x86: remove simnow earlyprintk support
[deliverable/linux.git] / arch / x86 / include / asm / uv / uv_hub.h
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * SGI UV architectural definitions
7 *
8 * Copyright (C) 2007-2008 Silicon Graphics, Inc. All rights reserved.
9 */
10
11 #ifndef _ASM_X86_UV_UV_HUB_H
12 #define _ASM_X86_UV_UV_HUB_H
13
14 #include <linux/numa.h>
15 #include <linux/percpu.h>
16 #include <linux/timer.h>
17 #include <asm/types.h>
18 #include <asm/percpu.h>
19
20
21 /*
22 * Addressing Terminology
23 *
24 * M - The low M bits of a physical address represent the offset
25 * into the blade local memory. RAM memory on a blade is physically
26 * contiguous (although various IO spaces may punch holes in
27 * it)..
28 *
29 * N - Number of bits in the node portion of a socket physical
30 * address.
31 *
32 * NASID - network ID of a router, Mbrick or Cbrick. Nasid values of
33 * routers always have low bit of 1, C/MBricks have low bit
34 * equal to 0. Most addressing macros that target UV hub chips
35 * right shift the NASID by 1 to exclude the always-zero bit.
36 * NASIDs contain up to 15 bits.
37 *
38 * GNODE - NASID right shifted by 1 bit. Most mmrs contain gnodes instead
39 * of nasids.
40 *
41 * PNODE - the low N bits of the GNODE. The PNODE is the most useful variant
42 * of the nasid for socket usage.
43 *
44 *
45 * NumaLink Global Physical Address Format:
46 * +--------------------------------+---------------------+
47 * |00..000| GNODE | NodeOffset |
48 * +--------------------------------+---------------------+
49 * |<-------53 - M bits --->|<--------M bits ----->
50 *
51 * M - number of node offset bits (35 .. 40)
52 *
53 *
54 * Memory/UV-HUB Processor Socket Address Format:
55 * +----------------+---------------+---------------------+
56 * |00..000000000000| PNODE | NodeOffset |
57 * +----------------+---------------+---------------------+
58 * <--- N bits --->|<--------M bits ----->
59 *
60 * M - number of node offset bits (35 .. 40)
61 * N - number of PNODE bits (0 .. 10)
62 *
63 * Note: M + N cannot currently exceed 44 (x86_64) or 46 (IA64).
64 * The actual values are configuration dependent and are set at
65 * boot time. M & N values are set by the hardware/BIOS at boot.
66 *
67 *
68 * APICID format
69 * NOTE!!!!!! This is the current format of the APICID. However, code
70 * should assume that this will change in the future. Use functions
71 * in this file for all APICID bit manipulations and conversion.
72 *
73 * 1111110000000000
74 * 5432109876543210
75 * pppppppppplc0cch
76 * sssssssssss
77 *
78 * p = pnode bits
79 * l = socket number on board
80 * c = core
81 * h = hyperthread
82 * s = bits that are in the SOCKET_ID CSR
83 *
84 * Note: Processor only supports 12 bits in the APICID register. The ACPI
85 * tables hold all 16 bits. Software needs to be aware of this.
86 *
87 * Unless otherwise specified, all references to APICID refer to
88 * the FULL value contained in ACPI tables, not the subset in the
89 * processor APICID register.
90 */
91
92
93 /*
94 * Maximum number of bricks in all partitions and in all coherency domains.
95 * This is the total number of bricks accessible in the numalink fabric. It
96 * includes all C & M bricks. Routers are NOT included.
97 *
98 * This value is also the value of the maximum number of non-router NASIDs
99 * in the numalink fabric.
100 *
101 * NOTE: a brick may contain 1 or 2 OS nodes. Don't get these confused.
102 */
103 #define UV_MAX_NUMALINK_BLADES 16384
104
105 /*
106 * Maximum number of C/Mbricks within a software SSI (hardware may support
107 * more).
108 */
109 #define UV_MAX_SSI_BLADES 256
110
111 /*
112 * The largest possible NASID of a C or M brick (+ 2)
113 */
114 #define UV_MAX_NASID_VALUE (UV_MAX_NUMALINK_NODES * 2)
115
116 /*
117 * The following defines attributes of the HUB chip. These attributes are
118 * frequently referenced and are kept in the per-cpu data areas of each cpu.
119 * They are kept together in a struct to minimize cache misses.
