AMD IOMMU: add checks for dma_ops domain to dma_ops functions
[deliverable/linux.git] / arch / x86 / kernel / amd_iommu.c
1 /*
2 * Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
3 * Author: Joerg Roedel <joerg.roedel@amd.com>
4 * Leo Duran <leo.duran@amd.com>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
20 #include <linux/pci.h>
21 #include <linux/gfp.h>
22 #include <linux/bitops.h>
23 #include <linux/scatterlist.h>
24 #include <linux/iommu-helper.h>
25 #include <asm/proto.h>
26 #include <asm/iommu.h>
27 #include <asm/gart.h>
28 #include <asm/amd_iommu_types.h>
29 #include <asm/amd_iommu.h>
30
31 #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
32
33 #define EXIT_LOOP_COUNT 10000000
34
35 static DEFINE_RWLOCK(amd_iommu_devtable_lock);
36
37 /* A list of preallocated protection domains */
38 static LIST_HEAD(iommu_pd_list);
39 static DEFINE_SPINLOCK(iommu_pd_list_lock);
40
41 /*
42 * general struct to manage commands send to an IOMMU
43 */
44 struct iommu_cmd {
45 u32 data[4];
46 };
47
48 static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
49 struct unity_map_entry *e);
50
51 /* returns !0 if the IOMMU is caching non-present entries in its TLB */
52 static int iommu_has_npcache(struct amd_iommu *iommu)
53 {
54 return iommu->cap & (1UL << IOMMU_CAP_NPCACHE);
55 }
56
57 /****************************************************************************
58 *
59 * Interrupt handling functions
60 *
61 ****************************************************************************/
62
63 static void iommu_print_event(void *__evt)
64 {
65 u32 *event = __evt;
66 int type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
67 int devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
68 int domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
69 int flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
70 u64 address = (u64)(((u64)event[3]) << 32) | event[2];
71
72 printk(KERN_ERR "AMD IOMMU: Event logged [");
73
74 switch (type) {
75 case EVENT_TYPE_ILL_DEV:
76 printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
77 "address=0x%016llx flags=0x%04x]\n",
78 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
79 address, flags);
80 break;
81 case EVENT_TYPE_IO_FAULT:
82 printk("IO_PAGE_FAULT device=%02x:%02x.%x "
83 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
84 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
85 domid, address, flags);
86 break;
87 case EVENT_TYPE_DEV_TAB_ERR:
88 printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
89 "address=0x%016llx flags=0x%04x]\n",
90 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
91 address, flags);
92 break;
93 case EVENT_TYPE_PAGE_TAB_ERR:
94 printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
95 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
96 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
97 domid, address, flags);
98 break;
99 case EVENT_TYPE_ILL_CMD:
100 printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
101 break;
102 case EVENT_TYPE_CMD_HARD_ERR:
103 printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
104 "flags=0x%04x]\n", address, flags);
105 break;
106 case EVENT_TYPE_IOTLB_INV_TO:
107 printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
108 "address=0x%016llx]\n",
109 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
110 address);
111 break;
112 case EVENT_TYPE_INV_DEV_REQ:
113 printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
114 "address=0x%016llx flags=0x%04x]\n",
115 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
116 address, flags);
117 break;
118 default:
119 printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
120 }
121 }
122
123 static void iommu_poll_events(struct amd_iommu *iommu)
124 {
125 u32 head, tail;
126 unsigned long flags;
127
128 spin_lock_irqsave(&iommu->lock, flags);
129
130 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
131 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
132
133 while (head != tail) {
134 iommu_print_event(iommu->evt_buf + head);
135 head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
136 }
137
138 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
139
140 spin_unlock_irqrestore(&iommu->lock, flags);
141 }
142
143 irqreturn_t amd_iommu_int_handler(int irq, void *data)
144 {
145 struct amd_iommu *iommu;
146
147 list_for_each_entry(iommu, &amd_iommu_list, list)
148 iommu_poll_events(iommu);
149
150 return IRQ_HANDLED;
151 }
152
153 /****************************************************************************
154 *
155 * IOMMU command queuing functions
156 *
157 ****************************************************************************/
158
159 /*
160 * Writes the command to the IOMMUs command buffer and informs the
161 * hardware about the new command. Must be called with iommu->lock held.
162 */
163 static int __iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
164 {
165 u32 tail, head;
166 u8 *target;
167
168 tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
169 target = iommu->cmd_buf + tail;
170 memcpy_toio(target, cmd, sizeof(*cmd));
171 tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
172 head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
173 if (tail == head)
174 return -ENOMEM;
175 writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
176
177 return 0;
178 }
179
180 /*
181 * General queuing function for commands. Takes iommu->lock and calls
182 * __iommu_queue_command().
