x86/amd-iommu: Add passthrough mode initialization functions
[deliverable/linux.git] / arch / x86 / kernel / amd_iommu.c
1 /*
2 * Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
3 * Author: Joerg Roedel <joerg.roedel@amd.com>
4 * Leo Duran <leo.duran@amd.com>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
20 #include <linux/pci.h>
21 #include <linux/gfp.h>
22 #include <linux/bitops.h>
23 #include <linux/debugfs.h>
24 #include <linux/scatterlist.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/iommu-helper.h>
27 #include <linux/iommu.h>
28 #include <asm/proto.h>
29 #include <asm/iommu.h>
30 #include <asm/gart.h>
31 #include <asm/amd_iommu_types.h>
32 #include <asm/amd_iommu.h>
33
34 #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
35
36 #define EXIT_LOOP_COUNT 10000000
37
38 static DEFINE_RWLOCK(amd_iommu_devtable_lock);
39
40 /* A list of preallocated protection domains */
41 static LIST_HEAD(iommu_pd_list);
42 static DEFINE_SPINLOCK(iommu_pd_list_lock);
43
44 /*
45 * Domain for untranslated devices - only allocated
46 * if iommu=pt passed on kernel cmd line.
47 */
48 static struct protection_domain *pt_domain;
49
50 #ifdef CONFIG_IOMMU_API
51 static struct iommu_ops amd_iommu_ops;
52 #endif
53
54 /*
55 * general struct to manage commands send to an IOMMU
56 */
57 struct iommu_cmd {
58 u32 data[4];
59 };
60
61 static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
62 struct unity_map_entry *e);
63 static struct dma_ops_domain *find_protection_domain(u16 devid);
64 static u64* alloc_pte(struct protection_domain *dom,
65 unsigned long address, u64
66 **pte_page, gfp_t gfp);
67 static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
68 unsigned long start_page,
69 unsigned int pages);
70
71 #ifndef BUS_NOTIFY_UNBOUND_DRIVER
72 #define BUS_NOTIFY_UNBOUND_DRIVER 0x0005
73 #endif
74
75 #ifdef CONFIG_AMD_IOMMU_STATS
76
77 /*
78 * Initialization code for statistics collection
79 */
80
81 DECLARE_STATS_COUNTER(compl_wait);
82 DECLARE_STATS_COUNTER(cnt_map_single);
83 DECLARE_STATS_COUNTER(cnt_unmap_single);
84 DECLARE_STATS_COUNTER(cnt_map_sg);
85 DECLARE_STATS_COUNTER(cnt_unmap_sg);
86 DECLARE_STATS_COUNTER(cnt_alloc_coherent);
87 DECLARE_STATS_COUNTER(cnt_free_coherent);
88 DECLARE_STATS_COUNTER(cross_page);
89 DECLARE_STATS_COUNTER(domain_flush_single);
90 DECLARE_STATS_COUNTER(domain_flush_all);
91 DECLARE_STATS_COUNTER(alloced_io_mem);
92 DECLARE_STATS_COUNTER(total_map_requests);
93
94 static struct dentry *stats_dir;
95 static struct dentry *de_isolate;
96 static struct dentry *de_fflush;
97
98 static void amd_iommu_stats_add(struct __iommu_counter *cnt)
99 {
100 if (stats_dir == NULL)
101 return;
102
103 cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
104 &cnt->value);
105 }
106
107 static void amd_iommu_stats_init(void)
108 {
109 stats_dir = debugfs_create_dir("amd-iommu", NULL);
110 if (stats_dir == NULL)
111 return;
112
113 de_isolate = debugfs_create_bool("isolation", 0444, stats_dir,
114 (u32 *)&amd_iommu_isolate);
115
116 de_fflush = debugfs_create_bool("fullflush", 0444, stats_dir,
117 (u32 *)&amd_iommu_unmap_flush);
118
119 amd_iommu_stats_add(&compl_wait);
120 amd_iommu_stats_add(&cnt_map_single);
121 amd_iommu_stats_add(&cnt_unmap_single);
122 amd_iommu_stats_add(&cnt_map_sg);
123 amd_iommu_stats_add(&cnt_unmap_sg);
124 amd_iommu_stats_add(&cnt_alloc_coherent);
125 amd_iommu_stats_add(&cnt_free_coherent);
126 amd_iommu_stats_add(&cross_page);
127 amd_iommu_stats_add(&domain_flush_single);
128 amd_iommu_stats_add(&domain_flush_all);
129 amd_iommu_stats_add(&alloced_io_mem);
130 amd_iommu_stats_add(&total_map_requests);
131 }
132
133 #endif
134
135 /* returns !0 if the IOMMU is caching non-present entries in its TLB */
136 static int iommu_has_npcache(struct amd_iommu *iommu)
137 {
138 return iommu->cap & (1UL << IOMMU_CAP_NPCACHE);
139 }
140
141 /****************************************************************************
142 *
143 * Interrupt handling functions
144 *
145 ****************************************************************************/
146
147 static void iommu_print_event(void *__evt)
148 {
149 u32 *event = __evt;
150 int type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
151 int devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
152 int domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
153 int flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
154 u64 address = (u64)(((u64)event[3]) << 32) | event[2];
155
156 printk(KERN_ERR "AMD IOMMU: Event logged [");
157
158 switch (type) {
159 case EVENT_TYPE_ILL_DEV:
160 printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
161 "address=0x%016llx flags=0x%04x]\n",
162 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
163 address, flags);
164 break;
165 case EVENT_TYPE_IO_FAULT:
166 printk("IO_PAGE_FAULT device=%02x:%02x.%x "
167 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
168 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
169 domid, address, flags);
170 break;
171 case EVENT_TYPE_DEV_TAB_ERR:
172 printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
173 "address=0x%016llx flags=0x%04x]\n",
174 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
175 address, flags);
176 break;
177 case EVENT_TYPE_PAGE_TAB_ERR:
178 printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
179 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
180 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
181 domid, address, flags);
182 break;
183 case EVENT_TYPE_ILL_CMD:
184 printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
185 break;
186 case EVENT_TYPE_CMD_HARD_ERR:
187 printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
188 "flags=0x%04x]\n", address, flags);
189 break;
190 case EVENT_TYPE_IOTLB_INV_TO:
191 printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
192 "address=0x%016llx]\n",
193 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
194 address);
195 break;
196 case EVENT_TYPE_INV_DEV_REQ:
197 printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
198 "address=0x%016llx flags=0x%04x]\n",
199 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
200 address, flags);
201 break;
202 default:
203 printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
204 }
205 }
206
207 static void iommu_poll_events(struct amd_iommu *iommu)
208 {
209 u32 head, tail;
210 unsigned long flags;
211
212 spin_lock_irqsave(&iommu->lock, flags);
213
214 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
215 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
216
217 while (head != tail) {
218 iommu_print_event(iommu->evt_buf + head);
219 head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
220 }
221
222 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
223
224 spin_unlock_irqrestore(&iommu->lock, flags);
225 }
226
227 irqreturn_t amd_iommu_int_handler(int irq, void *data)
228 {
229 struct amd_iommu *iommu;
230
231 for_each_iommu(iommu)
232 iommu_poll_events(iommu);
233
234 return IRQ_HANDLED;
235 }
236
237 /****************************************************************************
238 *
239 * IOMMU command queuing functions
240 *
241 ****************************************************************************/
242
243 /*
244 * Writes the command to the IOMMUs command buffer and informs the
245 * hardware about the new command. Must be called with iommu->lock held.
246 */
247 static int __iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
248 {
249 u32 tail, head;
250 u8 *target;
251
252 tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
253 target = iommu->cmd_buf + tail;
254 memcpy_toio(target, cmd, sizeof(*cmd));
255 tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
256 head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
257 if (tail == head)
258 return -ENOMEM;
259 writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
260
261 return 0;
262 }
263
264 /*
265 * General queuing function for commands. Takes iommu->lock and calls
266 * __iommu_queue_command().
