ubifs: Remove unused header
[deliverable/linux.git] / arch / x86 / crypto / twofish-avx-x86_64-asm_64.S
1 /*
2 * Twofish Cipher 8-way parallel algorithm (AVX/x86_64)
3 *
4 * Copyright (C) 2012 Johannes Goetzfried
5 * <Johannes.Goetzfried@informatik.stud.uni-erlangen.de>
6 *
7 * Copyright © 2012-2013 Jussi Kivilinna <jussi.kivilinna@iki.fi>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
22 * USA
23 *
24 */
25
26 #include <linux/linkage.h>
27 #include "glue_helper-asm-avx.S"
28
29 .file "twofish-avx-x86_64-asm_64.S"
30
31 .data
32 .align 16
33
34 .Lbswap128_mask:
35 .byte 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0
36 .Lxts_gf128mul_and_shl1_mask:
37 .byte 0x87, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0
38
39 .text
40
41 /* structure of crypto context */
42 #define s0 0
43 #define s1 1024
44 #define s2 2048
45 #define s3 3072
46 #define w 4096
47 #define k 4128
48
49 /**********************************************************************
50 8-way AVX twofish
51 **********************************************************************/
52 #define CTX %rdi
53
54 #define RA1 %xmm0
55 #define RB1 %xmm1
56 #define RC1 %xmm2
57 #define RD1 %xmm3
58
59 #define RA2 %xmm4
60 #define RB2 %xmm5
61 #define RC2 %xmm6
62 #define RD2 %xmm7
63
64 #define RX0 %xmm8
65 #define RY0 %xmm9
66
67 #define RX1 %xmm10
68 #define RY1 %xmm11
69
70 #define RK1 %xmm12
71 #define RK2 %xmm13
72
73 #define RT %xmm14
74 #define RR %xmm15
75
76 #define RID1 %rbp
77 #define RID1d %ebp
78 #define RID2 %rsi
79 #define RID2d %esi
80
81 #define RGI1 %rdx
82 #define RGI1bl %dl
83 #define RGI1bh %dh
84 #define RGI2 %rcx
85 #define RGI2bl %cl
86 #define RGI2bh %ch
87
88 #define RGI3 %rax
89 #define RGI3bl %al
90 #define RGI3bh %ah
91 #define RGI4 %rbx
92 #define RGI4bl %bl
93 #define RGI4bh %bh
94
95 #define RGS1 %r8
96 #define RGS1d %r8d
97 #define RGS2 %r9
98 #define RGS2d %r9d
99 #define RGS3 %r10
100 #define RGS3d %r10d
101
102
103 #define lookup_32bit(t0, t1, t2, t3, src, dst, interleave_op, il_reg) \
104 movzbl src ## bl, RID1d; \
105 movzbl src ## bh, RID2d; \
106 shrq $16, src; \
107 movl t0(CTX, RID1, 4), dst ## d; \
108 movl t1(CTX, RID2, 4), RID2d; \
109 movzbl src ## bl, RID1d; \
110 xorl RID2d, dst ## d; \
111 movzbl src ## bh, RID2d; \
112 interleave_op(il_reg); \
113 xorl t2(CTX, RID1, 4), dst ## d; \
114 xorl t3(CTX, RID2, 4), dst ## d;
115
116 #define dummy(d) /* do nothing */
117
118 #define shr_next(reg) \
119 shrq $16, reg;
120
121 #define G(gi1, gi2, x, t0, t1, t2, t3) \
122 lookup_32bit(t0, t1, t2, t3, ##gi1, RGS1, shr_next, ##gi1); \
123 lookup_32bit(t0, t1, t2, t3, ##gi2, RGS3, shr_next, ##gi2); \
124 \
125 lookup_32bit(t0, t1, t2, t3, ##gi1, RGS2, dummy, none); \
126 shlq $32, RGS2; \
