Merge branch 'pm-cpufreq-fixes'
[deliverable/linux.git] / arch / x86 / crypto / camellia-aesni-avx-asm_64.S
1 /*
2 * x86_64/AVX/AES-NI assembler implementation of Camellia
3 *
4 * Copyright © 2012-2013 Jussi Kivilinna <jussi.kivilinna@iki.fi>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 */
12
13 /*
14 * Version licensed under 2-clause BSD License is available at:
15 * http://koti.mbnet.fi/axh/crypto/camellia-BSD-1.2.0-aesni1.tar.xz
16 */
17
18 #include <linux/linkage.h>
19 #include <asm/frame.h>
20
21 #define CAMELLIA_TABLE_BYTE_LEN 272
22
23 /* struct camellia_ctx: */
24 #define key_table 0
25 #define key_length CAMELLIA_TABLE_BYTE_LEN
26
27 /* register macros */
28 #define CTX %rdi
29
30 /**********************************************************************
31 16-way camellia
32 **********************************************************************/
33 #define filter_8bit(x, lo_t, hi_t, mask4bit, tmp0) \
34 vpand x, mask4bit, tmp0; \
35 vpandn x, mask4bit, x; \
36 vpsrld $4, x, x; \
37 \
38 vpshufb tmp0, lo_t, tmp0; \
39 vpshufb x, hi_t, x; \
40 vpxor tmp0, x, x;
41
42 /*
43 * IN:
44 * x0..x7: byte-sliced AB state
45 * mem_cd: register pointer storing CD state
46 * key: index for key material
47 * OUT:
48 * x0..x7: new byte-sliced CD state
49 */
50 #define roundsm16(x0, x1, x2, x3, x4, x5, x6, x7, t0, t1, t2, t3, t4, t5, t6, \
51 t7, mem_cd, key) \
52 /* \
53 * S-function with AES subbytes \
54 */ \
55 vmovdqa .Linv_shift_row, t4; \
56 vbroadcastss .L0f0f0f0f, t7; \
57 vmovdqa .Lpre_tf_lo_s1, t0; \
58 vmovdqa .Lpre_tf_hi_s1, t1; \
59 \
60 /* AES inverse shift rows */ \
61 vpshufb t4, x0, x0; \
62 vpshufb t4, x7, x7; \
63 vpshufb t4, x1, x1; \
64 vpshufb t4, x4, x4; \
65 vpshufb t4, x2, x2; \
66 vpshufb t4, x5, x5; \
67 vpshufb t4, x3, x3; \
68 vpshufb t4, x6, x6; \
69 \
70 /* prefilter sboxes 1, 2 and 3 */ \
71 vmovdqa .Lpre_tf_lo_s4, t2; \
72 vmovdqa .Lpre_tf_hi_s4, t3; \
73 filter_8bit(x0, t0, t1, t7, t6); \
74 filter_8bit(x7, t0, t1, t7, t6); \
75 filter_8bit(x1, t0, t1, t7, t6); \
76 filter_8bit(x4, t0, t1, t7, t6); \
77 filter_8bit(x2, t0, t1, t7, t6); \
78 filter_8bit(x5, t0, t1, t7, t6); \
79 \
80 /* prefilter sbox 4 */ \
81 vpxor t4, t4, t4; \
82 filter_8bit(x3, t2, t3, t7, t6); \
83 filter_8bit(x6, t2, t3, t7, t6); \
84 \
85 /* AES subbytes + AES shift rows */ \
86 vmovdqa .Lpost_tf_lo_s1, t0; \
87 vmovdqa .Lpost_tf_hi_s1, t1; \
88 vaesenclast t4, x0, x0; \
89 vaesenclast t4, x7, x7; \
90 vaesenclast t4, x1, x1; \
91 vaesenclast t4, x4, x4; \
92 vaesenclast t4, x2, x2; \
93 vaesenclast t4, x5, x5; \
94 vaesenclast t4, x3, x3; \
95 vaesenclast t4, x6, x6; \
96 \
97 /* postfilter sboxes 1 and 4 */ \
98 vmovdqa .Lpost_tf_lo_s3, t2; \
99 vmovdqa .Lpost_tf_hi_s3, t3; \
100 filter_8bit(x0, t0, t1, t7, t6); \
101 filter_8bit(x7, t0, t1, t7, t6); \
102 filter_8bit(x3, t0, t1, t7, t6); \
103 filter_8bit(x6, t0, t1, t7, t6); \
104 \
105 /* postfilter sbox 3 */ \
106 vmovdqa .Lpost_tf_lo_s2, t4; \
107 vmovdqa .Lpost_tf_hi_s2, t5; \
108 filter_8bit(x2, t2, t3, t7, t6); \
109 filter_8bit(x5, t2, t3, t7, t6); \
110 \
111 vpxor t6, t6, t6; \
112 vmovq key, t0; \
113 \
114 /* postfilter sbox 2 */ \
115 filter_8bit(x1, t4, t5, t7, t2); \
116 filter_8bit(x4, t4, t5, t7, t2); \
117 \
118 vpsrldq $5, t0, t5; \
119 vpsrldq $1, t0, t1; \
120 vpsrldq $2, t0, t2; \
121 vpsrldq $3, t0, t3; \
122 vpsrldq $4, t0, t4; \
123 vpshufb t6, t0, t0; \
124 vpshufb t6, t1, t1; \
125 vpshufb t6, t2, t2; \
126 vpshufb t6, t3, t3; \
127 vpshufb t6, t4, t4; \
128 vpsrldq $2, t5, t7; \
129 vpshufb t6, t7, t7; \
130 \
131 /* \
132 * P-function \
133 */ \
134 vpxor x5, x0, x0; \
135 vpxor x6, x1, x1; \
136 vpxor x7, x2, x2; \
137 vpxor x4, x3, x3; \
138 \
139 vpxor x2, x4, x4; \
140 vpxor x3, x5, x5; \
141 vpxor x0, x6, x6; \
142 vpxor x1, x7, x7; \
143 \
144 vpxor x7, x0, x0; \
145 vpxor x4, x1, x1; \
146 vpxor x5, x2, x2; \
147 vpxor x6, x3, x3; \
148 \
149 vpxor x3, x4, x4; \
150 vpxor x0, x5, x5; \
151 vpxor x1, x6, x6; \
152 vpxor x2, x7, x7; /* note: high and low parts swapped */ \
153 \
154 /* \
155 * Add key material and result to CD (x becomes new CD) \
156 */ \
157 \
158 vpxor t3, x4, x4; \
159 vpxor 0 * 16(mem_cd), x4, x4; \
160 \
161 vpxor t2, x5, x5; \
162 vpxor 1 * 16(mem_cd), x5, x5; \
163 \
164 vpsrldq $1, t5, t3; \
165 vpshufb t6, t5, t5; \
166 vpshufb t6, t3, t6; \
167 \
168 vpxor t1, x6, x6; \
169 vpxor 2 * 16(mem_cd), x6, x6; \
170 \
171 vpxor t0, x7, x7; \
172 vpxor 3 * 16(mem_cd), x7, x7; \
173 \
174 vpxor t7, x0, x0; \
175 vpxor 4 * 16(mem_cd), x0, x0; \
176 \
177 vpxor t6, x1, x1; \
178 vpxor 5 * 16(mem_cd), x1, x1; \
179 \
180 vpxor t5, x2, x2; \
181 vpxor 6 * 16(mem_cd), x2, x2; \
182 \
183 vpxor t4, x3, x3; \
184 vpxor 7 * 16(mem_cd), x3, x3;
185
186 /*
187 * Size optimization... with inlined roundsm16, binary would be over 5 times
188 * larger and would only be 0.5% faster (on sandy-bridge).