267 */
268 static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
269 {
270 unsigned long flags;
271 int ret;
272
273 spin_lock_irqsave(&iommu->lock, flags);
274 ret = __iommu_queue_command(iommu, cmd);
275 if (!ret)
276 iommu->need_sync = true;
277 spin_unlock_irqrestore(&iommu->lock, flags);
278
279 return ret;
280 }
281
282 /*
283 * This function waits until an IOMMU has completed a completion
284 * wait command
285 */
286 static void __iommu_wait_for_completion(struct amd_iommu *iommu)
287 {
288 int ready = 0;
289 unsigned status = 0;
290 unsigned long i = 0;
291
292 INC_STATS_COUNTER(compl_wait);
293
294 while (!ready && (i < EXIT_LOOP_COUNT)) {
295 ++i;
296 /* wait for the bit to become one */
297 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
298 ready = status & MMIO_STATUS_COM_WAIT_INT_MASK;
299 }
300
301 /* set bit back to zero */
302 status &= ~MMIO_STATUS_COM_WAIT_INT_MASK;
303 writel(status, iommu->mmio_base + MMIO_STATUS_OFFSET);
304
305 if (unlikely(i == EXIT_LOOP_COUNT))
306 panic("AMD IOMMU: Completion wait loop failed\n");
307 }
308
309 /*
310 * This function queues a completion wait command into the command
311 * buffer of an IOMMU
312 */
313 static int __iommu_completion_wait(struct amd_iommu *iommu)
314 {
315 struct iommu_cmd cmd;
316
317 memset(&cmd, 0, sizeof(cmd));
318 cmd.data[0] = CMD_COMPL_WAIT_INT_MASK;
319 CMD_SET_TYPE(&cmd, CMD_COMPL_WAIT);
320
321 return __iommu_queue_command(iommu, &cmd);
322 }
323
324 /*
325 * This function is called whenever we need to ensure that the IOMMU has
326 * completed execution of all commands we sent. It sends a
327 * COMPLETION_WAIT command and waits for it to finish. The IOMMU informs
328 * us about that by writing a value to a physical address we pass with
329 * the command.
330 */
331 static int iommu_completion_wait(struct amd_iommu *iommu)
332 {
333 int ret = 0;
334 unsigned long flags;
335
336 spin_lock_irqsave(&iommu->lock, flags);
337
338 if (!iommu->need_sync)
339 goto out;
340
341 ret = __iommu_completion_wait(iommu);
342
343 iommu->need_sync = false;
344
345 if (ret)
346 goto out;
347
348 __iommu_wait_for_completion(iommu);
349
350 out:
351 spin_unlock_irqrestore(&iommu->lock, flags);
352
353 return 0;
354 }
355
356 /*
357 * Command send function for invalidating a device table entry
358 */
359 static int iommu_queue_inv_dev_entry(struct amd_iommu *iommu, u16 devid)
360 {
361 struct iommu_cmd cmd;
362 int ret;
363
364 BUG_ON(iommu == NULL);
365
366 memset(&cmd, 0, sizeof(cmd));
367 CMD_SET_TYPE(&cmd, CMD_INV_DEV_ENTRY);
368 cmd.data[0] = devid;
369
370 ret = iommu_queue_command(iommu, &cmd);
371
372 return ret;
373 }
374
375 static void __iommu_build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
376 u16 domid, int pde, int s)
377 {
378 memset(cmd, 0, sizeof(*cmd));
379 address &= PAGE_MASK;
380 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
381 cmd->data[1] |= domid;
382 cmd->data[2] = lower_32_bits(address);
383 cmd->data[3] = upper_32_bits(address);
384 if (s) /* size bit - we flush more than one 4kb page */
385 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
386 if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
387 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
388 }
389
390 /*
391 * Generic command send function for invalidaing TLB entries
392 */
393 static int iommu_queue_inv_iommu_pages(struct amd_iommu *iommu,
394 u64 address, u16 domid, int pde, int s)
395 {
396 struct iommu_cmd cmd;
397 int ret;
398
399 __iommu_build_inv_iommu_pages(&cmd, address, domid, pde, s);
400
401 ret = iommu_queue_command(iommu, &cmd);
402
403 return ret;
404 }
405
406 /*
407 * TLB invalidation function which is called from the mapping functions.
408 * It invalidates a single PTE if the range to flush is within a single
409 * page. Otherwise it flushes the whole TLB of the IOMMU.
410 */
411 static int iommu_flush_pages(struct amd_iommu *iommu, u16 domid,
412 u64 address, size_t size)
413 {
414 int s = 0;
415 unsigned pages = iommu_num_pages(address, size, PAGE_SIZE);
416
417 address &= PAGE_MASK;
418
419 if (pages > 1) {
420 /*
421 * If we have to flush more than one page, flush all
422 * TLB entries for this domain
423 */
424 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
425 s = 1;
426 }
427
428 iommu_queue_inv_iommu_pages(iommu, address, domid, 0, s);
429
430 return 0;
431 }
432
433 /* Flush the whole IO/TLB for a given protection domain */
434 static void iommu_flush_tlb(struct amd_iommu *iommu, u16 domid)
435 {
436 u64 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
437
438 INC_STATS_COUNTER(domain_flush_single);
439
440 iommu_queue_inv_iommu_pages(iommu, address, domid, 0, 1);
441 }
442
443 /* Flush the whole IO/TLB for a given protection domain - including PDE */
444 static void iommu_flush_tlb_pde(struct amd_iommu *iommu, u16 domid)
445 {
446 u64 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
447
448 INC_STATS_COUNTER(domain_flush_single);
449
450 iommu_queue_inv_iommu_pages(iommu, address, domid, 1, 1);
451 }
452
453 /*
454 * This function is used to flush the IO/TLB for a given protection domain
455 * on every IOMMU in the system
456 */
457 static void iommu_flush_domain(u16 domid)
458 {
459 unsigned long flags;
460 struct amd_iommu *iommu;
461 struct iommu_cmd cmd;
462
463 INC_STATS_COUNTER(domain_flush_all);
464
465 __iommu_build_inv_iommu_pages(&cmd, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
466 domid, 1, 1);
467
468 for_each_iommu(iommu) {
469 spin_lock_irqsave(&iommu->lock, flags);
470 __iommu_queue_command(iommu, &cmd);
471 __iommu_completion_wait(iommu);
472 __iommu_wait_for_completion(iommu);
473 spin_unlock_irqrestore(&iommu->lock, flags);
474 }
475 }
476
477 void amd_iommu_flush_all_domains(void)
478 {
479 int i;
480
481 for (i = 1; i < MAX_DOMAIN_ID; ++i) {
482 if (!test_bit(i, amd_iommu_pd_alloc_bitmap))
483 continue;
484 iommu_flush_domain(i);
485 }
486 }
487
488 void amd_iommu_flush_all_devices(void)
489 {
490 struct amd_iommu *iommu;
491 int i;
492
493 for (i = 0; i <= amd_iommu_last_bdf; ++i) {
494 if (amd_iommu_pd_table[i] == NULL)
495 continue;
496
497 iommu = amd_iommu_rlookup_table[i];
498 if (!iommu)
499 continue;
500
501 iommu_queue_inv_dev_entry(iommu, i);
502 iommu_completion_wait(iommu);
503 }
504 }
505
506 /****************************************************************************
507 *
508 * The functions below are used the create the page table mappings for
509 * unity mapped regions.
510 *
511 ****************************************************************************/
512
513 /*
514 * Generic mapping functions. It maps a physical address into a DMA
515 * address space. It allocates the page table pages if necessary.
516 * In the future it can be extended to a generic mapping function
517 * supporting all features of AMD IOMMU page tables like level skipping
518 * and full 64 bit address spaces.
519 */
520 static int iommu_map_page(struct protection_domain *dom,
521 unsigned long bus_addr,
522 unsigned long phys_addr,
523 int prot)
524 {
525 u64 __pte, *pte;
526
527 bus_addr = PAGE_ALIGN(bus_addr);
528 phys_addr = PAGE_ALIGN(phys_addr);
529
530 /* only support 512GB address spaces for now */
531 if (bus_addr > IOMMU_MAP_SIZE_L3 || !(prot & IOMMU_PROT_MASK))
532 return -EINVAL;
533
534 pte = alloc_pte(dom, bus_addr, NULL, GFP_KERNEL);
535
536 if (IOMMU_PTE_PRESENT(*pte))
537 return -EBUSY;
538
539 __pte = phys_addr | IOMMU_PTE_P;
540 if (prot & IOMMU_PROT_IR)
541 __pte |= IOMMU_PTE_IR;
542 if (prot & IOMMU_PROT_IW)
543 __pte |= IOMMU_PTE_IW;
544
545 *pte = __pte;
546
547 return 0;
548 }
549
550 static void iommu_unmap_page(struct protection_domain *dom,
551 unsigned long bus_addr)
552 {
553 u64 *pte;
554
555 pte = &dom->pt_root[IOMMU_PTE_L2_INDEX(bus_addr)];
556
557 if (!IOMMU_PTE_PRESENT(*pte))
558 return;
559
560 pte = IOMMU_PTE_PAGE(*pte);
561 pte = &pte[IOMMU_PTE_L1_INDEX(bus_addr)];
562
563 if (!IOMMU_PTE_PRESENT(*pte))
564 return;
565
566 pte = IOMMU_PTE_PAGE(*pte);
567 pte = &pte[IOMMU_PTE_L1_INDEX(bus_addr)];
568
569 *pte = 0;
570 }
571
572 /*
573 * This function checks if a specific unity mapping entry is needed for
574 * this specific IOMMU.
