Merge tag 'acpi-4.8-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael...
[deliverable/linux.git] / arch / x86 / crypto / aesni-intel_glue.c
1 /*
2 * Support for Intel AES-NI instructions. This file contains glue
3 * code, the real AES implementation is in intel-aes_asm.S.
4 *
5 * Copyright (C) 2008, Intel Corp.
6 * Author: Huang Ying <ying.huang@intel.com>
7 *
8 * Added RFC4106 AES-GCM support for 128-bit keys under the AEAD
9 * interface for 64-bit kernels.
10 * Authors: Adrian Hoban <adrian.hoban@intel.com>
11 * Gabriele Paoloni <gabriele.paoloni@intel.com>
12 * Tadeusz Struk (tadeusz.struk@intel.com)
13 * Aidan O'Mahony (aidan.o.mahony@intel.com)
14 * Copyright (c) 2010, Intel Corporation.
15 *
16 * This program is free software; you can redistribute it and/or modify
17 * it under the terms of the GNU General Public License as published by
18 * the Free Software Foundation; either version 2 of the License, or
19 * (at your option) any later version.
20 */
21
22 #include <linux/hardirq.h>
23 #include <linux/types.h>
24 #include <linux/crypto.h>
25 #include <linux/module.h>
26 #include <linux/err.h>
27 #include <crypto/algapi.h>
28 #include <crypto/aes.h>
29 #include <crypto/cryptd.h>
30 #include <crypto/ctr.h>
31 #include <crypto/b128ops.h>
32 #include <crypto/lrw.h>
33 #include <crypto/xts.h>
34 #include <asm/cpu_device_id.h>
35 #include <asm/fpu/api.h>
36 #include <asm/crypto/aes.h>
37 #include <crypto/ablk_helper.h>
38 #include <crypto/scatterwalk.h>
39 #include <crypto/internal/aead.h>
40 #include <linux/workqueue.h>
41 #include <linux/spinlock.h>
42 #ifdef CONFIG_X86_64
43 #include <asm/crypto/glue_helper.h>
44 #endif
45
46
47 #define AESNI_ALIGN 16
48 #define AES_BLOCK_MASK (~(AES_BLOCK_SIZE - 1))
49 #define RFC4106_HASH_SUBKEY_SIZE 16
50
51 /* This data is stored at the end of the crypto_tfm struct.
52 * It's a type of per "session" data storage location.
53 * This needs to be 16 byte aligned.
54 */
55 struct aesni_rfc4106_gcm_ctx {
56 u8 hash_subkey[16] __attribute__ ((__aligned__(AESNI_ALIGN)));
57 struct crypto_aes_ctx aes_key_expanded
58 __attribute__ ((__aligned__(AESNI_ALIGN)));
59 u8 nonce[4];
60 };
61
62 struct aesni_lrw_ctx {
63 struct lrw_table_ctx lrw_table;
64 u8 raw_aes_ctx[sizeof(struct crypto_aes_ctx) + AESNI_ALIGN - 1];
65 };
66
67 struct aesni_xts_ctx {
68 u8 raw_tweak_ctx[sizeof(struct crypto_aes_ctx) + AESNI_ALIGN - 1];
69 u8 raw_crypt_ctx[sizeof(struct crypto_aes_ctx) + AESNI_ALIGN - 1];
70 };
71
72 asmlinkage int aesni_set_key(struct crypto_aes_ctx *ctx, const u8 *in_key,
73 unsigned int key_len);
74 asmlinkage void aesni_enc(struct crypto_aes_ctx *ctx, u8 *out,
75 const u8 *in);
76 asmlinkage void aesni_dec(struct crypto_aes_ctx *ctx, u8 *out,
77 const u8 *in);
78 asmlinkage void aesni_ecb_enc(struct crypto_aes_ctx *ctx, u8 *out,
79 const u8 *in, unsigned int len);
80 asmlinkage void aesni_ecb_dec(struct crypto_aes_ctx *ctx, u8 *out,
81 const u8 *in, unsigned int len);
82 asmlinkage void aesni_cbc_enc(struct crypto_aes_ctx *ctx, u8 *out,
83 const u8 *in, unsigned int len, u8 *iv);
84 asmlinkage void aesni_cbc_dec(struct crypto_aes_ctx *ctx, u8 *out,
85 const u8 *in, unsigned int len, u8 *iv);
86
87 int crypto_fpu_init(void);
88 void crypto_fpu_exit(void);
89
90 #define AVX_GEN2_OPTSIZE 640
91 #define AVX_GEN4_OPTSIZE 4096
92
93 #ifdef CONFIG_X86_64
94
95 static void (*aesni_ctr_enc_tfm)(struct crypto_aes_ctx *ctx, u8 *out,
96 const u8 *in, unsigned int len, u8 *iv);
97 asmlinkage void aesni_ctr_enc(struct crypto_aes_ctx *ctx, u8 *out,
98 const u8 *in, unsigned int len, u8 *iv);
99
100 asmlinkage void aesni_xts_crypt8(struct crypto_aes_ctx *ctx, u8 *out,
101 const u8 *in, bool enc, u8 *iv);
102
103 /* asmlinkage void aesni_gcm_enc()
104 * void *ctx, AES Key schedule. Starts on a 16 byte boundary.
105 * u8 *out, Ciphertext output. Encrypt in-place is allowed.
106 * const u8 *in, Plaintext input
107 * unsigned long plaintext_len, Length of data in bytes for encryption.
108 * u8 *iv, Pre-counter block j0: 4 byte salt (from Security Association)
109 * concatenated with 8 byte Initialisation Vector (from IPSec ESP
110 * Payload) concatenated with 0x00000001. 16-byte aligned pointer.
111 * u8 *hash_subkey, the Hash sub key input. Data starts on a 16-byte boundary.
112 * const u8 *aad, Additional Authentication Data (AAD)
113 * unsigned long aad_len, Length of AAD in bytes. With RFC4106 this
114 * is going to be 8 or 12 bytes
115 * u8 *auth_tag, Authenticated Tag output.
116 * unsigned long auth_tag_len), Authenticated Tag Length in bytes.
117 * Valid values are 16 (most likely), 12 or 8.
118 */
119 asmlinkage void aesni_gcm_enc(void *ctx, u8 *out,
120 const u8 *in, unsigned long plaintext_len, u8 *iv,
121 u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
122 u8 *auth_tag, unsigned long auth_tag_len);
123
124 /* asmlinkage void aesni_gcm_dec()
125 * void *ctx, AES Key schedule. Starts on a 16 byte boundary.
126 * u8 *out, Plaintext output. Decrypt in-place is allowed.
127 * const u8 *in, Ciphertext input
128 * unsigned long ciphertext_len, Length of data in bytes for decryption.
129 * u8 *iv, Pre-counter block j0: 4 byte salt (from Security Association)
130 * concatenated with 8 byte Initialisation Vector (from IPSec ESP
131 * Payload) concatenated with 0x00000001. 16-byte aligned pointer.
132 * u8 *hash_subkey, the Hash sub key input. Data starts on a 16-byte boundary.
133 * const u8 *aad, Additional Authentication Data (AAD)
134 * unsigned long aad_len, Length of AAD in bytes. With RFC4106 this is going
135 * to be 8 or 12 bytes
136 * u8 *auth_tag, Authenticated Tag output.
137 * unsigned long auth_tag_len) Authenticated Tag Length in bytes.
138 * Valid values are 16 (most likely), 12 or 8.