183 */
184 static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
185 {
186 unsigned long flags;
187 int ret;
188
189 spin_lock_irqsave(&iommu->lock, flags);
190 ret = __iommu_queue_command(iommu, cmd);
191 if (!ret)
192 iommu->need_sync = 1;
193 spin_unlock_irqrestore(&iommu->lock, flags);
194
195 return ret;
196 }
197
198 /*
199 * This function waits until an IOMMU has completed a completion
200 * wait command
201 */
202 static void __iommu_wait_for_completion(struct amd_iommu *iommu)
203 {
204 int ready = 0;
205 unsigned status = 0;
206 unsigned long i = 0;
207
208 while (!ready && (i < EXIT_LOOP_COUNT)) {
209 ++i;
210 /* wait for the bit to become one */
211 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
212 ready = status & MMIO_STATUS_COM_WAIT_INT_MASK;
213 }
214
215 /* set bit back to zero */
216 status &= ~MMIO_STATUS_COM_WAIT_INT_MASK;
217 writel(status, iommu->mmio_base + MMIO_STATUS_OFFSET);
218
219 if (unlikely(i == EXIT_LOOP_COUNT))
220 panic("AMD IOMMU: Completion wait loop failed\n");
221 }
222
223 /*
224 * This function queues a completion wait command into the command
225 * buffer of an IOMMU
226 */
227 static int __iommu_completion_wait(struct amd_iommu *iommu)
228 {
229 struct iommu_cmd cmd;
230
231 memset(&cmd, 0, sizeof(cmd));
232 cmd.data[0] = CMD_COMPL_WAIT_INT_MASK;
233 CMD_SET_TYPE(&cmd, CMD_COMPL_WAIT);
234
235 return __iommu_queue_command(iommu, &cmd);
236 }
237
238 /*
239 * This function is called whenever we need to ensure that the IOMMU has
240 * completed execution of all commands we sent. It sends a
241 * COMPLETION_WAIT command and waits for it to finish. The IOMMU informs
242 * us about that by writing a value to a physical address we pass with
243 * the command.
244 */
245 static int iommu_completion_wait(struct amd_iommu *iommu)
246 {
247 int ret = 0;
248 unsigned long flags;
249
250 spin_lock_irqsave(&iommu->lock, flags);
251
252 if (!iommu->need_sync)
253 goto out;
254
255 ret = __iommu_completion_wait(iommu);
256
257 iommu->need_sync = 0;
258
259 if (ret)
260 goto out;
261
262 __iommu_wait_for_completion(iommu);
263
264 out:
265 spin_unlock_irqrestore(&iommu->lock, flags);
266
267 return 0;
268 }
269
270 /*
271 * Command send function for invalidating a device table entry
272 */
273 static int iommu_queue_inv_dev_entry(struct amd_iommu *iommu, u16 devid)
274 {
275 struct iommu_cmd cmd;
276 int ret;
277
278 BUG_ON(iommu == NULL);
279
280 memset(&cmd, 0, sizeof(cmd));
281 CMD_SET_TYPE(&cmd, CMD_INV_DEV_ENTRY);
282 cmd.data[0] = devid;
283
284 ret = iommu_queue_command(iommu, &cmd);
285
286 return ret;
287 }
288
289 static void __iommu_build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
290 u16 domid, int pde, int s)
291 {
292 memset(cmd, 0, sizeof(*cmd));
293 address &= PAGE_MASK;
294 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
295 cmd->data[1] |= domid;
296 cmd->data[2] = lower_32_bits(address);
297 cmd->data[3] = upper_32_bits(address);
298 if (s) /* size bit - we flush more than one 4kb page */
299 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
300 if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
301 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
302 }
303
304 /*
305 * Generic command send function for invalidaing TLB entries
306 */
307 static int iommu_queue_inv_iommu_pages(struct amd_iommu *iommu,
308 u64 address, u16 domid, int pde, int s)
309 {
310 struct iommu_cmd cmd;
311 int ret;
312
313 __iommu_build_inv_iommu_pages(&cmd, address, domid, pde, s);
314
315 ret = iommu_queue_command(iommu, &cmd);
316
317 return ret;
318 }
319
320 /*
321 * TLB invalidation function which is called from the mapping functions.
322 * It invalidates a single PTE if the range to flush is within a single
323 * page. Otherwise it flushes the whole TLB of the IOMMU.
324 */
325 static int iommu_flush_pages(struct amd_iommu *iommu, u16 domid,
326 u64 address, size_t size)
327 {
328 int s = 0;
329 unsigned pages = iommu_num_pages(address, size, PAGE_SIZE);
330
331 address &= PAGE_MASK;
332
333 if (pages > 1) {
334 /*
335 * If we have to flush more than one page, flush all
336 * TLB entries for this domain
337 */
338 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
339 s = 1;
340 }
341
342 iommu_queue_inv_iommu_pages(iommu, address, domid, 0, s);
343
344 return 0;
345 }
346
347 /* Flush the whole IO/TLB for a given protection domain */
348 static void iommu_flush_tlb(struct amd_iommu *iommu, u16 domid)
349 {
350 u64 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
351
352 iommu_queue_inv_iommu_pages(iommu, address, domid, 0, 1);
353 }
354
355 #ifdef CONFIG_IOMMU_API
356 /*
357 * This function is used to flush the IO/TLB for a given protection domain
358 * on every IOMMU in the system
359 */
360 static void iommu_flush_domain(u16 domid)
361 {
362 unsigned long flags;
363 struct amd_iommu *iommu;
364 struct iommu_cmd cmd;
365
366 __iommu_build_inv_iommu_pages(&cmd, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
367 domid, 1, 1);
368
369 list_for_each_entry(iommu, &amd_iommu_list, list) {
370 spin_lock_irqsave(&iommu->lock, flags);
371 __iommu_queue_command(iommu, &cmd);
372 __iommu_completion_wait(iommu);
373 __iommu_wait_for_completion(iommu);
374 spin_unlock_irqrestore(&iommu->lock, flags);
375 }
376 }
377 #endif
378
379 /****************************************************************************
380 *
381 * The functions below are used the create the page table mappings for
382 * unity mapped regions.
383 *
384 ****************************************************************************/
385
386 /*
387 * Generic mapping functions. It maps a physical address into a DMA
388 * address space. It allocates the page table pages if necessary.
389 * In the future it can be extended to a generic mapping function
390 * supporting all features of AMD IOMMU page tables like level skipping
391 * and full 64 bit address spaces.
