Merge branch 'upstream' of git://git.linux-mips.org/pub/scm/ralf/upstream-linus
[deliverable/linux.git] / arch / x86 / crypto / aesni-intel_glue.c
1 /*
2 * Support for Intel AES-NI instructions. This file contains glue
3 * code, the real AES implementation is in intel-aes_asm.S.
4 *
5 * Copyright (C) 2008, Intel Corp.
6 * Author: Huang Ying <ying.huang@intel.com>
7 *
8 * Added RFC4106 AES-GCM support for 128-bit keys under the AEAD
9 * interface for 64-bit kernels.
10 * Authors: Adrian Hoban <adrian.hoban@intel.com>
11 * Gabriele Paoloni <gabriele.paoloni@intel.com>
12 * Tadeusz Struk (tadeusz.struk@intel.com)
13 * Aidan O'Mahony (aidan.o.mahony@intel.com)
14 * Copyright (c) 2010, Intel Corporation.
15 *
16 * This program is free software; you can redistribute it and/or modify
17 * it under the terms of the GNU General Public License as published by
18 * the Free Software Foundation; either version 2 of the License, or
19 * (at your option) any later version.
20 */
21
22 #include <linux/hardirq.h>
23 #include <linux/types.h>
24 #include <linux/crypto.h>
25 #include <linux/module.h>
26 #include <linux/err.h>
27 #include <crypto/algapi.h>
28 #include <crypto/aes.h>
29 #include <crypto/cryptd.h>
30 #include <crypto/ctr.h>
31 #include <crypto/b128ops.h>
32 #include <crypto/lrw.h>
33 #include <crypto/xts.h>
34 #include <asm/cpu_device_id.h>
35 #include <asm/fpu/api.h>
36 #include <asm/crypto/aes.h>
37 #include <crypto/ablk_helper.h>
38 #include <crypto/scatterwalk.h>
39 #include <crypto/internal/aead.h>
40 #include <linux/workqueue.h>
41 #include <linux/spinlock.h>
42 #ifdef CONFIG_X86_64
43 #include <asm/crypto/glue_helper.h>
44 #endif
45
46
47 #define AESNI_ALIGN 16
48 #define AES_BLOCK_MASK (~(AES_BLOCK_SIZE - 1))
49 #define RFC4106_HASH_SUBKEY_SIZE 16
50
51 /* This data is stored at the end of the crypto_tfm struct.
52 * It's a type of per "session" data storage location.
53 * This needs to be 16 byte aligned.
54 */
55 struct aesni_rfc4106_gcm_ctx {
56 u8 hash_subkey[16] __attribute__ ((__aligned__(AESNI_ALIGN)));
57 struct crypto_aes_ctx aes_key_expanded
58 __attribute__ ((__aligned__(AESNI_ALIGN)));
59 u8 nonce[4];
60 };
61
62 struct aesni_gcm_set_hash_subkey_result {
63 int err;
64 struct completion completion;
65 };
66
67 struct aesni_hash_subkey_req_data {
68 u8 iv[16];
69 struct aesni_gcm_set_hash_subkey_result result;
70 struct scatterlist sg;
71 };
72
73 struct aesni_lrw_ctx {
74 struct lrw_table_ctx lrw_table;
75 u8 raw_aes_ctx[sizeof(struct crypto_aes_ctx) + AESNI_ALIGN - 1];
76 };
77
78 struct aesni_xts_ctx {
79 u8 raw_tweak_ctx[sizeof(struct crypto_aes_ctx) + AESNI_ALIGN - 1];
80 u8 raw_crypt_ctx[sizeof(struct crypto_aes_ctx) + AESNI_ALIGN - 1];
81 };
82
83 asmlinkage int aesni_set_key(struct crypto_aes_ctx *ctx, const u8 *in_key,
84 unsigned int key_len);
85 asmlinkage void aesni_enc(struct crypto_aes_ctx *ctx, u8 *out,
86 const u8 *in);
87 asmlinkage void aesni_dec(struct crypto_aes_ctx *ctx, u8 *out,
88 const u8 *in);
89 asmlinkage void aesni_ecb_enc(struct crypto_aes_ctx *ctx, u8 *out,
90 const u8 *in, unsigned int len);
91 asmlinkage void aesni_ecb_dec(struct crypto_aes_ctx *ctx, u8 *out,
92 const u8 *in, unsigned int len);
93 asmlinkage void aesni_cbc_enc(struct crypto_aes_ctx *ctx, u8 *out,
94 const u8 *in, unsigned int len, u8 *iv);
95 asmlinkage void aesni_cbc_dec(struct crypto_aes_ctx *ctx, u8 *out,
96 const u8 *in, unsigned int len, u8 *iv);
97
98 int crypto_fpu_init(void);
99 void crypto_fpu_exit(void);
100
101 #define AVX_GEN2_OPTSIZE 640
102 #define AVX_GEN4_OPTSIZE 4096
103
104 #ifdef CONFIG_X86_64
105
106 static void (*aesni_ctr_enc_tfm)(struct crypto_aes_ctx *ctx, u8 *out,
107 const u8 *in, unsigned int len, u8 *iv);
108 asmlinkage void aesni_ctr_enc(struct crypto_aes_ctx *ctx, u8 *out,
109 const u8 *in, unsigned int len, u8 *iv);
110
111 asmlinkage void aesni_xts_crypt8(struct crypto_aes_ctx *ctx, u8 *out,
112 const u8 *in, bool enc, u8 *iv);
113
114 /* asmlinkage void aesni_gcm_enc()
115 * void *ctx, AES Key schedule. Starts on a 16 byte boundary.
116 * u8 *out, Ciphertext output. Encrypt in-place is allowed.
117 * const u8 *in, Plaintext input
118 * unsigned long plaintext_len, Length of data in bytes for encryption.
119 * u8 *iv, Pre-counter block j0: 4 byte salt (from Security Association)
120 * concatenated with 8 byte Initialisation Vector (from IPSec ESP
121 * Payload) concatenated with 0x00000001. 16-byte aligned pointer.
122 * u8 *hash_subkey, the Hash sub key input. Data starts on a 16-byte boundary.
123 * const u8 *aad, Additional Authentication Data (AAD)
124 * unsigned long aad_len, Length of AAD in bytes. With RFC4106 this
125 * is going to be 8 or 12 bytes
126 * u8 *auth_tag, Authenticated Tag output.
127 * unsigned long auth_tag_len), Authenticated Tag Length in bytes.
128 * Valid values are 16 (most likely), 12 or 8.
129 */
130 asmlinkage void aesni_gcm_enc(void *ctx, u8 *out,
131 const u8 *in, unsigned long plaintext_len, u8 *iv,
132 u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
133 u8 *auth_tag, unsigned long auth_tag_len);
134
135 /* asmlinkage void aesni_gcm_dec()
136 * void *ctx, AES Key schedule. Starts on a 16 byte boundary.
137 * u8 *out, Plaintext output. Decrypt in-place is allowed.
138 * const u8 *in, Ciphertext input
139 * unsigned long ciphertext_len, Length of data in bytes for decryption.
140 * u8 *iv, Pre-counter block j0: 4 byte salt (from Security Association)
141 * concatenated with 8 byte Initialisation Vector (from IPSec ESP
142 * Payload) concatenated with 0x00000001. 16-byte aligned pointer.
143 * u8 *hash_subkey, the Hash sub key input. Data starts on a 16-byte boundary.
144 * const u8 *aad, Additional Authentication Data (AAD)
145 * unsigned long aad_len, Length of AAD in bytes. With RFC4106 this is going
146 * to be 8 or 12 bytes
147 * u8 *auth_tag, Authenticated Tag output.
148 * unsigned long auth_tag_len) Authenticated Tag Length in bytes.
149 * Valid values are 16 (most likely), 12 or 8.
