Merge branch 'for-4.7-dw' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/libata
[deliverable/linux.git] / arch / x86 / events / intel / lbr.c
1 #include <linux/perf_event.h>
2 #include <linux/types.h>
3
4 #include <asm/perf_event.h>
5 #include <asm/msr.h>
6 #include <asm/insn.h>
7
8 #include "../perf_event.h"
9
10 enum {
11 LBR_FORMAT_32 = 0x00,
12 LBR_FORMAT_LIP = 0x01,
13 LBR_FORMAT_EIP = 0x02,
14 LBR_FORMAT_EIP_FLAGS = 0x03,
15 LBR_FORMAT_EIP_FLAGS2 = 0x04,
16 LBR_FORMAT_INFO = 0x05,
17 LBR_FORMAT_TIME = 0x06,
18 LBR_FORMAT_MAX_KNOWN = LBR_FORMAT_TIME,
19 };
20
21 static enum {
22 LBR_EIP_FLAGS = 1,
23 LBR_TSX = 2,
24 } lbr_desc[LBR_FORMAT_MAX_KNOWN + 1] = {
25 [LBR_FORMAT_EIP_FLAGS] = LBR_EIP_FLAGS,
26 [LBR_FORMAT_EIP_FLAGS2] = LBR_EIP_FLAGS | LBR_TSX,
27 };
28
29 /*
30 * Intel LBR_SELECT bits
31 * Intel Vol3a, April 2011, Section 16.7 Table 16-10
32 *
33 * Hardware branch filter (not available on all CPUs)
34 */
35 #define LBR_KERNEL_BIT 0 /* do not capture at ring0 */
36 #define LBR_USER_BIT 1 /* do not capture at ring > 0 */
37 #define LBR_JCC_BIT 2 /* do not capture conditional branches */
38 #define LBR_REL_CALL_BIT 3 /* do not capture relative calls */
39 #define LBR_IND_CALL_BIT 4 /* do not capture indirect calls */
40 #define LBR_RETURN_BIT 5 /* do not capture near returns */
41 #define LBR_IND_JMP_BIT 6 /* do not capture indirect jumps */
42 #define LBR_REL_JMP_BIT 7 /* do not capture relative jumps */
43 #define LBR_FAR_BIT 8 /* do not capture far branches */
44 #define LBR_CALL_STACK_BIT 9 /* enable call stack */
45
46 /*
47 * Following bit only exists in Linux; we mask it out before writing it to
48 * the actual MSR. But it helps the constraint perf code to understand
49 * that this is a separate configuration.
50 */
51 #define LBR_NO_INFO_BIT 63 /* don't read LBR_INFO. */
52
53 #define LBR_KERNEL (1 << LBR_KERNEL_BIT)
54 #define LBR_USER (1 << LBR_USER_BIT)
55 #define LBR_JCC (1 << LBR_JCC_BIT)
56 #define LBR_REL_CALL (1 << LBR_REL_CALL_BIT)
57 #define LBR_IND_CALL (1 << LBR_IND_CALL_BIT)
58 #define LBR_RETURN (1 << LBR_RETURN_BIT)
59 #define LBR_REL_JMP (1 << LBR_REL_JMP_BIT)
60 #define LBR_IND_JMP (1 << LBR_IND_JMP_BIT)
61 #define LBR_FAR (1 << LBR_FAR_BIT)
62 #define LBR_CALL_STACK (1 << LBR_CALL_STACK_BIT)
63 #define LBR_NO_INFO (1ULL << LBR_NO_INFO_BIT)
64
65 #define LBR_PLM (LBR_KERNEL | LBR_USER)
66
67 #define LBR_SEL_MASK 0x3ff /* valid bits in LBR_SELECT */
68 #define LBR_NOT_SUPP -1 /* LBR filter not supported */
69 #define LBR_IGN 0 /* ignored */
70
71 #define LBR_ANY \
72 (LBR_JCC |\
73 LBR_REL_CALL |\
74 LBR_IND_CALL |\
75 LBR_RETURN |\
76 LBR_REL_JMP |\
77 LBR_IND_JMP |\
78 LBR_FAR)
79
80 #define LBR_FROM_FLAG_MISPRED (1ULL << 63)
81 #define LBR_FROM_FLAG_IN_TX (1ULL << 62)
82 #define LBR_FROM_FLAG_ABORT (1ULL << 61)
83
84 /*
85 * x86control flow change classification
86 * x86control flow changes include branches, interrupts, traps, faults
87 */
88 enum {
89 X86_BR_NONE = 0, /* unknown */
90
91 X86_BR_USER = 1 << 0, /* branch target is user */
92 X86_BR_KERNEL = 1 << 1, /* branch target is kernel */
93
94 X86_BR_CALL = 1 << 2, /* call */
95 X86_BR_RET = 1 << 3, /* return */
96 X86_BR_SYSCALL = 1 << 4, /* syscall */
97 X86_BR_SYSRET = 1 << 5, /* syscall return */
98 X86_BR_INT = 1 << 6, /* sw interrupt */
99 X86_BR_IRET = 1 << 7, /* return from interrupt */
100 X86_BR_JCC = 1 << 8, /* conditional */
101 X86_BR_JMP = 1 << 9, /* jump */
102 X86_BR_IRQ = 1 << 10,/* hw interrupt or trap or fault */
103 X86_BR_IND_CALL = 1 << 11,/* indirect calls */
104 X86_BR_ABORT = 1 << 12,/* transaction abort */
105 X86_BR_IN_TX = 1 << 13,/* in transaction */
106 X86_BR_NO_TX = 1 << 14,/* not in transaction */
107 X86_BR_ZERO_CALL = 1 << 15,/* zero length call */
108 X86_BR_CALL_STACK = 1 << 16,/* call stack */
109 X86_BR_IND_JMP = 1 << 17,/* indirect jump */
110 };
111
112 #define X86_BR_PLM (X86_BR_USER | X86_BR_KERNEL)
113 #define X86_BR_ANYTX (X86_BR_NO_TX | X86_BR_IN_TX)
114
115 #define X86_BR_ANY \
116 (X86_BR_CALL |\
117 X86_BR_RET |\
118 X86_BR_SYSCALL |\
119 X86_BR_SYSRET |\
120 X86_BR_INT |\
121 X86_BR_IRET |\
122 X86_BR_JCC |\
123 X86_BR_JMP |\
124 X86_BR_IRQ |\
