85 #ifdef CONFIG_HIGHMEM
86 /* Page frame index of end of lowmem on each controller. */
87 unsigned long node_lowmem_end_pfn[MAX_NUMNODES];
88
89 /* Number of pages that can be mapped into lowmem. */
90 static unsigned long __initdata mappable_physpages;
91 #endif
92
93 /* Data on which physical memory controller corresponds to which NUMA node */
94 int node_controller[MAX_NUMNODES] = { [0 ... MAX_NUMNODES-1] = -1 };
95
96 #ifdef CONFIG_HIGHMEM
97 /* Map information from VAs to PAs */
98 unsigned long pbase_map[1 << (32 - HPAGE_SHIFT)]
99 __write_once __attribute__((aligned(L2_CACHE_BYTES)));
100 EXPORT_SYMBOL(pbase_map);
101
102 /* Map information from PAs to VAs */
103 void *vbase_map[NR_PA_HIGHBIT_VALUES]
104 __write_once __attribute__((aligned(L2_CACHE_BYTES)));
105 EXPORT_SYMBOL(vbase_map);
106 #endif
107
108 /* Node number as a function of the high PA bits */
109 int highbits_to_node[NR_PA_HIGHBIT_VALUES] __write_once;
110 EXPORT_SYMBOL(highbits_to_node);
111
112 static unsigned int __initdata maxmem_pfn = -1U;
113 static unsigned int __initdata maxnodemem_pfn[MAX_NUMNODES] = {
114 [0 ... MAX_NUMNODES-1] = -1U
115 };
116 static nodemask_t __initdata isolnodes;
117
118 #if defined(CONFIG_PCI) && !defined(__tilegx__)
119 enum { DEFAULT_PCI_RESERVE_MB = 64 };
120 static unsigned int __initdata pci_reserve_mb = DEFAULT_PCI_RESERVE_MB;
121 unsigned long __initdata pci_reserve_start_pfn = -1U;
122 unsigned long __initdata pci_reserve_end_pfn = -1U;
123 #endif
124
125 static int __init setup_maxmem(char *str)
126 {
127 unsigned long long maxmem;
128 if (str == NULL || (maxmem = memparse(str, NULL)) == 0)
129 return -EINVAL;
130
131 maxmem_pfn = (maxmem >> HPAGE_SHIFT) << (HPAGE_SHIFT - PAGE_SHIFT);
132 pr_info("Forcing RAM used to no more than %dMB\n",
133 maxmem_pfn >> (20 - PAGE_SHIFT));
134 return 0;
135 }
136 early_param("maxmem", setup_maxmem);
137
138 static int __init setup_maxnodemem(char *str)
139 {
140 char *endp;
141 unsigned long long maxnodemem;
142 long node;
143
144 node = str ? simple_strtoul(str, &endp, 0) : INT_MAX;
145 if (node >= MAX_NUMNODES || *endp != ':')
146 return -EINVAL;
147
148 maxnodemem = memparse(endp+1, NULL);
149 maxnodemem_pfn[node] = (maxnodemem >> HPAGE_SHIFT) <<
150 (HPAGE_SHIFT - PAGE_SHIFT);
151 pr_info("Forcing RAM used on node %ld to no more than %dMB\n",
152 node, maxnodemem_pfn[node] >> (20 - PAGE_SHIFT));
153 return 0;
154 }
155 early_param("maxnodemem", setup_maxnodemem);
156
157 struct memmap_entry {
158 u64 addr; /* start of memory segment */
159 u64 size; /* size of memory segment */
160 };
161 static struct memmap_entry memmap_map[64];
162 static int memmap_nr;
163
164 static void add_memmap_region(u64 addr, u64 size)
165 {
166 if (memmap_nr >= ARRAY_SIZE(memmap_map)) {
167 pr_err("Ooops! Too many entries in the memory map!\n");
168 return;
169 }
170 memmap_map[memmap_nr].addr = addr;
171 memmap_map[memmap_nr].size = size;
172 memmap_nr++;
173 }
174
175 static int __init setup_memmap(char *p)
176 {
177 char *oldp;
178 u64 start_at, mem_size;
179
180 if (!p)
181 return -EINVAL;
182
183 if (!strncmp(p, "exactmap", 8)) {
184 pr_err("\"memmap=exactmap\" not valid on tile\n");
185 return 0;
186 }
187
188 oldp = p;
189 mem_size = memparse(p, &p);
190 if (p == oldp)
191 return -EINVAL;
192
193 if (*p == '@') {
194 pr_err("\"memmap=nn@ss\" (force RAM) invalid on tile\n");
195 } else if (*p == '#') {
196 pr_err("\"memmap=nn#ss\" (force ACPI data) invalid on tile\n");
197 } else if (*p == '$') {
198 start_at = memparse(p+1, &p);
199 add_memmap_region(start_at, mem_size);
200 } else {
201 if (mem_size == 0)
202 return -EINVAL;
203 maxmem_pfn = (mem_size >> HPAGE_SHIFT) <<
204 (HPAGE_SHIFT - PAGE_SHIFT);
205 }
206 return *p == '\0' ? 0 : -EINVAL;
207 }
208 early_param("memmap", setup_memmap);
209
210 static int __init setup_mem(char *str)
211 {
212 return setup_maxmem(str);
213 }
214 early_param("mem", setup_mem); /* compatibility with x86 */
215
216 static int __init setup_isolnodes(char *str)
217 {
218 char buf[MAX_NUMNODES * 5];
219 if (str == NULL || nodelist_parse(str, isolnodes) != 0)
220 return -EINVAL;
221
222 nodelist_scnprintf(buf, sizeof(buf), isolnodes);
223 pr_info("Set isolnodes value to '%s'\n", buf);
224 return 0;
225 }
226 early_param("isolnodes", setup_isolnodes);
227
228 #if defined(CONFIG_PCI) && !defined(__tilegx__)
229 static int __init setup_pci_reserve(char* str)
230 {
231 if (str == NULL || kstrtouint(str, 0, &pci_reserve_mb) != 0 ||
232 pci_reserve_mb > 3 * 1024)
233 return -EINVAL;
234
235 pr_info("Reserving %dMB for PCIE root complex mappings\n",
236 pci_reserve_mb);
237 return 0;
238 }
239 early_param("pci_reserve", setup_pci_reserve);
240 #endif
241
242 #ifndef __tilegx__
243 /*
244 * vmalloc=size forces the vmalloc area to be exactly 'size' bytes.
245 * This can be used to increase (or decrease) the vmalloc area.
246 */
247 static int __init parse_vmalloc(char *arg)
248 {
249 if (!arg)
250 return -EINVAL;
251
252 VMALLOC_RESERVE = (memparse(arg, &arg) + PGDIR_SIZE - 1) & PGDIR_MASK;
253
254 /* See validate_va() for more on this test. */
255 if ((long)_VMALLOC_START >= 0)
256 early_panic("\"vmalloc=%#lx\" value too large: maximum %#lx\n",
257 VMALLOC_RESERVE, _VMALLOC_END - 0x80000000UL);
258
259 return 0;
260 }
261 early_param("vmalloc", parse_vmalloc);
262 #endif
263
264 #ifdef CONFIG_HIGHMEM
265 /*
266 * Determine for each controller where its lowmem is mapped and how much of
267 * it is mapped there. On controller zero, the first few megabytes are
268 * already mapped in as code at MEM_SV_START, so in principle we could
269 * start our data mappings higher up, but for now we don't bother, to avoid
270 * additional confusion.
271 *
272 * One question is whether, on systems with more than 768 Mb and
273 * controllers of different sizes, to map in a proportionate amount of
274 * each one, or to try to map the same amount from each controller.
275 * (E.g. if we have three controllers with 256MB, 1GB, and 256MB
276 * respectively, do we map 256MB from each, or do we map 128 MB, 512
277 * MB, and 128 MB respectively?) For now we use a proportionate
278 * solution like the latter.
279 *
280 * The VA/PA mapping demands that we align our decisions at 16 MB
281 * boundaries so that we can rapidly convert VA to PA.