150 */
151 asmlinkage void aesni_gcm_dec(void *ctx, u8 *out,
152 const u8 *in, unsigned long ciphertext_len, u8 *iv,
153 u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
154 u8 *auth_tag, unsigned long auth_tag_len);
155
156
157 #ifdef CONFIG_AS_AVX
158 asmlinkage void aes_ctr_enc_128_avx_by8(const u8 *in, u8 *iv,
159 void *keys, u8 *out, unsigned int num_bytes);
160 asmlinkage void aes_ctr_enc_192_avx_by8(const u8 *in, u8 *iv,
161 void *keys, u8 *out, unsigned int num_bytes);
162 asmlinkage void aes_ctr_enc_256_avx_by8(const u8 *in, u8 *iv,
163 void *keys, u8 *out, unsigned int num_bytes);
164 /*
165 * asmlinkage void aesni_gcm_precomp_avx_gen2()
166 * gcm_data *my_ctx_data, context data
167 * u8 *hash_subkey, the Hash sub key input. Data starts on a 16-byte boundary.
168 */
169 asmlinkage void aesni_gcm_precomp_avx_gen2(void *my_ctx_data, u8 *hash_subkey);
170
171 asmlinkage void aesni_gcm_enc_avx_gen2(void *ctx, u8 *out,
172 const u8 *in, unsigned long plaintext_len, u8 *iv,
173 const u8 *aad, unsigned long aad_len,
174 u8 *auth_tag, unsigned long auth_tag_len);
175
176 asmlinkage void aesni_gcm_dec_avx_gen2(void *ctx, u8 *out,
177 const u8 *in, unsigned long ciphertext_len, u8 *iv,
178 const u8 *aad, unsigned long aad_len,
179 u8 *auth_tag, unsigned long auth_tag_len);
180
181 static void aesni_gcm_enc_avx(void *ctx, u8 *out,
182 const u8 *in, unsigned long plaintext_len, u8 *iv,
183 u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
184 u8 *auth_tag, unsigned long auth_tag_len)
185 {
186 struct crypto_aes_ctx *aes_ctx = (struct crypto_aes_ctx*)ctx;
187 if ((plaintext_len < AVX_GEN2_OPTSIZE) || (aes_ctx-> key_length != AES_KEYSIZE_128)){
188 aesni_gcm_enc(ctx, out, in, plaintext_len, iv, hash_subkey, aad,
189 aad_len, auth_tag, auth_tag_len);
190 } else {
191 aesni_gcm_precomp_avx_gen2(ctx, hash_subkey);
192 aesni_gcm_enc_avx_gen2(ctx, out, in, plaintext_len, iv, aad,
193 aad_len, auth_tag, auth_tag_len);
194 }
195 }
196
197 static void aesni_gcm_dec_avx(void *ctx, u8 *out,
198 const u8 *in, unsigned long ciphertext_len, u8 *iv,
199 u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
200 u8 *auth_tag, unsigned long auth_tag_len)
201 {
202 struct crypto_aes_ctx *aes_ctx = (struct crypto_aes_ctx*)ctx;
203 if ((ciphertext_len < AVX_GEN2_OPTSIZE) || (aes_ctx-> key_length != AES_KEYSIZE_128)) {
204 aesni_gcm_dec(ctx, out, in, ciphertext_len, iv, hash_subkey, aad,
205 aad_len, auth_tag, auth_tag_len);
206 } else {
207 aesni_gcm_precomp_avx_gen2(ctx, hash_subkey);
208 aesni_gcm_dec_avx_gen2(ctx, out, in, ciphertext_len, iv, aad,
209 aad_len, auth_tag, auth_tag_len);
210 }
211 }
212 #endif
213
214 #ifdef CONFIG_AS_AVX2
215 /*
216 * asmlinkage void aesni_gcm_precomp_avx_gen4()
217 * gcm_data *my_ctx_data, context data
218 * u8 *hash_subkey, the Hash sub key input. Data starts on a 16-byte boundary.
219 */
220 asmlinkage void aesni_gcm_precomp_avx_gen4(void *my_ctx_data, u8 *hash_subkey);
221
222 asmlinkage void aesni_gcm_enc_avx_gen4(void *ctx, u8 *out,
223 const u8 *in, unsigned long plaintext_len, u8 *iv,
224 const u8 *aad, unsigned long aad_len,
225 u8 *auth_tag, unsigned long auth_tag_len);
226
227 asmlinkage void aesni_gcm_dec_avx_gen4(void *ctx, u8 *out,
228 const u8 *in, unsigned long ciphertext_len, u8 *iv,
229 const u8 *aad, unsigned long aad_len,
230 u8 *auth_tag, unsigned long auth_tag_len);
231
232 static void aesni_gcm_enc_avx2(void *ctx, u8 *out,
233 const u8 *in, unsigned long plaintext_len, u8 *iv,
234 u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
235 u8 *auth_tag, unsigned long auth_tag_len)
236 {
237 struct crypto_aes_ctx *aes_ctx = (struct crypto_aes_ctx*)ctx;
238 if ((plaintext_len < AVX_GEN2_OPTSIZE) || (aes_ctx-> key_length != AES_KEYSIZE_128)) {
239 aesni_gcm_enc(ctx, out, in, plaintext_len, iv, hash_subkey, aad,
240 aad_len, auth_tag, auth_tag_len);
241 } else if (plaintext_len < AVX_GEN4_OPTSIZE) {
242 aesni_gcm_precomp_avx_gen2(ctx, hash_subkey);
243 aesni_gcm_enc_avx_gen2(ctx, out, in, plaintext_len, iv, aad,
244 aad_len, auth_tag, auth_tag_len);
245 } else {
246 aesni_gcm_precomp_avx_gen4(ctx, hash_subkey);
247 aesni_gcm_enc_avx_gen4(ctx, out, in, plaintext_len, iv, aad,
248 aad_len, auth_tag, auth_tag_len);
249 }
250 }
251
252 static void aesni_gcm_dec_avx2(void *ctx, u8 *out,
253 const u8 *in, unsigned long ciphertext_len, u8 *iv,
254 u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
255 u8 *auth_tag, unsigned long auth_tag_len)
256 {
257 struct crypto_aes_ctx *aes_ctx = (struct crypto_aes_ctx*)ctx;
258 if ((ciphertext_len < AVX_GEN2_OPTSIZE) || (aes_ctx-> key_length != AES_KEYSIZE_128)) {
259 aesni_gcm_dec(ctx, out, in, ciphertext_len, iv, hash_subkey,
260 aad, aad_len, auth_tag, auth_tag_len);
261 } else if (ciphertext_len < AVX_GEN4_OPTSIZE) {
262 aesni_gcm_precomp_avx_gen2(ctx, hash_subkey);
263 aesni_gcm_dec_avx_gen2(ctx, out, in, ciphertext_len, iv, aad,
264 aad_len, auth_tag, auth_tag_len);
265 } else {
266 aesni_gcm_precomp_avx_gen4(ctx, hash_subkey);
267 aesni_gcm_dec_avx_gen4(ctx, out, in, ciphertext_len, iv, aad,
268 aad_len, auth_tag, auth_tag_len);
269 }
270 }
271 #endif
272
273 static void (*aesni_gcm_enc_tfm)(void *ctx, u8 *out,
274 const u8 *in, unsigned long plaintext_len, u8 *iv,
275 u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
276 u8 *auth_tag, unsigned long auth_tag_len);
277
278 static void (*aesni_gcm_dec_tfm)(void *ctx, u8 *out,
279 const u8 *in, unsigned long ciphertext_len, u8 *iv,
280 u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
281 u8 *auth_tag, unsigned long auth_tag_len);
282
283 static inline struct
284 aesni_rfc4106_gcm_ctx *aesni_rfc4106_gcm_ctx_get(struct crypto_aead *tfm)
285 {
286 unsigned long align = AESNI_ALIGN;
287
288 if (align <= crypto_tfm_ctx_alignment())
289 align = 1;
290 return PTR_ALIGN(crypto_aead_ctx(tfm), align);
291 }
292 #endif
293
294 static inline struct crypto_aes_ctx *aes_ctx(void *raw_ctx)
295 {
296 unsigned long addr = (unsigned long)raw_ctx;
297 unsigned long align = AESNI_ALIGN;
298