127 orq RGS1, RGS2; \
128 lookup_32bit(t0, t1, t2, t3, ##gi2, RGS1, dummy, none); \
129 shlq $32, RGS1; \
130 orq RGS1, RGS3;
131
132 #define round_head_2(a, b, x1, y1, x2, y2) \
133 vmovq b ## 1, RGI3; \
134 vpextrq $1, b ## 1, RGI4; \
135 \
136 G(RGI1, RGI2, x1, s0, s1, s2, s3); \
137 vmovq a ## 2, RGI1; \
138 vpextrq $1, a ## 2, RGI2; \
139 vmovq RGS2, x1; \
140 vpinsrq $1, RGS3, x1, x1; \
141 \
142 G(RGI3, RGI4, y1, s1, s2, s3, s0); \
143 vmovq b ## 2, RGI3; \
144 vpextrq $1, b ## 2, RGI4; \
145 vmovq RGS2, y1; \
146 vpinsrq $1, RGS3, y1, y1; \
147 \
148 G(RGI1, RGI2, x2, s0, s1, s2, s3); \
149 vmovq RGS2, x2; \
150 vpinsrq $1, RGS3, x2, x2; \
151 \
152 G(RGI3, RGI4, y2, s1, s2, s3, s0); \
153 vmovq RGS2, y2; \
154 vpinsrq $1, RGS3, y2, y2;
155
156 #define encround_tail(a, b, c, d, x, y, prerotate) \
157 vpaddd x, y, x; \
158 vpaddd x, RK1, RT;\
159 prerotate(b); \
160 vpxor RT, c, c; \
161 vpaddd y, x, y; \
162 vpaddd y, RK2, y; \
163 vpsrld $1, c, RT; \
164 vpslld $(32 - 1), c, c; \
165 vpor c, RT, c; \
166 vpxor d, y, d; \
167
168 #define decround_tail(a, b, c, d, x, y, prerotate) \
169 vpaddd x, y, x; \
170 vpaddd x, RK1, RT;\
171 prerotate(a); \
172 vpxor RT, c, c; \
173 vpaddd y, x, y; \
174 vpaddd y, RK2, y; \
175 vpxor d, y, d; \
176 vpsrld $1, d, y; \
177 vpslld $(32 - 1), d, d; \
178 vpor d, y, d; \
179
180 #define rotate_1l(x) \
181 vpslld $1, x, RR; \
182 vpsrld $(32 - 1), x, x; \
183 vpor x, RR, x;
184
185 #define preload_rgi(c) \
186 vmovq c, RGI1; \
187 vpextrq $1, c, RGI2;
188
189 #define encrypt_round(n, a, b, c, d, preload, prerotate) \
190 vbroadcastss (k+4*(2*(n)))(CTX), RK1; \
191 vbroadcastss (k+4*(2*(n)+1))(CTX), RK2; \
192 round_head_2(a, b, RX0, RY0, RX1, RY1); \
193 encround_tail(a ## 1, b ## 1, c ## 1, d ## 1, RX0, RY0, prerotate); \
194 preload(c ## 1); \
195 encround_tail(a ## 2, b ## 2, c ## 2, d ## 2, RX1, RY1, prerotate);
196
197 #define decrypt_round(n, a, b, c, d, preload, prerotate) \
198 vbroadcastss (k+4*(2*(n)))(CTX), RK1; \
199 vbroadcastss (k+4*(2*(n)+1))(CTX), RK2; \
200 round_head_2(a, b, RX0, RY0, RX1, RY1); \
201 decround_tail(a ## 1, b ## 1, c ## 1, d ## 1, RX0, RY0, prerotate); \
202 preload(c ## 1); \
203 decround_tail(a ## 2, b ## 2, c ## 2, d ## 2, RX1, RY1, prerotate);
204
205 #define encrypt_cycle(n) \
206 encrypt_round((2*n), RA, RB, RC, RD, preload_rgi, rotate_1l); \
207 encrypt_round(((2*n) + 1), RC, RD, RA, RB, preload_rgi, rotate_1l);
208
209 #define encrypt_cycle_last(n) \
210 encrypt_round((2*n), RA, RB, RC, RD, preload_rgi, rotate_1l); \
211 encrypt_round(((2*n) + 1), RC, RD, RA, RB, dummy, dummy);
212
213 #define decrypt_cycle(n) \
214 decrypt_round(((2*n) + 1), RC, RD, RA, RB, preload_rgi, rotate_1l); \
215 decrypt_round((2*n), RA, RB, RC, RD, preload_rgi, rotate_1l);