392 */
393 static int iommu_map_page(struct protection_domain *dom,
394 unsigned long bus_addr,
395 unsigned long phys_addr,
396 int prot)
397 {
398 u64 __pte, *pte, *page;
399
400 bus_addr = PAGE_ALIGN(bus_addr);
401 phys_addr = PAGE_ALIGN(phys_addr);
402
403 /* only support 512GB address spaces for now */
404 if (bus_addr > IOMMU_MAP_SIZE_L3 || !(prot & IOMMU_PROT_MASK))
405 return -EINVAL;
406
407 pte = &dom->pt_root[IOMMU_PTE_L2_INDEX(bus_addr)];
408
409 if (!IOMMU_PTE_PRESENT(*pte)) {
410 page = (u64 *)get_zeroed_page(GFP_KERNEL);
411 if (!page)
412 return -ENOMEM;
413 *pte = IOMMU_L2_PDE(virt_to_phys(page));
414 }
415
416 pte = IOMMU_PTE_PAGE(*pte);
417 pte = &pte[IOMMU_PTE_L1_INDEX(bus_addr)];
418
419 if (!IOMMU_PTE_PRESENT(*pte)) {
420 page = (u64 *)get_zeroed_page(GFP_KERNEL);
421 if (!page)
422 return -ENOMEM;
423 *pte = IOMMU_L1_PDE(virt_to_phys(page));
424 }
425
426 pte = IOMMU_PTE_PAGE(*pte);
427 pte = &pte[IOMMU_PTE_L0_INDEX(bus_addr)];
428
429 if (IOMMU_PTE_PRESENT(*pte))
430 return -EBUSY;
431
432 __pte = phys_addr | IOMMU_PTE_P;
433 if (prot & IOMMU_PROT_IR)
434 __pte |= IOMMU_PTE_IR;
435 if (prot & IOMMU_PROT_IW)
436 __pte |= IOMMU_PTE_IW;
437
438 *pte = __pte;
439
440 return 0;
441 }
442
443 /*
444 * This function checks if a specific unity mapping entry is needed for
445 * this specific IOMMU.
446 */
447 static int iommu_for_unity_map(struct amd_iommu *iommu,
448 struct unity_map_entry *entry)
449 {
450 u16 bdf, i;
451
452 for (i = entry->devid_start; i <= entry->devid_end; ++i) {
453 bdf = amd_iommu_alias_table[i];
454 if (amd_iommu_rlookup_table[bdf] == iommu)
455 return 1;
456 }
457
458 return 0;
459 }
460
461 /*
462 * Init the unity mappings for a specific IOMMU in the system
463 *
464 * Basically iterates over all unity mapping entries and applies them to
465 * the default domain DMA of that IOMMU if necessary.
466 */
467 static int iommu_init_unity_mappings(struct amd_iommu *iommu)
468 {
469 struct unity_map_entry *entry;
470 int ret;
471
472 list_for_each_entry(entry, &amd_iommu_unity_map, list) {
473 if (!iommu_for_unity_map(iommu, entry))
474 continue;
475 ret = dma_ops_unity_map(iommu->default_dom, entry);
476 if (ret)
477 return ret;
478 }
479
480 return 0;
481 }
482
483 /*
484 * This function actually applies the mapping to the page table of the
485 * dma_ops domain.
486 */
487 static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
488 struct unity_map_entry *e)
489 {
490 u64 addr;
491 int ret;
492
493 for (addr = e->address_start; addr < e->address_end;
494 addr += PAGE_SIZE) {
495 ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot);
496 if (ret)
497 return ret;
498 /*
499 * if unity mapping is in aperture range mark the page
500 * as allocated in the aperture
501 */
502 if (addr < dma_dom->aperture_size)
503 __set_bit(addr >> PAGE_SHIFT, dma_dom->bitmap);
504 }
505
506 return 0;
507 }
508
509 /*
510 * Inits the unity mappings required for a specific device
511 */
512 static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
513 u16 devid)
514 {
515 struct unity_map_entry *e;
516 int ret;
517
518 list_for_each_entry(e, &amd_iommu_unity_map, list) {
519 if (!(devid >= e->devid_start && devid <= e->devid_end))
520 continue;
521 ret = dma_ops_unity_map(dma_dom, e);
522 if (ret)
523 return ret;
524 }
525
526 return 0;
527 }
528
529 /****************************************************************************
530 *
531 * The next functions belong to the address allocator for the dma_ops
532 * interface functions. They work like the allocators in the other IOMMU
533 * drivers. Its basically a bitmap which marks the allocated pages in
534 * the aperture. Maybe it could be enhanced in the future to a more
535 * efficient allocator.
536 *
537 ****************************************************************************/
538
539 /*
540 * The address allocator core function.
541 *
542 * called with domain->lock held
543 */
544 static unsigned long dma_ops_alloc_addresses(struct device *dev,
545 struct dma_ops_domain *dom,
546 unsigned int pages,
547 unsigned long align_mask,
548 u64 dma_mask)
549 {
550 unsigned long limit;
551 unsigned long address;
552 unsigned long boundary_size;
553
554 boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
555 PAGE_SIZE) >> PAGE_SHIFT;
556 limit = iommu_device_max_index(dom->aperture_size >> PAGE_SHIFT, 0,
557 dma_mask >> PAGE_SHIFT);
558
559 if (dom->next_bit >= limit) {
560 dom->next_bit = 0;
561 dom->need_flush = true;
562 }
563
564 address = iommu_area_alloc(dom->bitmap, limit, dom->next_bit, pages,
565 0 , boundary_size, align_mask);
566 if (address == -1) {
567 address = iommu_area_alloc(dom->bitmap, limit, 0, pages,
568 0, boundary_size, align_mask);
569 dom->need_flush = true;
570 }
571
572 if (likely(address != -1)) {
573 dom->next_bit = address + pages;
574 address <<= PAGE_SHIFT;
575 } else
576 address = bad_dma_address;
577
578 WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
579
580 return address;
581 }
582
583 /*
584 * The address free function.