575 */
576 static int iommu_for_unity_map(struct amd_iommu *iommu,
577 struct unity_map_entry *entry)
578 {
579 u16 bdf, i;
580
581 for (i = entry->devid_start; i <= entry->devid_end; ++i) {
582 bdf = amd_iommu_alias_table[i];
583 if (amd_iommu_rlookup_table[bdf] == iommu)
584 return 1;
585 }
586
587 return 0;
588 }
589
590 /*
591 * Init the unity mappings for a specific IOMMU in the system
592 *
593 * Basically iterates over all unity mapping entries and applies them to
594 * the default domain DMA of that IOMMU if necessary.
595 */
596 static int iommu_init_unity_mappings(struct amd_iommu *iommu)
597 {
598 struct unity_map_entry *entry;
599 int ret;
600
601 list_for_each_entry(entry, &amd_iommu_unity_map, list) {
602 if (!iommu_for_unity_map(iommu, entry))
603 continue;
604 ret = dma_ops_unity_map(iommu->default_dom, entry);
605 if (ret)
606 return ret;
607 }
608
609 return 0;
610 }
611
612 /*
613 * This function actually applies the mapping to the page table of the
614 * dma_ops domain.
615 */
616 static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
617 struct unity_map_entry *e)
618 {
619 u64 addr;
620 int ret;
621
622 for (addr = e->address_start; addr < e->address_end;
623 addr += PAGE_SIZE) {
624 ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot);
625 if (ret)
626 return ret;
627 /*
628 * if unity mapping is in aperture range mark the page
629 * as allocated in the aperture
630 */
631 if (addr < dma_dom->aperture_size)
632 __set_bit(addr >> PAGE_SHIFT,
633 dma_dom->aperture[0]->bitmap);
634 }
635
636 return 0;
637 }
638
639 /*
640 * Inits the unity mappings required for a specific device
641 */
642 static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
643 u16 devid)
644 {
645 struct unity_map_entry *e;
646 int ret;
647
648 list_for_each_entry(e, &amd_iommu_unity_map, list) {
649 if (!(devid >= e->devid_start && devid <= e->devid_end))
650 continue;
651 ret = dma_ops_unity_map(dma_dom, e);
652 if (ret)
653 return ret;
654 }
655
656 return 0;
657 }
658
659 /****************************************************************************
660 *
661 * The next functions belong to the address allocator for the dma_ops
662 * interface functions. They work like the allocators in the other IOMMU
663 * drivers. Its basically a bitmap which marks the allocated pages in
664 * the aperture. Maybe it could be enhanced in the future to a more
665 * efficient allocator.
666 *
667 ****************************************************************************/
668
669 /*
670 * The address allocator core functions.
671 *
672 * called with domain->lock held
673 */
674
675 /*
676 * This function checks if there is a PTE for a given dma address. If
677 * there is one, it returns the pointer to it.
678 */
679 static u64* fetch_pte(struct protection_domain *domain,
680 unsigned long address)
681 {
682 u64 *pte;
683
684 pte = &domain->pt_root[IOMMU_PTE_L2_INDEX(address)];
685
686 if (!IOMMU_PTE_PRESENT(*pte))
687 return NULL;
688
689 pte = IOMMU_PTE_PAGE(*pte);
690 pte = &pte[IOMMU_PTE_L1_INDEX(address)];
691
692 if (!IOMMU_PTE_PRESENT(*pte))
693 return NULL;
694
695 pte = IOMMU_PTE_PAGE(*pte);
696 pte = &pte[IOMMU_PTE_L0_INDEX(address)];
697
698 return pte;
699 }
700
701 /*
702 * This function is used to add a new aperture range to an existing
703 * aperture in case of dma_ops domain allocation or address allocation
704 * failure.
705 */
706 static int alloc_new_range(struct amd_iommu *iommu,
707 struct dma_ops_domain *dma_dom,
708 bool populate, gfp_t gfp)
709 {
710 int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
711 int i;
712
713 #ifdef CONFIG_IOMMU_STRESS
714 populate = false;
715 #endif
716
717 if (index >= APERTURE_MAX_RANGES)
718 return -ENOMEM;
719
720 dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
721 if (!dma_dom->aperture[index])
722 return -ENOMEM;
723
724 dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
725 if (!dma_dom->aperture[index]->bitmap)
726 goto out_free;
727
728 dma_dom->aperture[index]->offset = dma_dom->aperture_size;
729
730 if (populate) {
731 unsigned long address = dma_dom->aperture_size;
732 int i, num_ptes = APERTURE_RANGE_PAGES / 512;
733 u64 *pte, *pte_page;
734
735 for (i = 0; i < num_ptes; ++i) {
736 pte = alloc_pte(&dma_dom->domain, address,
737 &pte_page, gfp);
738 if (!pte)
739 goto out_free;
740
741 dma_dom->aperture[index]->pte_pages[i] = pte_page;
742
743 address += APERTURE_RANGE_SIZE / 64;
744 }
745 }
746
747 dma_dom->aperture_size += APERTURE_RANGE_SIZE;
748
749 /* Intialize the exclusion range if necessary */
750 if (iommu->exclusion_start &&
751 iommu->exclusion_start >= dma_dom->aperture[index]->offset &&
752 iommu->exclusion_start < dma_dom->aperture_size) {
753 unsigned long startpage = iommu->exclusion_start >> PAGE_SHIFT;
754 int pages = iommu_num_pages(iommu->exclusion_start,
755 iommu->exclusion_length,
756 PAGE_SIZE);
757 dma_ops_reserve_addresses(dma_dom, startpage, pages);
758 }
759
760 /*
761 * Check for areas already mapped as present in the new aperture
762 * range and mark those pages as reserved in the allocator. Such
763 * mappings may already exist as a result of requested unity
764 * mappings for devices.
765 */
766 for (i = dma_dom->aperture[index]->offset;
767 i < dma_dom->aperture_size;
768 i += PAGE_SIZE) {
769 u64 *pte = fetch_pte(&dma_dom->domain, i);
770 if (!pte || !IOMMU_PTE_PRESENT(*pte))
771 continue;
772
773 dma_ops_reserve_addresses(dma_dom, i << PAGE_SHIFT, 1);
774 }
775
776 return 0;
777
778 out_free:
779 free_page((unsigned long)dma_dom->aperture[index]->bitmap);
780
781 kfree(dma_dom->aperture[index]);
782 dma_dom->aperture[index] = NULL;
783
784 return -ENOMEM;
785 }
786
787 static unsigned long dma_ops_area_alloc(struct device *dev,
788 struct dma_ops_domain *dom,
789 unsigned int pages,
790 unsigned long align_mask,
791 u64 dma_mask,
792 unsigned long start)
793 {
794 unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
795 int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
796 int i = start >> APERTURE_RANGE_SHIFT;
797 unsigned long boundary_size;
798 unsigned long address = -1;
799 unsigned long limit;
800
801 next_bit >>= PAGE_SHIFT;
802
803 boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
804 PAGE_SIZE) >> PAGE_SHIFT;
805
806 for (;i < max_index; ++i) {
807 unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;
808
809 if (dom->aperture[i]->offset >= dma_mask)
810 break;
811
812 limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
813 dma_mask >> PAGE_SHIFT);
814
815 address = iommu_area_alloc(dom->aperture[i]->bitmap,
816 limit, next_bit, pages, 0,
817 boundary_size, align_mask);
818 if (address != -1) {
819 address = dom->aperture[i]->offset +
820 (address << PAGE_SHIFT);
821 dom->next_address = address + (pages << PAGE_SHIFT);
822 break;
823 }
824
825 next_bit = 0;
826 }
827
828 return address;
829 }
830
831 static unsigned long dma_ops_alloc_addresses(struct device *dev,
832 struct dma_ops_domain *dom,
833 unsigned int pages,
834 unsigned long align_mask,
835 u64 dma_mask)
836 {
837 unsigned long address;
838
839 #ifdef CONFIG_IOMMU_STRESS
840 dom->next_address = 0;
841 dom->need_flush = true;
842 #endif
843
844 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
845 dma_mask, dom->next_address);
846
847 if (address == -1) {
848 dom->next_address = 0;
849 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
850 dma_mask, 0);
851 dom->need_flush = true;
852 }
853
854 if (unlikely(address == -1))
855 address = bad_dma_address;
856
857 WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
858
859 return address;
860 }
861
862 /*
863 * The address free function.