189 */
190 .align 8
191 roundsm16_x0_x1_x2_x3_x4_x5_x6_x7_y0_y1_y2_y3_y4_y5_y6_y7_cd:
192 roundsm16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
193 %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, %xmm15,
194 %rcx, (%r9));
195 ret;
196 ENDPROC(roundsm16_x0_x1_x2_x3_x4_x5_x6_x7_y0_y1_y2_y3_y4_y5_y6_y7_cd)
197
198 .align 8
199 roundsm16_x4_x5_x6_x7_x0_x1_x2_x3_y4_y5_y6_y7_y0_y1_y2_y3_ab:
200 roundsm16(%xmm4, %xmm5, %xmm6, %xmm7, %xmm0, %xmm1, %xmm2, %xmm3,
201 %xmm12, %xmm13, %xmm14, %xmm15, %xmm8, %xmm9, %xmm10, %xmm11,
202 %rax, (%r9));
203 ret;
204 ENDPROC(roundsm16_x4_x5_x6_x7_x0_x1_x2_x3_y4_y5_y6_y7_y0_y1_y2_y3_ab)
205
206 /*
207 * IN/OUT:
208 * x0..x7: byte-sliced AB state preloaded
209 * mem_ab: byte-sliced AB state in memory
210 * mem_cb: byte-sliced CD state in memory
211 */
212 #define two_roundsm16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
213 y6, y7, mem_ab, mem_cd, i, dir, store_ab) \
214 leaq (key_table + (i) * 8)(CTX), %r9; \
215 call roundsm16_x0_x1_x2_x3_x4_x5_x6_x7_y0_y1_y2_y3_y4_y5_y6_y7_cd; \
216 \
217 vmovdqu x4, 0 * 16(mem_cd); \
218 vmovdqu x5, 1 * 16(mem_cd); \
219 vmovdqu x6, 2 * 16(mem_cd); \
220 vmovdqu x7, 3 * 16(mem_cd); \
221 vmovdqu x0, 4 * 16(mem_cd); \
222 vmovdqu x1, 5 * 16(mem_cd); \
223 vmovdqu x2, 6 * 16(mem_cd); \
224 vmovdqu x3, 7 * 16(mem_cd); \
225 \
226 leaq (key_table + ((i) + (dir)) * 8)(CTX), %r9; \
227 call roundsm16_x4_x5_x6_x7_x0_x1_x2_x3_y4_y5_y6_y7_y0_y1_y2_y3_ab; \
228 \
229 store_ab(x0, x1, x2, x3, x4, x5, x6, x7, mem_ab);
230
231 #define dummy_store(x0, x1, x2, x3, x4, x5, x6, x7, mem_ab) /* do nothing */
232
233 #define store_ab_state(x0, x1, x2, x3, x4, x5, x6, x7, mem_ab) \
234 /* Store new AB state */ \
235 vmovdqu x0, 0 * 16(mem_ab); \
236 vmovdqu x1, 1 * 16(mem_ab); \
237 vmovdqu x2, 2 * 16(mem_ab); \
238 vmovdqu x3, 3 * 16(mem_ab); \
239 vmovdqu x4, 4 * 16(mem_ab); \
240 vmovdqu x5, 5 * 16(mem_ab); \
241 vmovdqu x6, 6 * 16(mem_ab); \
242 vmovdqu x7, 7 * 16(mem_ab);
243
244 #define enc_rounds16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
245 y6, y7, mem_ab, mem_cd, i) \
246 two_roundsm16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
247 y6, y7, mem_ab, mem_cd, (i) + 2, 1, store_ab_state); \
248 two_roundsm16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
249 y6, y7, mem_ab, mem_cd, (i) + 4, 1, store_ab_state); \
250 two_roundsm16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
251 y6, y7, mem_ab, mem_cd, (i) + 6, 1, dummy_store);
252
253 #define dec_rounds16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
254 y6, y7, mem_ab, mem_cd, i) \
255 two_roundsm16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
256 y6, y7, mem_ab, mem_cd, (i) + 7, -1, store_ab_state); \
257 two_roundsm16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
258 y6, y7, mem_ab, mem_cd, (i) + 5, -1, store_ab_state); \
259 two_roundsm16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
260 y6, y7, mem_ab, mem_cd, (i) + 3, -1, dummy_store);
261
262 /*
263 * IN:
264 * v0..3: byte-sliced 32-bit integers
265 * OUT:
266 * v0..3: (IN <<< 1)
267 */
268 #define rol32_1_16(v0, v1, v2, v3, t0, t1, t2, zero) \
269 vpcmpgtb v0, zero, t0; \
270 vpaddb v0, v0, v0; \
271 vpabsb t0, t0; \
272 \
273 vpcmpgtb v1, zero, t1; \
274 vpaddb v1, v1, v1; \
275 vpabsb t1, t1; \
276 \
277 vpcmpgtb v2, zero, t2; \
278 vpaddb v2, v2, v2; \
279 vpabsb t2, t2; \
280 \
281 vpor t0, v1, v1; \
282 \
283 vpcmpgtb v3, zero, t0; \
284 vpaddb v3, v3, v3; \
285 vpabsb t0, t0; \
286 \
287 vpor t1, v2, v2; \
288 vpor t2, v3, v3; \
289 vpor t0, v0, v0;
290
291 /*
292 * IN:
293 * r: byte-sliced AB state in memory
294 * l: byte-sliced CD state in memory
295 * OUT:
296 * x0..x7: new byte-sliced CD state
297 */
298 #define fls16(l, l0, l1, l2, l3, l4, l5, l6, l7, r, t0, t1, t2, t3, tt0, \
299 tt1, tt2, tt3, kll, klr, krl, krr) \
300 /* \
301 * t0 = kll; \
302 * t0 &= ll; \
303 * lr ^= rol32(t0, 1); \
304 */ \
305 vpxor tt0, tt0, tt0; \
306 vmovd kll, t0; \
307 vpshufb tt0, t0, t3; \
308 vpsrldq $1, t0, t0; \
309 vpshufb tt0, t0, t2; \
310 vpsrldq $1, t0, t0; \
311 vpshufb tt0, t0, t1; \
312 vpsrldq $1, t0, t0; \
313 vpshufb tt0, t0, t0; \
314 \
315 vpand l0, t0, t0; \
316 vpand l1, t1, t1; \
317 vpand l2, t2, t2; \
318 vpand l3, t3, t3; \
319 \
320 rol32_1_16(t3, t2, t1, t0, tt1, tt2, tt3, tt0); \
321 \
322 vpxor l4, t0, l4; \
323 vmovdqu l4, 4 * 16(l); \
324 vpxor l5, t1, l5; \
325 vmovdqu l5, 5 * 16(l); \
326 vpxor l6, t2, l6; \
327 vmovdqu l6, 6 * 16(l); \
328 vpxor l7, t3, l7; \
329 vmovdqu l7, 7 * 16(l); \
330 \
331 /* \
332 * t2 = krr; \
333 * t2 |= rr; \
334 * rl ^= t2; \
335 */ \
336 \