125 X86_BR_ABORT |\
126 X86_BR_IND_CALL |\
127 X86_BR_IND_JMP |\
128 X86_BR_ZERO_CALL)
129
130 #define X86_BR_ALL (X86_BR_PLM | X86_BR_ANY)
131
132 #define X86_BR_ANY_CALL \
133 (X86_BR_CALL |\
134 X86_BR_IND_CALL |\
135 X86_BR_ZERO_CALL |\
136 X86_BR_SYSCALL |\
137 X86_BR_IRQ |\
138 X86_BR_INT)
139
140 static void intel_pmu_lbr_filter(struct cpu_hw_events *cpuc);
141
142 /*
143 * We only support LBR implementations that have FREEZE_LBRS_ON_PMI
144 * otherwise it becomes near impossible to get a reliable stack.
145 */
146
147 static void __intel_pmu_lbr_enable(bool pmi)
148 {
149 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
150 u64 debugctl, lbr_select = 0, orig_debugctl;
151
152 /*
153 * No need to unfreeze manually, as v4 can do that as part
154 * of the GLOBAL_STATUS ack.
155 */
156 if (pmi && x86_pmu.version >= 4)
157 return;
158
159 /*
160 * No need to reprogram LBR_SELECT in a PMI, as it
161 * did not change.
162 */
163 if (cpuc->lbr_sel)
164 lbr_select = cpuc->lbr_sel->config & x86_pmu.lbr_sel_mask;
165 if (!pmi && cpuc->lbr_sel)
166 wrmsrl(MSR_LBR_SELECT, lbr_select);
167
168 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
169 orig_debugctl = debugctl;
170 debugctl |= DEBUGCTLMSR_LBR;
171 /*
172 * LBR callstack does not work well with FREEZE_LBRS_ON_PMI.
173 * If FREEZE_LBRS_ON_PMI is set, PMI near call/return instructions
174 * may cause superfluous increase/decrease of LBR_TOS.
175 */
176 if (!(lbr_select & LBR_CALL_STACK))
177 debugctl |= DEBUGCTLMSR_FREEZE_LBRS_ON_PMI;
178 if (orig_debugctl != debugctl)
179 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
180 }
181
182 static void __intel_pmu_lbr_disable(void)
183 {
184 u64 debugctl;
185
186 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
187 debugctl &= ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_FREEZE_LBRS_ON_PMI);
188 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
189 }
190
191 static void intel_pmu_lbr_reset_32(void)
192 {
193 int i;
194
195 for (i = 0; i < x86_pmu.lbr_nr; i++)
196 wrmsrl(x86_pmu.lbr_from + i, 0);
197 }
198
199 static void intel_pmu_lbr_reset_64(void)
200 {
201 int i;
202
203 for (i = 0; i < x86_pmu.lbr_nr; i++) {
204 wrmsrl(x86_pmu.lbr_from + i, 0);
205 wrmsrl(x86_pmu.lbr_to + i, 0);
206 if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO)
207 wrmsrl(MSR_LBR_INFO_0 + i, 0);
208 }
209 }
210
211 void intel_pmu_lbr_reset(void)
212 {
213 if (!x86_pmu.lbr_nr)
214 return;
215
216 if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32)
217 intel_pmu_lbr_reset_32();
218 else
219 intel_pmu_lbr_reset_64();
220 }
221
222 /*
223 * TOS = most recently recorded branch
224 */
225 static inline u64 intel_pmu_lbr_tos(void)
226 {
227 u64 tos;
228
229 rdmsrl(x86_pmu.lbr_tos, tos);
230 return tos;
231 }
232
233 enum {
234 LBR_NONE,
235 LBR_VALID,
236 };
237
238 static void __intel_pmu_lbr_restore(struct x86_perf_task_context *task_ctx)
239 {
240 int i;
241 unsigned lbr_idx, mask;
242 u64 tos;
243
244 if (task_ctx->lbr_callstack_users == 0 ||
245 task_ctx->lbr_stack_state == LBR_NONE) {
246 intel_pmu_lbr_reset();
247 return;
248 }
249
250 mask = x86_pmu.lbr_nr - 1;
251 tos = task_ctx->tos;
252 for (i = 0; i < tos; i++) {
253 lbr_idx = (tos - i) & mask;
254 wrmsrl(x86_pmu.lbr_from + lbr_idx, task_ctx->lbr_from[i]);
255 wrmsrl(x86_pmu.lbr_to + lbr_idx, task_ctx->lbr_to[i]);
256 if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO)
257 wrmsrl(MSR_LBR_INFO_0 + lbr_idx, task_ctx->lbr_info[i]);
258 }
259 wrmsrl(x86_pmu.lbr_tos, tos);
260 task_ctx->lbr_stack_state = LBR_NONE;
261 }
262
263 static void __intel_pmu_lbr_save(struct x86_perf_task_context *task_ctx)
264 {
265 int i;
266 unsigned lbr_idx, mask;
267 u64 tos;
268
269 if (task_ctx->lbr_callstack_users == 0) {
270 task_ctx->lbr_stack_state = LBR_NONE;
271 return;
272 }
273
274 mask = x86_pmu.lbr_nr - 1;
275 tos = intel_pmu_lbr_tos();
276 for (i = 0; i < tos; i++) {
277 lbr_idx = (tos - i) & mask;
278 rdmsrl(x86_pmu.lbr_from + lbr_idx, task_ctx->lbr_from[i]);
279 rdmsrl(x86_pmu.lbr_to + lbr_idx, task_ctx->lbr_to[i]);
280 if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO)
281 rdmsrl(MSR_LBR_INFO_0 + lbr_idx, task_ctx->lbr_info[i]);