282 */
283 static void *__init setup_pa_va_mapping(void)
284 {
285 unsigned long curr_pages = 0;
286 unsigned long vaddr = PAGE_OFFSET;
287 nodemask_t highonlynodes = isolnodes;
288 int i, j;
289
290 memset(pbase_map, -1, sizeof(pbase_map));
291 memset(vbase_map, -1, sizeof(vbase_map));
292
293 /* Node zero cannot be isolated for LOWMEM purposes. */
294 node_clear(0, highonlynodes);
295
296 /* Count up the number of pages on non-highonlynodes controllers. */
297 mappable_physpages = 0;
298 for_each_online_node(i) {
299 if (!node_isset(i, highonlynodes))
300 mappable_physpages +=
301 node_end_pfn[i] - node_start_pfn[i];
302 }
303
304 for_each_online_node(i) {
305 unsigned long start = node_start_pfn[i];
306 unsigned long end = node_end_pfn[i];
307 unsigned long size = end - start;
308 unsigned long vaddr_end;
309
310 if (node_isset(i, highonlynodes)) {
311 /* Mark this controller as having no lowmem. */
312 node_lowmem_end_pfn[i] = start;
313 continue;
314 }
315
316 curr_pages += size;
317 if (mappable_physpages > MAXMEM_PFN) {
318 vaddr_end = PAGE_OFFSET +
319 (((u64)curr_pages * MAXMEM_PFN /
320 mappable_physpages)
321 << PAGE_SHIFT);
322 } else {
323 vaddr_end = PAGE_OFFSET + (curr_pages << PAGE_SHIFT);
324 }
325 for (j = 0; vaddr < vaddr_end; vaddr += HPAGE_SIZE, ++j) {
326 unsigned long this_pfn =
327 start + (j << HUGETLB_PAGE_ORDER);
328 pbase_map[vaddr >> HPAGE_SHIFT] = this_pfn;
329 if (vbase_map[__pfn_to_highbits(this_pfn)] ==
330 (void *)-1)
331 vbase_map[__pfn_to_highbits(this_pfn)] =
332 (void *)(vaddr & HPAGE_MASK);
333 }
334 node_lowmem_end_pfn[i] = start + (j << HUGETLB_PAGE_ORDER);
335 BUG_ON(node_lowmem_end_pfn[i] > end);
336 }
337
338 /* Return highest address of any mapped memory. */
339 return (void *)vaddr;
340 }
341 #endif /* CONFIG_HIGHMEM */
342
343 /*
344 * Register our most important memory mappings with the debug stub.
345 *
346 * This is up to 4 mappings for lowmem, one mapping per memory
347 * controller, plus one for our text segment.
348 */
349 static void store_permanent_mappings(void)
350 {
351 int i;
352
353 for_each_online_node(i) {
354 HV_PhysAddr pa = ((HV_PhysAddr)node_start_pfn[i]) << PAGE_SHIFT;
355 #ifdef CONFIG_HIGHMEM
356 HV_PhysAddr high_mapped_pa = node_lowmem_end_pfn[i];
357 #else
358 HV_PhysAddr high_mapped_pa = node_end_pfn[i];
359 #endif
360
361 unsigned long pages = high_mapped_pa - node_start_pfn[i];
362 HV_VirtAddr addr = (HV_VirtAddr) __va(pa);
363 hv_store_mapping(addr, pages << PAGE_SHIFT, pa);
364 }
365
366 hv_store_mapping((HV_VirtAddr)_text,
367 (uint32_t)(_einittext - _text), 0);
368 }
369
370 /*
371 * Use hv_inquire_physical() to populate node_{start,end}_pfn[]
372 * and node_online_map, doing suitable sanity-checking.
373 * Also set min_low_pfn, max_low_pfn, and max_pfn.
374 */
375 static void __init setup_memory(void)
376 {
377 int i, j;
378 int highbits_seen[NR_PA_HIGHBIT_VALUES] = { 0 };
379 #ifdef CONFIG_HIGHMEM
380 long highmem_pages;
381 #endif
382 #ifndef __tilegx__
383 int cap;
384 #endif
385 #if defined(CONFIG_HIGHMEM) || defined(__tilegx__)
386 long lowmem_pages;
387 #endif
388 unsigned long physpages = 0;
389
390 /* We are using a char to hold the cpu_2_node[] mapping */
391 BUILD_BUG_ON(MAX_NUMNODES > 127);
392
393 /* Discover the ranges of memory available to us */
394 for (i = 0; ; ++i) {
395 unsigned long start, size, end, highbits;
396 HV_PhysAddrRange range = hv_inquire_physical(i);
397 if (range.size == 0)
398 break;
399 #ifdef CONFIG_FLATMEM
400 if (i > 0) {
401 pr_err("Can't use discontiguous PAs: %#llx..%#llx\n",
402 range.size, range.start + range.size);
403 continue;
404 }
405 #endif
406 #ifndef __tilegx__
407 if ((unsigned long)range.start) {
408 pr_err("Range not at 4GB multiple: %#llx..%#llx\n",
409 range.start, range.start + range.size);
410 continue;
411 }
412 #endif
413 if ((range.start & (HPAGE_SIZE-1)) != 0 ||
414 (range.size & (HPAGE_SIZE-1)) != 0) {
415 unsigned long long start_pa = range.start;
416 unsigned long long orig_size = range.size;
417 range.start = (start_pa + HPAGE_SIZE - 1) & HPAGE_MASK;
418 range.size -= (range.start - start_pa);
419 range.size &= HPAGE_MASK;
420 pr_err("Range not hugepage-aligned: %#llx..%#llx: now %#llx-%#llx\n",
421 start_pa, start_pa + orig_size,
422 range.start, range.start + range.size);
423 }
424 highbits = __pa_to_highbits(range.start);
425 if (highbits >= NR_PA_HIGHBIT_VALUES) {
426 pr_err("PA high bits too high: %#llx..%#llx\n",
427 range.start, range.start + range.size);
428 continue;
429 }
430 if (highbits_seen[highbits]) {
431 pr_err("Range overlaps in high bits: %#llx..%#llx\n",
432 range.start, range.start + range.size);
433 continue;
434 }
435 highbits_seen[highbits] = 1;
436 if (PFN_DOWN(range.size) > maxnodemem_pfn[i]) {
437 int max_size = maxnodemem_pfn[i];
438 if (max_size > 0) {
439 pr_err("Maxnodemem reduced node %d to %d pages\n",
440 i, max_size);
441 range.size = PFN_PHYS(max_size);
442 } else {
443 pr_err("Maxnodemem disabled node %d\n", i);
444 continue;
445 }
446 }
447 if (physpages + PFN_DOWN(range.size) > maxmem_pfn) {
448 int max_size = maxmem_pfn - physpages;
449 if (max_size > 0) {
450 pr_err("Maxmem reduced node %d to %d pages\n",
451 i, max_size);
452 range.size = PFN_PHYS(max_size);
453 } else {
454 pr_err("Maxmem disabled node %d\n", i);
455 continue;
456 }
457 }
458 if (i >= MAX_NUMNODES) {
459 pr_err("Too many PA nodes (#%d): %#llx...%#llx\n",
460 i, range.size, range.size + range.start);
461 continue;
462 }
463
464 start = range.start >> PAGE_SHIFT;
465 size = range.size >> PAGE_SHIFT;
466 end = start + size;
467
468 #ifndef __tilegx__
469 if (((HV_PhysAddr)end << PAGE_SHIFT) !=
470 (range.start + range.size)) {
471 pr_err("PAs too high to represent: %#llx..%#llx\n",
472 range.start, range.start + range.size);
473 continue;
474 }
475 #endif
476 #if defined(CONFIG_PCI) && !defined(__tilegx__)
477 /*
478 * Blocks that overlap the pci reserved region must
479 * have enough space to hold the maximum percpu data
480 * region at the top of the range. If there isn't
481 * enough space above the reserved region, just
482 * truncate the node.