864 *
865 * called with domain->lock held
866 */
867 static void dma_ops_free_addresses(struct dma_ops_domain *dom,
868 unsigned long address,
869 unsigned int pages)
870 {
871 unsigned i = address >> APERTURE_RANGE_SHIFT;
872 struct aperture_range *range = dom->aperture[i];
873
874 BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);
875
876 #ifdef CONFIG_IOMMU_STRESS
877 if (i < 4)
878 return;
879 #endif
880
881 if (address >= dom->next_address)
882 dom->need_flush = true;
883
884 address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
885
886 iommu_area_free(range->bitmap, address, pages);
887
888 }
889
890 /****************************************************************************
891 *
892 * The next functions belong to the domain allocation. A domain is
893 * allocated for every IOMMU as the default domain. If device isolation
894 * is enabled, every device get its own domain. The most important thing
895 * about domains is the page table mapping the DMA address space they
896 * contain.
897 *
898 ****************************************************************************/
899
900 static u16 domain_id_alloc(void)
901 {
902 unsigned long flags;
903 int id;
904
905 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
906 id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
907 BUG_ON(id == 0);
908 if (id > 0 && id < MAX_DOMAIN_ID)
909 __set_bit(id, amd_iommu_pd_alloc_bitmap);
910 else
911 id = 0;
912 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
913
914 return id;
915 }
916
917 static void domain_id_free(int id)
918 {
919 unsigned long flags;
920
921 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
922 if (id > 0 && id < MAX_DOMAIN_ID)
923 __clear_bit(id, amd_iommu_pd_alloc_bitmap);
924 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
925 }
926
927 /*
928 * Used to reserve address ranges in the aperture (e.g. for exclusion
929 * ranges.
930 */
931 static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
932 unsigned long start_page,
933 unsigned int pages)
934 {
935 unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
936
937 if (start_page + pages > last_page)
938 pages = last_page - start_page;
939
940 for (i = start_page; i < start_page + pages; ++i) {
941 int index = i / APERTURE_RANGE_PAGES;
942 int page = i % APERTURE_RANGE_PAGES;
943 __set_bit(page, dom->aperture[index]->bitmap);
944 }
945 }
946
947 static void free_pagetable(struct protection_domain *domain)
948 {
949 int i, j;
950 u64 *p1, *p2, *p3;
951
952 p1 = domain->pt_root;
953
954 if (!p1)
955 return;
956
957 for (i = 0; i < 512; ++i) {
958 if (!IOMMU_PTE_PRESENT(p1[i]))
959 continue;
960
961 p2 = IOMMU_PTE_PAGE(p1[i]);
962 for (j = 0; j < 512; ++j) {
963 if (!IOMMU_PTE_PRESENT(p2[j]))
964 continue;
965 p3 = IOMMU_PTE_PAGE(p2[j]);
966 free_page((unsigned long)p3);
967 }
968
969 free_page((unsigned long)p2);
970 }
971
972 free_page((unsigned long)p1);
973
974 domain->pt_root = NULL;
975 }
976
977 /*
978 * Free a domain, only used if something went wrong in the
979 * allocation path and we need to free an already allocated page table
980 */
981 static void dma_ops_domain_free(struct dma_ops_domain *dom)
982 {
983 int i;
984
985 if (!dom)
986 return;
987
988 free_pagetable(&dom->domain);
989
990 for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
991 if (!dom->aperture[i])
992 continue;
993 free_page((unsigned long)dom->aperture[i]->bitmap);
994 kfree(dom->aperture[i]);
995 }
996
997 kfree(dom);
998 }
999
1000 /*
1001 * Allocates a new protection domain usable for the dma_ops functions.
1002 * It also intializes the page table and the address allocator data
1003 * structures required for the dma_ops interface
1004 */
1005 static struct dma_ops_domain *dma_ops_domain_alloc(struct amd_iommu *iommu)
1006 {
1007 struct dma_ops_domain *dma_dom;
1008
1009 dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
1010 if (!dma_dom)
1011 return NULL;
1012
1013 spin_lock_init(&dma_dom->domain.lock);
1014
1015 dma_dom->domain.id = domain_id_alloc();
1016 if (dma_dom->domain.id == 0)
1017 goto free_dma_dom;
1018 dma_dom->domain.mode = PAGE_MODE_3_LEVEL;
1019 dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1020 dma_dom->domain.flags = PD_DMA_OPS_MASK;
1021 dma_dom->domain.priv = dma_dom;
1022 if (!dma_dom->domain.pt_root)
1023 goto free_dma_dom;
1024
1025 dma_dom->need_flush = false;
1026 dma_dom->target_dev = 0xffff;
1027
1028 if (alloc_new_range(iommu, dma_dom, true, GFP_KERNEL))
1029 goto free_dma_dom;
1030
1031 /*
1032 * mark the first page as allocated so we never return 0 as
1033 * a valid dma-address. So we can use 0 as error value
1034 */
1035 dma_dom->aperture[0]->bitmap[0] = 1;
1036 dma_dom->next_address = 0;
1037
1038
1039 return dma_dom;
1040
1041 free_dma_dom:
1042 dma_ops_domain_free(dma_dom);
1043
1044 return NULL;
1045 }
1046
1047 /*
1048 * little helper function to check whether a given protection domain is a
1049 * dma_ops domain
1050 */
1051 static bool dma_ops_domain(struct protection_domain *domain)
1052 {
1053 return domain->flags & PD_DMA_OPS_MASK;
1054 }
1055
1056 /*
1057 * Find out the protection domain structure for a given PCI device. This
1058 * will give us the pointer to the page table root for example.
1059 */
1060 static struct protection_domain *domain_for_device(u16 devid)
1061 {
1062 struct protection_domain *dom;
1063 unsigned long flags;
1064
1065 read_lock_irqsave(&amd_iommu_devtable_lock, flags);
1066 dom = amd_iommu_pd_table[devid];
1067 read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1068
1069 return dom;
1070 }
1071
1072 /*
1073 * If a device is not yet associated with a domain, this function does
1074 * assigns it visible for the hardware
1075 */
1076 static void __attach_device(struct amd_iommu *iommu,
1077 struct protection_domain *domain,
1078 u16 devid)
1079 {
1080 unsigned long flags;
1081 u64 pte_root = virt_to_phys(domain->pt_root);
1082
1083 domain->dev_cnt += 1;
1084
1085 pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
1086 << DEV_ENTRY_MODE_SHIFT;
1087 pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
1088
1089 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1090 amd_iommu_dev_table[devid].data[0] = lower_32_bits(pte_root);
1091 amd_iommu_dev_table[devid].data[1] = upper_32_bits(pte_root);
1092 amd_iommu_dev_table[devid].data[2] = domain->id;
1093
1094 amd_iommu_pd_table[devid] = domain;
1095 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1096 }
1097
1098 static void attach_device(struct amd_iommu *iommu,
1099 struct protection_domain *domain,
1100 u16 devid)
1101 {
1102 __attach_device(iommu, domain, devid);
1103
1104 /*
1105 * We might boot into a crash-kernel here. The crashed kernel
1106 * left the caches in the IOMMU dirty. So we have to flush
1107 * here to evict all dirty stuff.
1108 */
1109 iommu_queue_inv_dev_entry(iommu, devid);
1110 iommu_flush_tlb_pde(iommu, domain->id);
1111 }
1112
1113 /*
1114 * Removes a device from a protection domain (unlocked)
1115 */
1116 static void __detach_device(struct protection_domain *domain, u16 devid)
1117 {
1118
1119 /* lock domain */
1120 spin_lock(&domain->lock);
1121
1122 /* remove domain from the lookup table */
1123 amd_iommu_pd_table[devid] = NULL;
1124
1125 /* remove entry from the device table seen by the hardware */
1126 amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
1127 amd_iommu_dev_table[devid].data[1] = 0;
1128 amd_iommu_dev_table[devid].data[2] = 0;
1129
1130 /* decrease reference counter */
1131 domain->dev_cnt -= 1;
1132
1133 /* ready */
1134 spin_unlock(&domain->lock);
1135 }
1136
1137 /*
1138 * Removes a device from a protection domain (with devtable_lock held)
1139 */
1140 static void detach_device(struct protection_domain *domain, u16 devid)
1141 {
1142 unsigned long flags;
1143
1144 /* lock device table */
1145 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1146 __detach_device(domain, devid);
1147 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1148 }
1149
1150 static int device_change_notifier(struct notifier_block *nb,
1151 unsigned long action, void *data)
1152 {
1153 struct device *dev = data;
1154 struct pci_dev *pdev = to_pci_dev(dev);
1155 u16 devid = calc_devid(pdev->bus->number, pdev->devfn);
1156 struct protection_domain *domain;
1157 struct dma_ops_domain *dma_domain;
1158 struct amd_iommu *iommu;
1159 unsigned long flags;
1160
1161 if (devid > amd_iommu_last_bdf)
1162 goto out;
1163
1164 devid = amd_iommu_alias_table[devid];
1165
1166 iommu = amd_iommu_rlookup_table[devid];
1167 if (iommu == NULL)
1168 goto out;
1169
1170 domain = domain_for_device(devid);
1171
1172 if (domain && !dma_ops_domain(domain))
1173 WARN_ONCE(1, "AMD IOMMU WARNING: device %s already bound "
1174 "to a non-dma-ops domain\n", dev_name(dev));
1175
1176 switch (action) {
1177 case BUS_NOTIFY_UNBOUND_DRIVER:
1178 if (!domain)
1179 goto out;
1180 detach_device(domain, devid);
1181 break;
1182 case BUS_NOTIFY_ADD_DEVICE:
1183 /* allocate a protection domain if a device is added */
1184 dma_domain = find_protection_domain(devid);
1185 if (dma_domain)
1186 goto out;
1187 dma_domain = dma_ops_domain_alloc(iommu);
1188 if (!dma_domain)
1189 goto out;
1190 dma_domain->target_dev = devid;
1191
1192 spin_lock_irqsave(&iommu_pd_list_lock, flags);
1193 list_add_tail(&dma_domain->list, &iommu_pd_list);
1194 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
1195
1196 break;
1197 default:
1198 goto out;
1199 }
1200
1201 iommu_queue_inv_dev_entry(iommu, devid);
1202 iommu_completion_wait(iommu);
1203
1204 out:
1205 return 0;
1206 }
1207
1208 static struct notifier_block device_nb = {
1209 .notifier_call = device_change_notifier,
1210 };
1211
1212 /*****************************************************************************
1213 *
1214 * The next functions belong to the dma_ops mapping/unmapping code.