337 vmovd krr, t0; \
338 vpshufb tt0, t0, t3; \
339 vpsrldq $1, t0, t0; \
340 vpshufb tt0, t0, t2; \
341 vpsrldq $1, t0, t0; \
342 vpshufb tt0, t0, t1; \
343 vpsrldq $1, t0, t0; \
344 vpshufb tt0, t0, t0; \
345 \
346 vpor 4 * 16(r), t0, t0; \
347 vpor 5 * 16(r), t1, t1; \
348 vpor 6 * 16(r), t2, t2; \
349 vpor 7 * 16(r), t3, t3; \
350 \
351 vpxor 0 * 16(r), t0, t0; \
352 vpxor 1 * 16(r), t1, t1; \
353 vpxor 2 * 16(r), t2, t2; \
354 vpxor 3 * 16(r), t3, t3; \
355 vmovdqu t0, 0 * 16(r); \
356 vmovdqu t1, 1 * 16(r); \
357 vmovdqu t2, 2 * 16(r); \
358 vmovdqu t3, 3 * 16(r); \
359 \
360 /* \
361 * t2 = krl; \
362 * t2 &= rl; \
363 * rr ^= rol32(t2, 1); \
364 */ \
365 vmovd krl, t0; \
366 vpshufb tt0, t0, t3; \
367 vpsrldq $1, t0, t0; \
368 vpshufb tt0, t0, t2; \
369 vpsrldq $1, t0, t0; \
370 vpshufb tt0, t0, t1; \
371 vpsrldq $1, t0, t0; \
372 vpshufb tt0, t0, t0; \
373 \
374 vpand 0 * 16(r), t0, t0; \
375 vpand 1 * 16(r), t1, t1; \
376 vpand 2 * 16(r), t2, t2; \
377 vpand 3 * 16(r), t3, t3; \
378 \
379 rol32_1_16(t3, t2, t1, t0, tt1, tt2, tt3, tt0); \
380 \
381 vpxor 4 * 16(r), t0, t0; \
382 vpxor 5 * 16(r), t1, t1; \
383 vpxor 6 * 16(r), t2, t2; \
384 vpxor 7 * 16(r), t3, t3; \
385 vmovdqu t0, 4 * 16(r); \
386 vmovdqu t1, 5 * 16(r); \
387 vmovdqu t2, 6 * 16(r); \
388 vmovdqu t3, 7 * 16(r); \
389 \
390 /* \
391 * t0 = klr; \
392 * t0 |= lr; \
393 * ll ^= t0; \
394 */ \
395 \
396 vmovd klr, t0; \
397 vpshufb tt0, t0, t3; \
398 vpsrldq $1, t0, t0; \
399 vpshufb tt0, t0, t2; \
400 vpsrldq $1, t0, t0; \
401 vpshufb tt0, t0, t1; \
402 vpsrldq $1, t0, t0; \
403 vpshufb tt0, t0, t0; \
404 \
405 vpor l4, t0, t0; \
406 vpor l5, t1, t1; \
407 vpor l6, t2, t2; \
408 vpor l7, t3, t3; \
409 \
410 vpxor l0, t0, l0; \
411 vmovdqu l0, 0 * 16(l); \
412 vpxor l1, t1, l1; \
413 vmovdqu l1, 1 * 16(l); \
414 vpxor l2, t2, l2; \
415 vmovdqu l2, 2 * 16(l); \
416 vpxor l3, t3, l3; \
417 vmovdqu l3, 3 * 16(l);
418
419 #define transpose_4x4(x0, x1, x2, x3, t1, t2) \
420 vpunpckhdq x1, x0, t2; \
421 vpunpckldq x1, x0, x0; \
422 \
423 vpunpckldq x3, x2, t1; \
424 vpunpckhdq x3, x2, x2; \
425 \
426 vpunpckhqdq t1, x0, x1; \
427 vpunpcklqdq t1, x0, x0; \
428 \
429 vpunpckhqdq x2, t2, x3; \
430 vpunpcklqdq x2, t2, x2;
431
432 #define byteslice_16x16b(a0, b0, c0, d0, a1, b1, c1, d1, a2, b2, c2, d2, a3, \
433 b3, c3, d3, st0, st1) \
434 vmovdqu d2, st0; \
435 vmovdqu d3, st1; \
436 transpose_4x4(a0, a1, a2, a3, d2, d3); \
437 transpose_4x4(b0, b1, b2, b3, d2, d3); \
438 vmovdqu st0, d2; \
439 vmovdqu st1, d3; \
440 \
441 vmovdqu a0, st0; \
442 vmovdqu a1, st1; \
443 transpose_4x4(c0, c1, c2, c3, a0, a1); \
444 transpose_4x4(d0, d1, d2, d3, a0, a1); \
445 \
446 vmovdqu .Lshufb_16x16b, a0; \
447 vmovdqu st1, a1; \
448 vpshufb a0, a2, a2; \
449 vpshufb a0, a3, a3; \
450 vpshufb a0, b0, b0; \
451 vpshufb a0, b1, b1; \
452 vpshufb a0, b2, b2; \
453 vpshufb a0, b3, b3; \
454 vpshufb a0, a1, a1; \
455 vpshufb a0, c0, c0; \
456 vpshufb a0, c1, c1; \
457 vpshufb a0, c2, c2; \
458 vpshufb a0, c3, c3; \
459 vpshufb a0, d0, d0; \
460 vpshufb a0, d1, d1; \
461 vpshufb a0, d2, d2; \
462 vpshufb a0, d3, d3; \
463 vmovdqu d3, st1; \
464 vmovdqu st0, d3; \
465 vpshufb a0, d3, a0; \
466 vmovdqu d2, st0; \
467 \
468 transpose_4x4(a0, b0, c0, d0, d2, d3); \
469 transpose_4x4(a1, b1, c1, d1, d2, d3); \
470 vmovdqu st0, d2; \
471 vmovdqu st1, d3; \
472 \
473 vmovdqu b0, st0; \
474 vmovdqu b1, st1; \
475 transpose_4x4(a2, b2, c2, d2, b0, b1); \
476 transpose_4x4(a3, b3, c3, d3, b0, b1); \
477 vmovdqu st0, b0; \
478 vmovdqu st1, b1; \
479 /* does not adjust output bytes inside vectors */
480
481 /* load blocks to registers and apply pre-whitening */
482 #define inpack16_pre(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
483 y6, y7, rio, key) \
484 vmovq key, x0; \
485 vpshufb .Lpack_bswap, x0, x0; \
486 \
487 vpxor 0 * 16(rio), x0, y7; \
488 vpxor 1 * 16(rio), x0, y6; \
489 vpxor 2 * 16(rio), x0, y5; \
490 vpxor 3 * 16(rio), x0, y4; \
491 vpxor 4 * 16(rio), x0, y3; \
492 vpxor 5 * 16(rio), x0, y2; \
493 vpxor 6 * 16(rio), x0, y1; \
494 vpxor 7 * 16(rio), x0, y0; \
495 vpxor 8 * 16(rio), x0, x7; \
496 vpxor 9 * 16(rio), x0, x6; \
497 vpxor 10 * 16(rio), x0, x5; \
498 vpxor 11 * 16(rio), x0, x4; \
499 vpxor 12 * 16(rio), x0, x3; \
500 vpxor 13 * 16(rio), x0, x2; \
501 vpxor 14 * 16(rio), x0, x1; \
502 vpxor 15 * 16(rio), x0, x0;
503
504 /* byteslice pre-whitened blocks and store to temporary memory */
505 #define inpack16_post(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
506 y6, y7, mem_ab, mem_cd) \
507 byteslice_16x16b(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, \