483 */
484 if (start <= pci_reserve_start_pfn &&
485 end > pci_reserve_start_pfn) {
486 unsigned int per_cpu_size =
487 __per_cpu_end - __per_cpu_start;
488 unsigned int percpu_pages =
489 NR_CPUS * (PFN_UP(per_cpu_size) >> PAGE_SHIFT);
490 if (end < pci_reserve_end_pfn + percpu_pages) {
491 end = pci_reserve_start_pfn;
492 pr_err("PCI mapping region reduced node %d to %ld pages\n",
493 i, end - start);
494 }
495 }
496 #endif
497
498 for (j = __pfn_to_highbits(start);
499 j <= __pfn_to_highbits(end - 1); j++)
500 highbits_to_node[j] = i;
501
502 node_start_pfn[i] = start;
503 node_end_pfn[i] = end;
504 node_controller[i] = range.controller;
505 physpages += size;
506 max_pfn = end;
507
508 /* Mark node as online */
509 node_set(i, node_online_map);
510 node_set(i, node_possible_map);
511 }
512
513 #ifndef __tilegx__
514 /*
515 * For 4KB pages, mem_map "struct page" data is 1% of the size
516 * of the physical memory, so can be quite big (640 MB for
517 * four 16G zones). These structures must be mapped in
518 * lowmem, and since we currently cap out at about 768 MB,
519 * it's impractical to try to use this much address space.
520 * For now, arbitrarily cap the amount of physical memory
521 * we're willing to use at 8 million pages (32GB of 4KB pages).
522 */
523 cap = 8 * 1024 * 1024; /* 8 million pages */
524 if (physpages > cap) {
525 int num_nodes = num_online_nodes();
526 int cap_each = cap / num_nodes;
527 unsigned long dropped_pages = 0;
528 for (i = 0; i < num_nodes; ++i) {
529 int size = node_end_pfn[i] - node_start_pfn[i];
530 if (size > cap_each) {
531 dropped_pages += (size - cap_each);
532 node_end_pfn[i] = node_start_pfn[i] + cap_each;
533 }
534 }
535 physpages -= dropped_pages;
536 pr_warning("Only using %ldMB memory;"
537 " ignoring %ldMB.\n",
538 physpages >> (20 - PAGE_SHIFT),
539 dropped_pages >> (20 - PAGE_SHIFT));
540 pr_warning("Consider using a larger page size.\n");
541 }
542 #endif
543
544 /* Heap starts just above the last loaded address. */
545 min_low_pfn = PFN_UP((unsigned long)_end - PAGE_OFFSET);
546
547 #ifdef CONFIG_HIGHMEM
548 /* Find where we map lowmem from each controller. */
549 high_memory = setup_pa_va_mapping();
550
551 /* Set max_low_pfn based on what node 0 can directly address. */
552 max_low_pfn = node_lowmem_end_pfn[0];
553
554 lowmem_pages = (mappable_physpages > MAXMEM_PFN) ?
555 MAXMEM_PFN : mappable_physpages;
556 highmem_pages = (long) (physpages - lowmem_pages);
557
558 pr_notice("%ldMB HIGHMEM available\n",
559 pages_to_mb(highmem_pages > 0 ? highmem_pages : 0));
560 pr_notice("%ldMB LOWMEM available\n", pages_to_mb(lowmem_pages));
561 #else
562 /* Set max_low_pfn based on what node 0 can directly address. */
563 max_low_pfn = node_end_pfn[0];
564
565 #ifndef __tilegx__
566 if (node_end_pfn[0] > MAXMEM_PFN) {
567 pr_warning("Only using %ldMB LOWMEM.\n",
568 MAXMEM>>20);
569 pr_warning("Use a HIGHMEM enabled kernel.\n");
570 max_low_pfn = MAXMEM_PFN;
571 max_pfn = MAXMEM_PFN;
572 node_end_pfn[0] = MAXMEM_PFN;
573 } else {
574 pr_notice("%ldMB memory available\n",
575 pages_to_mb(node_end_pfn[0]));
576 }
577 for (i = 1; i < MAX_NUMNODES; ++i) {
578 node_start_pfn[i] = 0;
579 node_end_pfn[i] = 0;
580 }
581 high_memory = __va(node_end_pfn[0]);
582 #else
583 lowmem_pages = 0;
584 for (i = 0; i < MAX_NUMNODES; ++i) {
585 int pages = node_end_pfn[i] - node_start_pfn[i];
586 lowmem_pages += pages;
587 if (pages)
588 high_memory = pfn_to_kaddr(node_end_pfn[i]);
589 }
590 pr_notice("%ldMB memory available\n", pages_to_mb(lowmem_pages));
591 #endif
592 #endif
593 }
594
595 /*
596 * On 32-bit machines, we only put bootmem on the low controller,
597 * since PAs > 4GB can't be used in bootmem. In principle one could
598 * imagine, e.g., multiple 1 GB controllers all of which could support
599 * bootmem, but in practice using controllers this small isn't a
600 * particularly interesting scenario, so we just keep it simple and
601 * use only the first controller for bootmem on 32-bit machines.
602 */
603 static inline int node_has_bootmem(int nid)
604 {
605 #ifdef CONFIG_64BIT
606 return 1;
607 #else
608 return nid == 0;
609 #endif
610 }
611
612 static inline unsigned long alloc_bootmem_pfn(int nid,
613 unsigned long size,
614 unsigned long goal)
615 {
616 void *kva = __alloc_bootmem_node(NODE_DATA(nid), size,
617 PAGE_SIZE, goal);
618 unsigned long pfn = kaddr_to_pfn(kva);
619 BUG_ON(goal && PFN_PHYS(pfn) != goal);
620 return pfn;
621 }
622
623 static void __init setup_bootmem_allocator_node(int i)
624 {
625 unsigned long start, end, mapsize, mapstart;
626
627 if (node_has_bootmem(i)) {
628 NODE_DATA(i)->bdata = &bootmem_node_data[i];
629 } else {
630 /* Share controller zero's bdata for now. */
631 NODE_DATA(i)->bdata = &bootmem_node_data[0];
632 return;
633 }
634
635 /* Skip up to after the bss in node 0. */
636 start = (i == 0) ? min_low_pfn : node_start_pfn[i];
637
638 /* Only lowmem, if we're a HIGHMEM build. */
639 #ifdef CONFIG_HIGHMEM
640 end = node_lowmem_end_pfn[i];
641 #else
642 end = node_end_pfn[i];
643 #endif
644
645 /* No memory here. */
646 if (end == start)
647 return;
648
649 /* Figure out where the bootmem bitmap is located. */
650 mapsize = bootmem_bootmap_pages(end - start);
651 if (i == 0) {
652 /* Use some space right before the heap on node 0. */
653 mapstart = start;
654 start += mapsize;
655 } else {
656 /* Allocate bitmap on node 0 to avoid page table issues. */
657 mapstart = alloc_bootmem_pfn(0, PFN_PHYS(mapsize), 0);
658 }
659
660 /* Initialize a node. */
661 init_bootmem_node(NODE_DATA(i), mapstart, start, end);
662
663 /* Free all the space back into the allocator. */
664 free_bootmem(PFN_PHYS(start), PFN_PHYS(end - start));
665
666 #if defined(CONFIG_PCI) && !defined(__tilegx__)
667 /*
668 * Throw away any memory aliased by the PCI region.
669 */
670 if (pci_reserve_start_pfn < end && pci_reserve_end_pfn > start) {
671 start = max(pci_reserve_start_pfn, start);
672 end = min(pci_reserve_end_pfn, end);
673 reserve_bootmem(PFN_PHYS(start), PFN_PHYS(end - start),
674 BOOTMEM_EXCLUSIVE);
675 }
676 #endif
677 }
678
679 static void __init setup_bootmem_allocator(void)
680 {
681 int i;
682 for (i = 0; i < MAX_NUMNODES; ++i)
683 setup_bootmem_allocator_node(i);
684
685 /* Reserve any memory excluded by "memmap" arguments. */
686 for (i = 0; i < memmap_nr; ++i) {
687 struct memmap_entry *m = &memmap_map[i];
688 reserve_bootmem(m->addr, m->size, BOOTMEM_DEFAULT);
689 }
690
691 #ifdef CONFIG_BLK_DEV_INITRD
692 if (initrd_start) {
693 /* Make sure the initrd memory region is not modified. */
694 if (reserve_bootmem(initrd_start, initrd_end - initrd_start,
695 BOOTMEM_EXCLUSIVE)) {
696 pr_crit("The initrd memory region has been polluted. Disabling it.\n");
697 initrd_start = 0;
698 initrd_end = 0;
699 } else {
700 /*
701 * Translate initrd_start & initrd_end from PA to VA for
702 * future access.
