Merge branch 'for-linus' of git://oss.sgi.com/xfs/xfs
[deliverable/linux.git] / arch / x86 / kernel / amd_iommu.c
1 /*
2 * Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
3 * Author: Joerg Roedel <joerg.roedel@amd.com>
4 * Leo Duran <leo.duran@amd.com>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
20 #include <linux/pci.h>
21 #include <linux/gfp.h>
22 #include <linux/bitops.h>
23 #include <linux/debugfs.h>
24 #include <linux/scatterlist.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/iommu-helper.h>
27 #include <linux/iommu.h>
28 #include <asm/proto.h>
29 #include <asm/iommu.h>
30 #include <asm/gart.h>
31 #include <asm/amd_iommu_types.h>
32 #include <asm/amd_iommu.h>
33
34 #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
35
36 #define EXIT_LOOP_COUNT 10000000
37
38 static DEFINE_RWLOCK(amd_iommu_devtable_lock);
39
40 /* A list of preallocated protection domains */
41 static LIST_HEAD(iommu_pd_list);
42 static DEFINE_SPINLOCK(iommu_pd_list_lock);
43
44 /*
45 * Domain for untranslated devices - only allocated
46 * if iommu=pt passed on kernel cmd line.
47 */
48 static struct protection_domain *pt_domain;
49
50 static struct iommu_ops amd_iommu_ops;
51
52 /*
53 * general struct to manage commands send to an IOMMU
54 */
55 struct iommu_cmd {
56 u32 data[4];
57 };
58
59 static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
60 struct unity_map_entry *e);
61 static struct dma_ops_domain *find_protection_domain(u16 devid);
62 static u64 *alloc_pte(struct protection_domain *domain,
63 unsigned long address, int end_lvl,
64 u64 **pte_page, gfp_t gfp);
65 static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
66 unsigned long start_page,
67 unsigned int pages);
68 static void reset_iommu_command_buffer(struct amd_iommu *iommu);
69 static u64 *fetch_pte(struct protection_domain *domain,
70 unsigned long address, int map_size);
71 static void update_domain(struct protection_domain *domain);
72
73 #ifdef CONFIG_AMD_IOMMU_STATS
74
75 /*
76 * Initialization code for statistics collection
77 */
78
79 DECLARE_STATS_COUNTER(compl_wait);
80 DECLARE_STATS_COUNTER(cnt_map_single);
81 DECLARE_STATS_COUNTER(cnt_unmap_single);
82 DECLARE_STATS_COUNTER(cnt_map_sg);
83 DECLARE_STATS_COUNTER(cnt_unmap_sg);
84 DECLARE_STATS_COUNTER(cnt_alloc_coherent);
85 DECLARE_STATS_COUNTER(cnt_free_coherent);
86 DECLARE_STATS_COUNTER(cross_page);
87 DECLARE_STATS_COUNTER(domain_flush_single);
88 DECLARE_STATS_COUNTER(domain_flush_all);
89 DECLARE_STATS_COUNTER(alloced_io_mem);
90 DECLARE_STATS_COUNTER(total_map_requests);
91
92 static struct dentry *stats_dir;
93 static struct dentry *de_isolate;
94 static struct dentry *de_fflush;
95
96 static void amd_iommu_stats_add(struct __iommu_counter *cnt)
97 {
98 if (stats_dir == NULL)
99 return;
100
101 cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
102 &cnt->value);
103 }
104
105 static void amd_iommu_stats_init(void)
106 {
107 stats_dir = debugfs_create_dir("amd-iommu", NULL);
108 if (stats_dir == NULL)
109 return;
110
111 de_isolate = debugfs_create_bool("isolation", 0444, stats_dir,
112 (u32 *)&amd_iommu_isolate);
113
114 de_fflush = debugfs_create_bool("fullflush", 0444, stats_dir,
115 (u32 *)&amd_iommu_unmap_flush);
116
117 amd_iommu_stats_add(&compl_wait);
118 amd_iommu_stats_add(&cnt_map_single);
119 amd_iommu_stats_add(&cnt_unmap_single);
120 amd_iommu_stats_add(&cnt_map_sg);
121 amd_iommu_stats_add(&cnt_unmap_sg);
122 amd_iommu_stats_add(&cnt_alloc_coherent);
123 amd_iommu_stats_add(&cnt_free_coherent);
124 amd_iommu_stats_add(&cross_page);
125 amd_iommu_stats_add(&domain_flush_single);
126 amd_iommu_stats_add(&domain_flush_all);
127 amd_iommu_stats_add(&alloced_io_mem);
128 amd_iommu_stats_add(&total_map_requests);
129 }
130
131 #endif
132
133 /* returns !0 if the IOMMU is caching non-present entries in its TLB */
134 static int iommu_has_npcache(struct amd_iommu *iommu)
135 {
136 return iommu->cap & (1UL << IOMMU_CAP_NPCACHE);
137 }
138
139 /****************************************************************************
140 *
141 * Interrupt handling functions
142 *
143 ****************************************************************************/
144
145 static void dump_dte_entry(u16 devid)
146 {
147 int i;
148
149 for (i = 0; i < 8; ++i)
150 pr_err("AMD-Vi: DTE[%d]: %08x\n", i,