508 y5, y6, y7, (mem_ab), (mem_cd)); \
509 \
510 vmovdqu x0, 0 * 16(mem_ab); \
511 vmovdqu x1, 1 * 16(mem_ab); \
512 vmovdqu x2, 2 * 16(mem_ab); \
513 vmovdqu x3, 3 * 16(mem_ab); \
514 vmovdqu x4, 4 * 16(mem_ab); \
515 vmovdqu x5, 5 * 16(mem_ab); \
516 vmovdqu x6, 6 * 16(mem_ab); \
517 vmovdqu x7, 7 * 16(mem_ab); \
518 vmovdqu y0, 0 * 16(mem_cd); \
519 vmovdqu y1, 1 * 16(mem_cd); \
520 vmovdqu y2, 2 * 16(mem_cd); \
521 vmovdqu y3, 3 * 16(mem_cd); \
522 vmovdqu y4, 4 * 16(mem_cd); \
523 vmovdqu y5, 5 * 16(mem_cd); \
524 vmovdqu y6, 6 * 16(mem_cd); \
525 vmovdqu y7, 7 * 16(mem_cd);
526
527 /* de-byteslice, apply post-whitening and store blocks */
528 #define outunpack16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, \
529 y5, y6, y7, key, stack_tmp0, stack_tmp1) \
530 byteslice_16x16b(y0, y4, x0, x4, y1, y5, x1, x5, y2, y6, x2, x6, y3, \
531 y7, x3, x7, stack_tmp0, stack_tmp1); \
532 \
533 vmovdqu x0, stack_tmp0; \
534 \
535 vmovq key, x0; \
536 vpshufb .Lpack_bswap, x0, x0; \
537 \
538 vpxor x0, y7, y7; \
539 vpxor x0, y6, y6; \
540 vpxor x0, y5, y5; \
541 vpxor x0, y4, y4; \
542 vpxor x0, y3, y3; \
543 vpxor x0, y2, y2; \
544 vpxor x0, y1, y1; \
545 vpxor x0, y0, y0; \
546 vpxor x0, x7, x7; \
547 vpxor x0, x6, x6; \
548 vpxor x0, x5, x5; \
549 vpxor x0, x4, x4; \
550 vpxor x0, x3, x3; \
551 vpxor x0, x2, x2; \
552 vpxor x0, x1, x1; \
553 vpxor stack_tmp0, x0, x0;
554
555 #define write_output(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
556 y6, y7, rio) \
557 vmovdqu x0, 0 * 16(rio); \
558 vmovdqu x1, 1 * 16(rio); \
559 vmovdqu x2, 2 * 16(rio); \
560 vmovdqu x3, 3 * 16(rio); \
561 vmovdqu x4, 4 * 16(rio); \
562 vmovdqu x5, 5 * 16(rio); \
563 vmovdqu x6, 6 * 16(rio); \
564 vmovdqu x7, 7 * 16(rio); \
565 vmovdqu y0, 8 * 16(rio); \
566 vmovdqu y1, 9 * 16(rio); \
567 vmovdqu y2, 10 * 16(rio); \
568 vmovdqu y3, 11 * 16(rio); \
569 vmovdqu y4, 12 * 16(rio); \
570 vmovdqu y5, 13 * 16(rio); \
571 vmovdqu y6, 14 * 16(rio); \
572 vmovdqu y7, 15 * 16(rio);
573
574 .data
575 .align 16
576
577 #define SHUFB_BYTES(idx) \
578 0 + (idx), 4 + (idx), 8 + (idx), 12 + (idx)
579
580 .Lshufb_16x16b:
581 .byte SHUFB_BYTES(0), SHUFB_BYTES(1), SHUFB_BYTES(2), SHUFB_BYTES(3);
582
583 .Lpack_bswap:
584 .long 0x00010203
585 .long 0x04050607
586 .long 0x80808080
587 .long 0x80808080
588
589 /* For CTR-mode IV byteswap */
590 .Lbswap128_mask:
591 .byte 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0
592
593 /* For XTS mode IV generation */
594 .Lxts_gf128mul_and_shl1_mask:
595 .byte 0x87, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0
596
597 /*
598 * pre-SubByte transform
599 *
600 * pre-lookup for sbox1, sbox2, sbox3:
601 * swap_bitendianness(
602 * isom_map_camellia_to_aes(
603 * camellia_f(
604 * swap_bitendianess(in)
605 * )
606 * )
607 * )
608 *
609 * (note: '⊕ 0xc5' inside camellia_f())
610 */
611 .Lpre_tf_lo_s1:
612 .byte 0x45, 0xe8, 0x40, 0xed, 0x2e, 0x83, 0x2b, 0x86
613 .byte 0x4b, 0xe6, 0x4e, 0xe3, 0x20, 0x8d, 0x25, 0x88
614 .Lpre_tf_hi_s1:
615 .byte 0x00, 0x51, 0xf1, 0xa0, 0x8a, 0xdb, 0x7b, 0x2a
616 .byte 0x09, 0x58, 0xf8, 0xa9, 0x83, 0xd2, 0x72, 0x23
617
618 /*
619 * pre-SubByte transform
620 *
621 * pre-lookup for sbox4:
622 * swap_bitendianness(
623 * isom_map_camellia_to_aes(
624 * camellia_f(
625 * swap_bitendianess(in <<< 1)
626 * )
627 * )
628 * )
629 *
630 * (note: '⊕ 0xc5' inside camellia_f())
631 */
632 .Lpre_tf_lo_s4:
633 .byte 0x45, 0x40, 0x2e, 0x2b, 0x4b, 0x4e, 0x20, 0x25
634 .byte 0x14, 0x11, 0x7f, 0x7a, 0x1a, 0x1f, 0x71, 0x74
635 .Lpre_tf_hi_s4:
636 .byte 0x00, 0xf1, 0x8a, 0x7b, 0x09, 0xf8, 0x83, 0x72
637 .byte 0xad, 0x5c, 0x27, 0xd6, 0xa4, 0x55, 0x2e, 0xdf
638
639 /*
640 * post-SubByte transform
641 *
642 * post-lookup for sbox1, sbox4:
643 * swap_bitendianness(
644 * camellia_h(
645 * isom_map_aes_to_camellia(
646 * swap_bitendianness(
647 * aes_inverse_affine_transform(in)
648 * )
649 * )
650 * )
651 * )
652 *
653 * (note: '⊕ 0x6e' inside camellia_h())
654 */
655 .Lpost_tf_lo_s1:
656 .byte 0x3c, 0xcc, 0xcf, 0x3f, 0x32, 0xc2, 0xc1, 0x31
657 .byte 0xdc, 0x2c, 0x2f, 0xdf, 0xd2, 0x22, 0x21, 0xd1
658 .Lpost_tf_hi_s1:
659 .byte 0x00, 0xf9, 0x86, 0x7f, 0xd7, 0x2e, 0x51, 0xa8
660 .byte 0xa4, 0x5d, 0x22, 0xdb, 0x73, 0x8a, 0xf5, 0x0c
661
662 /*
663 * post-SubByte transform
664 *
665 * post-lookup for sbox2:
666 * swap_bitendianness(
667 * camellia_h(
668 * isom_map_aes_to_camellia(
669 * swap_bitendianness(
670 * aes_inverse_affine_transform(in)
671 * )
672 * )
673 * )
674 * ) <<< 1
675 *
676 * (note: '⊕ 0x6e' inside camellia_h())
677 */
678 .Lpost_tf_lo_s2:
679 .byte 0x78, 0x99, 0x9f, 0x7e, 0x64, 0x85, 0x83, 0x62