703 */
704 initrd_start += PAGE_OFFSET;
705 initrd_end += PAGE_OFFSET;
706 }
707 }
708 #endif
709
710 #ifdef CONFIG_KEXEC
711 if (crashk_res.start != crashk_res.end)
712 reserve_bootmem(crashk_res.start, resource_size(&crashk_res),
713 BOOTMEM_DEFAULT);
714 #endif
715 }
716
717 void *__init alloc_remap(int nid, unsigned long size)
718 {
719 int pages = node_end_pfn[nid] - node_start_pfn[nid];
720 void *map = pfn_to_kaddr(node_memmap_pfn[nid]);
721 BUG_ON(size != pages * sizeof(struct page));
722 memset(map, 0, size);
723 return map;
724 }
725
726 static int __init percpu_size(void)
727 {
728 int size = __per_cpu_end - __per_cpu_start;
729 size += PERCPU_MODULE_RESERVE;
730 size += PERCPU_DYNAMIC_EARLY_SIZE;
731 if (size < PCPU_MIN_UNIT_SIZE)
732 size = PCPU_MIN_UNIT_SIZE;
733 size = roundup(size, PAGE_SIZE);
734
735 /* In several places we assume the per-cpu data fits on a huge page. */
736 BUG_ON(kdata_huge && size > HPAGE_SIZE);
737 return size;
738 }
739
740 static void __init zone_sizes_init(void)
741 {
742 unsigned long zones_size[MAX_NR_ZONES] = { 0 };
743 int size = percpu_size();
744 int num_cpus = smp_height * smp_width;
745 const unsigned long dma_end = (1UL << (32 - PAGE_SHIFT));
746
747 int i;
748
749 for (i = 0; i < num_cpus; ++i)
750 node_percpu[cpu_to_node(i)] += size;
751
752 for_each_online_node(i) {
753 unsigned long start = node_start_pfn[i];
754 unsigned long end = node_end_pfn[i];
755 #ifdef CONFIG_HIGHMEM
756 unsigned long lowmem_end = node_lowmem_end_pfn[i];
757 #else
758 unsigned long lowmem_end = end;
759 #endif
760 int memmap_size = (end - start) * sizeof(struct page);
761 node_free_pfn[i] = start;
762
763 /*
764 * Set aside pages for per-cpu data and the mem_map array.
765 *
766 * Since the per-cpu data requires special homecaching,
767 * if we are in kdata_huge mode, we put it at the end of
768 * the lowmem region. If we're not in kdata_huge mode,
769 * we take the per-cpu pages from the bottom of the
770 * controller, since that avoids fragmenting a huge page
771 * that users might want. We always take the memmap
772 * from the bottom of the controller, since with
773 * kdata_huge that lets it be under a huge TLB entry.
774 *
775 * If the user has requested isolnodes for a controller,
776 * though, there'll be no lowmem, so we just alloc_bootmem
777 * the memmap. There will be no percpu memory either.
778 */
779 if (i != 0 && cpu_isset(i, isolnodes)) {
780 node_memmap_pfn[i] =
781 alloc_bootmem_pfn(0, memmap_size, 0);
782 BUG_ON(node_percpu[i] != 0);
783 } else if (node_has_bootmem(start)) {
784 unsigned long goal = 0;
785 node_memmap_pfn[i] =
786 alloc_bootmem_pfn(i, memmap_size, 0);
787 if (kdata_huge)
788 goal = PFN_PHYS(lowmem_end) - node_percpu[i];
789 if (node_percpu[i])
790 node_percpu_pfn[i] =
791 alloc_bootmem_pfn(i, node_percpu[i],
792 goal);
793 } else {
794 /* In non-bootmem zones, just reserve some pages. */
795 node_memmap_pfn[i] = node_free_pfn[i];
796 node_free_pfn[i] += PFN_UP(memmap_size);
797 if (!kdata_huge) {
798 node_percpu_pfn[i] = node_free_pfn[i];
799 node_free_pfn[i] += PFN_UP(node_percpu[i]);
800 } else {
801 node_percpu_pfn[i] =
802 lowmem_end - PFN_UP(node_percpu[i]);
803 }
804 }
805
806 #ifdef CONFIG_HIGHMEM
807 if (start > lowmem_end) {
808 zones_size[ZONE_NORMAL] = 0;
809 zones_size[ZONE_HIGHMEM] = end - start;
810 } else {
811 zones_size[ZONE_NORMAL] = lowmem_end - start;
812 zones_size[ZONE_HIGHMEM] = end - lowmem_end;
813 }
814 #else
815 zones_size[ZONE_NORMAL] = end - start;
816 #endif
817
818 if (start < dma_end) {
819 zones_size[ZONE_DMA] = min(zones_size[ZONE_NORMAL],
820 dma_end - start);
821 zones_size[ZONE_NORMAL] -= zones_size[ZONE_DMA];
822 } else {
823 zones_size[ZONE_DMA] = 0;
824 }
825
826 /* Take zone metadata from controller 0 if we're isolnode. */
827 if (node_isset(i, isolnodes))
828 NODE_DATA(i)->bdata = &bootmem_node_data[0];
829
830 free_area_init_node(i, zones_size, start, NULL);
831 printk(KERN_DEBUG " Normal zone: %ld per-cpu pages\n",
832 PFN_UP(node_percpu[i]));
833
834 /* Track the type of memory on each node */
835 if (zones_size[ZONE_NORMAL] || zones_size[ZONE_DMA])
836 node_set_state(i, N_NORMAL_MEMORY);
837 #ifdef CONFIG_HIGHMEM
838 if (end != start)
839 node_set_state(i, N_HIGH_MEMORY);
840 #endif
841
842 node_set_online(i);
843 }
844 }
845
846 #ifdef CONFIG_NUMA
847
848 /* which logical CPUs are on which nodes */
849 struct cpumask node_2_cpu_mask[MAX_NUMNODES] __write_once;
850 EXPORT_SYMBOL(node_2_cpu_mask);
851
852 /* which node each logical CPU is on */
853 char cpu_2_node[NR_CPUS] __write_once __attribute__((aligned(L2_CACHE_BYTES)));
854 EXPORT_SYMBOL(cpu_2_node);
855
856 /* Return cpu_to_node() except for cpus not yet assigned, which return -1 */
857 static int __init cpu_to_bound_node(int cpu, struct cpumask* unbound_cpus)
858 {
859 if (!cpu_possible(cpu) || cpumask_test_cpu(cpu, unbound_cpus))
860 return -1;
861 else
862 return cpu_to_node(cpu);
863 }
864
865 /* Return number of immediately-adjacent tiles sharing the same NUMA node. */
866 static int __init node_neighbors(int node, int cpu,
867 struct cpumask *unbound_cpus)
868 {
869 int neighbors = 0;
870 int w = smp_width;
871 int h = smp_height;
872 int x = cpu % w;
873 int y = cpu / w;
874 if (x > 0 && cpu_to_bound_node(cpu-1, unbound_cpus) == node)
875 ++neighbors;
876 if (x < w-1 && cpu_to_bound_node(cpu+1, unbound_cpus) == node)
877 ++neighbors;
878 if (y > 0 && cpu_to_bound_node(cpu-w, unbound_cpus) == node)
879 ++neighbors;
880 if (y < h-1 && cpu_to_bound_node(cpu+w, unbound_cpus) == node)
881 ++neighbors;
882 return neighbors;
883 }
884
885 static void __init setup_numa_mapping(void)
886 {
887 int distance[MAX_NUMNODES][NR_CPUS];
888 HV_Coord coord;
889 int cpu, node, cpus, i, x, y;
890 int num_nodes = num_online_nodes();
891 struct cpumask unbound_cpus;
892 nodemask_t default_nodes;
893
894 cpumask_clear(&unbound_cpus);
895
896 /* Get set of nodes we will use for defaults */
897 nodes_andnot(default_nodes, node_online_map, isolnodes);
898 if (nodes_empty(default_nodes)) {
899 BUG_ON(!node_isset(0, node_online_map));
900 pr_err("Forcing NUMA node zero available as a default node\n");
901 node_set(0, default_nodes);
902 }
903
904 /* Populate the distance[] array */
905 memset(distance, -1, sizeof(distance));
906 cpu = 0;
907 for (coord.y = 0; coord.y < smp_height; ++coord.y) {
908 for (coord.x = 0; coord.x < smp_width;
909 ++coord.x, ++cpu) {
910 BUG_ON(cpu >= nr_cpu_ids);
911 if (!cpu_possible(cpu)) {
912 cpu_2_node[cpu] = -1;
913 continue;
914 }
915 for_each_node_mask(node, default_nodes) {
916 HV_MemoryControllerInfo info =
917 hv_inquire_memory_controller(
918 coord, node_controller[node]);
919 distance[node][cpu] =
920 ABS(info.coord.x) + ABS(info.coord.y);
921 }
922 cpumask_set_cpu(cpu, &unbound_cpus);
923 }
924 }
925 cpus = cpu;
926
927 /*
928 * Round-robin through the NUMA nodes until all the cpus are
929 * assigned. We could be more clever here (e.g. create four
930 * sorted linked lists on the same set of cpu nodes, and pull
931 * off them in round-robin sequence, removing from all four
932 * lists each time) but given the relatively small numbers
933 * involved, O(n^2) seem OK for a one-time cost.