282 }
283 task_ctx->tos = tos;
284 task_ctx->lbr_stack_state = LBR_VALID;
285 }
286
287 void intel_pmu_lbr_sched_task(struct perf_event_context *ctx, bool sched_in)
288 {
289 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
290 struct x86_perf_task_context *task_ctx;
291
292 /*
293 * If LBR callstack feature is enabled and the stack was saved when
294 * the task was scheduled out, restore the stack. Otherwise flush
295 * the LBR stack.
296 */
297 task_ctx = ctx ? ctx->task_ctx_data : NULL;
298 if (task_ctx) {
299 if (sched_in) {
300 __intel_pmu_lbr_restore(task_ctx);
301 cpuc->lbr_context = ctx;
302 } else {
303 __intel_pmu_lbr_save(task_ctx);
304 }
305 return;
306 }
307
308 /*
309 * When sampling the branck stack in system-wide, it may be
310 * necessary to flush the stack on context switch. This happens
311 * when the branch stack does not tag its entries with the pid
312 * of the current task. Otherwise it becomes impossible to
313 * associate a branch entry with a task. This ambiguity is more
314 * likely to appear when the branch stack supports priv level
315 * filtering and the user sets it to monitor only at the user
316 * level (which could be a useful measurement in system-wide
317 * mode). In that case, the risk is high of having a branch
318 * stack with branch from multiple tasks.
319 */
320 if (sched_in) {
321 intel_pmu_lbr_reset();
322 cpuc->lbr_context = ctx;
323 }
324 }
325
326 static inline bool branch_user_callstack(unsigned br_sel)
327 {
328 return (br_sel & X86_BR_USER) && (br_sel & X86_BR_CALL_STACK);
329 }
330
331 void intel_pmu_lbr_enable(struct perf_event *event)
332 {
333 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
334 struct x86_perf_task_context *task_ctx;
335
336 if (!x86_pmu.lbr_nr)
337 return;
338
339 /*
340 * Reset the LBR stack if we changed task context to
341 * avoid data leaks.
342 */
343 if (event->ctx->task && cpuc->lbr_context != event->ctx) {
344 intel_pmu_lbr_reset();
345 cpuc->lbr_context = event->ctx;
346 }
347 cpuc->br_sel = event->hw.branch_reg.reg;
348
349 if (branch_user_callstack(cpuc->br_sel) && event->ctx &&
350 event->ctx->task_ctx_data) {
351 task_ctx = event->ctx->task_ctx_data;
352 task_ctx->lbr_callstack_users++;
353 }
354
355 cpuc->lbr_users++;
356 perf_sched_cb_inc(event->ctx->pmu);
357 }
358
359 void intel_pmu_lbr_disable(struct perf_event *event)
360 {
361 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
362 struct x86_perf_task_context *task_ctx;
363
364 if (!x86_pmu.lbr_nr)
365 return;
366
367 if (branch_user_callstack(cpuc->br_sel) && event->ctx &&
368 event->ctx->task_ctx_data) {
369 task_ctx = event->ctx->task_ctx_data;
370 task_ctx->lbr_callstack_users--;
371 }
372
373 cpuc->lbr_users--;
374 WARN_ON_ONCE(cpuc->lbr_users < 0);
375 perf_sched_cb_dec(event->ctx->pmu);
376
377 if (cpuc->enabled && !cpuc->lbr_users) {
378 __intel_pmu_lbr_disable();
379 /* avoid stale pointer */
380 cpuc->lbr_context = NULL;
381 }
382 }
383
384 void intel_pmu_lbr_enable_all(bool pmi)
385 {
386 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
387
388 if (cpuc->lbr_users)
389 __intel_pmu_lbr_enable(pmi);
390 }
391
392 void intel_pmu_lbr_disable_all(void)
393 {
394 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
395
396 if (cpuc->lbr_users)
397 __intel_pmu_lbr_disable();
398 }
399
400 static void intel_pmu_lbr_read_32(struct cpu_hw_events *cpuc)
401 {
402 unsigned long mask = x86_pmu.lbr_nr - 1;
403 u64 tos = intel_pmu_lbr_tos();
404 int i;
405
406 for (i = 0; i < x86_pmu.lbr_nr; i++) {
407 unsigned long lbr_idx = (tos - i) & mask;
408 union {
409 struct {
410 u32 from;
411 u32 to;
412 };
413 u64 lbr;
414 } msr_lastbranch;
415
416 rdmsrl(x86_pmu.lbr_from + lbr_idx, msr_lastbranch.lbr);
417
418 cpuc->lbr_entries[i].from = msr_lastbranch.from;
419 cpuc->lbr_entries[i].to = msr_lastbranch.to;
420 cpuc->lbr_entries[i].mispred = 0;
421 cpuc->lbr_entries[i].predicted = 0;
422 cpuc->lbr_entries[i].reserved = 0;
423 }
424 cpuc->lbr_stack.nr = i;
425 }
426
427 /*
428 * Due to lack of segmentation in Linux the effective address (offset)
429 * is the same as the linear address, allowing us to merge the LIP and EIP
430 * LBR formats.