299 if (align <= crypto_tfm_ctx_alignment())
300 align = 1;
301 return (struct crypto_aes_ctx *)ALIGN(addr, align);
302 }
303
304 static int aes_set_key_common(struct crypto_tfm *tfm, void *raw_ctx,
305 const u8 *in_key, unsigned int key_len)
306 {
307 struct crypto_aes_ctx *ctx = aes_ctx(raw_ctx);
308 u32 *flags = &tfm->crt_flags;
309 int err;
310
311 if (key_len != AES_KEYSIZE_128 && key_len != AES_KEYSIZE_192 &&
312 key_len != AES_KEYSIZE_256) {
313 *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
314 return -EINVAL;
315 }
316
317 if (!irq_fpu_usable())
318 err = crypto_aes_expand_key(ctx, in_key, key_len);
319 else {
320 kernel_fpu_begin();
321 err = aesni_set_key(ctx, in_key, key_len);
322 kernel_fpu_end();
323 }
324
325 return err;
326 }
327
328 static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
329 unsigned int key_len)
330 {
331 return aes_set_key_common(tfm, crypto_tfm_ctx(tfm), in_key, key_len);
332 }
333
334 static void aes_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
335 {
336 struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm));
337
338 if (!irq_fpu_usable())
339 crypto_aes_encrypt_x86(ctx, dst, src);
340 else {
341 kernel_fpu_begin();
342 aesni_enc(ctx, dst, src);
343 kernel_fpu_end();
344 }
345 }
346
347 static void aes_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
348 {
349 struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm));
350
351 if (!irq_fpu_usable())
352 crypto_aes_decrypt_x86(ctx, dst, src);
353 else {
354 kernel_fpu_begin();
355 aesni_dec(ctx, dst, src);
356 kernel_fpu_end();
357 }
358 }
359
360 static void __aes_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
361 {
362 struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm));
363
364 aesni_enc(ctx, dst, src);
365 }
366
367 static void __aes_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
368 {
369 struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm));
370
371 aesni_dec(ctx, dst, src);
372 }
373
374 static int ecb_encrypt(struct blkcipher_desc *desc,
375 struct scatterlist *dst, struct scatterlist *src,
376 unsigned int nbytes)
377 {
378 struct crypto_aes_ctx *ctx = aes_ctx(crypto_blkcipher_ctx(desc->tfm));
379 struct blkcipher_walk walk;
380 int err;
381
382 blkcipher_walk_init(&walk, dst, src, nbytes);
383 err = blkcipher_walk_virt(desc, &walk);
384 desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
385
386 kernel_fpu_begin();
387 while ((nbytes = walk.nbytes)) {
388 aesni_ecb_enc(ctx, walk.dst.virt.addr, walk.src.virt.addr,
389 nbytes & AES_BLOCK_MASK);
390 nbytes &= AES_BLOCK_SIZE - 1;
391 err = blkcipher_walk_done(desc, &walk, nbytes);
392 }
393 kernel_fpu_end();
394
395 return err;
396 }
397
398 static int ecb_decrypt(struct blkcipher_desc *desc,
399 struct scatterlist *dst, struct scatterlist *src,
400 unsigned int nbytes)
401 {
402 struct crypto_aes_ctx *ctx = aes_ctx(crypto_blkcipher_ctx(desc->tfm));
403 struct blkcipher_walk walk;
404 int err;
405
406 blkcipher_walk_init(&walk, dst, src, nbytes);
407 err = blkcipher_walk_virt(desc, &walk);
408 desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
409
410 kernel_fpu_begin();
411 while ((nbytes = walk.nbytes)) {
412 aesni_ecb_dec(ctx, walk.dst.virt.addr, walk.src.virt.addr,
413 nbytes & AES_BLOCK_MASK);
414 nbytes &= AES_BLOCK_SIZE - 1;
415 err = blkcipher_walk_done(desc, &walk, nbytes);
416 }
417 kernel_fpu_end();
418
419 return err;
420 }
421
422 static int cbc_encrypt(struct blkcipher_desc *desc,
423 struct scatterlist *dst, struct scatterlist *src,
424 unsigned int nbytes)
425 {
426 struct crypto_aes_ctx *ctx = aes_ctx(crypto_blkcipher_ctx(desc->tfm));
427 struct blkcipher_walk walk;
428 int err;
429
430 blkcipher_walk_init(&walk, dst, src, nbytes);
431 err = blkcipher_walk_virt(desc, &walk);
432 desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
433
434 kernel_fpu_begin();
435 while ((nbytes = walk.nbytes)) {
436 aesni_cbc_enc(ctx, walk.dst.virt.addr, walk.src.virt.addr,
437 nbytes & AES_BLOCK_MASK, walk.iv);
438 nbytes &= AES_BLOCK_SIZE - 1;
439 err = blkcipher_walk_done(desc, &walk, nbytes);
440 }
441 kernel_fpu_end();
442
443 return err;
444 }
445
446 static int cbc_decrypt(struct blkcipher_desc *desc,
447 struct scatterlist *dst, struct scatterlist *src,
448 unsigned int nbytes)
449 {
450 struct crypto_aes_ctx *ctx = aes_ctx(crypto_blkcipher_ctx(desc->tfm));
451 struct blkcipher_walk walk;
452 int err;
453
454 blkcipher_walk_init(&walk, dst, src, nbytes);
455 err = blkcipher_walk_virt(desc, &walk);
456 desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
457
458 kernel_fpu_begin();
459 while ((nbytes = walk.nbytes)) {
460 aesni_cbc_dec(ctx, walk.dst.virt.addr, walk.src.virt.addr,
461 nbytes & AES_BLOCK_MASK, walk.iv);
462 nbytes &= AES_BLOCK_SIZE - 1;
463 err = blkcipher_walk_done(desc, &walk, nbytes);
464 }
465 kernel_fpu_end();
466
467 return err;
468 }
469
470 #ifdef CONFIG_X86_64
471 static void ctr_crypt_final(struct crypto_aes_ctx *ctx,
472 struct blkcipher_walk *walk)
473 {
474 u8 *ctrblk = walk->iv;
475 u8 keystream[AES_BLOCK_SIZE];
476 u8 *src = walk->src.virt.addr;
477 u8 *dst = walk->dst.virt.addr;
478 unsigned int nbytes = walk->nbytes;
479
480 aesni_enc(ctx, keystream, ctrblk);
481 crypto_xor(keystream, src, nbytes);
482 memcpy(dst, keystream, nbytes);
483 crypto_inc(ctrblk, AES_BLOCK_SIZE);
484 }
485
486 #ifdef CONFIG_AS_AVX
487 static void aesni_ctr_enc_avx_tfm(struct crypto_aes_ctx *ctx, u8 *out,
488 const u8 *in, unsigned int len, u8 *iv)
489 {
490 /*
491 * based on key length, override with the by8 version
492 * of ctr mode encryption/decryption for improved performance
493 * aes_set_key_common() ensures that key length is one of
494 * {128,192,256}
495 */
496 if (ctx->key_length == AES_KEYSIZE_128)
497 aes_ctr_enc_128_avx_by8(in, iv, (void *)ctx, out, len);
498 else if (ctx->key_length == AES_KEYSIZE_192)
499 aes_ctr_enc_192_avx_by8(in, iv, (void *)ctx, out, len);
500 else
501 aes_ctr_enc_256_avx_by8(in, iv, (void *)ctx, out, len);
502 }
503 #endif
504
505 static int ctr_crypt(struct blkcipher_desc *desc,