216
217 #define decrypt_cycle_last(n) \
218 decrypt_round(((2*n) + 1), RC, RD, RA, RB, preload_rgi, rotate_1l); \
219 decrypt_round((2*n), RA, RB, RC, RD, dummy, dummy);
220
221 #define transpose_4x4(x0, x1, x2, x3, t0, t1, t2) \
222 vpunpckldq x1, x0, t0; \
223 vpunpckhdq x1, x0, t2; \
224 vpunpckldq x3, x2, t1; \
225 vpunpckhdq x3, x2, x3; \
226 \
227 vpunpcklqdq t1, t0, x0; \
228 vpunpckhqdq t1, t0, x1; \
229 vpunpcklqdq x3, t2, x2; \
230 vpunpckhqdq x3, t2, x3;
231
232 #define inpack_blocks(x0, x1, x2, x3, wkey, t0, t1, t2) \
233 vpxor x0, wkey, x0; \
234 vpxor x1, wkey, x1; \
235 vpxor x2, wkey, x2; \
236 vpxor x3, wkey, x3; \
237 \
238 transpose_4x4(x0, x1, x2, x3, t0, t1, t2)
239
240 #define outunpack_blocks(x0, x1, x2, x3, wkey, t0, t1, t2) \
241 transpose_4x4(x0, x1, x2, x3, t0, t1, t2) \
242 \
243 vpxor x0, wkey, x0; \
244 vpxor x1, wkey, x1; \
245 vpxor x2, wkey, x2; \
246 vpxor x3, wkey, x3;
247
248 .align 8
249 __twofish_enc_blk8:
250 /* input:
251 * %rdi: ctx, CTX
252 * RA1, RB1, RC1, RD1, RA2, RB2, RC2, RD2: blocks
253 * output:
254 * RC1, RD1, RA1, RB1, RC2, RD2, RA2, RB2: encrypted blocks
255 */
256
257 vmovdqu w(CTX), RK1;
258
259 pushq %rbp;
260 pushq %rbx;
261 pushq %rcx;
262
263 inpack_blocks(RA1, RB1, RC1, RD1, RK1, RX0, RY0, RK2);
264 preload_rgi(RA1);
265 rotate_1l(RD1);
266 inpack_blocks(RA2, RB2, RC2, RD2, RK1, RX0, RY0, RK2);
267 rotate_1l(RD2);
268
269 encrypt_cycle(0);
270 encrypt_cycle(1);
271 encrypt_cycle(2);
272 encrypt_cycle(3);
273 encrypt_cycle(4);
274 encrypt_cycle(5);
275 encrypt_cycle(6);
276 encrypt_cycle_last(7);
277
278 vmovdqu (w+4*4)(CTX), RK1;
279
280 popq %rcx;
281 popq %rbx;
282 popq %rbp;
283
284 outunpack_blocks(RC1, RD1, RA1, RB1, RK1, RX0, RY0, RK2);
285 outunpack_blocks(RC2, RD2, RA2, RB2, RK1, RX0, RY0, RK2);
286
287 ret;
288 ENDPROC(__twofish_enc_blk8)
289
290 .align 8
291 __twofish_dec_blk8:
292 /* input:
293 * %rdi: ctx, CTX
294 * RC1, RD1, RA1, RB1, RC2, RD2, RA2, RB2: encrypted blocks
295 * output:
296 * RA1, RB1, RC1, RD1, RA2, RB2, RC2, RD2: decrypted blocks
297 */
298
299 vmovdqu (w+4*4)(CTX), RK1;
300
301 pushq %rbp;
302 pushq %rbx;
303
304 inpack_blocks(RC1, RD1, RA1, RB1, RK1, RX0, RY0, RK2);
305 preload_rgi(RC1);
306 rotate_1l(RA1);
307 inpack_blocks(RC2, RD2, RA2, RB2, RK1, RX0, RY0, RK2);
308 rotate_1l(RA2);
309
310 decrypt_cycle(7);
311 decrypt_cycle(6);
312 decrypt_cycle(5);
313 decrypt_cycle(4);
314 decrypt_cycle(3);
315 decrypt_cycle(2);
316 decrypt_cycle(1);
317 decrypt_cycle_last(0);
318
319 vmovdqu (w)(CTX), RK1;
320
321 popq %rbx;
322 popq %rbp;
323
324 outunpack_blocks(RA1, RB1, RC1, RD1, RK1, RX0, RY0, RK2);
325 outunpack_blocks(RA2, RB2, RC2, RD2, RK1, RX0, RY0, RK2);
326
327 ret;
328 ENDPROC(__twofish_dec_blk8)