431 */
432 static void intel_pmu_lbr_read_64(struct cpu_hw_events *cpuc)
433 {
434 bool need_info = false;
435 unsigned long mask = x86_pmu.lbr_nr - 1;
436 int lbr_format = x86_pmu.intel_cap.lbr_format;
437 u64 tos = intel_pmu_lbr_tos();
438 int i;
439 int out = 0;
440 int num = x86_pmu.lbr_nr;
441
442 if (cpuc->lbr_sel) {
443 need_info = !(cpuc->lbr_sel->config & LBR_NO_INFO);
444 if (cpuc->lbr_sel->config & LBR_CALL_STACK)
445 num = tos;
446 }
447
448 for (i = 0; i < num; i++) {
449 unsigned long lbr_idx = (tos - i) & mask;
450 u64 from, to, mis = 0, pred = 0, in_tx = 0, abort = 0;
451 int skip = 0;
452 u16 cycles = 0;
453 int lbr_flags = lbr_desc[lbr_format];
454
455 rdmsrl(x86_pmu.lbr_from + lbr_idx, from);
456 rdmsrl(x86_pmu.lbr_to + lbr_idx, to);
457
458 if (lbr_format == LBR_FORMAT_INFO && need_info) {
459 u64 info;
460
461 rdmsrl(MSR_LBR_INFO_0 + lbr_idx, info);
462 mis = !!(info & LBR_INFO_MISPRED);
463 pred = !mis;
464 in_tx = !!(info & LBR_INFO_IN_TX);
465 abort = !!(info & LBR_INFO_ABORT);
466 cycles = (info & LBR_INFO_CYCLES);
467 }
468
469 if (lbr_format == LBR_FORMAT_TIME) {
470 mis = !!(from & LBR_FROM_FLAG_MISPRED);
471 pred = !mis;
472 skip = 1;
473 cycles = ((to >> 48) & LBR_INFO_CYCLES);
474
475 to = (u64)((((s64)to) << 16) >> 16);
476 }
477
478 if (lbr_flags & LBR_EIP_FLAGS) {
479 mis = !!(from & LBR_FROM_FLAG_MISPRED);
480 pred = !mis;
481 skip = 1;
482 }
483 if (lbr_flags & LBR_TSX) {
484 in_tx = !!(from & LBR_FROM_FLAG_IN_TX);
485 abort = !!(from & LBR_FROM_FLAG_ABORT);
486 skip = 3;
487 }
488 from = (u64)((((s64)from) << skip) >> skip);
489
490 /*
491 * Some CPUs report duplicated abort records,
492 * with the second entry not having an abort bit set.
493 * Skip them here. This loop runs backwards,
494 * so we need to undo the previous record.
495 * If the abort just happened outside the window
496 * the extra entry cannot be removed.