139 */
140 asmlinkage void aesni_gcm_dec(void *ctx, u8 *out,
141 const u8 *in, unsigned long ciphertext_len, u8 *iv,
142 u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
143 u8 *auth_tag, unsigned long auth_tag_len);
144
145
146 #ifdef CONFIG_AS_AVX
147 asmlinkage void aes_ctr_enc_128_avx_by8(const u8 *in, u8 *iv,
148 void *keys, u8 *out, unsigned int num_bytes);
149 asmlinkage void aes_ctr_enc_192_avx_by8(const u8 *in, u8 *iv,
150 void *keys, u8 *out, unsigned int num_bytes);
151 asmlinkage void aes_ctr_enc_256_avx_by8(const u8 *in, u8 *iv,
152 void *keys, u8 *out, unsigned int num_bytes);
153 /*
154 * asmlinkage void aesni_gcm_precomp_avx_gen2()
155 * gcm_data *my_ctx_data, context data
156 * u8 *hash_subkey, the Hash sub key input. Data starts on a 16-byte boundary.
157 */
158 asmlinkage void aesni_gcm_precomp_avx_gen2(void *my_ctx_data, u8 *hash_subkey);
159
160 asmlinkage void aesni_gcm_enc_avx_gen2(void *ctx, u8 *out,
161 const u8 *in, unsigned long plaintext_len, u8 *iv,
162 const u8 *aad, unsigned long aad_len,
163 u8 *auth_tag, unsigned long auth_tag_len);
164
165 asmlinkage void aesni_gcm_dec_avx_gen2(void *ctx, u8 *out,
166 const u8 *in, unsigned long ciphertext_len, u8 *iv,
167 const u8 *aad, unsigned long aad_len,
168 u8 *auth_tag, unsigned long auth_tag_len);
169
170 static void aesni_gcm_enc_avx(void *ctx, u8 *out,
171 const u8 *in, unsigned long plaintext_len, u8 *iv,
172 u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
173 u8 *auth_tag, unsigned long auth_tag_len)
174 {
175 struct crypto_aes_ctx *aes_ctx = (struct crypto_aes_ctx*)ctx;
176 if ((plaintext_len < AVX_GEN2_OPTSIZE) || (aes_ctx-> key_length != AES_KEYSIZE_128)){
177 aesni_gcm_enc(ctx, out, in, plaintext_len, iv, hash_subkey, aad,
178 aad_len, auth_tag, auth_tag_len);
179 } else {
180 aesni_gcm_precomp_avx_gen2(ctx, hash_subkey);
181 aesni_gcm_enc_avx_gen2(ctx, out, in, plaintext_len, iv, aad,
182 aad_len, auth_tag, auth_tag_len);
183 }
184 }
185
186 static void aesni_gcm_dec_avx(void *ctx, u8 *out,
187 const u8 *in, unsigned long ciphertext_len, u8 *iv,
188 u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
189 u8 *auth_tag, unsigned long auth_tag_len)
190 {
191 struct crypto_aes_ctx *aes_ctx = (struct crypto_aes_ctx*)ctx;
192 if ((ciphertext_len < AVX_GEN2_OPTSIZE) || (aes_ctx-> key_length != AES_KEYSIZE_128)) {
193 aesni_gcm_dec(ctx, out, in, ciphertext_len, iv, hash_subkey, aad,
194 aad_len, auth_tag, auth_tag_len);
195 } else {
196 aesni_gcm_precomp_avx_gen2(ctx, hash_subkey);
197 aesni_gcm_dec_avx_gen2(ctx, out, in, ciphertext_len, iv, aad,
198 aad_len, auth_tag, auth_tag_len);
199 }
200 }
201 #endif
202
203 #ifdef CONFIG_AS_AVX2
204 /*
205 * asmlinkage void aesni_gcm_precomp_avx_gen4()
206 * gcm_data *my_ctx_data, context data
207 * u8 *hash_subkey, the Hash sub key input. Data starts on a 16-byte boundary.
208 */
209 asmlinkage void aesni_gcm_precomp_avx_gen4(void *my_ctx_data, u8 *hash_subkey);
210
211 asmlinkage void aesni_gcm_enc_avx_gen4(void *ctx, u8 *out,
212 const u8 *in, unsigned long plaintext_len, u8 *iv,
213 const u8 *aad, unsigned long aad_len,
214 u8 *auth_tag, unsigned long auth_tag_len);
215
216 asmlinkage void aesni_gcm_dec_avx_gen4(void *ctx, u8 *out,
217 const u8 *in, unsigned long ciphertext_len, u8 *iv,
218 const u8 *aad, unsigned long aad_len,
219 u8 *auth_tag, unsigned long auth_tag_len);
220
221 static void aesni_gcm_enc_avx2(void *ctx, u8 *out,
222 const u8 *in, unsigned long plaintext_len, u8 *iv,
223 u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
224 u8 *auth_tag, unsigned long auth_tag_len)
225 {
226 struct crypto_aes_ctx *aes_ctx = (struct crypto_aes_ctx*)ctx;
227 if ((plaintext_len < AVX_GEN2_OPTSIZE) || (aes_ctx-> key_length != AES_KEYSIZE_128)) {
228 aesni_gcm_enc(ctx, out, in, plaintext_len, iv, hash_subkey, aad,
229 aad_len, auth_tag, auth_tag_len);
230 } else if (plaintext_len < AVX_GEN4_OPTSIZE) {
231 aesni_gcm_precomp_avx_gen2(ctx, hash_subkey);
232 aesni_gcm_enc_avx_gen2(ctx, out, in, plaintext_len, iv, aad,
233 aad_len, auth_tag, auth_tag_len);
234 } else {
235 aesni_gcm_precomp_avx_gen4(ctx, hash_subkey);
236 aesni_gcm_enc_avx_gen4(ctx, out, in, plaintext_len, iv, aad,
237 aad_len, auth_tag, auth_tag_len);
238 }
239 }
240
241 static void aesni_gcm_dec_avx2(void *ctx, u8 *out,
242 const u8 *in, unsigned long ciphertext_len, u8 *iv,
243 u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
244 u8 *auth_tag, unsigned long auth_tag_len)
245 {
246 struct crypto_aes_ctx *aes_ctx = (struct crypto_aes_ctx*)ctx;
247 if ((ciphertext_len < AVX_GEN2_OPTSIZE) || (aes_ctx-> key_length != AES_KEYSIZE_128)) {
248 aesni_gcm_dec(ctx, out, in, ciphertext_len, iv, hash_subkey,
249 aad, aad_len, auth_tag, auth_tag_len);
250 } else if (ciphertext_len < AVX_GEN4_OPTSIZE) {
251 aesni_gcm_precomp_avx_gen2(ctx, hash_subkey);
252 aesni_gcm_dec_avx_gen2(ctx, out, in, ciphertext_len, iv, aad,
253 aad_len, auth_tag, auth_tag_len);
254 } else {
255 aesni_gcm_precomp_avx_gen4(ctx, hash_subkey);
256 aesni_gcm_dec_avx_gen4(ctx, out, in, ciphertext_len, iv, aad,
257 aad_len, auth_tag, auth_tag_len);
258 }
259 }
260 #endif
261
262 static void (*aesni_gcm_enc_tfm)(void *ctx, u8 *out,
263 const u8 *in, unsigned long plaintext_len, u8 *iv,
264 u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
265 u8 *auth_tag, unsigned long auth_tag_len);
266
267 static void (*aesni_gcm_dec_tfm)(void *ctx, u8 *out,
268 const u8 *in, unsigned long ciphertext_len, u8 *iv,
269 u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
270 u8 *auth_tag, unsigned long auth_tag_len);
271
272 static inline struct
273 aesni_rfc4106_gcm_ctx *aesni_rfc4106_gcm_ctx_get(struct crypto_aead *tfm)
274 {
275 unsigned long align = AESNI_ALIGN;
276
277 if (align <= crypto_tfm_ctx_alignment())
278 align = 1;
279 return PTR_ALIGN(crypto_aead_ctx(tfm), align);
280 }
281 #endif
282