585 *
586 * called with domain->lock held
587 */
588 static void dma_ops_free_addresses(struct dma_ops_domain *dom,
589 unsigned long address,
590 unsigned int pages)
591 {
592 address >>= PAGE_SHIFT;
593 iommu_area_free(dom->bitmap, address, pages);
594
595 if (address >= dom->next_bit)
596 dom->need_flush = true;
597 }
598
599 /****************************************************************************
600 *
601 * The next functions belong to the domain allocation. A domain is
602 * allocated for every IOMMU as the default domain. If device isolation
603 * is enabled, every device get its own domain. The most important thing
604 * about domains is the page table mapping the DMA address space they
605 * contain.
606 *
607 ****************************************************************************/
608
609 static u16 domain_id_alloc(void)
610 {
611 unsigned long flags;
612 int id;
613
614 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
615 id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
616 BUG_ON(id == 0);
617 if (id > 0 && id < MAX_DOMAIN_ID)
618 __set_bit(id, amd_iommu_pd_alloc_bitmap);
619 else
620 id = 0;
621 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
622
623 return id;
624 }
625
626 #ifdef CONFIG_IOMMU_API
627 static void domain_id_free(int id)
628 {
629 unsigned long flags;
630
631 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
632 if (id > 0 && id < MAX_DOMAIN_ID)
633 __clear_bit(id, amd_iommu_pd_alloc_bitmap);
634 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
635 }
636 #endif
637
638 /*
639 * Used to reserve address ranges in the aperture (e.g. for exclusion
640 * ranges.
641 */
642 static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
643 unsigned long start_page,
644 unsigned int pages)
645 {
646 unsigned int last_page = dom->aperture_size >> PAGE_SHIFT;
647
648 if (start_page + pages > last_page)
649 pages = last_page - start_page;
650
651 iommu_area_reserve(dom->bitmap, start_page, pages);
652 }
653
654 static void free_pagetable(struct protection_domain *domain)
655 {
656 int i, j;
657 u64 *p1, *p2, *p3;
658
659 p1 = domain->pt_root;
660
661 if (!p1)
662 return;
663
664 for (i = 0; i < 512; ++i) {
665 if (!IOMMU_PTE_PRESENT(p1[i]))
666 continue;
667
668 p2 = IOMMU_PTE_PAGE(p1[i]);
669 for (j = 0; j < 512; ++j) {
670 if (!IOMMU_PTE_PRESENT(p2[j]))
671 continue;
672 p3 = IOMMU_PTE_PAGE(p2[j]);
673 free_page((unsigned long)p3);
674 }
675
676 free_page((unsigned long)p2);
677 }
678
679 free_page((unsigned long)p1);
680
681 domain->pt_root = NULL;
682 }
683
684 /*
685 * Free a domain, only used if something went wrong in the
686 * allocation path and we need to free an already allocated page table
687 */
688 static void dma_ops_domain_free(struct dma_ops_domain *dom)
689 {
690 if (!dom)
691 return;
692
693 free_pagetable(&dom->domain);
694
695 kfree(dom->pte_pages);
696
697 kfree(dom->bitmap);
698
699 kfree(dom);
700 }
701
702 /*
703 * Allocates a new protection domain usable for the dma_ops functions.
704 * It also intializes the page table and the address allocator data
705 * structures required for the dma_ops interface
706 */
707 static struct dma_ops_domain *dma_ops_domain_alloc(struct amd_iommu *iommu,
708 unsigned order)
709 {
710 struct dma_ops_domain *dma_dom;
711 unsigned i, num_pte_pages;
712 u64 *l2_pde;
713 u64 address;
714
715 /*
716 * Currently the DMA aperture must be between 32 MB and 1GB in size
717 */
718 if ((order < 25) || (order > 30))
719 return NULL;
720
721 dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
722 if (!dma_dom)
723 return NULL;
724
725 spin_lock_init(&dma_dom->domain.lock);
726
727 dma_dom->domain.id = domain_id_alloc();
728 if (dma_dom->domain.id == 0)
729 goto free_dma_dom;
730 dma_dom->domain.mode = PAGE_MODE_3_LEVEL;
731 dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
732 dma_dom->domain.flags = PD_DMA_OPS_MASK;
733 dma_dom->domain.priv = dma_dom;
734 if (!dma_dom->domain.pt_root)
735 goto free_dma_dom;
736 dma_dom->aperture_size = (1ULL << order);
737 dma_dom->bitmap = kzalloc(dma_dom->aperture_size / (PAGE_SIZE * 8),
738 GFP_KERNEL);
739 if (!dma_dom->bitmap)
740 goto free_dma_dom;
741 /*
742 * mark the first page as allocated so we never return 0 as
743 * a valid dma-address. So we can use 0 as error value
744 */
745 dma_dom->bitmap[0] = 1;
746 dma_dom->next_bit = 0;
747
748 dma_dom->need_flush = false;
749 dma_dom->target_dev = 0xffff;
750
751 /* Intialize the exclusion range if necessary */
752 if (iommu->exclusion_start &&
753 iommu->exclusion_start < dma_dom->aperture_size) {
754 unsigned long startpage = iommu->exclusion_start >> PAGE_SHIFT;
755 int pages = iommu_num_pages(iommu->exclusion_start,
756 iommu->exclusion_length,
757 PAGE_SIZE);
758 dma_ops_reserve_addresses(dma_dom, startpage, pages);
759 }
760
761 /*
762 * At the last step, build the page tables so we don't need to
763 * allocate page table pages in the dma_ops mapping/unmapping
764 * path.