1215 *
1216 *****************************************************************************/
1217
1218 /*
1219 * This function checks if the driver got a valid device from the caller to
1220 * avoid dereferencing invalid pointers.
1221 */
1222 static bool check_device(struct device *dev)
1223 {
1224 if (!dev || !dev->dma_mask)
1225 return false;
1226
1227 return true;
1228 }
1229
1230 /*
1231 * In this function the list of preallocated protection domains is traversed to
1232 * find the domain for a specific device
1233 */
1234 static struct dma_ops_domain *find_protection_domain(u16 devid)
1235 {
1236 struct dma_ops_domain *entry, *ret = NULL;
1237 unsigned long flags;
1238
1239 if (list_empty(&iommu_pd_list))
1240 return NULL;
1241
1242 spin_lock_irqsave(&iommu_pd_list_lock, flags);
1243
1244 list_for_each_entry(entry, &iommu_pd_list, list) {
1245 if (entry->target_dev == devid) {
1246 ret = entry;
1247 break;
1248 }
1249 }
1250
1251 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
1252
1253 return ret;
1254 }
1255
1256 /*
1257 * In the dma_ops path we only have the struct device. This function
1258 * finds the corresponding IOMMU, the protection domain and the
1259 * requestor id for a given device.
1260 * If the device is not yet associated with a domain this is also done
1261 * in this function.
1262 */
1263 static int get_device_resources(struct device *dev,
1264 struct amd_iommu **iommu,
1265 struct protection_domain **domain,
1266 u16 *bdf)
1267 {
1268 struct dma_ops_domain *dma_dom;
1269 struct pci_dev *pcidev;
1270 u16 _bdf;
1271
1272 *iommu = NULL;
1273 *domain = NULL;
1274 *bdf = 0xffff;
1275
1276 if (dev->bus != &pci_bus_type)
1277 return 0;
1278
1279 pcidev = to_pci_dev(dev);
1280 _bdf = calc_devid(pcidev->bus->number, pcidev->devfn);
1281
1282 /* device not translated by any IOMMU in the system? */
1283 if (_bdf > amd_iommu_last_bdf)
1284 return 0;
1285
1286 *bdf = amd_iommu_alias_table[_bdf];
1287
1288 *iommu = amd_iommu_rlookup_table[*bdf];
1289 if (*iommu == NULL)
1290 return 0;
1291 *domain = domain_for_device(*bdf);
1292 if (*domain == NULL) {
1293 dma_dom = find_protection_domain(*bdf);
1294 if (!dma_dom)
1295 dma_dom = (*iommu)->default_dom;
1296 *domain = &dma_dom->domain;
1297 attach_device(*iommu, *domain, *bdf);
1298 DUMP_printk("Using protection domain %d for device %s\n",
1299 (*domain)->id, dev_name(dev));
1300 }
1301
1302 if (domain_for_device(_bdf) == NULL)
1303 attach_device(*iommu, *domain, _bdf);
1304
1305 return 1;
1306 }
1307
1308 /*
1309 * If the pte_page is not yet allocated this function is called
1310 */
1311 static u64* alloc_pte(struct protection_domain *dom,
1312 unsigned long address, u64 **pte_page, gfp_t gfp)
1313 {
1314 u64 *pte, *page;
1315
1316 pte = &dom->pt_root[IOMMU_PTE_L2_INDEX(address)];
1317
1318 if (!IOMMU_PTE_PRESENT(*pte)) {
1319 page = (u64 *)get_zeroed_page(gfp);
1320 if (!page)
1321 return NULL;
1322 *pte = IOMMU_L2_PDE(virt_to_phys(page));
1323 }
1324
1325 pte = IOMMU_PTE_PAGE(*pte);
1326 pte = &pte[IOMMU_PTE_L1_INDEX(address)];
1327
1328 if (!IOMMU_PTE_PRESENT(*pte)) {
1329 page = (u64 *)get_zeroed_page(gfp);
1330 if (!page)
1331 return NULL;
1332 *pte = IOMMU_L1_PDE(virt_to_phys(page));
1333 }
1334
1335 pte = IOMMU_PTE_PAGE(*pte);
1336
1337 if (pte_page)
1338 *pte_page = pte;
1339
1340 pte = &pte[IOMMU_PTE_L0_INDEX(address)];
1341
1342 return pte;
1343 }
1344
1345 /*
1346 * This function fetches the PTE for a given address in the aperture
1347 */
1348 static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
1349 unsigned long address)
1350 {
1351 struct aperture_range *aperture;
1352 u64 *pte, *pte_page;
1353
1354 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
1355 if (!aperture)
1356 return NULL;
1357
1358 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
1359 if (!pte) {
1360 pte = alloc_pte(&dom->domain, address, &pte_page, GFP_ATOMIC);
1361 aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
1362 } else
1363 pte += IOMMU_PTE_L0_INDEX(address);
1364
1365 return pte;
1366 }
1367
1368 /*
1369 * This is the generic map function. It maps one 4kb page at paddr to
1370 * the given address in the DMA address space for the domain.
1371 */
1372 static dma_addr_t dma_ops_domain_map(struct amd_iommu *iommu,
1373 struct dma_ops_domain *dom,
1374 unsigned long address,
1375 phys_addr_t paddr,
1376 int direction)
1377 {
1378 u64 *pte, __pte;
1379
1380 WARN_ON(address > dom->aperture_size);
1381
1382 paddr &= PAGE_MASK;
1383
1384 pte = dma_ops_get_pte(dom, address);
1385 if (!pte)
1386 return bad_dma_address;
1387
1388 __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
1389
1390 if (direction == DMA_TO_DEVICE)
1391 __pte |= IOMMU_PTE_IR;
1392 else if (direction == DMA_FROM_DEVICE)
1393 __pte |= IOMMU_PTE_IW;
1394 else if (direction == DMA_BIDIRECTIONAL)
1395 __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
1396
1397 WARN_ON(*pte);
1398
1399 *pte = __pte;
1400
1401 return (dma_addr_t)address;
1402 }
1403
1404 /*
1405 * The generic unmapping function for on page in the DMA address space.
1406 */
1407 static void dma_ops_domain_unmap(struct amd_iommu *iommu,
1408 struct dma_ops_domain *dom,
1409 unsigned long address)
1410 {
1411 struct aperture_range *aperture;
1412 u64 *pte;
1413
1414 if (address >= dom->aperture_size)
1415 return;
1416
1417 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
1418 if (!aperture)
1419 return;
1420
1421 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
1422 if (!pte)
1423 return;
1424
1425 pte += IOMMU_PTE_L0_INDEX(address);
1426
1427 WARN_ON(!*pte);
1428
1429 *pte = 0ULL;
1430 }
1431
1432 /*
1433 * This function contains common code for mapping of a physically
1434 * contiguous memory region into DMA address space. It is used by all
1435 * mapping functions provided with this IOMMU driver.
1436 * Must be called with the domain lock held.