151 amd_iommu_dev_table[devid].data[i]);
152 }
153
154 static void dump_command(unsigned long phys_addr)
155 {
156 struct iommu_cmd *cmd = phys_to_virt(phys_addr);
157 int i;
158
159 for (i = 0; i < 4; ++i)
160 pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
161 }
162
163 static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
164 {
165 u32 *event = __evt;
166 int type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
167 int devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
168 int domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
169 int flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
170 u64 address = (u64)(((u64)event[3]) << 32) | event[2];
171
172 printk(KERN_ERR "AMD-Vi: Event logged [");
173
174 switch (type) {
175 case EVENT_TYPE_ILL_DEV:
176 printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
177 "address=0x%016llx flags=0x%04x]\n",
178 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
179 address, flags);
180 dump_dte_entry(devid);
181 break;
182 case EVENT_TYPE_IO_FAULT:
183 printk("IO_PAGE_FAULT device=%02x:%02x.%x "
184 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
185 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
186 domid, address, flags);
187 break;
188 case EVENT_TYPE_DEV_TAB_ERR:
189 printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
190 "address=0x%016llx flags=0x%04x]\n",
191 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
192 address, flags);
193 break;
194 case EVENT_TYPE_PAGE_TAB_ERR:
195 printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
196 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
197 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
198 domid, address, flags);
199 break;
200 case EVENT_TYPE_ILL_CMD:
201 printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
202 reset_iommu_command_buffer(iommu);
203 dump_command(address);
204 break;
205 case EVENT_TYPE_CMD_HARD_ERR:
206 printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
207 "flags=0x%04x]\n", address, flags);
208 break;
209 case EVENT_TYPE_IOTLB_INV_TO:
210 printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
211 "address=0x%016llx]\n",
212 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
213 address);
214 break;
215 case EVENT_TYPE_INV_DEV_REQ:
216 printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
217 "address=0x%016llx flags=0x%04x]\n",
218 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
219 address, flags);
220 break;
221 default:
222 printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
223 }
224 }
225
226 static void iommu_poll_events(struct amd_iommu *iommu)
227 {
228 u32 head, tail;
229 unsigned long flags;
230
231 spin_lock_irqsave(&iommu->lock, flags);
232
233 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
234 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
235
236 while (head != tail) {
237 iommu_print_event(iommu, iommu->evt_buf + head);
238 head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
239 }
240
241 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
242
243 spin_unlock_irqrestore(&iommu->lock, flags);
244 }
245
246 irqreturn_t amd_iommu_int_handler(int irq, void *data)
247 {
248 struct amd_iommu *iommu;
249
250 for_each_iommu(iommu)
251 iommu_poll_events(iommu);
252
253 return IRQ_HANDLED;
254 }
255
256 /****************************************************************************
257 *
258 * IOMMU command queuing functions
259 *
260 ****************************************************************************/
261
262 /*
263 * Writes the command to the IOMMUs command buffer and informs the
264 * hardware about the new command. Must be called with iommu->lock held.
265 */
266 static int __iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
267 {
268 u32 tail, head;
269 u8 *target;
270
271 tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
272 target = iommu->cmd_buf + tail;
273 memcpy_toio(target, cmd, sizeof(*cmd));
274 tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
275 head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
276 if (tail == head)
277 return -ENOMEM;
278 writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
279
280 return 0;
281 }
282
283 /*
284 * General queuing function for commands. Takes iommu->lock and calls
285 * __iommu_queue_command().