506 struct scatterlist *dst, struct scatterlist *src,
507 unsigned int nbytes)
508 {
509 struct crypto_aes_ctx *ctx = aes_ctx(crypto_blkcipher_ctx(desc->tfm));
510 struct blkcipher_walk walk;
511 int err;
512
513 blkcipher_walk_init(&walk, dst, src, nbytes);
514 err = blkcipher_walk_virt_block(desc, &walk, AES_BLOCK_SIZE);
515 desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
516
517 kernel_fpu_begin();
518 while ((nbytes = walk.nbytes) >= AES_BLOCK_SIZE) {
519 aesni_ctr_enc_tfm(ctx, walk.dst.virt.addr, walk.src.virt.addr,
520 nbytes & AES_BLOCK_MASK, walk.iv);
521 nbytes &= AES_BLOCK_SIZE - 1;
522 err = blkcipher_walk_done(desc, &walk, nbytes);
523 }
524 if (walk.nbytes) {
525 ctr_crypt_final(ctx, &walk);
526 err = blkcipher_walk_done(desc, &walk, 0);
527 }
528 kernel_fpu_end();
529
530 return err;
531 }
532 #endif
533
534 static int ablk_ecb_init(struct crypto_tfm *tfm)
535 {
536 return ablk_init_common(tfm, "__driver-ecb-aes-aesni");
537 }
538
539 static int ablk_cbc_init(struct crypto_tfm *tfm)
540 {
541 return ablk_init_common(tfm, "__driver-cbc-aes-aesni");
542 }
543
544 #ifdef CONFIG_X86_64
545 static int ablk_ctr_init(struct crypto_tfm *tfm)
546 {
547 return ablk_init_common(tfm, "__driver-ctr-aes-aesni");
548 }
549
550 #endif
551
552 #if IS_ENABLED(CONFIG_CRYPTO_PCBC)
553 static int ablk_pcbc_init(struct crypto_tfm *tfm)
554 {
555 return ablk_init_common(tfm, "fpu(pcbc(__driver-aes-aesni))");
556 }
557 #endif
558
559 static void lrw_xts_encrypt_callback(void *ctx, u8 *blks, unsigned int nbytes)
560 {
561 aesni_ecb_enc(ctx, blks, blks, nbytes);
562 }
563
564 static void lrw_xts_decrypt_callback(void *ctx, u8 *blks, unsigned int nbytes)
565 {
566 aesni_ecb_dec(ctx, blks, blks, nbytes);
567 }
568
569 static int lrw_aesni_setkey(struct crypto_tfm *tfm, const u8 *key,
570 unsigned int keylen)
571 {
572 struct aesni_lrw_ctx *ctx = crypto_tfm_ctx(tfm);
573 int err;
574
575 err = aes_set_key_common(tfm, ctx->raw_aes_ctx, key,
576 keylen - AES_BLOCK_SIZE);
577 if (err)
578 return err;
579
580 return lrw_init_table(&ctx->lrw_table, key + keylen - AES_BLOCK_SIZE);
581 }
582
583 static void lrw_aesni_exit_tfm(struct crypto_tfm *tfm)
584 {
585 struct aesni_lrw_ctx *ctx = crypto_tfm_ctx(tfm);
586
587 lrw_free_table(&ctx->lrw_table);
588 }
589
590 static int lrw_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
591 struct scatterlist *src, unsigned int nbytes)
592 {
593 struct aesni_lrw_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
594 be128 buf[8];
595 struct lrw_crypt_req req = {
596 .tbuf = buf,
597 .tbuflen = sizeof(buf),
598
599 .table_ctx = &ctx->lrw_table,
600 .crypt_ctx = aes_ctx(ctx->raw_aes_ctx),
601 .crypt_fn = lrw_xts_encrypt_callback,
602 };
603 int ret;
604
605 desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
606
607 kernel_fpu_begin();
608 ret = lrw_crypt(desc, dst, src, nbytes, &req);
609 kernel_fpu_end();
610
611 return ret;
612 }
613
614 static int lrw_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
615 struct scatterlist *src, unsigned int nbytes)
616 {
617 struct aesni_lrw_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
618 be128 buf[8];
619 struct lrw_crypt_req req = {
620 .tbuf = buf,
621 .tbuflen = sizeof(buf),
622
623 .table_ctx = &ctx->lrw_table,
624 .crypt_ctx = aes_ctx(ctx->raw_aes_ctx),
625 .crypt_fn = lrw_xts_decrypt_callback,
626 };
627 int ret;
628
629 desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
630
631 kernel_fpu_begin();
632 ret = lrw_crypt(desc, dst, src, nbytes, &req);
633 kernel_fpu_end();
634
635 return ret;
636 }
637
638 static int xts_aesni_setkey(struct crypto_tfm *tfm, const u8 *key,
639 unsigned int keylen)
640 {
641 struct aesni_xts_ctx *ctx = crypto_tfm_ctx(tfm);
642 int err;
643
644 err = xts_check_key(tfm, key, keylen);
645 if (err)
646 return err;
647
648 /* first half of xts-key is for crypt */
649 err = aes_set_key_common(tfm, ctx->raw_crypt_ctx, key, keylen / 2);
650 if (err)
651 return err;
652
653 /* second half of xts-key is for tweak */
654 return aes_set_key_common(tfm, ctx->raw_tweak_ctx, key + keylen / 2,
655 keylen / 2);
656 }
657
658
659 static void aesni_xts_tweak(void *ctx, u8 *out, const u8 *in)
660 {
661 aesni_enc(ctx, out, in);
662 }
663
664 #ifdef CONFIG_X86_64
665
666 static void aesni_xts_enc(void *ctx, u128 *dst, const u128 *src, le128 *iv)
667 {
668 glue_xts_crypt_128bit_one(ctx, dst, src, iv, GLUE_FUNC_CAST(aesni_enc));
669 }
670
671 static void aesni_xts_dec(void *ctx, u128 *dst, const u128 *src, le128 *iv)
672 {
673 glue_xts_crypt_128bit_one(ctx, dst, src, iv, GLUE_FUNC_CAST(aesni_dec));
674 }
675
676 static void aesni_xts_enc8(void *ctx, u128 *dst, const u128 *src, le128 *iv)
677 {
678 aesni_xts_crypt8(ctx, (u8 *)dst, (const u8 *)src, true, (u8 *)iv);
679 }
680
681 static void aesni_xts_dec8(void *ctx, u128 *dst, const u128 *src, le128 *iv)
682 {
683 aesni_xts_crypt8(ctx, (u8 *)dst, (const u8 *)src, false, (u8 *)iv);
684 }
685
686 static const struct common_glue_ctx aesni_enc_xts = {
687 .num_funcs = 2,
688 .fpu_blocks_limit = 1,
689
690 .funcs = { {
691 .num_blocks = 8,
692 .fn_u = { .xts = GLUE_XTS_FUNC_CAST(aesni_xts_enc8) }
693 }, {
694 .num_blocks = 1,
695 .fn_u = { .xts = GLUE_XTS_FUNC_CAST(aesni_xts_enc) }
696 } }
697 };
698
699 static const struct common_glue_ctx aesni_dec_xts = {
700 .num_funcs = 2,
701 .fpu_blocks_limit = 1,
702
703 .funcs = { {
704 .num_blocks = 8,
705 .fn_u = { .xts = GLUE_XTS_FUNC_CAST(aesni_xts_dec8) }
706 }, {
707 .num_blocks = 1,
708 .fn_u = { .xts = GLUE_XTS_FUNC_CAST(aesni_xts_dec) }
709 } }
710 };
711
712 static int xts_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
713 struct scatterlist *src, unsigned int nbytes)
714 {
715 struct aesni_xts_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
716
717 return glue_xts_crypt_128bit(&aesni_enc_xts, desc, dst, src, nbytes,
718 XTS_TWEAK_CAST(aesni_xts_tweak),
719 aes_ctx(ctx->raw_tweak_ctx),
720 aes_ctx(ctx->raw_crypt_ctx));
721 }
722
723 static int xts_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