1437 */
1438 static dma_addr_t __map_single(struct device *dev,
1439 struct amd_iommu *iommu,
1440 struct dma_ops_domain *dma_dom,
1441 phys_addr_t paddr,
1442 size_t size,
1443 int dir,
1444 bool align,
1445 u64 dma_mask)
1446 {
1447 dma_addr_t offset = paddr & ~PAGE_MASK;
1448 dma_addr_t address, start, ret;
1449 unsigned int pages;
1450 unsigned long align_mask = 0;
1451 int i;
1452
1453 pages = iommu_num_pages(paddr, size, PAGE_SIZE);
1454 paddr &= PAGE_MASK;
1455
1456 INC_STATS_COUNTER(total_map_requests);
1457
1458 if (pages > 1)
1459 INC_STATS_COUNTER(cross_page);
1460
1461 if (align)
1462 align_mask = (1UL << get_order(size)) - 1;
1463
1464 retry:
1465 address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
1466 dma_mask);
1467 if (unlikely(address == bad_dma_address)) {
1468 /*
1469 * setting next_address here will let the address
1470 * allocator only scan the new allocated range in the
1471 * first run. This is a small optimization.
1472 */
1473 dma_dom->next_address = dma_dom->aperture_size;
1474
1475 if (alloc_new_range(iommu, dma_dom, false, GFP_ATOMIC))
1476 goto out;
1477
1478 /*
1479 * aperture was sucessfully enlarged by 128 MB, try
1480 * allocation again
1481 */
1482 goto retry;
1483 }
1484
1485 start = address;
1486 for (i = 0; i < pages; ++i) {
1487 ret = dma_ops_domain_map(iommu, dma_dom, start, paddr, dir);
1488 if (ret == bad_dma_address)
1489 goto out_unmap;
1490
1491 paddr += PAGE_SIZE;
1492 start += PAGE_SIZE;
1493 }
1494 address += offset;
1495
1496 ADD_STATS_COUNTER(alloced_io_mem, size);
1497
1498 if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
1499 iommu_flush_tlb(iommu, dma_dom->domain.id);
1500 dma_dom->need_flush = false;
1501 } else if (unlikely(iommu_has_npcache(iommu)))
1502 iommu_flush_pages(iommu, dma_dom->domain.id, address, size);
1503
1504 out:
1505 return address;
1506
1507 out_unmap:
1508
1509 for (--i; i >= 0; --i) {
1510 start -= PAGE_SIZE;
1511 dma_ops_domain_unmap(iommu, dma_dom, start);
1512 }
1513
1514 dma_ops_free_addresses(dma_dom, address, pages);
1515
1516 return bad_dma_address;
1517 }
1518
1519 /*
1520 * Does the reverse of the __map_single function. Must be called with
1521 * the domain lock held too
1522 */
1523 static void __unmap_single(struct amd_iommu *iommu,
1524 struct dma_ops_domain *dma_dom,
1525 dma_addr_t dma_addr,
1526 size_t size,
1527 int dir)
1528 {
1529 dma_addr_t i, start;
1530 unsigned int pages;
1531
1532 if ((dma_addr == bad_dma_address) ||
1533 (dma_addr + size > dma_dom->aperture_size))
1534 return;
1535
1536 pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
1537 dma_addr &= PAGE_MASK;
1538 start = dma_addr;
1539
1540 for (i = 0; i < pages; ++i) {
1541 dma_ops_domain_unmap(iommu, dma_dom, start);
1542 start += PAGE_SIZE;
1543 }
1544
1545 SUB_STATS_COUNTER(alloced_io_mem, size);
1546
1547 dma_ops_free_addresses(dma_dom, dma_addr, pages);
1548
1549 if (amd_iommu_unmap_flush || dma_dom->need_flush) {
1550 iommu_flush_pages(iommu, dma_dom->domain.id, dma_addr, size);
1551 dma_dom->need_flush = false;
1552 }
1553 }
1554
1555 /*
1556 * The exported map_single function for dma_ops.
1557 */
1558 static dma_addr_t map_page(struct device *dev, struct page *page,
1559 unsigned long offset, size_t size,
1560 enum dma_data_direction dir,
1561 struct dma_attrs *attrs)
1562 {
1563 unsigned long flags;
1564 struct amd_iommu *iommu;
1565 struct protection_domain *domain;
1566 u16 devid;
1567 dma_addr_t addr;
1568 u64 dma_mask;
1569 phys_addr_t paddr = page_to_phys(page) + offset;
1570
1571 INC_STATS_COUNTER(cnt_map_single);
1572
1573 if (!check_device(dev))
1574 return bad_dma_address;
1575
1576 dma_mask = *dev->dma_mask;
1577
1578 get_device_resources(dev, &iommu, &domain, &devid);
1579
1580 if (iommu == NULL || domain == NULL)
1581 /* device not handled by any AMD IOMMU */
1582 return (dma_addr_t)paddr;
1583
1584 if (!dma_ops_domain(domain))
1585 return bad_dma_address;
1586
1587 spin_lock_irqsave(&domain->lock, flags);
1588 addr = __map_single(dev, iommu, domain->priv, paddr, size, dir, false,
1589 dma_mask);
1590 if (addr == bad_dma_address)
1591 goto out;
1592
1593 iommu_completion_wait(iommu);
1594
1595 out:
1596 spin_unlock_irqrestore(&domain->lock, flags);
1597
1598 return addr;
1599 }
1600
1601 /*
1602 * The exported unmap_single function for dma_ops.
1603 */
1604 static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
1605 enum dma_data_direction dir, struct dma_attrs *attrs)
1606 {
1607 unsigned long flags;
1608 struct amd_iommu *iommu;
1609 struct protection_domain *domain;
1610 u16 devid;
1611
1612 INC_STATS_COUNTER(cnt_unmap_single);
1613
1614 if (!check_device(dev) ||
1615 !get_device_resources(dev, &iommu, &domain, &devid))
1616 /* device not handled by any AMD IOMMU */
1617 return;
1618
1619 if (!dma_ops_domain(domain))
1620 return;
1621
1622 spin_lock_irqsave(&domain->lock, flags);
1623
1624 __unmap_single(iommu, domain->priv, dma_addr, size, dir);
1625
1626 iommu_completion_wait(iommu);
1627
1628 spin_unlock_irqrestore(&domain->lock, flags);
1629 }
1630
1631 /*
1632 * This is a special map_sg function which is used if we should map a
1633 * device which is not handled by an AMD IOMMU in the system.
1634 */
1635 static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
1636 int nelems, int dir)
1637 {
1638 struct scatterlist *s;
1639 int i;
1640
1641 for_each_sg(sglist, s, nelems, i) {
1642 s->dma_address = (dma_addr_t)sg_phys(s);
1643 s->dma_length = s->length;
1644 }
1645
1646 return nelems;
1647 }
1648
1649 /*
1650 * The exported map_sg function for dma_ops (handles scatter-gather
1651 * lists).
1652 */
1653 static int map_sg(struct device *dev, struct scatterlist *sglist,
1654 int nelems, enum dma_data_direction dir,
1655 struct dma_attrs *attrs)
1656 {
1657 unsigned long flags;
1658 struct amd_iommu *iommu;
1659 struct protection_domain *domain;
1660 u16 devid;
1661 int i;
1662 struct scatterlist *s;
1663 phys_addr_t paddr;
1664 int mapped_elems = 0;
1665 u64 dma_mask;
1666
1667 INC_STATS_COUNTER(cnt_map_sg);
1668
1669 if (!check_device(dev))
1670 return 0;
1671
1672 dma_mask = *dev->dma_mask;
1673
1674 get_device_resources(dev, &iommu, &domain, &devid);
1675
1676 if (!iommu || !domain)
1677 return map_sg_no_iommu(dev, sglist, nelems, dir);
1678
1679 if (!dma_ops_domain(domain))
1680 return 0;
1681
1682 spin_lock_irqsave(&domain->lock, flags);
1683
1684 for_each_sg(sglist, s, nelems, i) {
1685 paddr = sg_phys(s);
1686
1687 s->dma_address = __map_single(dev, iommu, domain->priv,
1688 paddr, s->length, dir, false,
1689 dma_mask);
1690
1691 if (s->dma_address) {
1692 s->dma_length = s->length;
1693 mapped_elems++;
1694 } else
1695 goto unmap;
1696 }
1697
1698 iommu_completion_wait(iommu);
1699
1700 out:
1701 spin_unlock_irqrestore(&domain->lock, flags);
1702
1703 return mapped_elems;
1704 unmap:
1705 for_each_sg(sglist, s, mapped_elems, i) {
1706 if (s->dma_address)
1707 __unmap_single(iommu, domain->priv, s->dma_address,
1708 s->dma_length, dir);
1709 s->dma_address = s->dma_length = 0;
1710 }
1711
1712 mapped_elems = 0;
1713
1714 goto out;
1715 }
1716
1717 /*
1718 * The exported map_sg function for dma_ops (handles scatter-gather
1719 * lists).