286 */
287 static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
288 {
289 unsigned long flags;
290 int ret;
291
292 spin_lock_irqsave(&iommu->lock, flags);
293 ret = __iommu_queue_command(iommu, cmd);
294 if (!ret)
295 iommu->need_sync = true;
296 spin_unlock_irqrestore(&iommu->lock, flags);
297
298 return ret;
299 }
300
301 /*
302 * This function waits until an IOMMU has completed a completion
303 * wait command
304 */
305 static void __iommu_wait_for_completion(struct amd_iommu *iommu)
306 {
307 int ready = 0;
308 unsigned status = 0;
309 unsigned long i = 0;
310
311 INC_STATS_COUNTER(compl_wait);
312
313 while (!ready && (i < EXIT_LOOP_COUNT)) {
314 ++i;
315 /* wait for the bit to become one */
316 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
317 ready = status & MMIO_STATUS_COM_WAIT_INT_MASK;
318 }
319
320 /* set bit back to zero */
321 status &= ~MMIO_STATUS_COM_WAIT_INT_MASK;
322 writel(status, iommu->mmio_base + MMIO_STATUS_OFFSET);
323
324 if (unlikely(i == EXIT_LOOP_COUNT)) {
325 spin_unlock(&iommu->lock);
326 reset_iommu_command_buffer(iommu);
327 spin_lock(&iommu->lock);
328 }
329 }
330
331 /*
332 * This function queues a completion wait command into the command
333 * buffer of an IOMMU
334 */
335 static int __iommu_completion_wait(struct amd_iommu *iommu)
336 {
337 struct iommu_cmd cmd;
338
339 memset(&cmd, 0, sizeof(cmd));
340 cmd.data[0] = CMD_COMPL_WAIT_INT_MASK;
341 CMD_SET_TYPE(&cmd, CMD_COMPL_WAIT);
342
343 return __iommu_queue_command(iommu, &cmd);
344 }
345
346 /*
347 * This function is called whenever we need to ensure that the IOMMU has
348 * completed execution of all commands we sent. It sends a
349 * COMPLETION_WAIT command and waits for it to finish. The IOMMU informs
350 * us about that by writing a value to a physical address we pass with
351 * the command.
352 */
353 static int iommu_completion_wait(struct amd_iommu *iommu)
354 {
355 int ret = 0;
356 unsigned long flags;
357
358 spin_lock_irqsave(&iommu->lock, flags);
359
360 if (!iommu->need_sync)
361 goto out;
362
363 ret = __iommu_completion_wait(iommu);
364
365 iommu->need_sync = false;
366
367 if (ret)
368 goto out;
369
370 __iommu_wait_for_completion(iommu);
371
372 out:
373 spin_unlock_irqrestore(&iommu->lock, flags);
374
375 return 0;
376 }
377
378 /*
379 * Command send function for invalidating a device table entry
380 */
381 static int iommu_queue_inv_dev_entry(struct amd_iommu *iommu, u16 devid)
382 {
383 struct iommu_cmd cmd;
384 int ret;
385
386 BUG_ON(iommu == NULL);
387
388 memset(&cmd, 0, sizeof(cmd));
389 CMD_SET_TYPE(&cmd, CMD_INV_DEV_ENTRY);
390 cmd.data[0] = devid;
391
392 ret = iommu_queue_command(iommu, &cmd);
393
394 return ret;
395 }
396
397 static void __iommu_build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
398 u16 domid, int pde, int s)
399 {
400 memset(cmd, 0, sizeof(*cmd));
401 address &= PAGE_MASK;
402 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
403 cmd->data[1] |= domid;
404 cmd->data[2] = lower_32_bits(address);
405 cmd->data[3] = upper_32_bits(address);
406 if (s) /* size bit - we flush more than one 4kb page */
407 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
408 if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
409 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
410 }
411
412 /*
413 * Generic command send function for invalidaing TLB entries
414 */
415 static int iommu_queue_inv_iommu_pages(struct amd_iommu *iommu,
416 u64 address, u16 domid, int pde, int s)
417 {
418 struct iommu_cmd cmd;
419 int ret;
420
421 __iommu_build_inv_iommu_pages(&cmd, address, domid, pde, s);
422
423 ret = iommu_queue_command(iommu, &cmd);
424
425 return ret;
426 }
427
428 /*
429 * TLB invalidation function which is called from the mapping functions.
430 * It invalidates a single PTE if the range to flush is within a single
431 * page. Otherwise it flushes the whole TLB of the IOMMU.