497 */
498 if (abort && x86_pmu.lbr_double_abort && out > 0)
499 out--;
500
501 cpuc->lbr_entries[out].from = from;
502 cpuc->lbr_entries[out].to = to;
503 cpuc->lbr_entries[out].mispred = mis;
504 cpuc->lbr_entries[out].predicted = pred;
505 cpuc->lbr_entries[out].in_tx = in_tx;
506 cpuc->lbr_entries[out].abort = abort;
507 cpuc->lbr_entries[out].cycles = cycles;
508 cpuc->lbr_entries[out].reserved = 0;
509 out++;
510 }
511 cpuc->lbr_stack.nr = out;
512 }
513
514 void intel_pmu_lbr_read(void)
515 {
516 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
517
518 if (!cpuc->lbr_users)
519 return;
520
521 if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32)
522 intel_pmu_lbr_read_32(cpuc);
523 else
524 intel_pmu_lbr_read_64(cpuc);
525
526 intel_pmu_lbr_filter(cpuc);
527 }
528
529 /*
530 * SW filter is used:
531 * - in case there is no HW filter
532 * - in case the HW filter has errata or limitations
533 */
534 static int intel_pmu_setup_sw_lbr_filter(struct perf_event *event)
535 {
536 u64 br_type = event->attr.branch_sample_type;
537 int mask = 0;
538
539 if (br_type & PERF_SAMPLE_BRANCH_USER)
540 mask |= X86_BR_USER;
541
542 if (br_type & PERF_SAMPLE_BRANCH_KERNEL)
543 mask |= X86_BR_KERNEL;
544
545 /* we ignore BRANCH_HV here */
546
547 if (br_type & PERF_SAMPLE_BRANCH_ANY)
548 mask |= X86_BR_ANY;
549
550 if (br_type & PERF_SAMPLE_BRANCH_ANY_CALL)
551 mask |= X86_BR_ANY_CALL;
552
553 if (br_type & PERF_SAMPLE_BRANCH_ANY_RETURN)
554 mask |= X86_BR_RET | X86_BR_IRET | X86_BR_SYSRET;
555
556 if (br_type & PERF_SAMPLE_BRANCH_IND_CALL)
557 mask |= X86_BR_IND_CALL;
558
559 if (br_type & PERF_SAMPLE_BRANCH_ABORT_TX)
560 mask |= X86_BR_ABORT;
561
562 if (br_type & PERF_SAMPLE_BRANCH_IN_TX)
563 mask |= X86_BR_IN_TX;
564
565 if (br_type & PERF_SAMPLE_BRANCH_NO_TX)
566 mask |= X86_BR_NO_TX;
567
568 if (br_type & PERF_SAMPLE_BRANCH_COND)
569 mask |= X86_BR_JCC;
570
571 if (br_type & PERF_SAMPLE_BRANCH_CALL_STACK) {
572 if (!x86_pmu_has_lbr_callstack())
573 return -EOPNOTSUPP;
574 if (mask & ~(X86_BR_USER | X86_BR_KERNEL))
575 return -EINVAL;
576 mask |= X86_BR_CALL | X86_BR_IND_CALL | X86_BR_RET |
577 X86_BR_CALL_STACK;
578 }
579
580 if (br_type & PERF_SAMPLE_BRANCH_IND_JUMP)
581 mask |= X86_BR_IND_JMP;
582
583 if (br_type & PERF_SAMPLE_BRANCH_CALL)
584 mask |= X86_BR_CALL | X86_BR_ZERO_CALL;
585 /*
586 * stash actual user request into reg, it may
587 * be used by fixup code for some CPU
588 */
589 event->hw.branch_reg.reg = mask;
590 return 0;
591 }
592
593 /*
594 * setup the HW LBR filter
595 * Used only when available, may not be enough to disambiguate
596 * all branches, may need the help of the SW filter
597 */
598 static int intel_pmu_setup_hw_lbr_filter(struct perf_event *event)
599 {
600 struct hw_perf_event_extra *reg;
601 u64 br_type = event->attr.branch_sample_type;
602 u64 mask = 0, v;
603 int i;
604
605 for (i = 0; i < PERF_SAMPLE_BRANCH_MAX_SHIFT; i++) {
606 if (!(br_type & (1ULL << i)))
607 continue;
608
609 v = x86_pmu.lbr_sel_map[i];
610 if (v == LBR_NOT_SUPP)
611 return -EOPNOTSUPP;
612
613 if (v != LBR_IGN)
614 mask |= v;
615 }
616
617 reg = &event->hw.branch_reg;
618 reg->idx = EXTRA_REG_LBR;
619
620 /*
621 * The first 9 bits (LBR_SEL_MASK) in LBR_SELECT operate
622 * in suppress mode. So LBR_SELECT should be set to
623 * (~mask & LBR_SEL_MASK) | (mask & ~LBR_SEL_MASK)
624 * But the 10th bit LBR_CALL_STACK does not operate
625 * in suppress mode.
626 */
627 reg->config = mask ^ (x86_pmu.lbr_sel_mask & ~LBR_CALL_STACK);
628
629 if ((br_type & PERF_SAMPLE_BRANCH_NO_CYCLES) &&
630 (br_type & PERF_SAMPLE_BRANCH_NO_FLAGS) &&
631 (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO))
632 reg->config |= LBR_NO_INFO;
633
634 return 0;
635 }
636
637 int intel_pmu_setup_lbr_filter(struct perf_event *event)
638 {
639 int ret = 0;
640
641 /*
642 * no LBR on this PMU
643 */
644 if (!x86_pmu.lbr_nr)
645 return -EOPNOTSUPP;
646
647 /*
648 * setup SW LBR filter
649 */
650 ret = intel_pmu_setup_sw_lbr_filter(event);
651 if (ret)
652 return ret;
653
654 /*
655 * setup HW LBR filter, if any
656 */
657 if (x86_pmu.lbr_sel_map)
658 ret = intel_pmu_setup_hw_lbr_filter(event);
659
660 return ret;
661 }
662
663 /*
664 * return the type of control flow change at address "from"
665 * instruction is not necessarily a branch (in case of interrupt).
666 *
667 * The branch type returned also includes the priv level of the
668 * target of the control flow change (X86_BR_USER, X86_BR_KERNEL).
669 *
670 * If a branch type is unknown OR the instruction cannot be
671 * decoded (e.g., text page not present), then X86_BR_NONE is
672 * returned.