934 */
935 node = first_node(default_nodes);
936 while (!cpumask_empty(&unbound_cpus)) {
937 int best_cpu = -1;
938 int best_distance = INT_MAX;
939 for (cpu = 0; cpu < cpus; ++cpu) {
940 if (cpumask_test_cpu(cpu, &unbound_cpus)) {
941 /*
942 * Compute metric, which is how much
943 * closer the cpu is to this memory
944 * controller than the others, shifted
945 * up, and then the number of
946 * neighbors already in the node as an
947 * epsilon adjustment to try to keep
948 * the nodes compact.
949 */
950 int d = distance[node][cpu] * num_nodes;
951 for_each_node_mask(i, default_nodes) {
952 if (i != node)
953 d -= distance[i][cpu];
954 }
955 d *= 8; /* allow space for epsilon */
956 d -= node_neighbors(node, cpu, &unbound_cpus);
957 if (d < best_distance) {
958 best_cpu = cpu;
959 best_distance = d;
960 }
961 }
962 }
963 BUG_ON(best_cpu < 0);
964 cpumask_set_cpu(best_cpu, &node_2_cpu_mask[node]);
965 cpu_2_node[best_cpu] = node;
966 cpumask_clear_cpu(best_cpu, &unbound_cpus);
967 node = next_node(node, default_nodes);
968 if (node == MAX_NUMNODES)
969 node = first_node(default_nodes);
970 }
971
972 /* Print out node assignments and set defaults for disabled cpus */
973 cpu = 0;
974 for (y = 0; y < smp_height; ++y) {
975 printk(KERN_DEBUG "NUMA cpu-to-node row %d:", y);
976 for (x = 0; x < smp_width; ++x, ++cpu) {
977 if (cpu_to_node(cpu) < 0) {
978 pr_cont(" -");
979 cpu_2_node[cpu] = first_node(default_nodes);
980 } else {
981 pr_cont(" %d", cpu_to_node(cpu));
982 }
983 }
984 pr_cont("\n");
985 }
986 }
987
988 static struct cpu cpu_devices[NR_CPUS];
989
990 static int __init topology_init(void)
991 {
992 int i;
993
994 for_each_online_node(i)
995 register_one_node(i);
996
997 for (i = 0; i < smp_height * smp_width; ++i)
998 register_cpu(&cpu_devices[i], i);
999
1000 return 0;
1001 }
1002
1003 subsys_initcall(topology_init);
1004
1005 #else /* !CONFIG_NUMA */
1006
1007 #define setup_numa_mapping() do { } while (0)
1008
1009 #endif /* CONFIG_NUMA */
1010
1011 /*
1012 * Initialize hugepage support on this cpu. We do this on all cores
1013 * early in boot: before argument parsing for the boot cpu, and after
1014 * argument parsing but before the init functions run on the secondaries.
1015 * So the values we set up here in the hypervisor may be overridden on
1016 * the boot cpu as arguments are parsed.
1017 */
1018 static void init_super_pages(void)
1019 {
1020 #ifdef CONFIG_HUGETLB_SUPER_PAGES
1021 int i;
1022 for (i = 0; i < HUGE_SHIFT_ENTRIES; ++i)
1023 hv_set_pte_super_shift(i, huge_shift[i]);
1024 #endif
1025 }
1026
1027 /**
1028 * setup_cpu() - Do all necessary per-cpu, tile-specific initialization.
1029 * @boot: Is this the boot cpu?
1030 *
1031 * Called from setup_arch() on the boot cpu, or online_secondary().
1032 */
1033 void setup_cpu(int boot)
1034 {
1035 /* The boot cpu sets up its permanent mappings much earlier. */
1036 if (!boot)
1037 store_permanent_mappings();
1038
1039 /* Allow asynchronous TLB interrupts. */
1040 #if CHIP_HAS_TILE_DMA()
1041 arch_local_irq_unmask(INT_DMATLB_MISS);
1042 arch_local_irq_unmask(INT_DMATLB_ACCESS);
1043 #endif
1044 #ifdef __tilegx__
1045 arch_local_irq_unmask(INT_SINGLE_STEP_K);
1046 #endif
1047
1048 /*
1049 * Allow user access to many generic SPRs, like the cycle
1050 * counter, PASS/FAIL/DONE, INTERRUPT_CRITICAL_SECTION, etc.
1051 */
1052 __insn_mtspr(SPR_MPL_WORLD_ACCESS_SET_0, 1);
1053
1054 #if CHIP_HAS_SN()
1055 /* Static network is not restricted. */
1056 __insn_mtspr(SPR_MPL_SN_ACCESS_SET_0, 1);
1057 #endif
1058
1059 /*
1060 * Set the MPL for interrupt control 0 & 1 to the corresponding
1061 * values. This includes access to the SYSTEM_SAVE and EX_CONTEXT
1062 * SPRs, as well as the interrupt mask.
1063 */
1064 __insn_mtspr(SPR_MPL_INTCTRL_0_SET_0, 1);
1065 __insn_mtspr(SPR_MPL_INTCTRL_1_SET_1, 1);
1066
1067 /* Initialize IRQ support for this cpu. */
1068 setup_irq_regs();
1069
1070 #ifdef CONFIG_HARDWALL
1071 /* Reset the network state on this cpu. */
1072 reset_network_state();
1073 #endif
1074
1075 init_super_pages();
1076 }
1077
1078 #ifdef CONFIG_BLK_DEV_INITRD
1079
1080 static int __initdata set_initramfs_file;
1081 static char __initdata initramfs_file[128] = "initramfs";
1082
1083 static int __init setup_initramfs_file(char *str)
1084 {
1085 if (str == NULL)
1086 return -EINVAL;
1087 strncpy(initramfs_file, str, sizeof(initramfs_file) - 1);
1088 set_initramfs_file = 1;
1089
1090 return 0;
1091 }
1092 early_param("initramfs_file", setup_initramfs_file);
1093
1094 /*
1095 * We look for a file called "initramfs" in the hvfs. If there is one, we
1096 * allocate some memory for it and it will be unpacked to the initramfs.
1097 * If it's compressed, the initd code will uncompress it first.
1098 */
1099 static void __init load_hv_initrd(void)
1100 {
1101 HV_FS_StatInfo stat;
1102 int fd, rc;
1103 void *initrd;
1104
1105 /* If initrd has already been set, skip initramfs file in hvfs. */
1106 if (initrd_start)
1107 return;
1108
1109 fd = hv_fs_findfile((HV_VirtAddr) initramfs_file);
1110 if (fd == HV_ENOENT) {
1111 if (set_initramfs_file) {
1112 pr_warning("No such hvfs initramfs file '%s'\n",
1113 initramfs_file);
1114 return;
1115 } else {
1116 /* Try old backwards-compatible name. */
1117 fd = hv_fs_findfile((HV_VirtAddr)"initramfs.cpio.gz");
1118 if (fd == HV_ENOENT)
1119 return;
1120 }
1121 }
1122 BUG_ON(fd < 0);
1123 stat = hv_fs_fstat(fd);
1124 BUG_ON(stat.size < 0);
1125 if (stat.flags & HV_FS_ISDIR) {
1126 pr_warning("Ignoring hvfs file '%s': it's a directory.\n",
1127 initramfs_file);
1128 return;
1129 }
1130 initrd = alloc_bootmem_pages(stat.size);
1131 rc = hv_fs_pread(fd, (HV_VirtAddr) initrd, stat.size, 0);
1132 if (rc != stat.size) {
1133 pr_err("Error reading %d bytes from hvfs file '%s': %d\n",
1134 stat.size, initramfs_file, rc);
1135 free_initrd_mem((unsigned long) initrd, stat.size);
1136 return;
1137 }
1138 initrd_start = (unsigned long) initrd;
1139 initrd_end = initrd_start + stat.size;
1140 }
1141
1142 void __init free_initrd_mem(unsigned long begin, unsigned long end)
1143 {
1144 free_bootmem(__pa(begin), end - begin);
1145 }
1146
1147 static int __init setup_initrd(char *str)
1148 {
1149 char *endp;
1150 unsigned long initrd_size;
1151
1152 initrd_size = str ? simple_strtoul(str, &endp, 0) : 0;
1153 if (initrd_size == 0 || *endp != '@')
1154 return -EINVAL;
1155
1156 initrd_start = simple_strtoul(endp+1, &endp, 0);
1157 if (initrd_start == 0)
1158 return -EINVAL;
1159
1160 initrd_end = initrd_start + initrd_size;
1161
1162 return 0;
1163 }
1164 early_param("initrd", setup_initrd);
1165
1166 #else
1167 static inline void load_hv_initrd(void) {}
1168 #endif /* CONFIG_BLK_DEV_INITRD */
1169
1170 static void __init validate_hv(void)
1171 {
1172 /*
1173 * It may already be too late, but let's check our built-in
1174 * configuration against what the hypervisor is providing.