283 static inline struct crypto_aes_ctx *aes_ctx(void *raw_ctx)
284 {
285 unsigned long addr = (unsigned long)raw_ctx;
286 unsigned long align = AESNI_ALIGN;
287
288 if (align <= crypto_tfm_ctx_alignment())
289 align = 1;
290 return (struct crypto_aes_ctx *)ALIGN(addr, align);
291 }
292
293 static int aes_set_key_common(struct crypto_tfm *tfm, void *raw_ctx,
294 const u8 *in_key, unsigned int key_len)
295 {
296 struct crypto_aes_ctx *ctx = aes_ctx(raw_ctx);
297 u32 *flags = &tfm->crt_flags;
298 int err;
299
300 if (key_len != AES_KEYSIZE_128 && key_len != AES_KEYSIZE_192 &&
301 key_len != AES_KEYSIZE_256) {
302 *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
303 return -EINVAL;
304 }
305
306 if (!irq_fpu_usable())
307 err = crypto_aes_expand_key(ctx, in_key, key_len);
308 else {
309 kernel_fpu_begin();
310 err = aesni_set_key(ctx, in_key, key_len);
311 kernel_fpu_end();
312 }
313
314 return err;
315 }
316
317 static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
318 unsigned int key_len)
319 {
320 return aes_set_key_common(tfm, crypto_tfm_ctx(tfm), in_key, key_len);
321 }
322
323 static void aes_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
324 {
325 struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm));
326
327 if (!irq_fpu_usable())
328 crypto_aes_encrypt_x86(ctx, dst, src);
329 else {
330 kernel_fpu_begin();
331 aesni_enc(ctx, dst, src);
332 kernel_fpu_end();
333 }
334 }
335
336 static void aes_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
337 {
338 struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm));
339
340 if (!irq_fpu_usable())
341 crypto_aes_decrypt_x86(ctx, dst, src);
342 else {
343 kernel_fpu_begin();
344 aesni_dec(ctx, dst, src);
345 kernel_fpu_end();
346 }
347 }
348
349 static void __aes_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
350 {
351 struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm));
352
353 aesni_enc(ctx, dst, src);
354 }
355
356 static void __aes_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
357 {
358 struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm));
359
360 aesni_dec(ctx, dst, src);
361 }
362
363 static int ecb_encrypt(struct blkcipher_desc *desc,
364 struct scatterlist *dst, struct scatterlist *src,
365 unsigned int nbytes)
366 {
367 struct crypto_aes_ctx *ctx = aes_ctx(crypto_blkcipher_ctx(desc->tfm));
368 struct blkcipher_walk walk;
369 int err;
370
371 blkcipher_walk_init(&walk, dst, src, nbytes);
372 err = blkcipher_walk_virt(desc, &walk);
373 desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
374
375 kernel_fpu_begin();
376 while ((nbytes = walk.nbytes)) {
377 aesni_ecb_enc(ctx, walk.dst.virt.addr, walk.src.virt.addr,
378 nbytes & AES_BLOCK_MASK);
379 nbytes &= AES_BLOCK_SIZE - 1;
380 err = blkcipher_walk_done(desc, &walk, nbytes);
381 }
382 kernel_fpu_end();
383
384 return err;
385 }
386
387 static int ecb_decrypt(struct blkcipher_desc *desc,
388 struct scatterlist *dst, struct scatterlist *src,
389 unsigned int nbytes)
390 {
391 struct crypto_aes_ctx *ctx = aes_ctx(crypto_blkcipher_ctx(desc->tfm));
392 struct blkcipher_walk walk;
393 int err;
394
395 blkcipher_walk_init(&walk, dst, src, nbytes);
396 err = blkcipher_walk_virt(desc, &walk);
397 desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
398
399 kernel_fpu_begin();
400 while ((nbytes = walk.nbytes)) {
401 aesni_ecb_dec(ctx, walk.dst.virt.addr, walk.src.virt.addr,
402 nbytes & AES_BLOCK_MASK);
403 nbytes &= AES_BLOCK_SIZE - 1;
404 err = blkcipher_walk_done(desc, &walk, nbytes);
405 }
406 kernel_fpu_end();
407
408 return err;
409 }
410
411 static int cbc_encrypt(struct blkcipher_desc *desc,
412 struct scatterlist *dst, struct scatterlist *src,
413 unsigned int nbytes)
414 {
415 struct crypto_aes_ctx *ctx = aes_ctx(crypto_blkcipher_ctx(desc->tfm));
416 struct blkcipher_walk walk;
417 int err;
418
419 blkcipher_walk_init(&walk, dst, src, nbytes);
420 err = blkcipher_walk_virt(desc, &walk);
421 desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
422
423 kernel_fpu_begin();
424 while ((nbytes = walk.nbytes)) {
425 aesni_cbc_enc(ctx, walk.dst.virt.addr, walk.src.virt.addr,
426 nbytes & AES_BLOCK_MASK, walk.iv);
427 nbytes &= AES_BLOCK_SIZE - 1;
428 err = blkcipher_walk_done(desc, &walk, nbytes);
429 }
430 kernel_fpu_end();
431
432 return err;
433 }
434
435 static int cbc_decrypt(struct blkcipher_desc *desc,
436 struct scatterlist *dst, struct scatterlist *src,
437 unsigned int nbytes)
438 {
439 struct crypto_aes_ctx *ctx = aes_ctx(crypto_blkcipher_ctx(desc->tfm));
440 struct blkcipher_walk walk;
441 int err;
442
443 blkcipher_walk_init(&walk, dst, src, nbytes);
444 err = blkcipher_walk_virt(desc, &walk);
445 desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
446
447 kernel_fpu_begin();
448 while ((nbytes = walk.nbytes)) {
449 aesni_cbc_dec(ctx, walk.dst.virt.addr, walk.src.virt.addr,
450 nbytes & AES_BLOCK_MASK, walk.iv);
451 nbytes &= AES_BLOCK_SIZE - 1;
452 err = blkcipher_walk_done(desc, &walk, nbytes);
453 }
454 kernel_fpu_end();
455
456 return err;
457 }
458
459 #ifdef CONFIG_X86_64
460 static void ctr_crypt_final(struct crypto_aes_ctx *ctx,
461 struct blkcipher_walk *walk)
462 {
463 u8 *ctrblk = walk->iv;
464 u8 keystream[AES_BLOCK_SIZE];
465 u8 *src = walk->src.virt.addr;
466 u8 *dst = walk->dst.virt.addr;
467 unsigned int nbytes = walk->nbytes;
468
469 aesni_enc(ctx, keystream, ctrblk);
470 crypto_xor(keystream, src, nbytes);
471 memcpy(dst, keystream, nbytes);
472 crypto_inc(ctrblk, AES_BLOCK_SIZE);
473 }
474
475 #ifdef CONFIG_AS_AVX
476 static void aesni_ctr_enc_avx_tfm(struct crypto_aes_ctx *ctx, u8 *out,
477 const u8 *in, unsigned int len, u8 *iv)
478 {
479 /*
480 * based on key length, override with the by8 version
481 * of ctr mode encryption/decryption for improved performance
482 * aes_set_key_common() ensures that key length is one of
483 * {128,192,256}