120 */
121 struct uv_hub_info_s {
122 unsigned long global_mmr_base;
123 unsigned long gpa_mask;
124 unsigned long gnode_upper;
125 unsigned long lowmem_remap_top;
126 unsigned long lowmem_remap_base;
127 unsigned short pnode;
128 unsigned short pnode_mask;
129 unsigned short coherency_domain_number;
130 unsigned short numa_blade_id;
131 unsigned char blade_processor_id;
132 unsigned char m_val;
133 unsigned char n_val;
134 };
135 DECLARE_PER_CPU(struct uv_hub_info_s, __uv_hub_info);
136 #define uv_hub_info (&__get_cpu_var(__uv_hub_info))
137 #define uv_cpu_hub_info(cpu) (&per_cpu(__uv_hub_info, cpu))
138
139 /*
140 * Local & Global MMR space macros.
141 * Note: macros are intended to be used ONLY by inline functions
142 * in this file - not by other kernel code.
143 * n - NASID (full 15-bit global nasid)
144 * g - GNODE (full 15-bit global nasid, right shifted 1)
145 * p - PNODE (local part of nsids, right shifted 1)
146 */
147 #define UV_NASID_TO_PNODE(n) (((n) >> 1) & uv_hub_info->pnode_mask)
148 #define UV_PNODE_TO_NASID(p) (((p) << 1) | uv_hub_info->gnode_upper)
149
150 #define UV_LOCAL_MMR_BASE 0xf4000000UL
151 #define UV_GLOBAL_MMR32_BASE 0xf8000000UL
152 #define UV_GLOBAL_MMR64_BASE (uv_hub_info->global_mmr_base)
153 #define UV_LOCAL_MMR_SIZE (64UL * 1024 * 1024)
154 #define UV_GLOBAL_MMR32_SIZE (64UL * 1024 * 1024)
155
156 #define UV_GLOBAL_MMR32_PNODE_SHIFT 15
157 #define UV_GLOBAL_MMR64_PNODE_SHIFT 26
158
159 #define UV_GLOBAL_MMR32_PNODE_BITS(p) ((p) << (UV_GLOBAL_MMR32_PNODE_SHIFT))
160
161 #define UV_GLOBAL_MMR64_PNODE_BITS(p) \
162 ((unsigned long)(p) << UV_GLOBAL_MMR64_PNODE_SHIFT)
163
164 #define UV_APIC_PNODE_SHIFT 6
165
166 /*
167 * Macros for converting between kernel virtual addresses, socket local physical
168 * addresses, and UV global physical addresses.
169 * Note: use the standard __pa() & __va() macros for converting
170 * between socket virtual and socket physical addresses.
171 */
172
173 /* socket phys RAM --> UV global physical address */
174 static inline unsigned long uv_soc_phys_ram_to_gpa(unsigned long paddr)
175 {
176 if (paddr < uv_hub_info->lowmem_remap_top)
177 paddr += uv_hub_info->lowmem_remap_base;
178 return paddr | uv_hub_info->gnode_upper;
179 }
180
181
182 /* socket virtual --> UV global physical address */
183 static inline unsigned long uv_gpa(void *v)
184 {
185 return __pa(v) | uv_hub_info->gnode_upper;
186 }
187
188 /* socket virtual --> UV global physical address */
189 static inline void *uv_vgpa(void *v)
190 {
191 return (void *)uv_gpa(v);
192 }
193
194 /* UV global physical address --> socket virtual */
195 static inline void *uv_va(unsigned long gpa)
196 {
197 return __va(gpa & uv_hub_info->gpa_mask);
198 }
199
200 /* pnode, offset --> socket virtual */
201 static inline void *uv_pnode_offset_to_vaddr(int pnode, unsigned long offset)
202 {
203 return __va(((unsigned long)pnode << uv_hub_info->m_val) | offset);
204 }
205
206
207 /*
208 * Extract a PNODE from an APICID (full apicid, not processor subset)
209 */
210 static inline int uv_apicid_to_pnode(int apicid)
211 {
212 return (apicid >> UV_APIC_PNODE_SHIFT);
213 }
214
215 /*
216 * Access global MMRs using the low memory MMR32 space. This region supports
217 * faster MMR access but not all MMRs are accessible in this space.