765 */
766 num_pte_pages = dma_dom->aperture_size / (PAGE_SIZE * 512);
767 dma_dom->pte_pages = kzalloc(num_pte_pages * sizeof(void *),
768 GFP_KERNEL);
769 if (!dma_dom->pte_pages)
770 goto free_dma_dom;
771
772 l2_pde = (u64 *)get_zeroed_page(GFP_KERNEL);
773 if (l2_pde == NULL)
774 goto free_dma_dom;
775
776 dma_dom->domain.pt_root[0] = IOMMU_L2_PDE(virt_to_phys(l2_pde));
777
778 for (i = 0; i < num_pte_pages; ++i) {
779 dma_dom->pte_pages[i] = (u64 *)get_zeroed_page(GFP_KERNEL);
780 if (!dma_dom->pte_pages[i])
781 goto free_dma_dom;
782 address = virt_to_phys(dma_dom->pte_pages[i]);
783 l2_pde[i] = IOMMU_L1_PDE(address);
784 }
785
786 return dma_dom;
787
788 free_dma_dom:
789 dma_ops_domain_free(dma_dom);
790
791 return NULL;
792 }
793
794 /*
795 * little helper function to check whether a given protection domain is a
796 * dma_ops domain
797 */
798 static bool dma_ops_domain(struct protection_domain *domain)
799 {
800 return domain->flags & PD_DMA_OPS_MASK;
801 }
802
803 /*
804 * Find out the protection domain structure for a given PCI device. This
805 * will give us the pointer to the page table root for example.
806 */
807 static struct protection_domain *domain_for_device(u16 devid)
808 {
809 struct protection_domain *dom;
810 unsigned long flags;
811
812 read_lock_irqsave(&amd_iommu_devtable_lock, flags);
813 dom = amd_iommu_pd_table[devid];
814 read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
815
816 return dom;
817 }
818
819 /*
820 * If a device is not yet associated with a domain, this function does
821 * assigns it visible for the hardware
822 */
823 static void set_device_domain(struct amd_iommu *iommu,
824 struct protection_domain *domain,
825 u16 devid)
826 {
827 unsigned long flags;
828
829 u64 pte_root = virt_to_phys(domain->pt_root);
830
831 pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
832 << DEV_ENTRY_MODE_SHIFT;
833 pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
834
835 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
836 amd_iommu_dev_table[devid].data[0] = lower_32_bits(pte_root);
837 amd_iommu_dev_table[devid].data[1] = upper_32_bits(pte_root);
838 amd_iommu_dev_table[devid].data[2] = domain->id;
839
840 amd_iommu_pd_table[devid] = domain;
841 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
842
843 iommu_queue_inv_dev_entry(iommu, devid);
844 }
845
846 /*****************************************************************************
847 *
848 * The next functions belong to the dma_ops mapping/unmapping code.
849 *
850 *****************************************************************************/
851
852 /*
853 * This function checks if the driver got a valid device from the caller to
854 * avoid dereferencing invalid pointers.
855 */
856 static bool check_device(struct device *dev)
857 {
858 if (!dev || !dev->dma_mask)
859 return false;
860
861 return true;
862 }
863
864 /*
865 * In this function the list of preallocated protection domains is traversed to
866 * find the domain for a specific device
867 */
868 static struct dma_ops_domain *find_protection_domain(u16 devid)
869 {
870 struct dma_ops_domain *entry, *ret = NULL;
871 unsigned long flags;
872
873 if (list_empty(&iommu_pd_list))
874 return NULL;
875
876 spin_lock_irqsave(&iommu_pd_list_lock, flags);
877
878 list_for_each_entry(entry, &iommu_pd_list, list) {
879 if (entry->target_dev == devid) {
880 ret = entry;
881 break;
882 }
883 }
884
885 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
886
887 return ret;
888 }
889
890 /*
891 * In the dma_ops path we only have the struct device. This function
892 * finds the corresponding IOMMU, the protection domain and the
893 * requestor id for a given device.
894 * If the device is not yet associated with a domain this is also done
895 * in this function.
896 */
897 static int get_device_resources(struct device *dev,
898 struct amd_iommu **iommu,
899 struct protection_domain **domain,
900 u16 *bdf)
901 {
902 struct dma_ops_domain *dma_dom;
903 struct pci_dev *pcidev;
904 u16 _bdf;
905
906 *iommu = NULL;
907 *domain = NULL;
908 *bdf = 0xffff;
909
910 if (dev->bus != &pci_bus_type)
911 return 0;
912
913 pcidev = to_pci_dev(dev);
914 _bdf = calc_devid(pcidev->bus->number, pcidev->devfn);
915
916 /* device not translated by any IOMMU in the system? */
917 if (_bdf > amd_iommu_last_bdf)
918 return 0;
919
920 *bdf = amd_iommu_alias_table[_bdf];
921
922 *iommu = amd_iommu_rlookup_table[*bdf];
923 if (*iommu == NULL)
924 return 0;
925 *domain = domain_for_device(*bdf);
926 if (*domain == NULL) {
927 dma_dom = find_protection_domain(*bdf);
928 if (!dma_dom)
929 dma_dom = (*iommu)->default_dom;
930 *domain = &dma_dom->domain;
931 set_device_domain(*iommu, *domain, *bdf);
932 printk(KERN_INFO "AMD IOMMU: Using protection domain %d for "
933 "device ", (*domain)->id);
934 print_devid(_bdf, 1);
935 }
936
937 if (domain_for_device(_bdf) == NULL)
938 set_device_domain(*iommu, *domain, _bdf);
939
940 return 1;
941 }
942
943 /*
944 * This is the generic map function. It maps one 4kb page at paddr to
945 * the given address in the DMA address space for the domain.