484 */
485 if (ctx->key_length == AES_KEYSIZE_128)
486 aes_ctr_enc_128_avx_by8(in, iv, (void *)ctx, out, len);
487 else if (ctx->key_length == AES_KEYSIZE_192)
488 aes_ctr_enc_192_avx_by8(in, iv, (void *)ctx, out, len);
489 else
490 aes_ctr_enc_256_avx_by8(in, iv, (void *)ctx, out, len);
491 }
492 #endif
493
494 static int ctr_crypt(struct blkcipher_desc *desc,
495 struct scatterlist *dst, struct scatterlist *src,
496 unsigned int nbytes)
497 {
498 struct crypto_aes_ctx *ctx = aes_ctx(crypto_blkcipher_ctx(desc->tfm));
499 struct blkcipher_walk walk;
500 int err;
501
502 blkcipher_walk_init(&walk, dst, src, nbytes);
503 err = blkcipher_walk_virt_block(desc, &walk, AES_BLOCK_SIZE);
504 desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
505
506 kernel_fpu_begin();
507 while ((nbytes = walk.nbytes) >= AES_BLOCK_SIZE) {
508 aesni_ctr_enc_tfm(ctx, walk.dst.virt.addr, walk.src.virt.addr,
509 nbytes & AES_BLOCK_MASK, walk.iv);
510 nbytes &= AES_BLOCK_SIZE - 1;
511 err = blkcipher_walk_done(desc, &walk, nbytes);
512 }
513 if (walk.nbytes) {
514 ctr_crypt_final(ctx, &walk);
515 err = blkcipher_walk_done(desc, &walk, 0);
516 }
517 kernel_fpu_end();
518
519 return err;
520 }
521 #endif
522
523 static int ablk_ecb_init(struct crypto_tfm *tfm)
524 {
525 return ablk_init_common(tfm, "__driver-ecb-aes-aesni");
526 }
527
528 static int ablk_cbc_init(struct crypto_tfm *tfm)
529 {
530 return ablk_init_common(tfm, "__driver-cbc-aes-aesni");
531 }
532
533 #ifdef CONFIG_X86_64
534 static int ablk_ctr_init(struct crypto_tfm *tfm)
535 {
536 return ablk_init_common(tfm, "__driver-ctr-aes-aesni");
537 }
538
539 #endif
540
541 #if IS_ENABLED(CONFIG_CRYPTO_PCBC)
542 static int ablk_pcbc_init(struct crypto_tfm *tfm)
543 {
544 return ablk_init_common(tfm, "fpu(pcbc(__driver-aes-aesni))");
545 }
546 #endif
547
548 static void lrw_xts_encrypt_callback(void *ctx, u8 *blks, unsigned int nbytes)
549 {
550 aesni_ecb_enc(ctx, blks, blks, nbytes);
551 }
552
553 static void lrw_xts_decrypt_callback(void *ctx, u8 *blks, unsigned int nbytes)
554 {
555 aesni_ecb_dec(ctx, blks, blks, nbytes);
556 }
557
558 static int lrw_aesni_setkey(struct crypto_tfm *tfm, const u8 *key,
559 unsigned int keylen)
560 {
561 struct aesni_lrw_ctx *ctx = crypto_tfm_ctx(tfm);
562 int err;
563
564 err = aes_set_key_common(tfm, ctx->raw_aes_ctx, key,
565 keylen - AES_BLOCK_SIZE);
566 if (err)
567 return err;
568
569 return lrw_init_table(&ctx->lrw_table, key + keylen - AES_BLOCK_SIZE);
570 }
571
572 static void lrw_aesni_exit_tfm(struct crypto_tfm *tfm)
573 {
574 struct aesni_lrw_ctx *ctx = crypto_tfm_ctx(tfm);
575
576 lrw_free_table(&ctx->lrw_table);
577 }
578
579 static int lrw_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
580 struct scatterlist *src, unsigned int nbytes)
581 {
582 struct aesni_lrw_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
583 be128 buf[8];
584 struct lrw_crypt_req req = {
585 .tbuf = buf,
586 .tbuflen = sizeof(buf),
587
588 .table_ctx = &ctx->lrw_table,
589 .crypt_ctx = aes_ctx(ctx->raw_aes_ctx),
590 .crypt_fn = lrw_xts_encrypt_callback,
591 };
592 int ret;
593
594 desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
595
596 kernel_fpu_begin();
597 ret = lrw_crypt(desc, dst, src, nbytes, &req);
598 kernel_fpu_end();
599
600 return ret;
601 }
602
603 static int lrw_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
604 struct scatterlist *src, unsigned int nbytes)
605 {
606 struct aesni_lrw_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
607 be128 buf[8];
608 struct lrw_crypt_req req = {
609 .tbuf = buf,
610 .tbuflen = sizeof(buf),
611
612 .table_ctx = &ctx->lrw_table,
613 .crypt_ctx = aes_ctx(ctx->raw_aes_ctx),
614 .crypt_fn = lrw_xts_decrypt_callback,
615 };
616 int ret;
617
618 desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
619
620 kernel_fpu_begin();
621 ret = lrw_crypt(desc, dst, src, nbytes, &req);
622 kernel_fpu_end();
623
624 return ret;
625 }
626
627 static int xts_aesni_setkey(struct crypto_tfm *tfm, const u8 *key,
628 unsigned int keylen)
629 {
630 struct aesni_xts_ctx *ctx = crypto_tfm_ctx(tfm);
631 int err;
632
633 err = xts_check_key(tfm, key, keylen);
634 if (err)
635 return err;
636
637 /* first half of xts-key is for crypt */
638 err = aes_set_key_common(tfm, ctx->raw_crypt_ctx, key, keylen / 2);
639 if (err)
640 return err;
641
642 /* second half of xts-key is for tweak */
643 return aes_set_key_common(tfm, ctx->raw_tweak_ctx, key + keylen / 2,
644 keylen / 2);
645 }
646
647
648 static void aesni_xts_tweak(void *ctx, u8 *out, const u8 *in)
649 {
650 aesni_enc(ctx, out, in);
651 }
652
653 #ifdef CONFIG_X86_64
654
655 static void aesni_xts_enc(void *ctx, u128 *dst, const u128 *src, le128 *iv)
656 {
657 glue_xts_crypt_128bit_one(ctx, dst, src, iv, GLUE_FUNC_CAST(aesni_enc));
658 }
659
660 static void aesni_xts_dec(void *ctx, u128 *dst, const u128 *src, le128 *iv)
661 {
662 glue_xts_crypt_128bit_one(ctx, dst, src, iv, GLUE_FUNC_CAST(aesni_dec));
663 }
664
665 static void aesni_xts_enc8(void *ctx, u128 *dst, const u128 *src, le128 *iv)
666 {
667 aesni_xts_crypt8(ctx, (u8 *)dst, (const u8 *)src, true, (u8 *)iv);
668 }
669
670 static void aesni_xts_dec8(void *ctx, u128 *dst, const u128 *src, le128 *iv)
671 {
672 aesni_xts_crypt8(ctx, (u8 *)dst, (const u8 *)src, false, (u8 *)iv);
673 }
674
675 static const struct common_glue_ctx aesni_enc_xts = {
676 .num_funcs = 2,
677 .fpu_blocks_limit = 1,
678
679 .funcs = { {
680 .num_blocks = 8,
681 .fn_u = { .xts = GLUE_XTS_FUNC_CAST(aesni_xts_enc8) }
682 }, {
683 .num_blocks = 1,
684 .fn_u = { .xts = GLUE_XTS_FUNC_CAST(aesni_xts_enc) }
685 } }
686 };
687
688 static const struct common_glue_ctx aesni_dec_xts = {
689 .num_funcs = 2,
690 .fpu_blocks_limit = 1,
691
692 .funcs = { {
693 .num_blocks = 8,
694 .fn_u = { .xts = GLUE_XTS_FUNC_CAST(aesni_xts_dec8) }
695 }, {
696 .num_blocks = 1,