432 */
433 static int iommu_flush_pages(struct amd_iommu *iommu, u16 domid,
434 u64 address, size_t size)
435 {
436 int s = 0;
437 unsigned pages = iommu_num_pages(address, size, PAGE_SIZE);
438
439 address &= PAGE_MASK;
440
441 if (pages > 1) {
442 /*
443 * If we have to flush more than one page, flush all
444 * TLB entries for this domain
445 */
446 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
447 s = 1;
448 }
449
450 iommu_queue_inv_iommu_pages(iommu, address, domid, 0, s);
451
452 return 0;
453 }
454
455 /* Flush the whole IO/TLB for a given protection domain */
456 static void iommu_flush_tlb(struct amd_iommu *iommu, u16 domid)
457 {
458 u64 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
459
460 INC_STATS_COUNTER(domain_flush_single);
461
462 iommu_queue_inv_iommu_pages(iommu, address, domid, 0, 1);
463 }
464
465 /* Flush the whole IO/TLB for a given protection domain - including PDE */
466 static void iommu_flush_tlb_pde(struct amd_iommu *iommu, u16 domid)
467 {
468 u64 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
469
470 INC_STATS_COUNTER(domain_flush_single);
471
472 iommu_queue_inv_iommu_pages(iommu, address, domid, 1, 1);
473 }
474
475 /*
476 * This function flushes one domain on one IOMMU
477 */
478 static void flush_domain_on_iommu(struct amd_iommu *iommu, u16 domid)
479 {
480 struct iommu_cmd cmd;
481 unsigned long flags;
482
483 __iommu_build_inv_iommu_pages(&cmd, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
484 domid, 1, 1);
485
486 spin_lock_irqsave(&iommu->lock, flags);
487 __iommu_queue_command(iommu, &cmd);
488 __iommu_completion_wait(iommu);
489 __iommu_wait_for_completion(iommu);
490 spin_unlock_irqrestore(&iommu->lock, flags);
491 }
492
493 static void flush_all_domains_on_iommu(struct amd_iommu *iommu)
494 {
495 int i;
496
497 for (i = 1; i < MAX_DOMAIN_ID; ++i) {
498 if (!test_bit(i, amd_iommu_pd_alloc_bitmap))
499 continue;
500 flush_domain_on_iommu(iommu, i);
501 }
502
503 }
504
505 /*
506 * This function is used to flush the IO/TLB for a given protection domain
507 * on every IOMMU in the system
508 */
509 static void iommu_flush_domain(u16 domid)
510 {
511 struct amd_iommu *iommu;
512
513 INC_STATS_COUNTER(domain_flush_all);
514
515 for_each_iommu(iommu)
516 flush_domain_on_iommu(iommu, domid);
517 }
518
519 void amd_iommu_flush_all_domains(void)
520 {
521 struct amd_iommu *iommu;
522
523 for_each_iommu(iommu)
524 flush_all_domains_on_iommu(iommu);
525 }
526
527 static void flush_all_devices_for_iommu(struct amd_iommu *iommu)
528 {
529 int i;
530
531 for (i = 0; i <= amd_iommu_last_bdf; ++i) {
532 if (iommu != amd_iommu_rlookup_table[i])
533 continue;
534
535 iommu_queue_inv_dev_entry(iommu, i);
536 iommu_completion_wait(iommu);
537 }
538 }
539
540 static void flush_devices_by_domain(struct protection_domain *domain)
541 {
542 struct amd_iommu *iommu;
543 int i;
544
545 for (i = 0; i <= amd_iommu_last_bdf; ++i) {
546 if ((domain == NULL && amd_iommu_pd_table[i] == NULL) ||
547 (amd_iommu_pd_table[i] != domain))
548 continue;
549
550 iommu = amd_iommu_rlookup_table[i];
551 if (!iommu)
552 continue;
553
554 iommu_queue_inv_dev_entry(iommu, i);
555 iommu_completion_wait(iommu);
556 }
557 }
558
559 static void reset_iommu_command_buffer(struct amd_iommu *iommu)
560 {
561 pr_err("AMD-Vi: Resetting IOMMU command buffer\n");
562
563 if (iommu->reset_in_progress)
564 panic("AMD-Vi: ILLEGAL_COMMAND_ERROR while resetting command buffer\n");
565
566 iommu->reset_in_progress = true;
567
568 amd_iommu_reset_cmd_buffer(iommu);
569 flush_all_devices_for_iommu(iommu);
570 flush_all_domains_on_iommu(iommu);
571
572 iommu->reset_in_progress = false;
573 }
574
575 void amd_iommu_flush_all_devices(void)
576 {
577 flush_devices_by_domain(NULL);
578 }
579
580 /****************************************************************************
581 *
582 * The functions below are used the create the page table mappings for
583 * unity mapped regions.