724 struct scatterlist *src, unsigned int nbytes)
725 {
726 struct aesni_xts_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
727
728 return glue_xts_crypt_128bit(&aesni_dec_xts, desc, dst, src, nbytes,
729 XTS_TWEAK_CAST(aesni_xts_tweak),
730 aes_ctx(ctx->raw_tweak_ctx),
731 aes_ctx(ctx->raw_crypt_ctx));
732 }
733
734 #else
735
736 static int xts_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
737 struct scatterlist *src, unsigned int nbytes)
738 {
739 struct aesni_xts_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
740 be128 buf[8];
741 struct xts_crypt_req req = {
742 .tbuf = buf,
743 .tbuflen = sizeof(buf),
744
745 .tweak_ctx = aes_ctx(ctx->raw_tweak_ctx),
746 .tweak_fn = aesni_xts_tweak,
747 .crypt_ctx = aes_ctx(ctx->raw_crypt_ctx),
748 .crypt_fn = lrw_xts_encrypt_callback,
749 };
750 int ret;
751
752 desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
753
754 kernel_fpu_begin();
755 ret = xts_crypt(desc, dst, src, nbytes, &req);
756 kernel_fpu_end();
757
758 return ret;
759 }
760
761 static int xts_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
762 struct scatterlist *src, unsigned int nbytes)
763 {
764 struct aesni_xts_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
765 be128 buf[8];
766 struct xts_crypt_req req = {
767 .tbuf = buf,
768 .tbuflen = sizeof(buf),
769
770 .tweak_ctx = aes_ctx(ctx->raw_tweak_ctx),
771 .tweak_fn = aesni_xts_tweak,
772 .crypt_ctx = aes_ctx(ctx->raw_crypt_ctx),
773 .crypt_fn = lrw_xts_decrypt_callback,
774 };
775 int ret;
776
777 desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
778
779 kernel_fpu_begin();
780 ret = xts_crypt(desc, dst, src, nbytes, &req);
781 kernel_fpu_end();
782
783 return ret;
784 }
785
786 #endif
787
788 #ifdef CONFIG_X86_64
789 static int rfc4106_init(struct crypto_aead *aead)
790 {
791 struct cryptd_aead *cryptd_tfm;
792 struct cryptd_aead **ctx = crypto_aead_ctx(aead);
793
794 cryptd_tfm = cryptd_alloc_aead("__driver-gcm-aes-aesni",
795 CRYPTO_ALG_INTERNAL,
796 CRYPTO_ALG_INTERNAL);
797 if (IS_ERR(cryptd_tfm))
798 return PTR_ERR(cryptd_tfm);
799
800 *ctx = cryptd_tfm;
801 crypto_aead_set_reqsize(aead, crypto_aead_reqsize(&cryptd_tfm->base));
802 return 0;
803 }
804
805 static void rfc4106_exit(struct crypto_aead *aead)
806 {
807 struct cryptd_aead **ctx = crypto_aead_ctx(aead);
808
809 cryptd_free_aead(*ctx);
810 }
811
812 static void
813 rfc4106_set_hash_subkey_done(struct crypto_async_request *req, int err)
814 {
815 struct aesni_gcm_set_hash_subkey_result *result = req->data;
816
817 if (err == -EINPROGRESS)
818 return;
819 result->err = err;
820 complete(&result->completion);
821 }
822
823 static int
824 rfc4106_set_hash_subkey(u8 *hash_subkey, const u8 *key, unsigned int key_len)
825 {
826 struct crypto_ablkcipher *ctr_tfm;
827 struct ablkcipher_request *req;
828 int ret = -EINVAL;
829 struct aesni_hash_subkey_req_data *req_data;
830
831 ctr_tfm = crypto_alloc_ablkcipher("ctr(aes)", 0, 0);
832 if (IS_ERR(ctr_tfm))
833 return PTR_ERR(ctr_tfm);
834
835 ret = crypto_ablkcipher_setkey(ctr_tfm, key, key_len);
836 if (ret)
837 goto out_free_ablkcipher;
838
839 ret = -ENOMEM;
840 req = ablkcipher_request_alloc(ctr_tfm, GFP_KERNEL);
841 if (!req)
842 goto out_free_ablkcipher;
843
844 req_data = kmalloc(sizeof(*req_data), GFP_KERNEL);
845 if (!req_data)
846 goto out_free_request;
847
848 memset(req_data->iv, 0, sizeof(req_data->iv));
849
850 /* Clear the data in the hash sub key container to zero.*/
851 /* We want to cipher all zeros to create the hash sub key. */
852 memset(hash_subkey, 0, RFC4106_HASH_SUBKEY_SIZE);
853
854 init_completion(&req_data->result.completion);
855 sg_init_one(&req_data->sg, hash_subkey, RFC4106_HASH_SUBKEY_SIZE);
856 ablkcipher_request_set_tfm(req, ctr_tfm);
857 ablkcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP |
858 CRYPTO_TFM_REQ_MAY_BACKLOG,
859 rfc4106_set_hash_subkey_done,
860 &req_data->result);
861
862 ablkcipher_request_set_crypt(req, &req_data->sg,
863 &req_data->sg, RFC4106_HASH_SUBKEY_SIZE, req_data->iv);
864
865 ret = crypto_ablkcipher_encrypt(req);
866 if (ret == -EINPROGRESS || ret == -EBUSY) {
867 ret = wait_for_completion_interruptible
868 (&req_data->result.completion);
869 if (!ret)
870 ret = req_data->result.err;
871 }
872 kfree(req_data);
873 out_free_request:
874 ablkcipher_request_free(req);
875 out_free_ablkcipher:
876 crypto_free_ablkcipher(ctr_tfm);
877 return ret;
878 }
879
880 static int common_rfc4106_set_key(struct crypto_aead *aead, const u8 *key,
881 unsigned int key_len)
882 {
883 struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(aead);
884
885 if (key_len < 4) {
886 crypto_aead_set_flags(aead, CRYPTO_TFM_RES_BAD_KEY_LEN);
887 return -EINVAL;
888 }
889 /*Account for 4 byte nonce at the end.*/
890 key_len -= 4;
891
892 memcpy(ctx->nonce, key + key_len, sizeof(ctx->nonce));
893
894 return aes_set_key_common(crypto_aead_tfm(aead),
895 &ctx->aes_key_expanded, key, key_len) ?:
896 rfc4106_set_hash_subkey(ctx->hash_subkey, key, key_len);
897 }
898
899 static int rfc4106_set_key(struct crypto_aead *parent, const u8 *key,
900 unsigned int key_len)
901 {
902 struct cryptd_aead **ctx = crypto_aead_ctx(parent);
903 struct cryptd_aead *cryptd_tfm = *ctx;
904
905 return crypto_aead_setkey(&cryptd_tfm->base, key, key_len);
906 }
907
908 static int common_rfc4106_set_authsize(struct crypto_aead *aead,
909 unsigned int authsize)
910 {
911 switch (authsize) {
912 case 8:
913 case 12:
914 case 16:
915 break;
916 default:
917 return -EINVAL;
918 }
919
920 return 0;
921 }
922
923 /* This is the Integrity Check Value (aka the authentication tag length and can
924 * be 8, 12 or 16 bytes long. */
925 static int rfc4106_set_authsize(struct crypto_aead *parent,
926 unsigned int authsize)
927 {
928 struct cryptd_aead **ctx = crypto_aead_ctx(parent);
929 struct cryptd_aead *cryptd_tfm = *ctx;
930
931 return crypto_aead_setauthsize(&cryptd_tfm->base, authsize);
932 }
933
934 static int helper_rfc4106_encrypt(struct aead_request *req)
935 {
936 u8 one_entry_in_sg = 0;