697 .fn_u = { .xts = GLUE_XTS_FUNC_CAST(aesni_xts_dec) }
698 } }
699 };
700
701 static int xts_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
702 struct scatterlist *src, unsigned int nbytes)
703 {
704 struct aesni_xts_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
705
706 return glue_xts_crypt_128bit(&aesni_enc_xts, desc, dst, src, nbytes,
707 XTS_TWEAK_CAST(aesni_xts_tweak),
708 aes_ctx(ctx->raw_tweak_ctx),
709 aes_ctx(ctx->raw_crypt_ctx));
710 }
711
712 static int xts_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
713 struct scatterlist *src, unsigned int nbytes)
714 {
715 struct aesni_xts_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
716
717 return glue_xts_crypt_128bit(&aesni_dec_xts, desc, dst, src, nbytes,
718 XTS_TWEAK_CAST(aesni_xts_tweak),
719 aes_ctx(ctx->raw_tweak_ctx),
720 aes_ctx(ctx->raw_crypt_ctx));
721 }
722
723 #else
724
725 static int xts_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
726 struct scatterlist *src, unsigned int nbytes)
727 {
728 struct aesni_xts_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
729 be128 buf[8];
730 struct xts_crypt_req req = {
731 .tbuf = buf,
732 .tbuflen = sizeof(buf),
733
734 .tweak_ctx = aes_ctx(ctx->raw_tweak_ctx),
735 .tweak_fn = aesni_xts_tweak,
736 .crypt_ctx = aes_ctx(ctx->raw_crypt_ctx),
737 .crypt_fn = lrw_xts_encrypt_callback,
738 };
739 int ret;
740
741 desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
742
743 kernel_fpu_begin();
744 ret = xts_crypt(desc, dst, src, nbytes, &req);
745 kernel_fpu_end();
746
747 return ret;
748 }
749
750 static int xts_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
751 struct scatterlist *src, unsigned int nbytes)
752 {
753 struct aesni_xts_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
754 be128 buf[8];
755 struct xts_crypt_req req = {
756 .tbuf = buf,
757 .tbuflen = sizeof(buf),
758
759 .tweak_ctx = aes_ctx(ctx->raw_tweak_ctx),
760 .tweak_fn = aesni_xts_tweak,
761 .crypt_ctx = aes_ctx(ctx->raw_crypt_ctx),
762 .crypt_fn = lrw_xts_decrypt_callback,
763 };
764 int ret;
765
766 desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
767
768 kernel_fpu_begin();
769 ret = xts_crypt(desc, dst, src, nbytes, &req);
770 kernel_fpu_end();
771
772 return ret;
773 }
774
775 #endif
776
777 #ifdef CONFIG_X86_64
778 static int rfc4106_init(struct crypto_aead *aead)
779 {
780 struct cryptd_aead *cryptd_tfm;
781 struct cryptd_aead **ctx = crypto_aead_ctx(aead);
782
783 cryptd_tfm = cryptd_alloc_aead("__driver-gcm-aes-aesni",
784 CRYPTO_ALG_INTERNAL,
785 CRYPTO_ALG_INTERNAL);
786 if (IS_ERR(cryptd_tfm))
787 return PTR_ERR(cryptd_tfm);
788
789 *ctx = cryptd_tfm;
790 crypto_aead_set_reqsize(aead, crypto_aead_reqsize(&cryptd_tfm->base));
791 return 0;
792 }
793
794 static void rfc4106_exit(struct crypto_aead *aead)
795 {
796 struct cryptd_aead **ctx = crypto_aead_ctx(aead);
797
798 cryptd_free_aead(*ctx);
799 }
800
801 static int
802 rfc4106_set_hash_subkey(u8 *hash_subkey, const u8 *key, unsigned int key_len)
803 {
804 struct crypto_cipher *tfm;
805 int ret;
806
807 tfm = crypto_alloc_cipher("aes", 0, 0);
808 if (IS_ERR(tfm))
809 return PTR_ERR(tfm);
810
811 ret = crypto_cipher_setkey(tfm, key, key_len);
812 if (ret)
813 goto out_free_cipher;
814
815 /* Clear the data in the hash sub key container to zero.*/
816 /* We want to cipher all zeros to create the hash sub key. */
817 memset(hash_subkey, 0, RFC4106_HASH_SUBKEY_SIZE);
818
819 crypto_cipher_encrypt_one(tfm, hash_subkey, hash_subkey);
820
821 out_free_cipher:
822 crypto_free_cipher(tfm);
823 return ret;
824 }
825
826 static int common_rfc4106_set_key(struct crypto_aead *aead, const u8 *key,
827 unsigned int key_len)
828 {
829 struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(aead);
830
831 if (key_len < 4) {
832 crypto_aead_set_flags(aead, CRYPTO_TFM_RES_BAD_KEY_LEN);
833 return -EINVAL;
834 }
835 /*Account for 4 byte nonce at the end.*/
836 key_len -= 4;
837
838 memcpy(ctx->nonce, key + key_len, sizeof(ctx->nonce));
839
840 return aes_set_key_common(crypto_aead_tfm(aead),
841 &ctx->aes_key_expanded, key, key_len) ?:
842 rfc4106_set_hash_subkey(ctx->hash_subkey, key, key_len);
843 }
844
845 static int rfc4106_set_key(struct crypto_aead *parent, const u8 *key,
846 unsigned int key_len)
847 {
848 struct cryptd_aead **ctx = crypto_aead_ctx(parent);
849 struct cryptd_aead *cryptd_tfm = *ctx;
850
851 return crypto_aead_setkey(&cryptd_tfm->base, key, key_len);
852 }
853
854 static int common_rfc4106_set_authsize(struct crypto_aead *aead,
855 unsigned int authsize)
856 {
857 switch (authsize) {
858 case 8:
859 case 12:
860 case 16:
861 break;
862 default:
863 return -EINVAL;
864 }
865
866 return 0;
867 }
868
869 /* This is the Integrity Check Value (aka the authentication tag length and can
870 * be 8, 12 or 16 bytes long. */
871 static int rfc4106_set_authsize(struct crypto_aead *parent,
872 unsigned int authsize)
873 {
874 struct cryptd_aead **ctx = crypto_aead_ctx(parent);
875 struct cryptd_aead *cryptd_tfm = *ctx;
876
877 return crypto_aead_setauthsize(&cryptd_tfm->base, authsize);
878 }
879
880 static int helper_rfc4106_encrypt(struct aead_request *req)
881 {
882 u8 one_entry_in_sg = 0;
883 u8 *src, *dst, *assoc;
884 __be32 counter = cpu_to_be32(1);
885 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
886 struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(tfm);
887 void *aes_ctx = &(ctx->aes_key_expanded);
888 unsigned long auth_tag_len = crypto_aead_authsize(tfm);
889 u8 iv[16] __attribute__ ((__aligned__(AESNI_ALIGN)));
890 struct scatter_walk src_sg_walk;
891 struct scatter_walk dst_sg_walk;
892 unsigned int i;
893
894 /* Assuming we are supporting rfc4106 64-bit extended */
895 /* sequence numbers We need to have the AAD length equal */
896 /* to 16 or 20 bytes */
897 if (unlikely(req->assoclen != 16 && req->assoclen != 20))
898 return -EINVAL;
899