1175 */
1176 unsigned long glue_size = hv_sysconf(HV_SYSCONF_GLUE_SIZE);
1177 int hv_page_size = hv_sysconf(HV_SYSCONF_PAGE_SIZE_SMALL);
1178 int hv_hpage_size = hv_sysconf(HV_SYSCONF_PAGE_SIZE_LARGE);
1179 HV_ASIDRange asid_range;
1180
1181 #ifndef CONFIG_SMP
1182 HV_Topology topology = hv_inquire_topology();
1183 BUG_ON(topology.coord.x != 0 || topology.coord.y != 0);
1184 if (topology.width != 1 || topology.height != 1) {
1185 pr_warning("Warning: booting UP kernel on %dx%d grid;"
1186 " will ignore all but first tile.\n",
1187 topology.width, topology.height);
1188 }
1189 #endif
1190
1191 if (PAGE_OFFSET + HV_GLUE_START_CPA + glue_size > (unsigned long)_text)
1192 early_panic("Hypervisor glue size %ld is too big!\n",
1193 glue_size);
1194 if (hv_page_size != PAGE_SIZE)
1195 early_panic("Hypervisor page size %#x != our %#lx\n",
1196 hv_page_size, PAGE_SIZE);
1197 if (hv_hpage_size != HPAGE_SIZE)
1198 early_panic("Hypervisor huge page size %#x != our %#lx\n",
1199 hv_hpage_size, HPAGE_SIZE);
1200
1201 #ifdef CONFIG_SMP
1202 /*
1203 * Some hypervisor APIs take a pointer to a bitmap array
1204 * whose size is at least the number of cpus on the chip.
1205 * We use a struct cpumask for this, so it must be big enough.
1206 */
1207 if ((smp_height * smp_width) > nr_cpu_ids)
1208 early_panic("Hypervisor %d x %d grid too big for Linux"
1209 " NR_CPUS %d\n", smp_height, smp_width,
1210 nr_cpu_ids);
1211 #endif
1212
1213 /*
1214 * Check that we're using allowed ASIDs, and initialize the
1215 * various asid variables to their appropriate initial states.
1216 */
1217 asid_range = hv_inquire_asid(0);
1218 min_asid = asid_range.start;
1219 __this_cpu_write(current_asid, min_asid);
1220 max_asid = asid_range.start + asid_range.size - 1;
1221
1222 if (hv_confstr(HV_CONFSTR_CHIP_MODEL, (HV_VirtAddr)chip_model,
1223 sizeof(chip_model)) < 0) {
1224 pr_err("Warning: HV_CONFSTR_CHIP_MODEL not available\n");
1225 strlcpy(chip_model, "unknown", sizeof(chip_model));
1226 }
1227 }
1228
1229 static void __init validate_va(void)
1230 {
1231 #ifndef __tilegx__ /* FIXME: GX: probably some validation relevant here */
1232 /*
1233 * Similarly, make sure we're only using allowed VAs.
1234 * We assume we can contiguously use MEM_USER_INTRPT .. MEM_HV_START,
1235 * and 0 .. KERNEL_HIGH_VADDR.
1236 * In addition, make sure we CAN'T use the end of memory, since
1237 * we use the last chunk of each pgd for the pgd_list.
1238 */
1239 int i, user_kernel_ok = 0;
1240 unsigned long max_va = 0;
1241 unsigned long list_va =
1242 ((PGD_LIST_OFFSET / sizeof(pgd_t)) << PGDIR_SHIFT);
1243
1244 for (i = 0; ; ++i) {
1245 HV_VirtAddrRange range = hv_inquire_virtual(i);
1246 if (range.size == 0)
1247 break;
1248 if (range.start <= MEM_USER_INTRPT &&
1249 range.start + range.size >= MEM_HV_START)
1250 user_kernel_ok = 1;
1251 if (range.start == 0)
1252 max_va = range.size;
1253 BUG_ON(range.start + range.size > list_va);
1254 }
1255 if (!user_kernel_ok)
1256 early_panic("Hypervisor not configured for user/kernel VAs\n");
1257 if (max_va == 0)
1258 early_panic("Hypervisor not configured for low VAs\n");
1259 if (max_va < KERNEL_HIGH_VADDR)
1260 early_panic("Hypervisor max VA %#lx smaller than %#lx\n",
1261 max_va, KERNEL_HIGH_VADDR);
1262
1263 /* Kernel PCs must have their high bit set; see intvec.S. */
1264 if ((long)VMALLOC_START >= 0)
1265 early_panic(
1266 "Linux VMALLOC region below the 2GB line (%#lx)!\n"
1267 "Reconfigure the kernel with smaller VMALLOC_RESERVE.\n",
1268 VMALLOC_START);
1269 #endif
1270 }
1271
1272 /*
1273 * cpu_lotar_map lists all the cpus that are valid for the supervisor
1274 * to cache data on at a page level, i.e. what cpus can be placed in
1275 * the LOTAR field of a PTE. It is equivalent to the set of possible
1276 * cpus plus any other cpus that are willing to share their cache.
1277 * It is set by hv_inquire_tiles(HV_INQ_TILES_LOTAR).
1278 */
1279 struct cpumask __write_once cpu_lotar_map;
1280 EXPORT_SYMBOL(cpu_lotar_map);
1281
1282 /*
1283 * hash_for_home_map lists all the tiles that hash-for-home data
1284 * will be cached on. Note that this may includes tiles that are not
1285 * valid for this supervisor to use otherwise (e.g. if a hypervisor
1286 * device is being shared between multiple supervisors).
1287 * It is set by hv_inquire_tiles(HV_INQ_TILES_HFH_CACHE).
1288 */
1289 struct cpumask hash_for_home_map;
1290 EXPORT_SYMBOL(hash_for_home_map);
1291
1292 /*
1293 * cpu_cacheable_map lists all the cpus whose caches the hypervisor can
1294 * flush on our behalf. It is set to cpu_possible_mask OR'ed with
1295 * hash_for_home_map, and it is what should be passed to
1296 * hv_flush_remote() to flush all caches. Note that if there are
1297 * dedicated hypervisor driver tiles that have authorized use of their
1298 * cache, those tiles will only appear in cpu_lotar_map, NOT in
1299 * cpu_cacheable_map, as they are a special case.