584 *
585 ****************************************************************************/
586
587 /*
588 * Generic mapping functions. It maps a physical address into a DMA
589 * address space. It allocates the page table pages if necessary.
590 * In the future it can be extended to a generic mapping function
591 * supporting all features of AMD IOMMU page tables like level skipping
592 * and full 64 bit address spaces.
593 */
594 static int iommu_map_page(struct protection_domain *dom,
595 unsigned long bus_addr,
596 unsigned long phys_addr,
597 int prot,
598 int map_size)
599 {
600 u64 __pte, *pte;
601
602 bus_addr = PAGE_ALIGN(bus_addr);
603 phys_addr = PAGE_ALIGN(phys_addr);
604
605 BUG_ON(!PM_ALIGNED(map_size, bus_addr));
606 BUG_ON(!PM_ALIGNED(map_size, phys_addr));
607
608 if (!(prot & IOMMU_PROT_MASK))
609 return -EINVAL;
610
611 pte = alloc_pte(dom, bus_addr, map_size, NULL, GFP_KERNEL);
612
613 if (IOMMU_PTE_PRESENT(*pte))
614 return -EBUSY;
615
616 __pte = phys_addr | IOMMU_PTE_P;
617 if (prot & IOMMU_PROT_IR)
618 __pte |= IOMMU_PTE_IR;
619 if (prot & IOMMU_PROT_IW)
620 __pte |= IOMMU_PTE_IW;
621
622 *pte = __pte;
623
624 update_domain(dom);
625
626 return 0;
627 }
628
629 static void iommu_unmap_page(struct protection_domain *dom,
630 unsigned long bus_addr, int map_size)
631 {
632 u64 *pte = fetch_pte(dom, bus_addr, map_size);
633
634 if (pte)
635 *pte = 0;
636 }
637
638 /*
639 * This function checks if a specific unity mapping entry is needed for
640 * this specific IOMMU.
641 */
642 static int iommu_for_unity_map(struct amd_iommu *iommu,
643 struct unity_map_entry *entry)
644 {
645 u16 bdf, i;
646
647 for (i = entry->devid_start; i <= entry->devid_end; ++i) {
648 bdf = amd_iommu_alias_table[i];
649 if (amd_iommu_rlookup_table[bdf] == iommu)
650 return 1;
651 }
652
653 return 0;
654 }
655
656 /*
657 * Init the unity mappings for a specific IOMMU in the system
658 *
659 * Basically iterates over all unity mapping entries and applies them to
660 * the default domain DMA of that IOMMU if necessary.
661 */
662 static int iommu_init_unity_mappings(struct amd_iommu *iommu)
663 {
664 struct unity_map_entry *entry;
665 int ret;
666
667 list_for_each_entry(entry, &amd_iommu_unity_map, list) {
668 if (!iommu_for_unity_map(iommu, entry))
669 continue;
670 ret = dma_ops_unity_map(iommu->default_dom, entry);
671 if (ret)
672 return ret;
673 }
674
675 return 0;
676 }
677
678 /*
679 * This function actually applies the mapping to the page table of the
680 * dma_ops domain.
681 */
682 static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
683 struct unity_map_entry *e)
684 {
685 u64 addr;
686 int ret;
687
688 for (addr = e->address_start; addr < e->address_end;
689 addr += PAGE_SIZE) {
690 ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
691 PM_MAP_4k);
692 if (ret)
693 return ret;
694 /*
695 * if unity mapping is in aperture range mark the page
696 * as allocated in the aperture
697 */
698 if (addr < dma_dom->aperture_size)
699 __set_bit(addr >> PAGE_SHIFT,
700 dma_dom->aperture[0]->bitmap);
701 }
702
703 return 0;
704 }
705
706 /*
707 * Inits the unity mappings required for a specific device
708 */
709 static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
710 u16 devid)
711 {
712 struct unity_map_entry *e;
713 int ret;
714
715 list_for_each_entry(e, &amd_iommu_unity_map, list) {
716 if (!(devid >= e->devid_start && devid <= e->devid_end))
717 continue;
718 ret = dma_ops_unity_map(dma_dom, e);
719 if (ret)
720 return ret;
721 }
722
723 return 0;
724 }
725
726 /****************************************************************************
727 *
728 * The next functions belong to the address allocator for the dma_ops
729 * interface functions. They work like the allocators in the other IOMMU
730 * drivers. Its basically a bitmap which marks the allocated pages in
731 * the aperture. Maybe it could be enhanced in the future to a more
732 * efficient allocator.