900 /* IV below built */
901 for (i = 0; i < 4; i++)
902 *(iv+i) = ctx->nonce[i];
903 for (i = 0; i < 8; i++)
904 *(iv+4+i) = req->iv[i];
905 *((__be32 *)(iv+12)) = counter;
906
907 if (sg_is_last(req->src) &&
908 req->src->offset + req->src->length <= PAGE_SIZE &&
909 sg_is_last(req->dst) &&
910 req->dst->offset + req->dst->length <= PAGE_SIZE) {
911 one_entry_in_sg = 1;
912 scatterwalk_start(&src_sg_walk, req->src);
913 assoc = scatterwalk_map(&src_sg_walk);
914 src = assoc + req->assoclen;
915 dst = src;
916 if (unlikely(req->src != req->dst)) {
917 scatterwalk_start(&dst_sg_walk, req->dst);
918 dst = scatterwalk_map(&dst_sg_walk) + req->assoclen;
919 }
920 } else {
921 /* Allocate memory for src, dst, assoc */
922 assoc = kmalloc(req->cryptlen + auth_tag_len + req->assoclen,
923 GFP_ATOMIC);
924 if (unlikely(!assoc))
925 return -ENOMEM;
926 scatterwalk_map_and_copy(assoc, req->src, 0,
927 req->assoclen + req->cryptlen, 0);
928 src = assoc + req->assoclen;
929 dst = src;
930 }
931
932 kernel_fpu_begin();
933 aesni_gcm_enc_tfm(aes_ctx, dst, src, req->cryptlen, iv,
934 ctx->hash_subkey, assoc, req->assoclen - 8,
935 dst + req->cryptlen, auth_tag_len);
936 kernel_fpu_end();
937
938 /* The authTag (aka the Integrity Check Value) needs to be written
939 * back to the packet. */
940 if (one_entry_in_sg) {
941 if (unlikely(req->src != req->dst)) {
942 scatterwalk_unmap(dst - req->assoclen);
943 scatterwalk_advance(&dst_sg_walk, req->dst->length);
944 scatterwalk_done(&dst_sg_walk, 1, 0);
945 }
946 scatterwalk_unmap(assoc);
947 scatterwalk_advance(&src_sg_walk, req->src->length);
948 scatterwalk_done(&src_sg_walk, req->src == req->dst, 0);
949 } else {
950 scatterwalk_map_and_copy(dst, req->dst, req->assoclen,
951 req->cryptlen + auth_tag_len, 1);
952 kfree(assoc);
953 }
954 return 0;
955 }
956
957 static int helper_rfc4106_decrypt(struct aead_request *req)
958 {
959 u8 one_entry_in_sg = 0;
960 u8 *src, *dst, *assoc;
961 unsigned long tempCipherLen = 0;
962 __be32 counter = cpu_to_be32(1);
963 int retval = 0;
964 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
965 struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(tfm);
966 void *aes_ctx = &(ctx->aes_key_expanded);
967 unsigned long auth_tag_len = crypto_aead_authsize(tfm);
968 u8 iv[16] __attribute__ ((__aligned__(AESNI_ALIGN)));
969 u8 authTag[16];
970 struct scatter_walk src_sg_walk;
971 struct scatter_walk dst_sg_walk;
972 unsigned int i;
973
974 if (unlikely(req->assoclen != 16 && req->assoclen != 20))
975 return -EINVAL;
976
977 /* Assuming we are supporting rfc4106 64-bit extended */
978 /* sequence numbers We need to have the AAD length */
979 /* equal to 16 or 20 bytes */
980
981 tempCipherLen = (unsigned long)(req->cryptlen - auth_tag_len);
982 /* IV below built */
983 for (i = 0; i < 4; i++)
984 *(iv+i) = ctx->nonce[i];
985 for (i = 0; i < 8; i++)
986 *(iv+4+i) = req->iv[i];
987 *((__be32 *)(iv+12)) = counter;
988
989 if (sg_is_last(req->src) &&
990 req->src->offset + req->src->length <= PAGE_SIZE &&
991 sg_is_last(req->dst) &&
992 req->dst->offset + req->dst->length <= PAGE_SIZE) {
993 one_entry_in_sg = 1;
994 scatterwalk_start(&src_sg_walk, req->src);
995 assoc = scatterwalk_map(&src_sg_walk);
996 src = assoc + req->assoclen;
997 dst = src;
998 if (unlikely(req->src != req->dst)) {
999 scatterwalk_start(&dst_sg_walk, req->dst);
1000 dst = scatterwalk_map(&dst_sg_walk) + req->assoclen;
1001 }
1002
1003 } else {
1004 /* Allocate memory for src, dst, assoc */
1005 assoc = kmalloc(req->cryptlen + req->assoclen, GFP_ATOMIC);
1006 if (!assoc)
1007 return -ENOMEM;
1008 scatterwalk_map_and_copy(assoc, req->src, 0,
1009 req->assoclen + req->cryptlen, 0);
1010 src = assoc + req->assoclen;
1011 dst = src;
1012 }
1013
1014 kernel_fpu_begin();
1015 aesni_gcm_dec_tfm(aes_ctx, dst, src, tempCipherLen, iv,
1016 ctx->hash_subkey, assoc, req->assoclen - 8,
1017 authTag, auth_tag_len);
1018 kernel_fpu_end();
1019
1020 /* Compare generated tag with passed in tag. */
1021 retval = crypto_memneq(src + tempCipherLen, authTag, auth_tag_len) ?
1022 -EBADMSG : 0;
1023
1024 if (one_entry_in_sg) {
1025 if (unlikely(req->src != req->dst)) {
1026 scatterwalk_unmap(dst - req->assoclen);
1027 scatterwalk_advance(&dst_sg_walk, req->dst->length);
1028 scatterwalk_done(&dst_sg_walk, 1, 0);
1029 }
1030 scatterwalk_unmap(assoc);
1031 scatterwalk_advance(&src_sg_walk, req->src->length);
1032 scatterwalk_done(&src_sg_walk, req->src == req->dst, 0);
1033 } else {
1034 scatterwalk_map_and_copy(dst, req->dst, req->assoclen,
1035 tempCipherLen, 1);
1036 kfree(assoc);
1037 }
1038 return retval;
1039 }
1040
1041 static int rfc4106_encrypt(struct aead_request *req)
1042 {
1043 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1044 struct cryptd_aead **ctx = crypto_aead_ctx(tfm);
1045 struct cryptd_aead *cryptd_tfm = *ctx;
1046
1047 tfm = &cryptd_tfm->base;
1048 if (irq_fpu_usable() && (!in_atomic() ||
1049 !cryptd_aead_queued(cryptd_tfm)))
1050 tfm = cryptd_aead_child(cryptd_tfm);
1051
1052 aead_request_set_tfm(req, tfm);
1053
1054 return crypto_aead_encrypt(req);
1055 }
1056
1057 static int rfc4106_decrypt(struct aead_request *req)
1058 {
1059 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1060 struct cryptd_aead **ctx = crypto_aead_ctx(tfm);
1061 struct cryptd_aead *cryptd_tfm = *ctx;
1062
1063 tfm = &cryptd_tfm->base;
1064 if (irq_fpu_usable() && (!in_atomic() ||
1065 !cryptd_aead_queued(cryptd_tfm)))
1066 tfm = cryptd_aead_child(cryptd_tfm);
1067
1068 aead_request_set_tfm(req, tfm);
1069
1070 return crypto_aead_decrypt(req);
1071 }
1072 #endif
1073
1074 static struct crypto_alg aesni_algs[] = { {
1075 .cra_name = "aes",
1076 .cra_driver_name = "aes-aesni",
1077 .cra_priority = 300,
1078 .cra_flags = CRYPTO_ALG_TYPE_CIPHER,
1079 .cra_blocksize = AES_BLOCK_SIZE,
1080 .cra_ctxsize = sizeof(struct crypto_aes_ctx) +