680 .byte 0xb9, 0x58, 0x5e, 0xbf, 0xa5, 0x44, 0x42, 0xa3
681 .Lpost_tf_hi_s2:
682 .byte 0x00, 0xf3, 0x0d, 0xfe, 0xaf, 0x5c, 0xa2, 0x51
683 .byte 0x49, 0xba, 0x44, 0xb7, 0xe6, 0x15, 0xeb, 0x18
684
685 /*
686 * post-SubByte transform
687 *
688 * post-lookup for sbox3:
689 * swap_bitendianness(
690 * camellia_h(
691 * isom_map_aes_to_camellia(
692 * swap_bitendianness(
693 * aes_inverse_affine_transform(in)
694 * )
695 * )
696 * )
697 * ) >>> 1
698 *
699 * (note: '⊕ 0x6e' inside camellia_h())
700 */
701 .Lpost_tf_lo_s3:
702 .byte 0x1e, 0x66, 0xe7, 0x9f, 0x19, 0x61, 0xe0, 0x98
703 .byte 0x6e, 0x16, 0x97, 0xef, 0x69, 0x11, 0x90, 0xe8
704 .Lpost_tf_hi_s3:
705 .byte 0x00, 0xfc, 0x43, 0xbf, 0xeb, 0x17, 0xa8, 0x54
706 .byte 0x52, 0xae, 0x11, 0xed, 0xb9, 0x45, 0xfa, 0x06
707
708 /* For isolating SubBytes from AESENCLAST, inverse shift row */
709 .Linv_shift_row:
710 .byte 0x00, 0x0d, 0x0a, 0x07, 0x04, 0x01, 0x0e, 0x0b
711 .byte 0x08, 0x05, 0x02, 0x0f, 0x0c, 0x09, 0x06, 0x03
712
713 /* 4-bit mask */
714 .align 4
715 .L0f0f0f0f:
716 .long 0x0f0f0f0f
717
718 .text
719
720 .align 8
721 __camellia_enc_blk16:
722 /* input:
723 * %rdi: ctx, CTX
724 * %rax: temporary storage, 256 bytes
725 * %xmm0..%xmm15: 16 plaintext blocks
726 * output:
727 * %xmm0..%xmm15: 16 encrypted blocks, order swapped:
728 * 7, 8, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8
729 */
730 FRAME_BEGIN
731
732 leaq 8 * 16(%rax), %rcx;
733
734 inpack16_post(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
735 %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
736 %xmm15, %rax, %rcx);
737
738 enc_rounds16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
739 %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
740 %xmm15, %rax, %rcx, 0);
741
742 fls16(%rax, %xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
743 %rcx, %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
744 %xmm15,
745 ((key_table + (8) * 8) + 0)(CTX),
746 ((key_table + (8) * 8) + 4)(CTX),
747 ((key_table + (8) * 8) + 8)(CTX),
748 ((key_table + (8) * 8) + 12)(CTX));
749
750 enc_rounds16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
751 %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
752 %xmm15, %rax, %rcx, 8);
753
754 fls16(%rax, %xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
755 %rcx, %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
756 %xmm15,
757 ((key_table + (16) * 8) + 0)(CTX),
758 ((key_table + (16) * 8) + 4)(CTX),
759 ((key_table + (16) * 8) + 8)(CTX),
760 ((key_table + (16) * 8) + 12)(CTX));
761
762 enc_rounds16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
763 %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
764 %xmm15, %rax, %rcx, 16);
765
766 movl $24, %r8d;
767 cmpl $16, key_length(CTX);
768 jne .Lenc_max32;
769
770 .Lenc_done:
771 /* load CD for output */
772 vmovdqu 0 * 16(%rcx), %xmm8;
773 vmovdqu 1 * 16(%rcx), %xmm9;
774 vmovdqu 2 * 16(%rcx), %xmm10;
775 vmovdqu 3 * 16(%rcx), %xmm11;
776 vmovdqu 4 * 16(%rcx), %xmm12;
777 vmovdqu 5 * 16(%rcx), %xmm13;
778 vmovdqu 6 * 16(%rcx), %xmm14;
779 vmovdqu 7 * 16(%rcx), %xmm15;
780
781 outunpack16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
782 %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
783 %xmm15, (key_table)(CTX, %r8, 8), (%rax), 1 * 16(%rax));
784
785 FRAME_END
786 ret;
787
788 .align 8
789 .Lenc_max32:
790 movl $32, %r8d;
791
792 fls16(%rax, %xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
793 %rcx, %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
794 %xmm15,
795 ((key_table + (24) * 8) + 0)(CTX),
796 ((key_table + (24) * 8) + 4)(CTX),
797 ((key_table + (24) * 8) + 8)(CTX),
798 ((key_table + (24) * 8) + 12)(CTX));
799
800 enc_rounds16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
801 %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
802 %xmm15, %rax, %rcx, 24);
803
804 jmp .Lenc_done;
805 ENDPROC(__camellia_enc_blk16)
806
807 .align 8
808 __camellia_dec_blk16:
809 /* input:
810 * %rdi: ctx, CTX
811 * %rax: temporary storage, 256 bytes
812 * %r8d: 24 for 16 byte key, 32 for larger
813 * %xmm0..%xmm15: 16 encrypted blocks
814 * output:
815 * %xmm0..%xmm15: 16 plaintext blocks, order swapped:
816 * 7, 8, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8
817 */
818 FRAME_BEGIN
819
820 leaq 8 * 16(%rax), %rcx;
821
822 inpack16_post(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
823 %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
824 %xmm15, %rax, %rcx);
825
826 cmpl $32, %r8d;
827 je .Ldec_max32;
828
829 .Ldec_max24:
830 dec_rounds16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
831 %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