673 */
674 static int branch_type(unsigned long from, unsigned long to, int abort)
675 {
676 struct insn insn;
677 void *addr;
678 int bytes_read, bytes_left;
679 int ret = X86_BR_NONE;
680 int ext, to_plm, from_plm;
681 u8 buf[MAX_INSN_SIZE];
682 int is64 = 0;
683
684 to_plm = kernel_ip(to) ? X86_BR_KERNEL : X86_BR_USER;
685 from_plm = kernel_ip(from) ? X86_BR_KERNEL : X86_BR_USER;
686
687 /*
688 * maybe zero if lbr did not fill up after a reset by the time
689 * we get a PMU interrupt
690 */
691 if (from == 0 || to == 0)
692 return X86_BR_NONE;
693
694 if (abort)
695 return X86_BR_ABORT | to_plm;
696
697 if (from_plm == X86_BR_USER) {
698 /*
699 * can happen if measuring at the user level only
700 * and we interrupt in a kernel thread, e.g., idle.
701 */
702 if (!current->mm)
703 return X86_BR_NONE;
704
705 /* may fail if text not present */
706 bytes_left = copy_from_user_nmi(buf, (void __user *)from,
707 MAX_INSN_SIZE);
708 bytes_read = MAX_INSN_SIZE - bytes_left;
709 if (!bytes_read)
710 return X86_BR_NONE;
711
712 addr = buf;
713 } else {
714 /*
715 * The LBR logs any address in the IP, even if the IP just
716 * faulted. This means userspace can control the from address.
717 * Ensure we don't blindy read any address by validating it is
718 * a known text address.
719 */
720 if (kernel_text_address(from)) {
721 addr = (void *)from;
722 /*
723 * Assume we can get the maximum possible size
724 * when grabbing kernel data. This is not
725 * _strictly_ true since we could possibly be
726 * executing up next to a memory hole, but
727 * it is very unlikely to be a problem.
728 */
729 bytes_read = MAX_INSN_SIZE;
730 } else {
731 return X86_BR_NONE;
732 }
733 }
734
735 /*
736 * decoder needs to know the ABI especially
737 * on 64-bit systems running 32-bit apps
738 */
739 #ifdef CONFIG_X86_64
740 is64 = kernel_ip((unsigned long)addr) || !test_thread_flag(TIF_IA32);
741 #endif
742 insn_init(&insn, addr, bytes_read, is64);
743 insn_get_opcode(&insn);
744 if (!insn.opcode.got)
745 return X86_BR_ABORT;
746
747 switch (insn.opcode.bytes[0]) {
748 case 0xf:
749 switch (insn.opcode.bytes[1]) {
750 case 0x05: /* syscall */
751 case 0x34: /* sysenter */
752 ret = X86_BR_SYSCALL;
753 break;
754 case 0x07: /* sysret */
755 case 0x35: /* sysexit */
756 ret = X86_BR_SYSRET;
757 break;
758 case 0x80 ... 0x8f: /* conditional */
759 ret = X86_BR_JCC;
760 break;
761 default:
762 ret = X86_BR_NONE;
763 }
764 break;
765 case 0x70 ... 0x7f: /* conditional */
766 ret = X86_BR_JCC;
767 break;
768 case 0xc2: /* near ret */
769 case 0xc3: /* near ret */
770 case 0xca: /* far ret */
771 case 0xcb: /* far ret */
772 ret = X86_BR_RET;
773 break;
774 case 0xcf: /* iret */
775 ret = X86_BR_IRET;
776 break;
777 case 0xcc ... 0xce: /* int */
778 ret = X86_BR_INT;
779 break;
780 case 0xe8: /* call near rel */
781 insn_get_immediate(&insn);
782 if (insn.immediate1.value == 0) {
783 /* zero length call */
784 ret = X86_BR_ZERO_CALL;
785 break;
786 }
787 case 0x9a: /* call far absolute */
788 ret = X86_BR_CALL;
789 break;
790 case 0xe0 ... 0xe3: /* loop jmp */
791 ret = X86_BR_JCC;
792 break;
793 case 0xe9 ... 0xeb: /* jmp */
794 ret = X86_BR_JMP;
795 break;
796 case 0xff: /* call near absolute, call far absolute ind */
797 insn_get_modrm(&insn);
798 ext = (insn.modrm.bytes[0] >> 3) & 0x7;
799 switch (ext) {
800 case 2: /* near ind call */
801 case 3: /* far ind call */
802 ret = X86_BR_IND_CALL;
803 break;
804 case 4:
805 case 5:
806 ret = X86_BR_IND_JMP;
807 break;
808 }
809 break;
810 default:
811 ret = X86_BR_NONE;
812 }
813 /*
814 * interrupts, traps, faults (and thus ring transition) may
815 * occur on any instructions. Thus, to classify them correctly,
816 * we need to first look at the from and to priv levels. If they
817 * are different and to is in the kernel, then it indicates
818 * a ring transition. If the from instruction is not a ring
819 * transition instr (syscall, systenter, int), then it means
820 * it was a irq, trap or fault.
821 *
822 * we have no way of detecting kernel to kernel faults.
823 */
824 if (from_plm == X86_BR_USER && to_plm == X86_BR_KERNEL
825 && ret != X86_BR_SYSCALL && ret != X86_BR_INT)
826 ret = X86_BR_IRQ;
827
828 /*
829 * branch priv level determined by target as
830 * is done by HW when LBR_SELECT is implemented
831 */
832 if (ret != X86_BR_NONE)
833 ret |= to_plm;
834
835 return ret;
836 }
837
838 /*
839 * implement actual branch filter based on user demand.