1081 AESNI_ALIGN - 1,
1082 .cra_alignmask = 0,
1083 .cra_module = THIS_MODULE,
1084 .cra_u = {
1085 .cipher = {
1086 .cia_min_keysize = AES_MIN_KEY_SIZE,
1087 .cia_max_keysize = AES_MAX_KEY_SIZE,
1088 .cia_setkey = aes_set_key,
1089 .cia_encrypt = aes_encrypt,
1090 .cia_decrypt = aes_decrypt
1091 }
1092 }
1093 }, {
1094 .cra_name = "__aes-aesni",
1095 .cra_driver_name = "__driver-aes-aesni",
1096 .cra_priority = 0,
1097 .cra_flags = CRYPTO_ALG_TYPE_CIPHER | CRYPTO_ALG_INTERNAL,
1098 .cra_blocksize = AES_BLOCK_SIZE,
1099 .cra_ctxsize = sizeof(struct crypto_aes_ctx) +
1100 AESNI_ALIGN - 1,
1101 .cra_alignmask = 0,
1102 .cra_module = THIS_MODULE,
1103 .cra_u = {
1104 .cipher = {
1105 .cia_min_keysize = AES_MIN_KEY_SIZE,
1106 .cia_max_keysize = AES_MAX_KEY_SIZE,
1107 .cia_setkey = aes_set_key,
1108 .cia_encrypt = __aes_encrypt,
1109 .cia_decrypt = __aes_decrypt
1110 }
1111 }
1112 }, {
1113 .cra_name = "__ecb-aes-aesni",
1114 .cra_driver_name = "__driver-ecb-aes-aesni",
1115 .cra_priority = 0,
1116 .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER |
1117 CRYPTO_ALG_INTERNAL,
1118 .cra_blocksize = AES_BLOCK_SIZE,
1119 .cra_ctxsize = sizeof(struct crypto_aes_ctx) +
1120 AESNI_ALIGN - 1,
1121 .cra_alignmask = 0,
1122 .cra_type = &crypto_blkcipher_type,
1123 .cra_module = THIS_MODULE,
1124 .cra_u = {
1125 .blkcipher = {
1126 .min_keysize = AES_MIN_KEY_SIZE,
1127 .max_keysize = AES_MAX_KEY_SIZE,
1128 .setkey = aes_set_key,
1129 .encrypt = ecb_encrypt,
1130 .decrypt = ecb_decrypt,
1131 },
1132 },
1133 }, {
1134 .cra_name = "__cbc-aes-aesni",
1135 .cra_driver_name = "__driver-cbc-aes-aesni",
1136 .cra_priority = 0,
1137 .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER |
1138 CRYPTO_ALG_INTERNAL,
1139 .cra_blocksize = AES_BLOCK_SIZE,
1140 .cra_ctxsize = sizeof(struct crypto_aes_ctx) +
1141 AESNI_ALIGN - 1,
1142 .cra_alignmask = 0,
1143 .cra_type = &crypto_blkcipher_type,
1144 .cra_module = THIS_MODULE,
1145 .cra_u = {
1146 .blkcipher = {
1147 .min_keysize = AES_MIN_KEY_SIZE,
1148 .max_keysize = AES_MAX_KEY_SIZE,
1149 .setkey = aes_set_key,
1150 .encrypt = cbc_encrypt,
1151 .decrypt = cbc_decrypt,
1152 },
1153 },
1154 }, {
1155 .cra_name = "ecb(aes)",
1156 .cra_driver_name = "ecb-aes-aesni",
1157 .cra_priority = 400,
1158 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1159 .cra_blocksize = AES_BLOCK_SIZE,
1160 .cra_ctxsize = sizeof(struct async_helper_ctx),
1161 .cra_alignmask = 0,
1162 .cra_type = &crypto_ablkcipher_type,
1163 .cra_module = THIS_MODULE,
1164 .cra_init = ablk_ecb_init,
1165 .cra_exit = ablk_exit,
1166 .cra_u = {
1167 .ablkcipher = {
1168 .min_keysize = AES_MIN_KEY_SIZE,
1169 .max_keysize = AES_MAX_KEY_SIZE,
1170 .setkey = ablk_set_key,
1171 .encrypt = ablk_encrypt,
1172 .decrypt = ablk_decrypt,
1173 },
1174 },
1175 }, {
1176 .cra_name = "cbc(aes)",
1177 .cra_driver_name = "cbc-aes-aesni",
1178 .cra_priority = 400,
1179 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1180 .cra_blocksize = AES_BLOCK_SIZE,
1181 .cra_ctxsize = sizeof(struct async_helper_ctx),
1182 .cra_alignmask = 0,
1183 .cra_type = &crypto_ablkcipher_type,
1184 .cra_module = THIS_MODULE,
1185 .cra_init = ablk_cbc_init,
1186 .cra_exit = ablk_exit,
1187 .cra_u = {
1188 .ablkcipher = {
1189 .min_keysize = AES_MIN_KEY_SIZE,
1190 .max_keysize = AES_MAX_KEY_SIZE,
1191 .ivsize = AES_BLOCK_SIZE,
1192 .setkey = ablk_set_key,
1193 .encrypt = ablk_encrypt,
1194 .decrypt = ablk_decrypt,
1195 },
1196 },
1197 #ifdef CONFIG_X86_64
1198 }, {
1199 .cra_name = "__ctr-aes-aesni",
1200 .cra_driver_name = "__driver-ctr-aes-aesni",
1201 .cra_priority = 0,
1202 .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER |
1203 CRYPTO_ALG_INTERNAL,
1204 .cra_blocksize = 1,
1205 .cra_ctxsize = sizeof(struct crypto_aes_ctx) +
1206 AESNI_ALIGN - 1,
1207 .cra_alignmask = 0,
1208 .cra_type = &crypto_blkcipher_type,
1209 .cra_module = THIS_MODULE,
1210 .cra_u = {
1211 .blkcipher = {
1212 .min_keysize = AES_MIN_KEY_SIZE,
1213 .max_keysize = AES_MAX_KEY_SIZE,
1214 .ivsize = AES_BLOCK_SIZE,
1215 .setkey = aes_set_key,
1216 .encrypt = ctr_crypt,
1217 .decrypt = ctr_crypt,
1218 },
1219 },
1220 }, {
1221 .cra_name = "ctr(aes)",
1222 .cra_driver_name = "ctr-aes-aesni",
1223 .cra_priority = 400,
1224 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1225 .cra_blocksize = 1,
1226 .cra_ctxsize = sizeof(struct async_helper_ctx),
1227 .cra_alignmask = 0,
1228 .cra_type = &crypto_ablkcipher_type,
1229 .cra_module = THIS_MODULE,
1230 .cra_init = ablk_ctr_init,
1231 .cra_exit = ablk_exit,
1232 .cra_u = {
1233 .ablkcipher = {
1234 .min_keysize = AES_MIN_KEY_SIZE,
1235 .max_keysize = AES_MAX_KEY_SIZE,
1236 .ivsize = AES_BLOCK_SIZE,
1237 .setkey = ablk_set_key,
1238 .encrypt = ablk_encrypt,
1239 .decrypt = ablk_encrypt,
1240 .geniv = "chainiv",
1241 },
1242 },
1243 #endif
1244 #if IS_ENABLED(CONFIG_CRYPTO_PCBC)
1245 }, {
1246 .cra_name = "pcbc(aes)",
1247 .cra_driver_name = "pcbc-aes-aesni",
1248 .cra_priority = 400,
1249 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1250 .cra_blocksize = AES_BLOCK_SIZE,
1251 .cra_ctxsize = sizeof(struct async_helper_ctx),
1252 .cra_alignmask = 0,
1253 .cra_type = &crypto_ablkcipher_type,
1254 .cra_module = THIS_MODULE,
1255 .cra_init = ablk_pcbc_init,
1256 .cra_exit = ablk_exit,
1257 .cra_u = {
1258 .ablkcipher = {
1259 .min_keysize = AES_MIN_KEY_SIZE,
1260 .max_keysize = AES_MAX_KEY_SIZE,
1261 .ivsize = AES_BLOCK_SIZE,
1262 .setkey = ablk_set_key,
1263 .encrypt = ablk_encrypt,
1264 .decrypt = ablk_decrypt,
1265 },
1266 },
1267 #endif
1268 }, {
1269 .cra_name = "__lrw-aes-aesni",
1270 .cra_driver_name = "__driver-lrw-aes-aesni",
1271 .cra_priority = 0,
1272 .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER |
1273 CRYPTO_ALG_INTERNAL,
1274 .cra_blocksize = AES_BLOCK_SIZE,
1275 .cra_ctxsize = sizeof(struct aesni_lrw_ctx),
1276 .cra_alignmask = 0,