1720 */
1721 static void unmap_sg(struct device *dev, struct scatterlist *sglist,
1722 int nelems, enum dma_data_direction dir,
1723 struct dma_attrs *attrs)
1724 {
1725 unsigned long flags;
1726 struct amd_iommu *iommu;
1727 struct protection_domain *domain;
1728 struct scatterlist *s;
1729 u16 devid;
1730 int i;
1731
1732 INC_STATS_COUNTER(cnt_unmap_sg);
1733
1734 if (!check_device(dev) ||
1735 !get_device_resources(dev, &iommu, &domain, &devid))
1736 return;
1737
1738 if (!dma_ops_domain(domain))
1739 return;
1740
1741 spin_lock_irqsave(&domain->lock, flags);
1742
1743 for_each_sg(sglist, s, nelems, i) {
1744 __unmap_single(iommu, domain->priv, s->dma_address,
1745 s->dma_length, dir);
1746 s->dma_address = s->dma_length = 0;
1747 }
1748
1749 iommu_completion_wait(iommu);
1750
1751 spin_unlock_irqrestore(&domain->lock, flags);
1752 }
1753
1754 /*
1755 * The exported alloc_coherent function for dma_ops.
1756 */
1757 static void *alloc_coherent(struct device *dev, size_t size,
1758 dma_addr_t *dma_addr, gfp_t flag)
1759 {
1760 unsigned long flags;
1761 void *virt_addr;
1762 struct amd_iommu *iommu;
1763 struct protection_domain *domain;
1764 u16 devid;
1765 phys_addr_t paddr;
1766 u64 dma_mask = dev->coherent_dma_mask;
1767
1768 INC_STATS_COUNTER(cnt_alloc_coherent);
1769
1770 if (!check_device(dev))
1771 return NULL;
1772
1773 if (!get_device_resources(dev, &iommu, &domain, &devid))
1774 flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
1775
1776 flag |= __GFP_ZERO;
1777 virt_addr = (void *)__get_free_pages(flag, get_order(size));
1778 if (!virt_addr)
1779 return NULL;
1780
1781 paddr = virt_to_phys(virt_addr);
1782
1783 if (!iommu || !domain) {
1784 *dma_addr = (dma_addr_t)paddr;
1785 return virt_addr;
1786 }
1787
1788 if (!dma_ops_domain(domain))
1789 goto out_free;
1790
1791 if (!dma_mask)
1792 dma_mask = *dev->dma_mask;
1793
1794 spin_lock_irqsave(&domain->lock, flags);
1795
1796 *dma_addr = __map_single(dev, iommu, domain->priv, paddr,
1797 size, DMA_BIDIRECTIONAL, true, dma_mask);
1798
1799 if (*dma_addr == bad_dma_address) {
1800 spin_unlock_irqrestore(&domain->lock, flags);
1801 goto out_free;
1802 }
1803
1804 iommu_completion_wait(iommu);
1805
1806 spin_unlock_irqrestore(&domain->lock, flags);
1807
1808 return virt_addr;
1809
1810 out_free:
1811
1812 free_pages((unsigned long)virt_addr, get_order(size));
1813
1814 return NULL;
1815 }
1816
1817 /*
1818 * The exported free_coherent function for dma_ops.
1819 */
1820 static void free_coherent(struct device *dev, size_t size,
1821 void *virt_addr, dma_addr_t dma_addr)
1822 {
1823 unsigned long flags;
1824 struct amd_iommu *iommu;
1825 struct protection_domain *domain;
1826 u16 devid;
1827
1828 INC_STATS_COUNTER(cnt_free_coherent);
1829
1830 if (!check_device(dev))
1831 return;
1832
1833 get_device_resources(dev, &iommu, &domain, &devid);
1834
1835 if (!iommu || !domain)
1836 goto free_mem;
1837
1838 if (!dma_ops_domain(domain))
1839 goto free_mem;
1840
1841 spin_lock_irqsave(&domain->lock, flags);
1842
1843 __unmap_single(iommu, domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
1844
1845 iommu_completion_wait(iommu);
1846
1847 spin_unlock_irqrestore(&domain->lock, flags);
1848
1849 free_mem:
1850 free_pages((unsigned long)virt_addr, get_order(size));
1851 }
1852
1853 /*
1854 * This function is called by the DMA layer to find out if we can handle a
1855 * particular device. It is part of the dma_ops.
1856 */
1857 static int amd_iommu_dma_supported(struct device *dev, u64 mask)
1858 {
1859 u16 bdf;
1860 struct pci_dev *pcidev;
1861
1862 /* No device or no PCI device */
1863 if (!dev || dev->bus != &pci_bus_type)
1864 return 0;
1865
1866 pcidev = to_pci_dev(dev);
1867
1868 bdf = calc_devid(pcidev->bus->number, pcidev->devfn);
1869
1870 /* Out of our scope? */
1871 if (bdf > amd_iommu_last_bdf)
1872 return 0;
1873
1874 return 1;
1875 }
1876
1877 /*
1878 * The function for pre-allocating protection domains.
1879 *
1880 * If the driver core informs the DMA layer if a driver grabs a device
1881 * we don't need to preallocate the protection domains anymore.
1882 * For now we have to.
1883 */
1884 static void prealloc_protection_domains(void)
1885 {
1886 struct pci_dev *dev = NULL;
1887 struct dma_ops_domain *dma_dom;
1888 struct amd_iommu *iommu;
1889 u16 devid;
1890
1891 while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
1892 devid = calc_devid(dev->bus->number, dev->devfn);
1893 if (devid > amd_iommu_last_bdf)
1894 continue;
1895 devid = amd_iommu_alias_table[devid];
1896 if (domain_for_device(devid))
1897 continue;
1898 iommu = amd_iommu_rlookup_table[devid];
1899 if (!iommu)
1900 continue;
1901 dma_dom = dma_ops_domain_alloc(iommu);
1902 if (!dma_dom)
1903 continue;
1904 init_unity_mappings_for_device(dma_dom, devid);
1905 dma_dom->target_dev = devid;
1906
1907 list_add_tail(&dma_dom->list, &iommu_pd_list);
1908 }
1909 }
1910
1911 static struct dma_map_ops amd_iommu_dma_ops = {
1912 .alloc_coherent = alloc_coherent,
1913 .free_coherent = free_coherent,
1914 .map_page = map_page,
1915 .unmap_page = unmap_page,
1916 .map_sg = map_sg,
1917 .unmap_sg = unmap_sg,
1918 .dma_supported = amd_iommu_dma_supported,
1919 };
1920
1921 /*
1922 * The function which clues the AMD IOMMU driver into dma_ops.
1923 */
1924 int __init amd_iommu_init_dma_ops(void)
1925 {
1926 struct amd_iommu *iommu;
1927 int ret;
1928
1929 /*
1930 * first allocate a default protection domain for every IOMMU we
1931 * found in the system. Devices not assigned to any other
1932 * protection domain will be assigned to the default one.
1933 */
1934 for_each_iommu(iommu) {
1935 iommu->default_dom = dma_ops_domain_alloc(iommu);
1936 if (iommu->default_dom == NULL)
1937 return -ENOMEM;
1938 iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
1939 ret = iommu_init_unity_mappings(iommu);
1940 if (ret)
1941 goto free_domains;
1942 }
1943
1944 /*
1945 * If device isolation is enabled, pre-allocate the protection
1946 * domains for each device.
1947 */
1948 if (amd_iommu_isolate)
1949 prealloc_protection_domains();
1950
1951 iommu_detected = 1;
1952 force_iommu = 1;
1953 bad_dma_address = 0;
1954 #ifdef CONFIG_GART_IOMMU
1955 gart_iommu_aperture_disabled = 1;
1956 gart_iommu_aperture = 0;
1957 #endif
1958
1959 /* Make the driver finally visible to the drivers */
1960 dma_ops = &amd_iommu_dma_ops;
1961
1962 register_iommu(&amd_iommu_ops);
1963
1964 bus_register_notifier(&pci_bus_type, &device_nb);
1965
1966 amd_iommu_stats_init();
1967
1968 return 0;
1969
1970 free_domains:
1971
1972 for_each_iommu(iommu) {
1973 if (iommu->default_dom)
1974 dma_ops_domain_free(iommu->default_dom);
1975 }
1976
1977 return ret;
1978 }
1979
1980 /*****************************************************************************
1981 *
1982 * The following functions belong to the exported interface of AMD IOMMU
1983 *
1984 * This interface allows access to lower level functions of the IOMMU
1985 * like protection domain handling and assignement of devices to domains
1986 * which is not possible with the dma_ops interface.