1300 */
1301 struct cpumask __write_once cpu_cacheable_map;
1302 EXPORT_SYMBOL(cpu_cacheable_map);
1303
1304 static __initdata struct cpumask disabled_map;
1305
1306 static int __init disabled_cpus(char *str)
1307 {
1308 int boot_cpu = smp_processor_id();
1309
1310 if (str == NULL || cpulist_parse_crop(str, &disabled_map) != 0)
1311 return -EINVAL;
1312 if (cpumask_test_cpu(boot_cpu, &disabled_map)) {
1313 pr_err("disabled_cpus: can't disable boot cpu %d\n", boot_cpu);
1314 cpumask_clear_cpu(boot_cpu, &disabled_map);
1315 }
1316 return 0;
1317 }
1318
1319 early_param("disabled_cpus", disabled_cpus);
1320
1321 void __init print_disabled_cpus(void)
1322 {
1323 if (!cpumask_empty(&disabled_map)) {
1324 char buf[100];
1325 cpulist_scnprintf(buf, sizeof(buf), &disabled_map);
1326 pr_info("CPUs not available for Linux: %s\n", buf);
1327 }
1328 }
1329
1330 static void __init setup_cpu_maps(void)
1331 {
1332 struct cpumask hv_disabled_map, cpu_possible_init;
1333 int boot_cpu = smp_processor_id();
1334 int cpus, i, rc;
1335
1336 /* Learn which cpus are allowed by the hypervisor. */
1337 rc = hv_inquire_tiles(HV_INQ_TILES_AVAIL,
1338 (HV_VirtAddr) cpumask_bits(&cpu_possible_init),
1339 sizeof(cpu_cacheable_map));
1340 if (rc < 0)
1341 early_panic("hv_inquire_tiles(AVAIL) failed: rc %d\n", rc);
1342 if (!cpumask_test_cpu(boot_cpu, &cpu_possible_init))
1343 early_panic("Boot CPU %d disabled by hypervisor!\n", boot_cpu);
1344
1345 /* Compute the cpus disabled by the hvconfig file. */
1346 cpumask_complement(&hv_disabled_map, &cpu_possible_init);
1347
1348 /* Include them with the cpus disabled by "disabled_cpus". */
1349 cpumask_or(&disabled_map, &disabled_map, &hv_disabled_map);
1350
1351 /*
1352 * Disable every cpu after "setup_max_cpus". But don't mark
1353 * as disabled the cpus that are outside of our initial rectangle,
1354 * since that turns out to be confusing.
1355 */
1356 cpus = 1; /* this cpu */
1357 cpumask_set_cpu(boot_cpu, &disabled_map); /* ignore this cpu */
1358 for (i = 0; cpus < setup_max_cpus; ++i)
1359 if (!cpumask_test_cpu(i, &disabled_map))
1360 ++cpus;
1361 for (; i < smp_height * smp_width; ++i)
1362 cpumask_set_cpu(i, &disabled_map);
1363 cpumask_clear_cpu(boot_cpu, &disabled_map); /* reset this cpu */
1364 for (i = smp_height * smp_width; i < NR_CPUS; ++i)
1365 cpumask_clear_cpu(i, &disabled_map);
1366
1367 /*
1368 * Setup cpu_possible map as every cpu allocated to us, minus
1369 * the results of any "disabled_cpus" settings.
1370 */
1371 cpumask_andnot(&cpu_possible_init, &cpu_possible_init, &disabled_map);
1372 init_cpu_possible(&cpu_possible_init);
1373
1374 /* Learn which cpus are valid for LOTAR caching. */
1375 rc = hv_inquire_tiles(HV_INQ_TILES_LOTAR,
1376 (HV_VirtAddr) cpumask_bits(&cpu_lotar_map),
1377 sizeof(cpu_lotar_map));
1378 if (rc < 0) {
1379 pr_err("warning: no HV_INQ_TILES_LOTAR; using AVAIL\n");
1380 cpu_lotar_map = *cpu_possible_mask;
1381 }
1382
1383 /* Retrieve set of CPUs used for hash-for-home caching */
1384 rc = hv_inquire_tiles(HV_INQ_TILES_HFH_CACHE,
1385 (HV_VirtAddr) hash_for_home_map.bits,
1386 sizeof(hash_for_home_map));
1387 if (rc < 0)
1388 early_panic("hv_inquire_tiles(HFH_CACHE) failed: rc %d\n", rc);
1389 cpumask_or(&cpu_cacheable_map, cpu_possible_mask, &hash_for_home_map);
1390 }
1391
1392
1393 static int __init dataplane(char *str)
1394 {
1395 pr_warning("WARNING: dataplane support disabled in this kernel\n");
1396 return 0;
1397 }
1398
1399 early_param("dataplane", dataplane);
1400
1401 #ifdef CONFIG_CMDLINE_BOOL
1402 static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
1403 #endif
1404
1405 void __init setup_arch(char **cmdline_p)
1406 {
1407 int len;
1408
1409 #if defined(CONFIG_CMDLINE_BOOL) && defined(CONFIG_CMDLINE_OVERRIDE)
1410 len = hv_get_command_line((HV_VirtAddr) boot_command_line,
1411 COMMAND_LINE_SIZE);
1412 if (boot_command_line[0])
1413 pr_warning("WARNING: ignoring dynamic command line \"%s\"\n",
1414 boot_command_line);
1415 strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
1416 #else
1417 char *hv_cmdline;
1418 #if defined(CONFIG_CMDLINE_BOOL)
1419 if (builtin_cmdline[0]) {
1420 int builtin_len = strlcpy(boot_command_line, builtin_cmdline,
1421 COMMAND_LINE_SIZE);
1422 if (builtin_len < COMMAND_LINE_SIZE-1)
1423 boot_command_line[builtin_len++] = ' ';
1424 hv_cmdline = &boot_command_line[builtin_len];
1425 len = COMMAND_LINE_SIZE - builtin_len;
1426 } else
1427 #endif
1428 {
1429 hv_cmdline = boot_command_line;
1430 len = COMMAND_LINE_SIZE;
1431 }
1432 len = hv_get_command_line((HV_VirtAddr) hv_cmdline, len);
1433 if (len < 0 || len > COMMAND_LINE_SIZE)
1434 early_panic("hv_get_command_line failed: %d\n", len);
1435 #endif
1436
1437 *cmdline_p = boot_command_line;
1438
1439 /* Set disabled_map and setup_max_cpus very early */
1440 parse_early_param();
1441
1442 /* Make sure the kernel is compatible with the hypervisor. */
1443 validate_hv();
1444 validate_va();
1445
1446 setup_cpu_maps();
1447
1448
1449 #if defined(CONFIG_PCI) && !defined(__tilegx__)
1450 /*
1451 * Initialize the PCI structures. This is done before memory
1452 * setup so that we know whether or not a pci_reserve region
1453 * is necessary.
1454 */
1455 if (tile_pci_init() == 0)
1456 pci_reserve_mb = 0;
1457
1458 /* PCI systems reserve a region just below 4GB for mapping iomem. */
1459 pci_reserve_end_pfn = (1 << (32 - PAGE_SHIFT));
1460 pci_reserve_start_pfn = pci_reserve_end_pfn -
1461 (pci_reserve_mb << (20 - PAGE_SHIFT));
1462 #endif
1463
1464 init_mm.start_code = (unsigned long) _text;
1465 init_mm.end_code = (unsigned long) _etext;
1466 init_mm.end_data = (unsigned long) _edata;
1467 init_mm.brk = (unsigned long) _end;
1468
1469 setup_memory();
1470 store_permanent_mappings();
1471 setup_bootmem_allocator();
1472
1473 /*
1474 * NOTE: before this point _nobody_ is allowed to allocate
1475 * any memory using the bootmem allocator.
1476 */
1477
1478 #ifdef CONFIG_SWIOTLB
1479 swiotlb_init(0);
1480 #endif
1481
1482 paging_init();
1483 setup_numa_mapping();
1484 zone_sizes_init();
1485 set_page_homes();
1486 setup_cpu(1);
1487 setup_clock();
1488 load_hv_initrd();
1489 }
1490
1491
1492 /*
1493 * Set up per-cpu memory.
1494 */
1495
1496 unsigned long __per_cpu_offset[NR_CPUS] __write_once;
1497 EXPORT_SYMBOL(__per_cpu_offset);
1498
1499 static size_t __initdata pfn_offset[MAX_NUMNODES] = { 0 };
1500 static unsigned long __initdata percpu_pfn[NR_CPUS] = { 0 };
1501
1502 /*
1503 * As the percpu code allocates pages, we return the pages from the
1504 * end of the node for the specified cpu.
1505 */
1506 static void *__init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align)
1507 {
1508 int nid = cpu_to_node(cpu);
1509 unsigned long pfn = node_percpu_pfn[nid] + pfn_offset[nid];
1510
1511 BUG_ON(size % PAGE_SIZE != 0);
1512 pfn_offset[nid] += size / PAGE_SIZE;
1513 BUG_ON(node_percpu[nid] < size);
1514 node_percpu[nid] -= size;
1515 if (percpu_pfn[cpu] == 0)
1516 percpu_pfn[cpu] = pfn;
1517 return pfn_to_kaddr(pfn);
1518 }
1519
1520 /*
1521 * Pages reserved for percpu memory are not freeable, and in any case we are
1522 * on a short path to panic() in setup_per_cpu_area() at this point anyway.