832 %xmm15, %rax, %rcx, 16);
833
834 fls16(%rax, %xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
835 %rcx, %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
836 %xmm15,
837 ((key_table + (16) * 8) + 8)(CTX),
838 ((key_table + (16) * 8) + 12)(CTX),
839 ((key_table + (16) * 8) + 0)(CTX),
840 ((key_table + (16) * 8) + 4)(CTX));
841
842 dec_rounds16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
843 %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
844 %xmm15, %rax, %rcx, 8);
845
846 fls16(%rax, %xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
847 %rcx, %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
848 %xmm15,
849 ((key_table + (8) * 8) + 8)(CTX),
850 ((key_table + (8) * 8) + 12)(CTX),
851 ((key_table + (8) * 8) + 0)(CTX),
852 ((key_table + (8) * 8) + 4)(CTX));
853
854 dec_rounds16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
855 %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
856 %xmm15, %rax, %rcx, 0);
857
858 /* load CD for output */
859 vmovdqu 0 * 16(%rcx), %xmm8;
860 vmovdqu 1 * 16(%rcx), %xmm9;
861 vmovdqu 2 * 16(%rcx), %xmm10;
862 vmovdqu 3 * 16(%rcx), %xmm11;
863 vmovdqu 4 * 16(%rcx), %xmm12;
864 vmovdqu 5 * 16(%rcx), %xmm13;
865 vmovdqu 6 * 16(%rcx), %xmm14;
866 vmovdqu 7 * 16(%rcx), %xmm15;
867
868 outunpack16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
869 %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
870 %xmm15, (key_table)(CTX), (%rax), 1 * 16(%rax));
871
872 FRAME_END
873 ret;
874
875 .align 8
876 .Ldec_max32:
877 dec_rounds16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
878 %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
879 %xmm15, %rax, %rcx, 24);
880
881 fls16(%rax, %xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
882 %rcx, %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
883 %xmm15,
884 ((key_table + (24) * 8) + 8)(CTX),
885 ((key_table + (24) * 8) + 12)(CTX),
886 ((key_table + (24) * 8) + 0)(CTX),
887 ((key_table + (24) * 8) + 4)(CTX));
888
889 jmp .Ldec_max24;
890 ENDPROC(__camellia_dec_blk16)
891
892 ENTRY(camellia_ecb_enc_16way)
893 /* input:
894 * %rdi: ctx, CTX
895 * %rsi: dst (16 blocks)
896 * %rdx: src (16 blocks)
897 */
898 FRAME_BEGIN
899
900 inpack16_pre(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
901 %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
902 %xmm15, %rdx, (key_table)(CTX));
903
904 /* now dst can be used as temporary buffer (even in src == dst case) */
905 movq %rsi, %rax;
906
907 call __camellia_enc_blk16;
908
909 write_output(%xmm7, %xmm6, %xmm5, %xmm4, %xmm3, %xmm2, %xmm1, %xmm0,
910 %xmm15, %xmm14, %xmm13, %xmm12, %xmm11, %xmm10, %xmm9,
911 %xmm8, %rsi);
912
913 FRAME_END
914 ret;
915 ENDPROC(camellia_ecb_enc_16way)
916
917 ENTRY(camellia_ecb_dec_16way)
918 /* input:
919 * %rdi: ctx, CTX
920 * %rsi: dst (16 blocks)
921 * %rdx: src (16 blocks)
922 */
923 FRAME_BEGIN
924
925 cmpl $16, key_length(CTX);
926 movl $32, %r8d;
927 movl $24, %eax;
928 cmovel %eax, %r8d; /* max */
929
930 inpack16_pre(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
931 %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
932 %xmm15, %rdx, (key_table)(CTX, %r8, 8));
933
934 /* now dst can be used as temporary buffer (even in src == dst case) */
935 movq %rsi, %rax;
936
937 call __camellia_dec_blk16;
938
939 write_output(%xmm7, %xmm6, %xmm5, %xmm4, %xmm3, %xmm2, %xmm1, %xmm0,
940 %xmm15, %xmm14, %xmm13, %xmm12, %xmm11, %xmm10, %xmm9,
941 %xmm8, %rsi);
942
943 FRAME_END
944 ret;
945 ENDPROC(camellia_ecb_dec_16way)
946
947 ENTRY(camellia_cbc_dec_16way)
948 /* input:
949 * %rdi: ctx, CTX
950 * %rsi: dst (16 blocks)
951 * %rdx: src (16 blocks)
952 */
953 FRAME_BEGIN
954
955 cmpl $16, key_length(CTX);
956 movl $32, %r8d;
957 movl $24, %eax;
958 cmovel %eax, %r8d; /* max */
959
960 inpack16_pre(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
961 %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
962 %xmm15, %rdx, (key_table)(CTX, %r8, 8));
963
964 /*
965 * dst might still be in-use (in case dst == src), so use stack for
966 * temporary storage.
967 */
968 subq $(16 * 16), %rsp;
969 movq %rsp, %rax;
970
971 call __camellia_dec_blk16;
972
973 addq $(16 * 16), %rsp;
974
975 vpxor (0 * 16)(%rdx), %xmm6, %xmm6;
976 vpxor (1 * 16)(%rdx), %xmm5, %xmm5;
977 vpxor (2 * 16)(%rdx), %xmm4, %xmm4;
978 vpxor (3 * 16)(%rdx), %xmm3, %xmm3;
979 vpxor (4 * 16)(%rdx), %xmm2, %xmm2;
980 vpxor (5 * 16)(%rdx), %xmm1, %xmm1;
981 vpxor (6 * 16)(%rdx), %xmm0, %xmm0;
982 vpxor (7 * 16)(%rdx), %xmm15, %xmm15;
983 vpxor (8 * 16)(%rdx), %xmm14, %xmm14;
984 vpxor (9 * 16)(%rdx), %xmm13, %xmm13;
985 vpxor (10 * 16)(%rdx), %xmm12, %xmm12;