946 */
947 static dma_addr_t dma_ops_domain_map(struct amd_iommu *iommu,
948 struct dma_ops_domain *dom,
949 unsigned long address,
950 phys_addr_t paddr,
951 int direction)
952 {
953 u64 *pte, __pte;
954
955 WARN_ON(address > dom->aperture_size);
956
957 paddr &= PAGE_MASK;
958
959 pte = dom->pte_pages[IOMMU_PTE_L1_INDEX(address)];
960 pte += IOMMU_PTE_L0_INDEX(address);
961
962 __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
963
964 if (direction == DMA_TO_DEVICE)
965 __pte |= IOMMU_PTE_IR;
966 else if (direction == DMA_FROM_DEVICE)
967 __pte |= IOMMU_PTE_IW;
968 else if (direction == DMA_BIDIRECTIONAL)
969 __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
970
971 WARN_ON(*pte);
972
973 *pte = __pte;
974
975 return (dma_addr_t)address;
976 }
977
978 /*
979 * The generic unmapping function for on page in the DMA address space.
980 */
981 static void dma_ops_domain_unmap(struct amd_iommu *iommu,
982 struct dma_ops_domain *dom,
983 unsigned long address)
984 {
985 u64 *pte;
986
987 if (address >= dom->aperture_size)
988 return;
989
990 WARN_ON(address & ~PAGE_MASK || address >= dom->aperture_size);
991
992 pte = dom->pte_pages[IOMMU_PTE_L1_INDEX(address)];
993 pte += IOMMU_PTE_L0_INDEX(address);
994
995 WARN_ON(!*pte);
996
997 *pte = 0ULL;
998 }
999
1000 /*
1001 * This function contains common code for mapping of a physically
1002 * contiguous memory region into DMA address space. It is used by all
1003 * mapping functions provided with this IOMMU driver.
1004 * Must be called with the domain lock held.
1005 */
1006 static dma_addr_t __map_single(struct device *dev,
1007 struct amd_iommu *iommu,
1008 struct dma_ops_domain *dma_dom,
1009 phys_addr_t paddr,
1010 size_t size,
1011 int dir,
1012 bool align,
1013 u64 dma_mask)
1014 {
1015 dma_addr_t offset = paddr & ~PAGE_MASK;
1016 dma_addr_t address, start;
1017 unsigned int pages;
1018 unsigned long align_mask = 0;
1019 int i;
1020
1021 pages = iommu_num_pages(paddr, size, PAGE_SIZE);
1022 paddr &= PAGE_MASK;
1023
1024 if (align)
1025 align_mask = (1UL << get_order(size)) - 1;
1026
1027 address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
1028 dma_mask);
1029 if (unlikely(address == bad_dma_address))
1030 goto out;
1031
1032 start = address;
1033 for (i = 0; i < pages; ++i) {
1034 dma_ops_domain_map(iommu, dma_dom, start, paddr, dir);
1035 paddr += PAGE_SIZE;
1036 start += PAGE_SIZE;
1037 }
1038 address += offset;
1039
1040 if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
1041 iommu_flush_tlb(iommu, dma_dom->domain.id);
1042 dma_dom->need_flush = false;
1043 } else if (unlikely(iommu_has_npcache(iommu)))
1044 iommu_flush_pages(iommu, dma_dom->domain.id, address, size);
1045
1046 out:
1047 return address;
1048 }
1049
1050 /*
1051 * Does the reverse of the __map_single function. Must be called with
1052 * the domain lock held too
1053 */
1054 static void __unmap_single(struct amd_iommu *iommu,
1055 struct dma_ops_domain *dma_dom,
1056 dma_addr_t dma_addr,
1057 size_t size,
1058 int dir)
1059 {
1060 dma_addr_t i, start;
1061 unsigned int pages;
1062
1063 if ((dma_addr == bad_dma_address) ||
1064 (dma_addr + size > dma_dom->aperture_size))
1065 return;
1066
1067 pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
1068 dma_addr &= PAGE_MASK;
1069 start = dma_addr;
1070
1071 for (i = 0; i < pages; ++i) {
1072 dma_ops_domain_unmap(iommu, dma_dom, start);
1073 start += PAGE_SIZE;
1074 }
1075
1076 dma_ops_free_addresses(dma_dom, dma_addr, pages);
1077
1078 if (amd_iommu_unmap_flush || dma_dom->need_flush) {
1079 iommu_flush_pages(iommu, dma_dom->domain.id, dma_addr, size);
1080 dma_dom->need_flush = false;
1081 }
1082 }
1083
1084 /*
1085 * The exported map_single function for dma_ops.
1086 */
1087 static dma_addr_t map_single(struct device *dev, phys_addr_t paddr,
1088 size_t size, int dir)
1089 {
1090 unsigned long flags;
1091 struct amd_iommu *iommu;
1092 struct protection_domain *domain;
1093 u16 devid;
1094 dma_addr_t addr;
1095 u64 dma_mask;
1096
1097 if (!check_device(dev))
1098 return bad_dma_address;
1099
1100 dma_mask = *dev->dma_mask;
1101
1102 get_device_resources(dev, &iommu, &domain, &devid);
1103
1104 if (iommu == NULL || domain == NULL)
1105 /* device not handled by any AMD IOMMU */
1106 return (dma_addr_t)paddr;
1107
1108 if (!dma_ops_domain(domain))
1109 return bad_dma_address;
1110
1111 spin_lock_irqsave(&domain->lock, flags);
1112 addr = __map_single(dev, iommu, domain->priv, paddr, size, dir, false,
1113 dma_mask);
1114 if (addr == bad_dma_address)
1115 goto out;
1116
1117 iommu_completion_wait(iommu);
1118
1119 out:
1120 spin_unlock_irqrestore(&domain->lock, flags);
1121
1122 return addr;
1123 }
1124
1125 /*
1126 * The exported unmap_single function for dma_ops.