937 u8 *src, *dst, *assoc;
938 __be32 counter = cpu_to_be32(1);
939 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
940 struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(tfm);
941 void *aes_ctx = &(ctx->aes_key_expanded);
942 unsigned long auth_tag_len = crypto_aead_authsize(tfm);
943 u8 iv[16] __attribute__ ((__aligned__(AESNI_ALIGN)));
944 struct scatter_walk src_sg_walk;
945 struct scatter_walk dst_sg_walk;
946 unsigned int i;
947
948 /* Assuming we are supporting rfc4106 64-bit extended */
949 /* sequence numbers We need to have the AAD length equal */
950 /* to 16 or 20 bytes */
951 if (unlikely(req->assoclen != 16 && req->assoclen != 20))
952 return -EINVAL;
953
954 /* IV below built */
955 for (i = 0; i < 4; i++)
956 *(iv+i) = ctx->nonce[i];
957 for (i = 0; i < 8; i++)
958 *(iv+4+i) = req->iv[i];
959 *((__be32 *)(iv+12)) = counter;
960
961 if (sg_is_last(req->src) &&
962 req->src->offset + req->src->length <= PAGE_SIZE &&
963 sg_is_last(req->dst) &&
964 req->dst->offset + req->dst->length <= PAGE_SIZE) {
965 one_entry_in_sg = 1;
966 scatterwalk_start(&src_sg_walk, req->src);
967 assoc = scatterwalk_map(&src_sg_walk);
968 src = assoc + req->assoclen;
969 dst = src;
970 if (unlikely(req->src != req->dst)) {
971 scatterwalk_start(&dst_sg_walk, req->dst);
972 dst = scatterwalk_map(&dst_sg_walk) + req->assoclen;
973 }
974 } else {
975 /* Allocate memory for src, dst, assoc */
976 assoc = kmalloc(req->cryptlen + auth_tag_len + req->assoclen,
977 GFP_ATOMIC);
978 if (unlikely(!assoc))
979 return -ENOMEM;
980 scatterwalk_map_and_copy(assoc, req->src, 0,
981 req->assoclen + req->cryptlen, 0);
982 src = assoc + req->assoclen;
983 dst = src;
984 }
985
986 kernel_fpu_begin();
987 aesni_gcm_enc_tfm(aes_ctx, dst, src, req->cryptlen, iv,
988 ctx->hash_subkey, assoc, req->assoclen - 8,
989 dst + req->cryptlen, auth_tag_len);
990 kernel_fpu_end();
991
992 /* The authTag (aka the Integrity Check Value) needs to be written
993 * back to the packet. */
994 if (one_entry_in_sg) {
995 if (unlikely(req->src != req->dst)) {
996 scatterwalk_unmap(dst - req->assoclen);
997 scatterwalk_advance(&dst_sg_walk, req->dst->length);
998 scatterwalk_done(&dst_sg_walk, 1, 0);
999 }
1000 scatterwalk_unmap(assoc);
1001 scatterwalk_advance(&src_sg_walk, req->src->length);
1002 scatterwalk_done(&src_sg_walk, req->src == req->dst, 0);
1003 } else {
1004 scatterwalk_map_and_copy(dst, req->dst, req->assoclen,
1005 req->cryptlen + auth_tag_len, 1);
1006 kfree(assoc);
1007 }
1008 return 0;
1009 }
1010
1011 static int helper_rfc4106_decrypt(struct aead_request *req)
1012 {
1013 u8 one_entry_in_sg = 0;
1014 u8 *src, *dst, *assoc;
1015 unsigned long tempCipherLen = 0;
1016 __be32 counter = cpu_to_be32(1);
1017 int retval = 0;
1018 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1019 struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(tfm);
1020 void *aes_ctx = &(ctx->aes_key_expanded);
1021 unsigned long auth_tag_len = crypto_aead_authsize(tfm);
1022 u8 iv[16] __attribute__ ((__aligned__(AESNI_ALIGN)));
1023 u8 authTag[16];
1024 struct scatter_walk src_sg_walk;
1025 struct scatter_walk dst_sg_walk;
1026 unsigned int i;
1027
1028 if (unlikely(req->assoclen != 16 && req->assoclen != 20))
1029 return -EINVAL;
1030
1031 /* Assuming we are supporting rfc4106 64-bit extended */
1032 /* sequence numbers We need to have the AAD length */
1033 /* equal to 16 or 20 bytes */
1034
1035 tempCipherLen = (unsigned long)(req->cryptlen - auth_tag_len);
1036 /* IV below built */
1037 for (i = 0; i < 4; i++)
1038 *(iv+i) = ctx->nonce[i];
1039 for (i = 0; i < 8; i++)
1040 *(iv+4+i) = req->iv[i];
1041 *((__be32 *)(iv+12)) = counter;
1042
1043 if (sg_is_last(req->src) &&
1044 req->src->offset + req->src->length <= PAGE_SIZE &&
1045 sg_is_last(req->dst) &&
1046 req->dst->offset + req->dst->length <= PAGE_SIZE) {
1047 one_entry_in_sg = 1;
1048 scatterwalk_start(&src_sg_walk, req->src);
1049 assoc = scatterwalk_map(&src_sg_walk);
1050 src = assoc + req->assoclen;
1051 dst = src;
1052 if (unlikely(req->src != req->dst)) {
1053 scatterwalk_start(&dst_sg_walk, req->dst);
1054 dst = scatterwalk_map(&dst_sg_walk) + req->assoclen;
1055 }
1056
1057 } else {
1058 /* Allocate memory for src, dst, assoc */
1059 assoc = kmalloc(req->cryptlen + req->assoclen, GFP_ATOMIC);
1060 if (!assoc)
1061 return -ENOMEM;
1062 scatterwalk_map_and_copy(assoc, req->src, 0,
1063 req->assoclen + req->cryptlen, 0);
1064 src = assoc + req->assoclen;
1065 dst = src;
1066 }
1067
1068 kernel_fpu_begin();
1069 aesni_gcm_dec_tfm(aes_ctx, dst, src, tempCipherLen, iv,
1070 ctx->hash_subkey, assoc, req->assoclen - 8,
1071 authTag, auth_tag_len);
1072 kernel_fpu_end();
1073
1074 /* Compare generated tag with passed in tag. */
1075 retval = crypto_memneq(src + tempCipherLen, authTag, auth_tag_len) ?
1076 -EBADMSG : 0;
1077
1078 if (one_entry_in_sg) {
1079 if (unlikely(req->src != req->dst)) {
1080 scatterwalk_unmap(dst - req->assoclen);
1081 scatterwalk_advance(&dst_sg_walk, req->dst->length);
1082 scatterwalk_done(&dst_sg_walk, 1, 0);
1083 }
1084 scatterwalk_unmap(assoc);
1085 scatterwalk_advance(&src_sg_walk, req->src->length);
1086 scatterwalk_done(&src_sg_walk, req->src == req->dst, 0);
1087 } else {
1088 scatterwalk_map_and_copy(dst, req->dst, req->assoclen,
1089 tempCipherLen, 1);
1090 kfree(assoc);
1091 }
1092 return retval;
1093 }
1094
1095 static int rfc4106_encrypt(struct aead_request *req)
1096 {
1097 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1098 struct cryptd_aead **ctx = crypto_aead_ctx(tfm);
1099 struct cryptd_aead *cryptd_tfm = *ctx;
1100
1101 aead_request_set_tfm(req, irq_fpu_usable() ?
1102 cryptd_aead_child(cryptd_tfm) :
1103 &cryptd_tfm->base);
1104
1105 return crypto_aead_encrypt(req);
1106 }
1107
1108 static int rfc4106_decrypt(struct aead_request *req)
1109 {
1110 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1111 struct cryptd_aead **ctx = crypto_aead_ctx(tfm);
1112 struct cryptd_aead *cryptd_tfm = *ctx;
1113
1114 aead_request_set_tfm(req, irq_fpu_usable() ?