1987 *
1988 *****************************************************************************/
1989
1990 static void cleanup_domain(struct protection_domain *domain)
1991 {
1992 unsigned long flags;
1993 u16 devid;
1994
1995 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1996
1997 for (devid = 0; devid <= amd_iommu_last_bdf; ++devid)
1998 if (amd_iommu_pd_table[devid] == domain)
1999 __detach_device(domain, devid);
2000
2001 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2002 }
2003
2004 static void protection_domain_free(struct protection_domain *domain)
2005 {
2006 if (!domain)
2007 return;
2008
2009 if (domain->id)
2010 domain_id_free(domain->id);
2011
2012 kfree(domain);
2013 }
2014
2015 static struct protection_domain *protection_domain_alloc(void)
2016 {
2017 struct protection_domain *domain;
2018
2019 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
2020 if (!domain)
2021 return NULL;
2022
2023 spin_lock_init(&domain->lock);
2024 domain->id = domain_id_alloc();
2025 if (!domain->id)
2026 goto out_err;
2027
2028 return domain;
2029
2030 out_err:
2031 kfree(domain);
2032
2033 return NULL;
2034 }
2035
2036 static int amd_iommu_domain_init(struct iommu_domain *dom)
2037 {
2038 struct protection_domain *domain;
2039
2040 domain = protection_domain_alloc();
2041 if (!domain)
2042 goto out_free;
2043
2044 domain->mode = PAGE_MODE_3_LEVEL;
2045 domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
2046 if (!domain->pt_root)
2047 goto out_free;
2048
2049 dom->priv = domain;
2050
2051 return 0;
2052
2053 out_free:
2054 protection_domain_free(domain);
2055
2056 return -ENOMEM;
2057 }
2058
2059 static void amd_iommu_domain_destroy(struct iommu_domain *dom)
2060 {
2061 struct protection_domain *domain = dom->priv;
2062
2063 if (!domain)
2064 return;
2065
2066 if (domain->dev_cnt > 0)
2067 cleanup_domain(domain);
2068
2069 BUG_ON(domain->dev_cnt != 0);
2070
2071 free_pagetable(domain);
2072
2073 domain_id_free(domain->id);
2074
2075 kfree(domain);
2076
2077 dom->priv = NULL;
2078 }
2079
2080 static void amd_iommu_detach_device(struct iommu_domain *dom,
2081 struct device *dev)
2082 {
2083 struct protection_domain *domain = dom->priv;
2084 struct amd_iommu *iommu;
2085 struct pci_dev *pdev;
2086 u16 devid;
2087
2088 if (dev->bus != &pci_bus_type)
2089 return;
2090
2091 pdev = to_pci_dev(dev);
2092
2093 devid = calc_devid(pdev->bus->number, pdev->devfn);
2094
2095 if (devid > 0)
2096 detach_device(domain, devid);
2097
2098 iommu = amd_iommu_rlookup_table[devid];
2099 if (!iommu)
2100 return;
2101
2102 iommu_queue_inv_dev_entry(iommu, devid);
2103 iommu_completion_wait(iommu);
2104 }
2105
2106 static int amd_iommu_attach_device(struct iommu_domain *dom,
2107 struct device *dev)
2108 {
2109 struct protection_domain *domain = dom->priv;
2110 struct protection_domain *old_domain;
2111 struct amd_iommu *iommu;
2112 struct pci_dev *pdev;
2113 u16 devid;
2114
2115 if (dev->bus != &pci_bus_type)
2116 return -EINVAL;
2117
2118 pdev = to_pci_dev(dev);
2119
2120 devid = calc_devid(pdev->bus->number, pdev->devfn);
2121
2122 if (devid >= amd_iommu_last_bdf ||
2123 devid != amd_iommu_alias_table[devid])
2124 return -EINVAL;
2125
2126 iommu = amd_iommu_rlookup_table[devid];
2127 if (!iommu)
2128 return -EINVAL;
2129
2130 old_domain = domain_for_device(devid);
2131 if (old_domain)
2132 detach_device(old_domain, devid);
2133
2134 attach_device(iommu, domain, devid);
2135
2136 iommu_completion_wait(iommu);
2137
2138 return 0;
2139 }
2140
2141 static int amd_iommu_map_range(struct iommu_domain *dom,
2142 unsigned long iova, phys_addr_t paddr,
2143 size_t size, int iommu_prot)
2144 {
2145 struct protection_domain *domain = dom->priv;
2146 unsigned long i, npages = iommu_num_pages(paddr, size, PAGE_SIZE);
2147 int prot = 0;
2148 int ret;
2149
2150 if (iommu_prot & IOMMU_READ)
2151 prot |= IOMMU_PROT_IR;
2152 if (iommu_prot & IOMMU_WRITE)
2153 prot |= IOMMU_PROT_IW;
2154
2155 iova &= PAGE_MASK;
2156 paddr &= PAGE_MASK;
2157
2158 for (i = 0; i < npages; ++i) {
2159 ret = iommu_map_page(domain, iova, paddr, prot);
2160 if (ret)
2161 return ret;
2162
2163 iova += PAGE_SIZE;
2164 paddr += PAGE_SIZE;
2165 }
2166
2167 return 0;
2168 }
2169
2170 static void amd_iommu_unmap_range(struct iommu_domain *dom,
2171 unsigned long iova, size_t size)
2172 {
2173
2174 struct protection_domain *domain = dom->priv;
2175 unsigned long i, npages = iommu_num_pages(iova, size, PAGE_SIZE);
2176
2177 iova &= PAGE_MASK;
2178
2179 for (i = 0; i < npages; ++i) {
2180 iommu_unmap_page(domain, iova);
2181 iova += PAGE_SIZE;
2182 }
2183
2184 iommu_flush_domain(domain->id);
2185 }
2186
2187 static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
2188 unsigned long iova)
2189 {
2190 struct protection_domain *domain = dom->priv;
2191 unsigned long offset = iova & ~PAGE_MASK;
2192 phys_addr_t paddr;
2193 u64 *pte;
2194
2195 pte = &domain->pt_root[IOMMU_PTE_L2_INDEX(iova)];
2196
2197 if (!IOMMU_PTE_PRESENT(*pte))
2198 return 0;
2199
2200 pte = IOMMU_PTE_PAGE(*pte);
2201 pte = &pte[IOMMU_PTE_L1_INDEX(iova)];
2202
2203 if (!IOMMU_PTE_PRESENT(*pte))
2204 return 0;
2205
2206 pte = IOMMU_PTE_PAGE(*pte);
2207 pte = &pte[IOMMU_PTE_L0_INDEX(iova)];
2208
2209 if (!IOMMU_PTE_PRESENT(*pte))
2210 return 0;
2211
2212 paddr = *pte & IOMMU_PAGE_MASK;
2213 paddr |= offset;
2214
2215 return paddr;
2216 }
2217
2218 static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
2219 unsigned long cap)
2220 {
2221 return 0;
2222 }
2223
2224 static struct iommu_ops amd_iommu_ops = {
2225 .domain_init = amd_iommu_domain_init,
2226 .domain_destroy = amd_iommu_domain_destroy,
2227 .attach_dev = amd_iommu_attach_device,
2228 .detach_dev = amd_iommu_detach_device,
2229 .map = amd_iommu_map_range,
2230 .unmap = amd_iommu_unmap_range,
2231 .iova_to_phys = amd_iommu_iova_to_phys,
2232 .domain_has_cap = amd_iommu_domain_has_cap,
2233 };
2234
2235 /*****************************************************************************
2236 *
2237 * The next functions do a basic initialization of IOMMU for pass through
2238 * mode
2239 *
2240 * In passthrough mode the IOMMU is initialized and enabled but not used for
2241 * DMA-API translation.
2242 *
2243 *****************************************************************************/
2244
2245 int __init amd_iommu_init_passthrough(void)
2246 {
2247 struct pci_dev *dev = NULL;
2248 u16 devid, devid2;
2249
2250 /* allocate passthroug domain */
2251 pt_domain = protection_domain_alloc();
2252 if (!pt_domain)
2253 return -ENOMEM;
2254
2255 pt_domain->mode |= PAGE_MODE_NONE;
2256
2257 while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
2258 struct amd_iommu *iommu;
2259
2260 devid = calc_devid(dev->bus->number, dev->devfn);
2261 if (devid > amd_iommu_last_bdf)
2262 continue;
2263
2264 devid2 = amd_iommu_alias_table[devid];
2265
2266 iommu = amd_iommu_rlookup_table[devid2];
2267 if (!iommu)
2268 continue;
2269
2270 __attach_device(iommu, pt_domain, devid);
2271 __attach_device(iommu, pt_domain, devid2);
2272 }
2273
2274 pr_info("AMD-Vi: Initialized for Passthrough Mode\n");
2275
2276 return 0;
2277 }
This page took 0.083116 seconds and 5 git commands to generate.