1127 */
1128 static void unmap_single(struct device *dev, dma_addr_t dma_addr,
1129 size_t size, int dir)
1130 {
1131 unsigned long flags;
1132 struct amd_iommu *iommu;
1133 struct protection_domain *domain;
1134 u16 devid;
1135
1136 if (!check_device(dev) ||
1137 !get_device_resources(dev, &iommu, &domain, &devid))
1138 /* device not handled by any AMD IOMMU */
1139 return;
1140
1141 if (!dma_ops_domain(domain))
1142 return;
1143
1144 spin_lock_irqsave(&domain->lock, flags);
1145
1146 __unmap_single(iommu, domain->priv, dma_addr, size, dir);
1147
1148 iommu_completion_wait(iommu);
1149
1150 spin_unlock_irqrestore(&domain->lock, flags);
1151 }
1152
1153 /*
1154 * This is a special map_sg function which is used if we should map a
1155 * device which is not handled by an AMD IOMMU in the system.
1156 */
1157 static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
1158 int nelems, int dir)
1159 {
1160 struct scatterlist *s;
1161 int i;
1162
1163 for_each_sg(sglist, s, nelems, i) {
1164 s->dma_address = (dma_addr_t)sg_phys(s);
1165 s->dma_length = s->length;
1166 }
1167
1168 return nelems;
1169 }
1170
1171 /*
1172 * The exported map_sg function for dma_ops (handles scatter-gather
1173 * lists).
1174 */
1175 static int map_sg(struct device *dev, struct scatterlist *sglist,
1176 int nelems, int dir)
1177 {
1178 unsigned long flags;
1179 struct amd_iommu *iommu;
1180 struct protection_domain *domain;
1181 u16 devid;
1182 int i;
1183 struct scatterlist *s;
1184 phys_addr_t paddr;
1185 int mapped_elems = 0;
1186 u64 dma_mask;
1187
1188 if (!check_device(dev))
1189 return 0;
1190
1191 dma_mask = *dev->dma_mask;
1192
1193 get_device_resources(dev, &iommu, &domain, &devid);
1194
1195 if (!iommu || !domain)
1196 return map_sg_no_iommu(dev, sglist, nelems, dir);
1197
1198 if (!dma_ops_domain(domain))
1199 return 0;
1200
1201 spin_lock_irqsave(&domain->lock, flags);
1202
1203 for_each_sg(sglist, s, nelems, i) {
1204 paddr = sg_phys(s);
1205
1206 s->dma_address = __map_single(dev, iommu, domain->priv,
1207 paddr, s->length, dir, false,
1208 dma_mask);
1209
1210 if (s->dma_address) {
1211 s->dma_length = s->length;
1212 mapped_elems++;
1213 } else
1214 goto unmap;
1215 }
1216
1217 iommu_completion_wait(iommu);
1218
1219 out:
1220 spin_unlock_irqrestore(&domain->lock, flags);
1221
1222 return mapped_elems;
1223 unmap:
1224 for_each_sg(sglist, s, mapped_elems, i) {
1225 if (s->dma_address)
1226 __unmap_single(iommu, domain->priv, s->dma_address,
1227 s->dma_length, dir);
1228 s->dma_address = s->dma_length = 0;
1229 }
1230
1231 mapped_elems = 0;
1232
1233 goto out;
1234 }
1235
1236 /*
1237 * The exported map_sg function for dma_ops (handles scatter-gather
1238 * lists).
1239 */
1240 static void unmap_sg(struct device *dev, struct scatterlist *sglist,
1241 int nelems, int dir)
1242 {
1243 unsigned long flags;
1244 struct amd_iommu *iommu;
1245 struct protection_domain *domain;
1246 struct scatterlist *s;
1247 u16 devid;
1248 int i;
1249
1250 if (!check_device(dev) ||
1251 !get_device_resources(dev, &iommu, &domain, &devid))
1252 return;
1253
1254 if (!dma_ops_domain(domain))
1255 return;
1256
1257 spin_lock_irqsave(&domain->lock, flags);
1258
1259 for_each_sg(sglist, s, nelems, i) {
1260 __unmap_single(iommu, domain->priv, s->dma_address,
1261 s->dma_length, dir);
1262 s->dma_address = s->dma_length = 0;
1263 }
1264
1265 iommu_completion_wait(iommu);
1266
1267 spin_unlock_irqrestore(&domain->lock, flags);
1268 }
1269
1270 /*
1271 * The exported alloc_coherent function for dma_ops.
1272 */
1273 static void *alloc_coherent(struct device *dev, size_t size,
1274 dma_addr_t *dma_addr, gfp_t flag)
1275 {
1276 unsigned long flags;
1277 void *virt_addr;
1278 struct amd_iommu *iommu;
1279 struct protection_domain *domain;
1280 u16 devid;
1281 phys_addr_t paddr;
1282 u64 dma_mask = dev->coherent_dma_mask;
1283
1284 if (!check_device(dev))
1285 return NULL;
1286
1287 if (!get_device_resources(dev, &iommu, &domain, &devid))
1288 flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
1289
1290 flag |= __GFP_ZERO;
1291 virt_addr = (void *)__get_free_pages(flag, get_order(size));
1292 if (!virt_addr)
1293 return 0;
1294
1295 paddr = virt_to_phys(virt_addr);
1296
1297 if (!iommu || !domain) {
1298 *dma_addr = (dma_addr_t)paddr;
1299 return virt_addr;
1300 }
1301
1302 if (!dma_ops_domain(domain))
1303 goto out_free;
1304
1305 if (!dma_mask)
1306 dma_mask = *dev->dma_mask;
1307
1308 spin_lock_irqsave(&domain->lock, flags);
1309
1310 *dma_addr = __map_single(dev, iommu, domain->priv, paddr,
1311 size, DMA_BIDIRECTIONAL, true, dma_mask);
1312
1313 if (*dma_addr == bad_dma_address)
1314 goto out_free;
1315
1316 iommu_completion_wait(iommu);
1317
1318 spin_unlock_irqrestore(&domain->lock, flags);
1319
1320 return virt_addr;
1321
1322 out_free:
1323
1324 free_pages((unsigned long)virt_addr, get_order(size));
1325
1326 return NULL;
1327 }
1328
1329 /*
1330 * The exported free_coherent function for dma_ops.