840 * Hardware may not exactly satisfy that request, thus
841 * we need to inspect opcodes. Mismatched branches are
842 * discarded. Therefore, the number of branches returned
843 * in PERF_SAMPLE_BRANCH_STACK sample may vary.
844 */
845 static void
846 intel_pmu_lbr_filter(struct cpu_hw_events *cpuc)
847 {
848 u64 from, to;
849 int br_sel = cpuc->br_sel;
850 int i, j, type;
851 bool compress = false;
852
853 /* if sampling all branches, then nothing to filter */
854 if ((br_sel & X86_BR_ALL) == X86_BR_ALL)
855 return;
856
857 for (i = 0; i < cpuc->lbr_stack.nr; i++) {
858
859 from = cpuc->lbr_entries[i].from;
860 to = cpuc->lbr_entries[i].to;
861
862 type = branch_type(from, to, cpuc->lbr_entries[i].abort);
863 if (type != X86_BR_NONE && (br_sel & X86_BR_ANYTX)) {
864 if (cpuc->lbr_entries[i].in_tx)
865 type |= X86_BR_IN_TX;
866 else
867 type |= X86_BR_NO_TX;
868 }
869
870 /* if type does not correspond, then discard */
871 if (type == X86_BR_NONE || (br_sel & type) != type) {
872 cpuc->lbr_entries[i].from = 0;
873 compress = true;
874 }
875 }
876
877 if (!compress)
878 return;
879
880 /* remove all entries with from=0 */
881 for (i = 0; i < cpuc->lbr_stack.nr; ) {
882 if (!cpuc->lbr_entries[i].from) {
883 j = i;
884 while (++j < cpuc->lbr_stack.nr)
885 cpuc->lbr_entries[j-1] = cpuc->lbr_entries[j];
886 cpuc->lbr_stack.nr--;
887 if (!cpuc->lbr_entries[i].from)
888 continue;
889 }
890 i++;
891 }
892 }
893
894 /*
895 * Map interface branch filters onto LBR filters
896 */
897 static const int nhm_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
898 [PERF_SAMPLE_BRANCH_ANY_SHIFT] = LBR_ANY,
899 [PERF_SAMPLE_BRANCH_USER_SHIFT] = LBR_USER,
900 [PERF_SAMPLE_BRANCH_KERNEL_SHIFT] = LBR_KERNEL,
901 [PERF_SAMPLE_BRANCH_HV_SHIFT] = LBR_IGN,
902 [PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT] = LBR_RETURN | LBR_REL_JMP
903 | LBR_IND_JMP | LBR_FAR,
904 /*
905 * NHM/WSM erratum: must include REL_JMP+IND_JMP to get CALL branches
906 */
907 [PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] =
908 LBR_REL_CALL | LBR_IND_CALL | LBR_REL_JMP | LBR_IND_JMP | LBR_FAR,
909 /*
910 * NHM/WSM erratum: must include IND_JMP to capture IND_CALL
911 */
912 [PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_IND_CALL | LBR_IND_JMP,
913 [PERF_SAMPLE_BRANCH_COND_SHIFT] = LBR_JCC,
914 [PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = LBR_IND_JMP,
915 };
916
917 static const int snb_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
918 [PERF_SAMPLE_BRANCH_ANY_SHIFT] = LBR_ANY,
919 [PERF_SAMPLE_BRANCH_USER_SHIFT] = LBR_USER,
920 [PERF_SAMPLE_BRANCH_KERNEL_SHIFT] = LBR_KERNEL,
921 [PERF_SAMPLE_BRANCH_HV_SHIFT] = LBR_IGN,
922 [PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT] = LBR_RETURN | LBR_FAR,
923 [PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] = LBR_REL_CALL | LBR_IND_CALL
924 | LBR_FAR,
925 [PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_IND_CALL,
926 [PERF_SAMPLE_BRANCH_COND_SHIFT] = LBR_JCC,
927 [PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = LBR_IND_JMP,
928 [PERF_SAMPLE_BRANCH_CALL_SHIFT] = LBR_REL_CALL,
929 };
930
931 static const int hsw_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
932 [PERF_SAMPLE_BRANCH_ANY_SHIFT] = LBR_ANY,
933 [PERF_SAMPLE_BRANCH_USER_SHIFT] = LBR_USER,
934 [PERF_SAMPLE_BRANCH_KERNEL_SHIFT] = LBR_KERNEL,
935 [PERF_SAMPLE_BRANCH_HV_SHIFT] = LBR_IGN,
936 [PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT] = LBR_RETURN | LBR_FAR,
937 [PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] = LBR_REL_CALL | LBR_IND_CALL
938 | LBR_FAR,
939 [PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_IND_CALL,
940 [PERF_SAMPLE_BRANCH_COND_SHIFT] = LBR_JCC,
941 [PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT] = LBR_REL_CALL | LBR_IND_CALL
942 | LBR_RETURN | LBR_CALL_STACK,
943 [PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = LBR_IND_JMP,
944 [PERF_SAMPLE_BRANCH_CALL_SHIFT] = LBR_REL_CALL,
945 };
946
947 /* core */
948 void __init intel_pmu_lbr_init_core(void)
949 {
950 x86_pmu.lbr_nr = 4;
951 x86_pmu.lbr_tos = MSR_LBR_TOS;
952 x86_pmu.lbr_from = MSR_LBR_CORE_FROM;
953 x86_pmu.lbr_to = MSR_LBR_CORE_TO;
954
955 /*
956 * SW branch filter usage:
957 * - compensate for lack of HW filter
958 */
959 pr_cont("4-deep LBR, ");
960 }
961
962 /* nehalem/westmere */
963 void __init intel_pmu_lbr_init_nhm(void)
964 {
965 x86_pmu.lbr_nr = 16;
966 x86_pmu.lbr_tos = MSR_LBR_TOS;
967 x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
968 x86_pmu.lbr_to = MSR_LBR_NHM_TO;
969
970 x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
971 x86_pmu.lbr_sel_map = nhm_lbr_sel_map;
972
973 /*
974 * SW branch filter usage:
975 * - workaround LBR_SEL errata (see above)
976 * - support syscall, sysret capture.