218 */
219 static inline unsigned long *uv_global_mmr32_address(int pnode,
220 unsigned long offset)
221 {
222 return __va(UV_GLOBAL_MMR32_BASE |
223 UV_GLOBAL_MMR32_PNODE_BITS(pnode) | offset);
224 }
225
226 static inline void uv_write_global_mmr32(int pnode, unsigned long offset,
227 unsigned long val)
228 {
229 *uv_global_mmr32_address(pnode, offset) = val;
230 }
231
232 static inline unsigned long uv_read_global_mmr32(int pnode,
233 unsigned long offset)
234 {
235 return *uv_global_mmr32_address(pnode, offset);
236 }
237
238 /*
239 * Access Global MMR space using the MMR space located at the top of physical
240 * memory.
241 */
242 static inline unsigned long *uv_global_mmr64_address(int pnode,
243 unsigned long offset)
244 {
245 return __va(UV_GLOBAL_MMR64_BASE |
246 UV_GLOBAL_MMR64_PNODE_BITS(pnode) | offset);
247 }
248
249 static inline void uv_write_global_mmr64(int pnode, unsigned long offset,
250 unsigned long val)
251 {
252 *uv_global_mmr64_address(pnode, offset) = val;
253 }
254
255 static inline unsigned long uv_read_global_mmr64(int pnode,
256 unsigned long offset)
257 {
258 return *uv_global_mmr64_address(pnode, offset);
259 }
260
261 /*
262 * Access hub local MMRs. Faster than using global space but only local MMRs
263 * are accessible.
264 */
265 static inline unsigned long *uv_local_mmr_address(unsigned long offset)
266 {
267 return __va(UV_LOCAL_MMR_BASE | offset);
268 }
269
270 static inline unsigned long uv_read_local_mmr(unsigned long offset)
271 {
272 return *uv_local_mmr_address(offset);
273 }
274
275 static inline void uv_write_local_mmr(unsigned long offset, unsigned long val)
276 {
277 *uv_local_mmr_address(offset) = val;
278 }
279
280 /*
281 * Structures and definitions for converting between cpu, node, pnode, and blade
282 * numbers.
283 */
284 struct uv_blade_info {
285 unsigned short nr_possible_cpus;
286 unsigned short nr_online_cpus;
287 unsigned short pnode;
288 };
289 extern struct uv_blade_info *uv_blade_info;
290 extern short *uv_node_to_blade;
291 extern short *uv_cpu_to_blade;
292 extern short uv_possible_blades;
293
294 /* Blade-local cpu number of current cpu. Numbered 0 .. <# cpus on the blade> */
295 static inline int uv_blade_processor_id(void)
296 {
297 return uv_hub_info->blade_processor_id;
298 }
299
300 /* Blade number of current cpu. Numnbered 0 .. <#blades -1> */
301 static inline int uv_numa_blade_id(void)
302 {
303 return uv_hub_info->numa_blade_id;
304 }
305
306 /* Convert a cpu number to the the UV blade number */
307 static inline int uv_cpu_to_blade_id(int cpu)
308 {
309 return uv_cpu_to_blade[cpu];
310 }
311
312 /* Convert linux node number to the UV blade number */
313 static inline int uv_node_to_blade_id(int nid)
314 {
315 return uv_node_to_blade[nid];
316 }
317
318 /* Convert a blade id to the PNODE of the blade */
319 static inline int uv_blade_to_pnode(int bid)
320 {
321 return uv_blade_info[bid].pnode;
322 }
323
324 /* Determine the number of possible cpus on a blade */
325 static inline int uv_blade_nr_possible_cpus(int bid)
326 {
327 return uv_blade_info[bid].nr_possible_cpus;
328 }
329
330 /* Determine the number of online cpus on a blade */
331 static inline int uv_blade_nr_online_cpus(int bid)
332 {
333 return uv_blade_info[bid].nr_online_cpus;
334 }
335
336 /* Convert a cpu id to the PNODE of the blade containing the cpu */
337 static inline int uv_cpu_to_pnode(int cpu)
338 {
339 return uv_blade_info[uv_cpu_to_blade_id(cpu)].pnode;
340 }
341
342 /* Convert a linux node number to the PNODE of the blade */
343 static inline int uv_node_to_pnode(int nid)
344 {
345 return uv_blade_info[uv_node_to_blade_id(nid)].pnode;
346 }
347
348 /* Maximum possible number of blades */
349 static inline int uv_num_possible_blades(void)
350 {
351 return uv_possible_blades;
352 }
353
354 #endif /* _ASM_X86_UV_UV_HUB_H */
355
This page took 0.040343 seconds and 5 git commands to generate.