1523 */
1524 static void __init pcpu_fc_free(void *ptr, size_t size)
1525 {
1526 }
1527
1528 /*
1529 * Set up vmalloc page tables using bootmem for the percpu code.
1530 */
1531 static void __init pcpu_fc_populate_pte(unsigned long addr)
1532 {
1533 pgd_t *pgd;
1534 pud_t *pud;
1535 pmd_t *pmd;
1536 pte_t *pte;
1537
1538 BUG_ON(pgd_addr_invalid(addr));
1539 if (addr < VMALLOC_START || addr >= VMALLOC_END)
1540 panic("PCPU addr %#lx outside vmalloc range %#lx..%#lx; try increasing CONFIG_VMALLOC_RESERVE\n",
1541 addr, VMALLOC_START, VMALLOC_END);
1542
1543 pgd = swapper_pg_dir + pgd_index(addr);
1544 pud = pud_offset(pgd, addr);
1545 BUG_ON(!pud_present(*pud));
1546 pmd = pmd_offset(pud, addr);
1547 if (pmd_present(*pmd)) {
1548 BUG_ON(pmd_huge_page(*pmd));
1549 } else {
1550 pte = __alloc_bootmem(L2_KERNEL_PGTABLE_SIZE,
1551 HV_PAGE_TABLE_ALIGN, 0);
1552 pmd_populate_kernel(&init_mm, pmd, pte);
1553 }
1554 }
1555
1556 void __init setup_per_cpu_areas(void)
1557 {
1558 struct page *pg;
1559 unsigned long delta, pfn, lowmem_va;
1560 unsigned long size = percpu_size();
1561 char *ptr;
1562 int rc, cpu, i;
1563
1564 rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE, pcpu_fc_alloc,
1565 pcpu_fc_free, pcpu_fc_populate_pte);
1566 if (rc < 0)
1567 panic("Cannot initialize percpu area (err=%d)", rc);
1568
1569 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1570 for_each_possible_cpu(cpu) {
1571 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
1572
1573 /* finv the copy out of cache so we can change homecache */
1574 ptr = pcpu_base_addr + pcpu_unit_offsets[cpu];
1575 __finv_buffer(ptr, size);
1576 pfn = percpu_pfn[cpu];
1577
1578 /* Rewrite the page tables to cache on that cpu */
1579 pg = pfn_to_page(pfn);
1580 for (i = 0; i < size; i += PAGE_SIZE, ++pfn, ++pg) {
1581
1582 /* Update the vmalloc mapping and page home. */
1583 unsigned long addr = (unsigned long)ptr + i;
1584 pte_t *ptep = virt_to_kpte(addr);
1585 pte_t pte = *ptep;
1586 BUG_ON(pfn != pte_pfn(pte));
1587 pte = hv_pte_set_mode(pte, HV_PTE_MODE_CACHE_TILE_L3);
1588 pte = set_remote_cache_cpu(pte, cpu);
1589 set_pte_at(&init_mm, addr, ptep, pte);
1590
1591 /* Update the lowmem mapping for consistency. */
1592 lowmem_va = (unsigned long)pfn_to_kaddr(pfn);
1593 ptep = virt_to_kpte(lowmem_va);
1594 if (pte_huge(*ptep)) {
1595 printk(KERN_DEBUG "early shatter of huge page at %#lx\n",
1596 lowmem_va);
1597 shatter_pmd((pmd_t *)ptep);
1598 ptep = virt_to_kpte(lowmem_va);
1599 BUG_ON(pte_huge(*ptep));
1600 }
1601 BUG_ON(pfn != pte_pfn(*ptep));
1602 set_pte_at(&init_mm, lowmem_va, ptep, pte);
1603 }
1604 }
1605
1606 /* Set our thread pointer appropriately. */
1607 set_my_cpu_offset(__per_cpu_offset[smp_processor_id()]);
1608
1609 /* Make sure the finv's have completed. */
1610 mb_incoherent();
1611
1612 /* Flush the TLB so we reference it properly from here on out. */
1613 local_flush_tlb_all();
1614 }
1615
1616 static struct resource data_resource = {
1617 .name = "Kernel data",
1618 .start = 0,
1619 .end = 0,
1620 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
1621 };
1622
1623 static struct resource code_resource = {
1624 .name = "Kernel code",
1625 .start = 0,
1626 .end = 0,
1627 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
1628 };
1629
1630 /*
1631 * On Pro, we reserve all resources above 4GB so that PCI won't try to put
1632 * mappings above 4GB.
1633 */
1634 #if defined(CONFIG_PCI) && !defined(__tilegx__)
1635 static struct resource* __init
1636 insert_non_bus_resource(void)
1637 {
1638 struct resource *res =
1639 kzalloc(sizeof(struct resource), GFP_ATOMIC);
1640 if (!res)
1641 return NULL;
1642 res->name = "Non-Bus Physical Address Space";
1643 res->start = (1ULL << 32);
1644 res->end = -1LL;
1645 res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
1646 if (insert_resource(&iomem_resource, res)) {
1647 kfree(res);
1648 return NULL;
1649 }
1650 return res;
1651 }
1652 #endif
1653
1654 static struct resource* __init
1655 insert_ram_resource(u64 start_pfn, u64 end_pfn, bool reserved)
1656 {
1657 struct resource *res =
1658 kzalloc(sizeof(struct resource), GFP_ATOMIC);
1659 if (!res)
1660 return NULL;
1661 res->name = reserved ? "Reserved" : "System RAM";
1662 res->start = start_pfn << PAGE_SHIFT;
1663 res->end = (end_pfn << PAGE_SHIFT) - 1;
1664 res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
1665 if (insert_resource(&iomem_resource, res)) {
1666 kfree(res);
1667 return NULL;
1668 }
1669 return res;
1670 }
1671
1672 /*
1673 * Request address space for all standard resources
1674 *
1675 * If the system includes PCI root complex drivers, we need to create
1676 * a window just below 4GB where PCI BARs can be mapped.
1677 */
1678 static int __init request_standard_resources(void)
1679 {
1680 int i;
1681 enum { CODE_DELTA = MEM_SV_START - PAGE_OFFSET };
1682
1683 #if defined(CONFIG_PCI) && !defined(__tilegx__)
1684 insert_non_bus_resource();
1685 #endif
1686
1687 for_each_online_node(i) {
1688 u64 start_pfn = node_start_pfn[i];
1689 u64 end_pfn = node_end_pfn[i];
1690
1691 #if defined(CONFIG_PCI) && !defined(__tilegx__)
1692 if (start_pfn <= pci_reserve_start_pfn &&
1693 end_pfn > pci_reserve_start_pfn) {
1694 if (end_pfn > pci_reserve_end_pfn)
1695 insert_ram_resource(pci_reserve_end_pfn,
1696 end_pfn, 0);
1697 end_pfn = pci_reserve_start_pfn;
1698 }
1699 #endif
1700 insert_ram_resource(start_pfn, end_pfn, 0);
1701 }
1702
1703 code_resource.start = __pa(_text - CODE_DELTA);
1704 code_resource.end = __pa(_etext - CODE_DELTA)-1;
1705 data_resource.start = __pa(_sdata);
1706 data_resource.end = __pa(_end)-1;
1707
1708 insert_resource(&iomem_resource, &code_resource);
1709 insert_resource(&iomem_resource, &data_resource);
1710
1711 /* Mark any "memmap" regions busy for the resource manager. */
1712 for (i = 0; i < memmap_nr; ++i) {
1713 struct memmap_entry *m = &memmap_map[i];
1714 insert_ram_resource(PFN_DOWN(m->addr),
1715 PFN_UP(m->addr + m->size - 1), 1);
1716 }
1717
1718 #ifdef CONFIG_KEXEC
1719 insert_resource(&iomem_resource, &crashk_res);
1720 #endif
1721
1722 return 0;
1723 }
1724
1725 subsys_initcall(request_standard_resources);
This page took 0.067829 seconds and 5 git commands to generate.