986 vpxor (11 * 16)(%rdx), %xmm11, %xmm11;
987 vpxor (12 * 16)(%rdx), %xmm10, %xmm10;
988 vpxor (13 * 16)(%rdx), %xmm9, %xmm9;
989 vpxor (14 * 16)(%rdx), %xmm8, %xmm8;
990 write_output(%xmm7, %xmm6, %xmm5, %xmm4, %xmm3, %xmm2, %xmm1, %xmm0,
991 %xmm15, %xmm14, %xmm13, %xmm12, %xmm11, %xmm10, %xmm9,
992 %xmm8, %rsi);
993
994 FRAME_END
995 ret;
996 ENDPROC(camellia_cbc_dec_16way)
997
998 #define inc_le128(x, minus_one, tmp) \
999 vpcmpeqq minus_one, x, tmp; \
1000 vpsubq minus_one, x, x; \
1001 vpslldq $8, tmp, tmp; \
1002 vpsubq tmp, x, x;
1003
1004 ENTRY(camellia_ctr_16way)
1005 /* input:
1006 * %rdi: ctx, CTX
1007 * %rsi: dst (16 blocks)
1008 * %rdx: src (16 blocks)
1009 * %rcx: iv (little endian, 128bit)
1010 */
1011 FRAME_BEGIN
1012
1013 subq $(16 * 16), %rsp;
1014 movq %rsp, %rax;
1015
1016 vmovdqa .Lbswap128_mask, %xmm14;
1017
1018 /* load IV and byteswap */
1019 vmovdqu (%rcx), %xmm0;
1020 vpshufb %xmm14, %xmm0, %xmm15;
1021 vmovdqu %xmm15, 15 * 16(%rax);
1022
1023 vpcmpeqd %xmm15, %xmm15, %xmm15;
1024 vpsrldq $8, %xmm15, %xmm15; /* low: -1, high: 0 */
1025
1026 /* construct IVs */
1027 inc_le128(%xmm0, %xmm15, %xmm13);
1028 vpshufb %xmm14, %xmm0, %xmm13;
1029 vmovdqu %xmm13, 14 * 16(%rax);
1030 inc_le128(%xmm0, %xmm15, %xmm13);
1031 vpshufb %xmm14, %xmm0, %xmm13;
1032 vmovdqu %xmm13, 13 * 16(%rax);
1033 inc_le128(%xmm0, %xmm15, %xmm13);
1034 vpshufb %xmm14, %xmm0, %xmm12;
1035 inc_le128(%xmm0, %xmm15, %xmm13);
1036 vpshufb %xmm14, %xmm0, %xmm11;
1037 inc_le128(%xmm0, %xmm15, %xmm13);
1038 vpshufb %xmm14, %xmm0, %xmm10;
1039 inc_le128(%xmm0, %xmm15, %xmm13);
1040 vpshufb %xmm14, %xmm0, %xmm9;
1041 inc_le128(%xmm0, %xmm15, %xmm13);
1042 vpshufb %xmm14, %xmm0, %xmm8;
1043 inc_le128(%xmm0, %xmm15, %xmm13);
1044 vpshufb %xmm14, %xmm0, %xmm7;
1045 inc_le128(%xmm0, %xmm15, %xmm13);
1046 vpshufb %xmm14, %xmm0, %xmm6;
1047 inc_le128(%xmm0, %xmm15, %xmm13);
1048 vpshufb %xmm14, %xmm0, %xmm5;
1049 inc_le128(%xmm0, %xmm15, %xmm13);
1050 vpshufb %xmm14, %xmm0, %xmm4;
1051 inc_le128(%xmm0, %xmm15, %xmm13);
1052 vpshufb %xmm14, %xmm0, %xmm3;
1053 inc_le128(%xmm0, %xmm15, %xmm13);
1054 vpshufb %xmm14, %xmm0, %xmm2;
1055 inc_le128(%xmm0, %xmm15, %xmm13);
1056 vpshufb %xmm14, %xmm0, %xmm1;
1057 inc_le128(%xmm0, %xmm15, %xmm13);
1058 vmovdqa %xmm0, %xmm13;
1059 vpshufb %xmm14, %xmm0, %xmm0;
1060 inc_le128(%xmm13, %xmm15, %xmm14);
1061 vmovdqu %xmm13, (%rcx);
1062
1063 /* inpack16_pre: */
1064 vmovq (key_table)(CTX), %xmm15;
1065 vpshufb .Lpack_bswap, %xmm15, %xmm15;
1066 vpxor %xmm0, %xmm15, %xmm0;
1067 vpxor %xmm1, %xmm15, %xmm1;
1068 vpxor %xmm2, %xmm15, %xmm2;
1069 vpxor %xmm3, %xmm15, %xmm3;
1070 vpxor %xmm4, %xmm15, %xmm4;
1071 vpxor %xmm5, %xmm15, %xmm5;
1072 vpxor %xmm6, %xmm15, %xmm6;
1073 vpxor %xmm7, %xmm15, %xmm7;
1074 vpxor %xmm8, %xmm15, %xmm8;
1075 vpxor %xmm9, %xmm15, %xmm9;
1076 vpxor %xmm10, %xmm15, %xmm10;
1077 vpxor %xmm11, %xmm15, %xmm11;
1078 vpxor %xmm12, %xmm15, %xmm12;
1079 vpxor 13 * 16(%rax), %xmm15, %xmm13;
1080 vpxor 14 * 16(%rax), %xmm15, %xmm14;
1081 vpxor 15 * 16(%rax), %xmm15, %xmm15;
1082
1083 call __camellia_enc_blk16;
1084
1085 addq $(16 * 16), %rsp;
1086
1087 vpxor 0 * 16(%rdx), %xmm7, %xmm7;
1088 vpxor 1 * 16(%rdx), %xmm6, %xmm6;
1089 vpxor 2 * 16(%rdx), %xmm5, %xmm5;
1090 vpxor 3 * 16(%rdx), %xmm4, %xmm4;
1091 vpxor 4 * 16(%rdx), %xmm3, %xmm3;
1092 vpxor 5 * 16(%rdx), %xmm2, %xmm2;
1093 vpxor 6 * 16(%rdx), %xmm1, %xmm1;
1094 vpxor 7 * 16(%rdx), %xmm0, %xmm0;
1095 vpxor 8 * 16(%rdx), %xmm15, %xmm15;
1096 vpxor 9 * 16(%rdx), %xmm14, %xmm14;
1097 vpxor 10 * 16(%rdx), %xmm13, %xmm13;
1098 vpxor 11 * 16(%rdx), %xmm12, %xmm12;
1099 vpxor 12 * 16(%rdx), %xmm11, %xmm11;
1100 vpxor 13 * 16(%rdx), %xmm10, %xmm10;
1101 vpxor 14 * 16(%rdx), %xmm9, %xmm9;
1102 vpxor 15 * 16(%rdx), %xmm8, %xmm8;
1103 write_output(%xmm7, %xmm6, %xmm5, %xmm4, %xmm3, %xmm2, %xmm1, %xmm0,
1104 %xmm15, %xmm14, %xmm13, %xmm12, %xmm11, %xmm10, %xmm9,
1105 %xmm8, %rsi);
1106
1107 FRAME_END
1108 ret;
1109 ENDPROC(camellia_ctr_16way)
1110
1111 #define gf128mul_x_ble(iv, mask, tmp) \
1112 vpsrad $31, iv, tmp; \
1113 vpaddq iv, iv, iv; \
1114 vpshufd $0x13, tmp, tmp; \
1115 vpand mask, tmp, tmp; \
1116 vpxor tmp, iv, iv;
1117
1118 .align 8
1119 camellia_xts_crypt_16way:
1120 /* input:
1121 * %rdi: ctx, CTX
1122 * %rsi: dst (16 blocks)
1123 * %rdx: src (16 blocks)
1124 * %rcx: iv (t ⊕ αⁿ ∈ GF(2¹²⁸))
1125 * %r8: index for input whitening key
1126 * %r9: pointer to __camellia_enc_blk16 or __camellia_dec_blk16
1127 */
1128 FRAME_BEGIN
1129
1130 subq $(16 * 16), %rsp;
1131 movq %rsp, %rax;
1132
1133 vmovdqa .Lxts_gf128mul_and_shl1_mask, %xmm14;
1134
1135 /* load IV */