1115 cryptd_aead_child(cryptd_tfm) :
1116 &cryptd_tfm->base);
1117
1118 return crypto_aead_decrypt(req);
1119 }
1120 #endif
1121
1122 static struct crypto_alg aesni_algs[] = { {
1123 .cra_name = "aes",
1124 .cra_driver_name = "aes-aesni",
1125 .cra_priority = 300,
1126 .cra_flags = CRYPTO_ALG_TYPE_CIPHER,
1127 .cra_blocksize = AES_BLOCK_SIZE,
1128 .cra_ctxsize = sizeof(struct crypto_aes_ctx) +
1129 AESNI_ALIGN - 1,
1130 .cra_alignmask = 0,
1131 .cra_module = THIS_MODULE,
1132 .cra_u = {
1133 .cipher = {
1134 .cia_min_keysize = AES_MIN_KEY_SIZE,
1135 .cia_max_keysize = AES_MAX_KEY_SIZE,
1136 .cia_setkey = aes_set_key,
1137 .cia_encrypt = aes_encrypt,
1138 .cia_decrypt = aes_decrypt
1139 }
1140 }
1141 }, {
1142 .cra_name = "__aes-aesni",
1143 .cra_driver_name = "__driver-aes-aesni",
1144 .cra_priority = 0,
1145 .cra_flags = CRYPTO_ALG_TYPE_CIPHER | CRYPTO_ALG_INTERNAL,
1146 .cra_blocksize = AES_BLOCK_SIZE,
1147 .cra_ctxsize = sizeof(struct crypto_aes_ctx) +
1148 AESNI_ALIGN - 1,
1149 .cra_alignmask = 0,
1150 .cra_module = THIS_MODULE,
1151 .cra_u = {
1152 .cipher = {
1153 .cia_min_keysize = AES_MIN_KEY_SIZE,
1154 .cia_max_keysize = AES_MAX_KEY_SIZE,
1155 .cia_setkey = aes_set_key,
1156 .cia_encrypt = __aes_encrypt,
1157 .cia_decrypt = __aes_decrypt
1158 }
1159 }
1160 }, {
1161 .cra_name = "__ecb-aes-aesni",
1162 .cra_driver_name = "__driver-ecb-aes-aesni",
1163 .cra_priority = 0,
1164 .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER |
1165 CRYPTO_ALG_INTERNAL,
1166 .cra_blocksize = AES_BLOCK_SIZE,
1167 .cra_ctxsize = sizeof(struct crypto_aes_ctx) +
1168 AESNI_ALIGN - 1,
1169 .cra_alignmask = 0,
1170 .cra_type = &crypto_blkcipher_type,
1171 .cra_module = THIS_MODULE,
1172 .cra_u = {
1173 .blkcipher = {
1174 .min_keysize = AES_MIN_KEY_SIZE,
1175 .max_keysize = AES_MAX_KEY_SIZE,
1176 .setkey = aes_set_key,
1177 .encrypt = ecb_encrypt,
1178 .decrypt = ecb_decrypt,
1179 },
1180 },
1181 }, {
1182 .cra_name = "__cbc-aes-aesni",
1183 .cra_driver_name = "__driver-cbc-aes-aesni",
1184 .cra_priority = 0,
1185 .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER |
1186 CRYPTO_ALG_INTERNAL,
1187 .cra_blocksize = AES_BLOCK_SIZE,
1188 .cra_ctxsize = sizeof(struct crypto_aes_ctx) +
1189 AESNI_ALIGN - 1,
1190 .cra_alignmask = 0,
1191 .cra_type = &crypto_blkcipher_type,
1192 .cra_module = THIS_MODULE,
1193 .cra_u = {
1194 .blkcipher = {
1195 .min_keysize = AES_MIN_KEY_SIZE,
1196 .max_keysize = AES_MAX_KEY_SIZE,
1197 .setkey = aes_set_key,
1198 .encrypt = cbc_encrypt,
1199 .decrypt = cbc_decrypt,
1200 },
1201 },
1202 }, {
1203 .cra_name = "ecb(aes)",
1204 .cra_driver_name = "ecb-aes-aesni",
1205 .cra_priority = 400,
1206 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1207 .cra_blocksize = AES_BLOCK_SIZE,
1208 .cra_ctxsize = sizeof(struct async_helper_ctx),
1209 .cra_alignmask = 0,
1210 .cra_type = &crypto_ablkcipher_type,
1211 .cra_module = THIS_MODULE,
1212 .cra_init = ablk_ecb_init,
1213 .cra_exit = ablk_exit,
1214 .cra_u = {
1215 .ablkcipher = {
1216 .min_keysize = AES_MIN_KEY_SIZE,
1217 .max_keysize = AES_MAX_KEY_SIZE,
1218 .setkey = ablk_set_key,
1219 .encrypt = ablk_encrypt,
1220 .decrypt = ablk_decrypt,
1221 },
1222 },
1223 }, {
1224 .cra_name = "cbc(aes)",
1225 .cra_driver_name = "cbc-aes-aesni",
1226 .cra_priority = 400,
1227 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1228 .cra_blocksize = AES_BLOCK_SIZE,
1229 .cra_ctxsize = sizeof(struct async_helper_ctx),
1230 .cra_alignmask = 0,
1231 .cra_type = &crypto_ablkcipher_type,
1232 .cra_module = THIS_MODULE,
1233 .cra_init = ablk_cbc_init,
1234 .cra_exit = ablk_exit,
1235 .cra_u = {
1236 .ablkcipher = {
1237 .min_keysize = AES_MIN_KEY_SIZE,
1238 .max_keysize = AES_MAX_KEY_SIZE,
1239 .ivsize = AES_BLOCK_SIZE,
1240 .setkey = ablk_set_key,
1241 .encrypt = ablk_encrypt,
1242 .decrypt = ablk_decrypt,
1243 },
1244 },
1245 #ifdef CONFIG_X86_64
1246 }, {
1247 .cra_name = "__ctr-aes-aesni",
1248 .cra_driver_name = "__driver-ctr-aes-aesni",
1249 .cra_priority = 0,
1250 .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER |
1251 CRYPTO_ALG_INTERNAL,
1252 .cra_blocksize = 1,
1253 .cra_ctxsize = sizeof(struct crypto_aes_ctx) +
1254 AESNI_ALIGN - 1,
1255 .cra_alignmask = 0,
1256 .cra_type = &crypto_blkcipher_type,
1257 .cra_module = THIS_MODULE,
1258 .cra_u = {
1259 .blkcipher = {
1260 .min_keysize = AES_MIN_KEY_SIZE,
1261 .max_keysize = AES_MAX_KEY_SIZE,
1262 .ivsize = AES_BLOCK_SIZE,
1263 .setkey = aes_set_key,
1264 .encrypt = ctr_crypt,
1265 .decrypt = ctr_crypt,
1266 },
1267 },
1268 }, {
1269 .cra_name = "ctr(aes)",
1270 .cra_driver_name = "ctr-aes-aesni",
1271 .cra_priority = 400,
1272 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1273 .cra_blocksize = 1,
1274 .cra_ctxsize = sizeof(struct async_helper_ctx),
1275 .cra_alignmask = 0,
1276 .cra_type = &crypto_ablkcipher_type,
1277 .cra_module = THIS_MODULE,
1278 .cra_init = ablk_ctr_init,
1279 .cra_exit = ablk_exit,
1280 .cra_u = {
1281 .ablkcipher = {
1282 .min_keysize = AES_MIN_KEY_SIZE,
1283 .max_keysize = AES_MAX_KEY_SIZE,
1284 .ivsize = AES_BLOCK_SIZE,
1285 .setkey = ablk_set_key,
1286 .encrypt = ablk_encrypt,
1287 .decrypt = ablk_encrypt,
1288 .geniv = "chainiv",
1289 },
1290 },
1291 #endif
1292 #if IS_ENABLED(CONFIG_CRYPTO_PCBC)
1293 }, {
1294 .cra_name = "pcbc(aes)",
1295 .cra_driver_name = "pcbc-aes-aesni",
1296 .cra_priority = 400,
1297 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1298 .cra_blocksize = AES_BLOCK_SIZE,
1299 .cra_ctxsize = sizeof(struct async_helper_ctx),
1300 .cra_alignmask = 0,
1301 .cra_type = &crypto_ablkcipher_type,
1302 .cra_module = THIS_MODULE,
1303 .cra_init = ablk_pcbc_init,
1304 .cra_exit = ablk_exit,
1305 .cra_u = {
1306 .ablkcipher = {
1307 .min_keysize = AES_MIN_KEY_SIZE,
1308 .max_keysize = AES_MAX_KEY_SIZE,
1309 .ivsize = AES_BLOCK_SIZE,
1310 .setkey = ablk_set_key,
1311 .encrypt = ablk_encrypt,
1312 .decrypt = ablk_decrypt,
1313 },
1314 },
1315 #endif
1316 }, {
1317 .cra_name = "__lrw-aes-aesni",
1318 .cra_driver_name = "__driver-lrw-aes-aesni",
1319 .cra_priority = 0,