1331 */
1332 static void free_coherent(struct device *dev, size_t size,
1333 void *virt_addr, dma_addr_t dma_addr)
1334 {
1335 unsigned long flags;
1336 struct amd_iommu *iommu;
1337 struct protection_domain *domain;
1338 u16 devid;
1339
1340 if (!check_device(dev))
1341 return;
1342
1343 get_device_resources(dev, &iommu, &domain, &devid);
1344
1345 if (!iommu || !domain)
1346 goto free_mem;
1347
1348 if (!dma_ops_domain(domain))
1349 goto free_mem;
1350
1351 spin_lock_irqsave(&domain->lock, flags);
1352
1353 __unmap_single(iommu, domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
1354
1355 iommu_completion_wait(iommu);
1356
1357 spin_unlock_irqrestore(&domain->lock, flags);
1358
1359 free_mem:
1360 free_pages((unsigned long)virt_addr, get_order(size));
1361 }
1362
1363 /*
1364 * This function is called by the DMA layer to find out if we can handle a
1365 * particular device. It is part of the dma_ops.
1366 */
1367 static int amd_iommu_dma_supported(struct device *dev, u64 mask)
1368 {
1369 u16 bdf;
1370 struct pci_dev *pcidev;
1371
1372 /* No device or no PCI device */
1373 if (!dev || dev->bus != &pci_bus_type)
1374 return 0;
1375
1376 pcidev = to_pci_dev(dev);
1377
1378 bdf = calc_devid(pcidev->bus->number, pcidev->devfn);
1379
1380 /* Out of our scope? */
1381 if (bdf > amd_iommu_last_bdf)
1382 return 0;
1383
1384 return 1;
1385 }
1386
1387 /*
1388 * The function for pre-allocating protection domains.
1389 *
1390 * If the driver core informs the DMA layer if a driver grabs a device
1391 * we don't need to preallocate the protection domains anymore.
1392 * For now we have to.
1393 */
1394 void prealloc_protection_domains(void)
1395 {
1396 struct pci_dev *dev = NULL;
1397 struct dma_ops_domain *dma_dom;
1398 struct amd_iommu *iommu;
1399 int order = amd_iommu_aperture_order;
1400 u16 devid;
1401
1402 while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
1403 devid = (dev->bus->number << 8) | dev->devfn;
1404 if (devid > amd_iommu_last_bdf)
1405 continue;
1406 devid = amd_iommu_alias_table[devid];
1407 if (domain_for_device(devid))
1408 continue;
1409 iommu = amd_iommu_rlookup_table[devid];
1410 if (!iommu)
1411 continue;
1412 dma_dom = dma_ops_domain_alloc(iommu, order);
1413 if (!dma_dom)
1414 continue;
1415 init_unity_mappings_for_device(dma_dom, devid);
1416 dma_dom->target_dev = devid;
1417
1418 list_add_tail(&dma_dom->list, &iommu_pd_list);
1419 }
1420 }
1421
1422 static struct dma_mapping_ops amd_iommu_dma_ops = {
1423 .alloc_coherent = alloc_coherent,
1424 .free_coherent = free_coherent,
1425 .map_single = map_single,
1426 .unmap_single = unmap_single,
1427 .map_sg = map_sg,
1428 .unmap_sg = unmap_sg,
1429 .dma_supported = amd_iommu_dma_supported,
1430 };
1431
1432 /*
1433 * The function which clues the AMD IOMMU driver into dma_ops.
1434 */
1435 int __init amd_iommu_init_dma_ops(void)
1436 {
1437 struct amd_iommu *iommu;
1438 int order = amd_iommu_aperture_order;
1439 int ret;
1440
1441 /*
1442 * first allocate a default protection domain for every IOMMU we
1443 * found in the system. Devices not assigned to any other
1444 * protection domain will be assigned to the default one.
1445 */
1446 list_for_each_entry(iommu, &amd_iommu_list, list) {
1447 iommu->default_dom = dma_ops_domain_alloc(iommu, order);
1448 if (iommu->default_dom == NULL)
1449 return -ENOMEM;
1450 ret = iommu_init_unity_mappings(iommu);
1451 if (ret)
1452 goto free_domains;
1453 }
1454
1455 /*
1456 * If device isolation is enabled, pre-allocate the protection
1457 * domains for each device.
1458 */
1459 if (amd_iommu_isolate)
1460 prealloc_protection_domains();
1461
1462 iommu_detected = 1;
1463 force_iommu = 1;
1464 bad_dma_address = 0;
1465 #ifdef CONFIG_GART_IOMMU
1466 gart_iommu_aperture_disabled = 1;
1467 gart_iommu_aperture = 0;
1468 #endif
1469
1470 /* Make the driver finally visible to the drivers */
1471 dma_ops = &amd_iommu_dma_ops;
1472
1473 return 0;
1474
1475 free_domains:
1476
1477 list_for_each_entry(iommu, &amd_iommu_list, list) {
1478 if (iommu->default_dom)
1479 dma_ops_domain_free(iommu->default_dom);
1480 }
1481
1482 return ret;
1483 }
This page took 0.062441 seconds and 5 git commands to generate.