329
330 ENTRY(twofish_ecb_enc_8way)
331 /* input:
332 * %rdi: ctx, CTX
333 * %rsi: dst
334 * %rdx: src
335 */
336
337 movq %rsi, %r11;
338
339 load_8way(%rdx, RA1, RB1, RC1, RD1, RA2, RB2, RC2, RD2);
340
341 call __twofish_enc_blk8;
342
343 store_8way(%r11, RC1, RD1, RA1, RB1, RC2, RD2, RA2, RB2);
344
345 ret;
346 ENDPROC(twofish_ecb_enc_8way)
347
348 ENTRY(twofish_ecb_dec_8way)
349 /* input:
350 * %rdi: ctx, CTX
351 * %rsi: dst
352 * %rdx: src
353 */
354
355 movq %rsi, %r11;
356
357 load_8way(%rdx, RC1, RD1, RA1, RB1, RC2, RD2, RA2, RB2);
358
359 call __twofish_dec_blk8;
360
361 store_8way(%r11, RA1, RB1, RC1, RD1, RA2, RB2, RC2, RD2);
362
363 ret;
364 ENDPROC(twofish_ecb_dec_8way)
365
366 ENTRY(twofish_cbc_dec_8way)
367 /* input:
368 * %rdi: ctx, CTX
369 * %rsi: dst
370 * %rdx: src
371 */
372
373 pushq %r12;
374
375 movq %rsi, %r11;
376 movq %rdx, %r12;
377
378 load_8way(%rdx, RC1, RD1, RA1, RB1, RC2, RD2, RA2, RB2);
379
380 call __twofish_dec_blk8;
381
382 store_cbc_8way(%r12, %r11, RA1, RB1, RC1, RD1, RA2, RB2, RC2, RD2);
383
384 popq %r12;
385
386 ret;
387 ENDPROC(twofish_cbc_dec_8way)
388
389 ENTRY(twofish_ctr_8way)
390 /* input:
391 * %rdi: ctx, CTX
392 * %rsi: dst
393 * %rdx: src
394 * %rcx: iv (little endian, 128bit)
395 */
396
397 pushq %r12;
398
399 movq %rsi, %r11;
400 movq %rdx, %r12;
401
402 load_ctr_8way(%rcx, .Lbswap128_mask, RA1, RB1, RC1, RD1, RA2, RB2, RC2,
403 RD2, RX0, RX1, RY0);
404
405 call __twofish_enc_blk8;
406
407 store_ctr_8way(%r12, %r11, RC1, RD1, RA1, RB1, RC2, RD2, RA2, RB2);
408
409 popq %r12;
410
411 ret;
412 ENDPROC(twofish_ctr_8way)
413
414 ENTRY(twofish_xts_enc_8way)
415 /* input:
416 * %rdi: ctx, CTX
417 * %rsi: dst
418 * %rdx: src
419 * %rcx: iv (t ⊕ αⁿ ∈ GF(2¹²⁸))
420 */
421
422 movq %rsi, %r11;
423
424 /* regs <= src, dst <= IVs, regs <= regs xor IVs */
425 load_xts_8way(%rcx, %rdx, %rsi, RA1, RB1, RC1, RD1, RA2, RB2, RC2, RD2,
426 RX0, RX1, RY0, .Lxts_gf128mul_and_shl1_mask);
427
428 call __twofish_enc_blk8;
429
430 /* dst <= regs xor IVs(in dst) */
431 store_xts_8way(%r11, RC1, RD1, RA1, RB1, RC2, RD2, RA2, RB2);
432
433 ret;
434 ENDPROC(twofish_xts_enc_8way)
435
436 ENTRY(twofish_xts_dec_8way)
437 /* input:
438 * %rdi: ctx, CTX
439 * %rsi: dst
440 * %rdx: src
441 * %rcx: iv (t ⊕ αⁿ ∈ GF(2¹²⁸))
442 */
443
444 movq %rsi, %r11;
445
446 /* regs <= src, dst <= IVs, regs <= regs xor IVs */
447 load_xts_8way(%rcx, %rdx, %rsi, RC1, RD1, RA1, RB1, RC2, RD2, RA2, RB2,
448 RX0, RX1, RY0, .Lxts_gf128mul_and_shl1_mask);
449
450 call __twofish_dec_blk8;
451
452 /* dst <= regs xor IVs(in dst) */
453 store_xts_8way(%r11, RA1, RB1, RC1, RD1, RA2, RB2, RC2, RD2);
454
455 ret;
456 ENDPROC(twofish_xts_dec_8way)
This page took 0.048354 seconds and 5 git commands to generate.