1136 vmovdqu (%rcx), %xmm0;
1137 vpxor 0 * 16(%rdx), %xmm0, %xmm15;
1138 vmovdqu %xmm15, 15 * 16(%rax);
1139 vmovdqu %xmm0, 0 * 16(%rsi);
1140
1141 /* construct IVs */
1142 gf128mul_x_ble(%xmm0, %xmm14, %xmm15);
1143 vpxor 1 * 16(%rdx), %xmm0, %xmm15;
1144 vmovdqu %xmm15, 14 * 16(%rax);
1145 vmovdqu %xmm0, 1 * 16(%rsi);
1146
1147 gf128mul_x_ble(%xmm0, %xmm14, %xmm15);
1148 vpxor 2 * 16(%rdx), %xmm0, %xmm13;
1149 vmovdqu %xmm0, 2 * 16(%rsi);
1150
1151 gf128mul_x_ble(%xmm0, %xmm14, %xmm15);
1152 vpxor 3 * 16(%rdx), %xmm0, %xmm12;
1153 vmovdqu %xmm0, 3 * 16(%rsi);
1154
1155 gf128mul_x_ble(%xmm0, %xmm14, %xmm15);
1156 vpxor 4 * 16(%rdx), %xmm0, %xmm11;
1157 vmovdqu %xmm0, 4 * 16(%rsi);
1158
1159 gf128mul_x_ble(%xmm0, %xmm14, %xmm15);
1160 vpxor 5 * 16(%rdx), %xmm0, %xmm10;
1161 vmovdqu %xmm0, 5 * 16(%rsi);
1162
1163 gf128mul_x_ble(%xmm0, %xmm14, %xmm15);
1164 vpxor 6 * 16(%rdx), %xmm0, %xmm9;
1165 vmovdqu %xmm0, 6 * 16(%rsi);
1166
1167 gf128mul_x_ble(%xmm0, %xmm14, %xmm15);
1168 vpxor 7 * 16(%rdx), %xmm0, %xmm8;
1169 vmovdqu %xmm0, 7 * 16(%rsi);
1170
1171 gf128mul_x_ble(%xmm0, %xmm14, %xmm15);
1172 vpxor 8 * 16(%rdx), %xmm0, %xmm7;
1173 vmovdqu %xmm0, 8 * 16(%rsi);
1174
1175 gf128mul_x_ble(%xmm0, %xmm14, %xmm15);
1176 vpxor 9 * 16(%rdx), %xmm0, %xmm6;
1177 vmovdqu %xmm0, 9 * 16(%rsi);
1178
1179 gf128mul_x_ble(%xmm0, %xmm14, %xmm15);
1180 vpxor 10 * 16(%rdx), %xmm0, %xmm5;
1181 vmovdqu %xmm0, 10 * 16(%rsi);
1182
1183 gf128mul_x_ble(%xmm0, %xmm14, %xmm15);
1184 vpxor 11 * 16(%rdx), %xmm0, %xmm4;
1185 vmovdqu %xmm0, 11 * 16(%rsi);
1186
1187 gf128mul_x_ble(%xmm0, %xmm14, %xmm15);
1188 vpxor 12 * 16(%rdx), %xmm0, %xmm3;
1189 vmovdqu %xmm0, 12 * 16(%rsi);
1190
1191 gf128mul_x_ble(%xmm0, %xmm14, %xmm15);
1192 vpxor 13 * 16(%rdx), %xmm0, %xmm2;
1193 vmovdqu %xmm0, 13 * 16(%rsi);
1194
1195 gf128mul_x_ble(%xmm0, %xmm14, %xmm15);
1196 vpxor 14 * 16(%rdx), %xmm0, %xmm1;
1197 vmovdqu %xmm0, 14 * 16(%rsi);
1198
1199 gf128mul_x_ble(%xmm0, %xmm14, %xmm15);
1200 vpxor 15 * 16(%rdx), %xmm0, %xmm15;
1201 vmovdqu %xmm15, 0 * 16(%rax);
1202 vmovdqu %xmm0, 15 * 16(%rsi);
1203
1204 gf128mul_x_ble(%xmm0, %xmm14, %xmm15);
1205 vmovdqu %xmm0, (%rcx);
1206
1207 /* inpack16_pre: */
1208 vmovq (key_table)(CTX, %r8, 8), %xmm15;
1209 vpshufb .Lpack_bswap, %xmm15, %xmm15;
1210 vpxor 0 * 16(%rax), %xmm15, %xmm0;
1211 vpxor %xmm1, %xmm15, %xmm1;
1212 vpxor %xmm2, %xmm15, %xmm2;
1213 vpxor %xmm3, %xmm15, %xmm3;
1214 vpxor %xmm4, %xmm15, %xmm4;
1215 vpxor %xmm5, %xmm15, %xmm5;
1216 vpxor %xmm6, %xmm15, %xmm6;
1217 vpxor %xmm7, %xmm15, %xmm7;
1218 vpxor %xmm8, %xmm15, %xmm8;
1219 vpxor %xmm9, %xmm15, %xmm9;
1220 vpxor %xmm10, %xmm15, %xmm10;
1221 vpxor %xmm11, %xmm15, %xmm11;
1222 vpxor %xmm12, %xmm15, %xmm12;
1223 vpxor %xmm13, %xmm15, %xmm13;
1224 vpxor 14 * 16(%rax), %xmm15, %xmm14;
1225 vpxor 15 * 16(%rax), %xmm15, %xmm15;
1226
1227 call *%r9;
1228
1229 addq $(16 * 16), %rsp;
1230
1231 vpxor 0 * 16(%rsi), %xmm7, %xmm7;
1232 vpxor 1 * 16(%rsi), %xmm6, %xmm6;
1233 vpxor 2 * 16(%rsi), %xmm5, %xmm5;
1234 vpxor 3 * 16(%rsi), %xmm4, %xmm4;
1235 vpxor 4 * 16(%rsi), %xmm3, %xmm3;
1236 vpxor 5 * 16(%rsi), %xmm2, %xmm2;
1237 vpxor 6 * 16(%rsi), %xmm1, %xmm1;
1238 vpxor 7 * 16(%rsi), %xmm0, %xmm0;
1239 vpxor 8 * 16(%rsi), %xmm15, %xmm15;
1240 vpxor 9 * 16(%rsi), %xmm14, %xmm14;
1241 vpxor 10 * 16(%rsi), %xmm13, %xmm13;
1242 vpxor 11 * 16(%rsi), %xmm12, %xmm12;
1243 vpxor 12 * 16(%rsi), %xmm11, %xmm11;
1244 vpxor 13 * 16(%rsi), %xmm10, %xmm10;
1245 vpxor 14 * 16(%rsi), %xmm9, %xmm9;
1246 vpxor 15 * 16(%rsi), %xmm8, %xmm8;
1247 write_output(%xmm7, %xmm6, %xmm5, %xmm4, %xmm3, %xmm2, %xmm1, %xmm0,
1248 %xmm15, %xmm14, %xmm13, %xmm12, %xmm11, %xmm10, %xmm9,
1249 %xmm8, %rsi);
1250
1251 FRAME_END
1252 ret;
1253 ENDPROC(camellia_xts_crypt_16way)
1254
1255 ENTRY(camellia_xts_enc_16way)
1256 /* input:
1257 * %rdi: ctx, CTX
1258 * %rsi: dst (16 blocks)
1259 * %rdx: src (16 blocks)
1260 * %rcx: iv (t ⊕ αⁿ ∈ GF(2¹²⁸))
1261 */
1262 xorl %r8d, %r8d; /* input whitening key, 0 for enc */
1263
1264 leaq __camellia_enc_blk16, %r9;
1265
1266 jmp camellia_xts_crypt_16way;
1267 ENDPROC(camellia_xts_enc_16way)
1268
1269 ENTRY(camellia_xts_dec_16way)
1270 /* input:
1271 * %rdi: ctx, CTX
1272 * %rsi: dst (16 blocks)
1273 * %rdx: src (16 blocks)
1274 * %rcx: iv (t ⊕ αⁿ ∈ GF(2¹²⁸))
1275 */
1276
1277 cmpl $16, key_length(CTX);
1278 movl $32, %r8d;
1279 movl $24, %eax;
1280 cmovel %eax, %r8d; /* input whitening key, last for dec */
1281
1282 leaq __camellia_dec_blk16, %r9;
1283
1284 jmp camellia_xts_crypt_16way;
1285 ENDPROC(camellia_xts_dec_16way)
This page took 0.065411 seconds and 6 git commands to generate.