1277 .cra_type = &crypto_blkcipher_type,
1278 .cra_module = THIS_MODULE,
1279 .cra_exit = lrw_aesni_exit_tfm,
1280 .cra_u = {
1281 .blkcipher = {
1282 .min_keysize = AES_MIN_KEY_SIZE + AES_BLOCK_SIZE,
1283 .max_keysize = AES_MAX_KEY_SIZE + AES_BLOCK_SIZE,
1284 .ivsize = AES_BLOCK_SIZE,
1285 .setkey = lrw_aesni_setkey,
1286 .encrypt = lrw_encrypt,
1287 .decrypt = lrw_decrypt,
1288 },
1289 },
1290 }, {
1291 .cra_name = "__xts-aes-aesni",
1292 .cra_driver_name = "__driver-xts-aes-aesni",
1293 .cra_priority = 0,
1294 .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER |
1295 CRYPTO_ALG_INTERNAL,
1296 .cra_blocksize = AES_BLOCK_SIZE,
1297 .cra_ctxsize = sizeof(struct aesni_xts_ctx),
1298 .cra_alignmask = 0,
1299 .cra_type = &crypto_blkcipher_type,
1300 .cra_module = THIS_MODULE,
1301 .cra_u = {
1302 .blkcipher = {
1303 .min_keysize = 2 * AES_MIN_KEY_SIZE,
1304 .max_keysize = 2 * AES_MAX_KEY_SIZE,
1305 .ivsize = AES_BLOCK_SIZE,
1306 .setkey = xts_aesni_setkey,
1307 .encrypt = xts_encrypt,
1308 .decrypt = xts_decrypt,
1309 },
1310 },
1311 }, {
1312 .cra_name = "lrw(aes)",
1313 .cra_driver_name = "lrw-aes-aesni",
1314 .cra_priority = 400,
1315 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1316 .cra_blocksize = AES_BLOCK_SIZE,
1317 .cra_ctxsize = sizeof(struct async_helper_ctx),
1318 .cra_alignmask = 0,
1319 .cra_type = &crypto_ablkcipher_type,
1320 .cra_module = THIS_MODULE,
1321 .cra_init = ablk_init,
1322 .cra_exit = ablk_exit,
1323 .cra_u = {
1324 .ablkcipher = {
1325 .min_keysize = AES_MIN_KEY_SIZE + AES_BLOCK_SIZE,
1326 .max_keysize = AES_MAX_KEY_SIZE + AES_BLOCK_SIZE,
1327 .ivsize = AES_BLOCK_SIZE,
1328 .setkey = ablk_set_key,
1329 .encrypt = ablk_encrypt,
1330 .decrypt = ablk_decrypt,
1331 },
1332 },
1333 }, {
1334 .cra_name = "xts(aes)",
1335 .cra_driver_name = "xts-aes-aesni",
1336 .cra_priority = 400,
1337 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1338 .cra_blocksize = AES_BLOCK_SIZE,
1339 .cra_ctxsize = sizeof(struct async_helper_ctx),
1340 .cra_alignmask = 0,
1341 .cra_type = &crypto_ablkcipher_type,
1342 .cra_module = THIS_MODULE,
1343 .cra_init = ablk_init,
1344 .cra_exit = ablk_exit,
1345 .cra_u = {
1346 .ablkcipher = {
1347 .min_keysize = 2 * AES_MIN_KEY_SIZE,
1348 .max_keysize = 2 * AES_MAX_KEY_SIZE,
1349 .ivsize = AES_BLOCK_SIZE,
1350 .setkey = ablk_set_key,
1351 .encrypt = ablk_encrypt,
1352 .decrypt = ablk_decrypt,
1353 },
1354 },
1355 } };
1356
1357 #ifdef CONFIG_X86_64
1358 static struct aead_alg aesni_aead_algs[] = { {
1359 .setkey = common_rfc4106_set_key,
1360 .setauthsize = common_rfc4106_set_authsize,
1361 .encrypt = helper_rfc4106_encrypt,
1362 .decrypt = helper_rfc4106_decrypt,
1363 .ivsize = 8,
1364 .maxauthsize = 16,
1365 .base = {
1366 .cra_name = "__gcm-aes-aesni",
1367 .cra_driver_name = "__driver-gcm-aes-aesni",
1368 .cra_flags = CRYPTO_ALG_INTERNAL,
1369 .cra_blocksize = 1,
1370 .cra_ctxsize = sizeof(struct aesni_rfc4106_gcm_ctx),
1371 .cra_alignmask = AESNI_ALIGN - 1,
1372 .cra_module = THIS_MODULE,
1373 },
1374 }, {
1375 .init = rfc4106_init,
1376 .exit = rfc4106_exit,
1377 .setkey = rfc4106_set_key,
1378 .setauthsize = rfc4106_set_authsize,
1379 .encrypt = rfc4106_encrypt,
1380 .decrypt = rfc4106_decrypt,
1381 .ivsize = 8,
1382 .maxauthsize = 16,
1383 .base = {
1384 .cra_name = "rfc4106(gcm(aes))",
1385 .cra_driver_name = "rfc4106-gcm-aesni",
1386 .cra_priority = 400,
1387 .cra_flags = CRYPTO_ALG_ASYNC,
1388 .cra_blocksize = 1,
1389 .cra_ctxsize = sizeof(struct cryptd_aead *),
1390 .cra_module = THIS_MODULE,
1391 },
1392 } };
1393 #else
1394 static struct aead_alg aesni_aead_algs[0];
1395 #endif
1396
1397
1398 static const struct x86_cpu_id aesni_cpu_id[] = {
1399 X86_FEATURE_MATCH(X86_FEATURE_AES),
1400 {}
1401 };
1402 MODULE_DEVICE_TABLE(x86cpu, aesni_cpu_id);
1403
1404 static int __init aesni_init(void)
1405 {
1406 int err;
1407
1408 if (!x86_match_cpu(aesni_cpu_id))
1409 return -ENODEV;
1410 #ifdef CONFIG_X86_64
1411 #ifdef CONFIG_AS_AVX2
1412 if (boot_cpu_has(X86_FEATURE_AVX2)) {
1413 pr_info("AVX2 version of gcm_enc/dec engaged.\n");
1414 aesni_gcm_enc_tfm = aesni_gcm_enc_avx2;
1415 aesni_gcm_dec_tfm = aesni_gcm_dec_avx2;
1416 } else
1417 #endif
1418 #ifdef CONFIG_AS_AVX
1419 if (boot_cpu_has(X86_FEATURE_AVX)) {
1420 pr_info("AVX version of gcm_enc/dec engaged.\n");
1421 aesni_gcm_enc_tfm = aesni_gcm_enc_avx;
1422 aesni_gcm_dec_tfm = aesni_gcm_dec_avx;
1423 } else
1424 #endif
1425 {
1426 pr_info("SSE version of gcm_enc/dec engaged.\n");
1427 aesni_gcm_enc_tfm = aesni_gcm_enc;
1428 aesni_gcm_dec_tfm = aesni_gcm_dec;
1429 }
1430 aesni_ctr_enc_tfm = aesni_ctr_enc;
1431 #ifdef CONFIG_AS_AVX
1432 if (boot_cpu_has(X86_FEATURE_AVX)) {
1433 /* optimize performance of ctr mode encryption transform */
1434 aesni_ctr_enc_tfm = aesni_ctr_enc_avx_tfm;
1435 pr_info("AES CTR mode by8 optimization enabled\n");
1436 }
1437 #endif
1438 #endif
1439
1440 err = crypto_fpu_init();
1441 if (err)
1442 return err;
1443
1444 err = crypto_register_algs(aesni_algs, ARRAY_SIZE(aesni_algs));
1445 if (err)
1446 goto fpu_exit;
1447
1448 err = crypto_register_aeads(aesni_aead_algs,
1449 ARRAY_SIZE(aesni_aead_algs));
1450 if (err)
1451 goto unregister_algs;
1452
1453 return err;
1454
1455 unregister_algs:
1456 crypto_unregister_algs(aesni_algs, ARRAY_SIZE(aesni_algs));
1457 fpu_exit:
1458 crypto_fpu_exit();
1459 return err;
1460 }
1461
1462 static void __exit aesni_exit(void)
1463 {
1464 crypto_unregister_aeads(aesni_aead_algs, ARRAY_SIZE(aesni_aead_algs));
1465 crypto_unregister_algs(aesni_algs, ARRAY_SIZE(aesni_algs));
1466
1467 crypto_fpu_exit();
1468 }
1469
1470 late_initcall(aesni_init);
1471 module_exit(aesni_exit);
1472
1473 MODULE_DESCRIPTION("Rijndael (AES) Cipher Algorithm, Intel AES-NI instructions optimized");
1474 MODULE_LICENSE("GPL");
1475 MODULE_ALIAS_CRYPTO("aes");
This page took 0.076108 seconds and 5 git commands to generate.