977 * That requires LBR_FAR but that means far
978 * jmp need to be filtered out
979 */
980 pr_cont("16-deep LBR, ");
981 }
982
983 /* sandy bridge */
984 void __init intel_pmu_lbr_init_snb(void)
985 {
986 x86_pmu.lbr_nr = 16;
987 x86_pmu.lbr_tos = MSR_LBR_TOS;
988 x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
989 x86_pmu.lbr_to = MSR_LBR_NHM_TO;
990
991 x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
992 x86_pmu.lbr_sel_map = snb_lbr_sel_map;
993
994 /*
995 * SW branch filter usage:
996 * - support syscall, sysret capture.
997 * That requires LBR_FAR but that means far
998 * jmp need to be filtered out
999 */
1000 pr_cont("16-deep LBR, ");
1001 }
1002
1003 /* haswell */
1004 void intel_pmu_lbr_init_hsw(void)
1005 {
1006 x86_pmu.lbr_nr = 16;
1007 x86_pmu.lbr_tos = MSR_LBR_TOS;
1008 x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
1009 x86_pmu.lbr_to = MSR_LBR_NHM_TO;
1010
1011 x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1012 x86_pmu.lbr_sel_map = hsw_lbr_sel_map;
1013
1014 pr_cont("16-deep LBR, ");
1015 }
1016
1017 /* skylake */
1018 __init void intel_pmu_lbr_init_skl(void)
1019 {
1020 x86_pmu.lbr_nr = 32;
1021 x86_pmu.lbr_tos = MSR_LBR_TOS;
1022 x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
1023 x86_pmu.lbr_to = MSR_LBR_NHM_TO;
1024
1025 x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1026 x86_pmu.lbr_sel_map = hsw_lbr_sel_map;
1027
1028 /*
1029 * SW branch filter usage:
1030 * - support syscall, sysret capture.
1031 * That requires LBR_FAR but that means far
1032 * jmp need to be filtered out
1033 */
1034 pr_cont("32-deep LBR, ");
1035 }
1036
1037 /* atom */
1038 void __init intel_pmu_lbr_init_atom(void)
1039 {
1040 /*
1041 * only models starting at stepping 10 seems
1042 * to have an operational LBR which can freeze
1043 * on PMU interrupt
1044 */
1045 if (boot_cpu_data.x86_model == 28
1046 && boot_cpu_data.x86_mask < 10) {
1047 pr_cont("LBR disabled due to erratum");
1048 return;
1049 }
1050
1051 x86_pmu.lbr_nr = 8;
1052 x86_pmu.lbr_tos = MSR_LBR_TOS;
1053 x86_pmu.lbr_from = MSR_LBR_CORE_FROM;
1054 x86_pmu.lbr_to = MSR_LBR_CORE_TO;
1055
1056 /*
1057 * SW branch filter usage:
1058 * - compensate for lack of HW filter
1059 */
1060 pr_cont("8-deep LBR, ");
1061 }
1062
1063 /* slm */
1064 void __init intel_pmu_lbr_init_slm(void)
1065 {
1066 x86_pmu.lbr_nr = 8;
1067 x86_pmu.lbr_tos = MSR_LBR_TOS;
1068 x86_pmu.lbr_from = MSR_LBR_CORE_FROM;
1069 x86_pmu.lbr_to = MSR_LBR_CORE_TO;
1070
1071 x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1072 x86_pmu.lbr_sel_map = nhm_lbr_sel_map;
1073
1074 /*
1075 * SW branch filter usage:
1076 * - compensate for lack of HW filter
1077 */
1078 pr_cont("8-deep LBR, ");
1079 }
1080
1081 /* Knights Landing */
1082 void intel_pmu_lbr_init_knl(void)
1083 {
1084 x86_pmu.lbr_nr = 8;
1085 x86_pmu.lbr_tos = MSR_LBR_TOS;
1086 x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
1087 x86_pmu.lbr_to = MSR_LBR_NHM_TO;
1088
1089 x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1090 x86_pmu.lbr_sel_map = snb_lbr_sel_map;
1091
1092 pr_cont("8-deep LBR, ");
1093 }
This page took 0.058171 seconds and 5 git commands to generate.