1320 .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER |
1321 CRYPTO_ALG_INTERNAL,
1322 .cra_blocksize = AES_BLOCK_SIZE,
1323 .cra_ctxsize = sizeof(struct aesni_lrw_ctx),
1324 .cra_alignmask = 0,
1325 .cra_type = &crypto_blkcipher_type,
1326 .cra_module = THIS_MODULE,
1327 .cra_exit = lrw_aesni_exit_tfm,
1328 .cra_u = {
1329 .blkcipher = {
1330 .min_keysize = AES_MIN_KEY_SIZE + AES_BLOCK_SIZE,
1331 .max_keysize = AES_MAX_KEY_SIZE + AES_BLOCK_SIZE,
1332 .ivsize = AES_BLOCK_SIZE,
1333 .setkey = lrw_aesni_setkey,
1334 .encrypt = lrw_encrypt,
1335 .decrypt = lrw_decrypt,
1336 },
1337 },
1338 }, {
1339 .cra_name = "__xts-aes-aesni",
1340 .cra_driver_name = "__driver-xts-aes-aesni",
1341 .cra_priority = 0,
1342 .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER |
1343 CRYPTO_ALG_INTERNAL,
1344 .cra_blocksize = AES_BLOCK_SIZE,
1345 .cra_ctxsize = sizeof(struct aesni_xts_ctx),
1346 .cra_alignmask = 0,
1347 .cra_type = &crypto_blkcipher_type,
1348 .cra_module = THIS_MODULE,
1349 .cra_u = {
1350 .blkcipher = {
1351 .min_keysize = 2 * AES_MIN_KEY_SIZE,
1352 .max_keysize = 2 * AES_MAX_KEY_SIZE,
1353 .ivsize = AES_BLOCK_SIZE,
1354 .setkey = xts_aesni_setkey,
1355 .encrypt = xts_encrypt,
1356 .decrypt = xts_decrypt,
1357 },
1358 },
1359 }, {
1360 .cra_name = "lrw(aes)",
1361 .cra_driver_name = "lrw-aes-aesni",
1362 .cra_priority = 400,
1363 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1364 .cra_blocksize = AES_BLOCK_SIZE,
1365 .cra_ctxsize = sizeof(struct async_helper_ctx),
1366 .cra_alignmask = 0,
1367 .cra_type = &crypto_ablkcipher_type,
1368 .cra_module = THIS_MODULE,
1369 .cra_init = ablk_init,
1370 .cra_exit = ablk_exit,
1371 .cra_u = {
1372 .ablkcipher = {
1373 .min_keysize = AES_MIN_KEY_SIZE + AES_BLOCK_SIZE,
1374 .max_keysize = AES_MAX_KEY_SIZE + AES_BLOCK_SIZE,
1375 .ivsize = AES_BLOCK_SIZE,
1376 .setkey = ablk_set_key,
1377 .encrypt = ablk_encrypt,
1378 .decrypt = ablk_decrypt,
1379 },
1380 },
1381 }, {
1382 .cra_name = "xts(aes)",
1383 .cra_driver_name = "xts-aes-aesni",
1384 .cra_priority = 400,
1385 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1386 .cra_blocksize = AES_BLOCK_SIZE,
1387 .cra_ctxsize = sizeof(struct async_helper_ctx),
1388 .cra_alignmask = 0,
1389 .cra_type = &crypto_ablkcipher_type,
1390 .cra_module = THIS_MODULE,
1391 .cra_init = ablk_init,
1392 .cra_exit = ablk_exit,
1393 .cra_u = {
1394 .ablkcipher = {
1395 .min_keysize = 2 * AES_MIN_KEY_SIZE,
1396 .max_keysize = 2 * AES_MAX_KEY_SIZE,
1397 .ivsize = AES_BLOCK_SIZE,
1398 .setkey = ablk_set_key,
1399 .encrypt = ablk_encrypt,
1400 .decrypt = ablk_decrypt,
1401 },
1402 },
1403 } };
1404
1405 #ifdef CONFIG_X86_64
1406 static struct aead_alg aesni_aead_algs[] = { {
1407 .setkey = common_rfc4106_set_key,
1408 .setauthsize = common_rfc4106_set_authsize,
1409 .encrypt = helper_rfc4106_encrypt,
1410 .decrypt = helper_rfc4106_decrypt,
1411 .ivsize = 8,
1412 .maxauthsize = 16,
1413 .base = {
1414 .cra_name = "__gcm-aes-aesni",
1415 .cra_driver_name = "__driver-gcm-aes-aesni",
1416 .cra_flags = CRYPTO_ALG_INTERNAL,
1417 .cra_blocksize = 1,
1418 .cra_ctxsize = sizeof(struct aesni_rfc4106_gcm_ctx),
1419 .cra_alignmask = AESNI_ALIGN - 1,
1420 .cra_module = THIS_MODULE,
1421 },
1422 }, {
1423 .init = rfc4106_init,
1424 .exit = rfc4106_exit,
1425 .setkey = rfc4106_set_key,
1426 .setauthsize = rfc4106_set_authsize,
1427 .encrypt = rfc4106_encrypt,
1428 .decrypt = rfc4106_decrypt,
1429 .ivsize = 8,
1430 .maxauthsize = 16,
1431 .base = {
1432 .cra_name = "rfc4106(gcm(aes))",
1433 .cra_driver_name = "rfc4106-gcm-aesni",
1434 .cra_priority = 400,
1435 .cra_flags = CRYPTO_ALG_ASYNC,
1436 .cra_blocksize = 1,
1437 .cra_ctxsize = sizeof(struct cryptd_aead *),
1438 .cra_module = THIS_MODULE,
1439 },
1440 } };
1441 #else
1442 static struct aead_alg aesni_aead_algs[0];
1443 #endif
1444
1445
1446 static const struct x86_cpu_id aesni_cpu_id[] = {
1447 X86_FEATURE_MATCH(X86_FEATURE_AES),
1448 {}
1449 };
1450 MODULE_DEVICE_TABLE(x86cpu, aesni_cpu_id);
1451
1452 static int __init aesni_init(void)
1453 {
1454 int err;
1455
1456 if (!x86_match_cpu(aesni_cpu_id))
1457 return -ENODEV;
1458 #ifdef CONFIG_X86_64
1459 #ifdef CONFIG_AS_AVX2
1460 if (boot_cpu_has(X86_FEATURE_AVX2)) {
1461 pr_info("AVX2 version of gcm_enc/dec engaged.\n");
1462 aesni_gcm_enc_tfm = aesni_gcm_enc_avx2;
1463 aesni_gcm_dec_tfm = aesni_gcm_dec_avx2;
1464 } else
1465 #endif
1466 #ifdef CONFIG_AS_AVX
1467 if (boot_cpu_has(X86_FEATURE_AVX)) {
1468 pr_info("AVX version of gcm_enc/dec engaged.\n");
1469 aesni_gcm_enc_tfm = aesni_gcm_enc_avx;
1470 aesni_gcm_dec_tfm = aesni_gcm_dec_avx;
1471 } else
1472 #endif
1473 {
1474 pr_info("SSE version of gcm_enc/dec engaged.\n");
1475 aesni_gcm_enc_tfm = aesni_gcm_enc;
1476 aesni_gcm_dec_tfm = aesni_gcm_dec;
1477 }
1478 aesni_ctr_enc_tfm = aesni_ctr_enc;
1479 #ifdef CONFIG_AS_AVX
1480 if (boot_cpu_has(X86_FEATURE_AVX)) {
1481 /* optimize performance of ctr mode encryption transform */
1482 aesni_ctr_enc_tfm = aesni_ctr_enc_avx_tfm;
1483 pr_info("AES CTR mode by8 optimization enabled\n");
1484 }
1485 #endif
1486 #endif
1487
1488 err = crypto_fpu_init();
1489 if (err)
1490 return err;
1491
1492 err = crypto_register_algs(aesni_algs, ARRAY_SIZE(aesni_algs));
1493 if (err)
1494 goto fpu_exit;
1495
1496 err = crypto_register_aeads(aesni_aead_algs,
1497 ARRAY_SIZE(aesni_aead_algs));
1498 if (err)
1499 goto unregister_algs;
1500
1501 return err;
1502
1503 unregister_algs:
1504 crypto_unregister_algs(aesni_algs, ARRAY_SIZE(aesni_algs));
1505 fpu_exit:
1506 crypto_fpu_exit();
1507 return err;
1508 }
1509
1510 static void __exit aesni_exit(void)
1511 {
1512 crypto_unregister_aeads(aesni_aead_algs, ARRAY_SIZE(aesni_aead_algs));
1513 crypto_unregister_algs(aesni_algs, ARRAY_SIZE(aesni_algs));
1514
1515 crypto_fpu_exit();
1516 }
1517
1518 late_initcall(aesni_init);
1519 module_exit(aesni_exit);
1520
1521 MODULE_DESCRIPTION("Rijndael (AES) Cipher Algorithm, Intel AES-NI instructions optimized");
1522 MODULE_LICENSE("GPL");
1523 MODULE_ALIAS_CRYPTO("aes");
This page took 0.061618 seconds and 6 git commands to generate.