733 *
734 ****************************************************************************/
735
736 /*
737 * The address allocator core functions.
738 *
739 * called with domain->lock held
740 */
741
742 /*
743 * This function checks if there is a PTE for a given dma address. If
744 * there is one, it returns the pointer to it.
745 */
746 static u64 *fetch_pte(struct protection_domain *domain,
747 unsigned long address, int map_size)
748 {
749 int level;
750 u64 *pte;
751
752 level = domain->mode - 1;
753 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
754
755 while (level > map_size) {
756 if (!IOMMU_PTE_PRESENT(*pte))
757 return NULL;
758
759 level -= 1;
760
761 pte = IOMMU_PTE_PAGE(*pte);
762 pte = &pte[PM_LEVEL_INDEX(level, address)];
763
764 if ((PM_PTE_LEVEL(*pte) == 0) && level != map_size) {
765 pte = NULL;
766 break;
767 }
768 }
769
770 return pte;
771 }
772
773 /*
774 * This function is used to add a new aperture range to an existing
775 * aperture in case of dma_ops domain allocation or address allocation
776 * failure.
777 */
778 static int alloc_new_range(struct amd_iommu *iommu,
779 struct dma_ops_domain *dma_dom,
780 bool populate, gfp_t gfp)
781 {
782 int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
783 int i;
784
785 #ifdef CONFIG_IOMMU_STRESS
786 populate = false;
787 #endif
788
789 if (index >= APERTURE_MAX_RANGES)
790 return -ENOMEM;
791
792 dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
793 if (!dma_dom->aperture[index])
794 return -ENOMEM;
795
796 dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
797 if (!dma_dom->aperture[index]->bitmap)
798 goto out_free;
799
800 dma_dom->aperture[index]->offset = dma_dom->aperture_size;
801
802 if (populate) {
803 unsigned long address = dma_dom->aperture_size;
804 int i, num_ptes = APERTURE_RANGE_PAGES / 512;
805 u64 *pte, *pte_page;
806
807 for (i = 0; i < num_ptes; ++i) {
808 pte = alloc_pte(&dma_dom->domain, address, PM_MAP_4k,
809 &pte_page, gfp);
810 if (!pte)
811 goto out_free;
812
813 dma_dom->aperture[index]->pte_pages[i] = pte_page;
814
815 address += APERTURE_RANGE_SIZE / 64;
816 }
817 }
818
819 dma_dom->aperture_size += APERTURE_RANGE_SIZE;
820
821 /* Intialize the exclusion range if necessary */
822 if (iommu->exclusion_start &&
823 iommu->exclusion_start >= dma_dom->aperture[index]->offset &&
824 iommu->exclusion_start < dma_dom->aperture_size) {
825 unsigned long startpage = iommu->exclusion_start >> PAGE_SHIFT;
826 int pages = iommu_num_pages(iommu->exclusion_start,
827 iommu->exclusion_length,
828 PAGE_SIZE);
829 dma_ops_reserve_addresses(dma_dom, startpage, pages);
830 }
831
832 /*
833 * Check for areas already mapped as present in the new aperture
834 * range and mark those pages as reserved in the allocator. Such
835 * mappings may already exist as a result of requested unity
836 * mappings for devices.
837 */
838 for (i = dma_dom->aperture[index]->offset;
839 i < dma_dom->aperture_size;
840 i += PAGE_SIZE) {
841 u64 *pte = fetch_pte(&dma_dom->domain, i, PM_MAP_4k);
842 if (!pte || !IOMMU_PTE_PRESENT(*pte))
843 continue;
844
845 dma_ops_reserve_addresses(dma_dom, i << PAGE_SHIFT, 1);
846 }
847
848 update_domain(&dma_dom->domain);
849
850 return 0;
851
852 out_free:
853 update_domain(&dma_dom->domain);
854
855 free_page((unsigned long)dma_dom->aperture[index]->bitmap);
856
857 kfree(dma_dom->aperture[index]);
858 dma_dom->aperture[index] = NULL;
859
860 return -ENOMEM;
861 }
862
863 static unsigned long dma_ops_area_alloc(struct device *dev,
864 struct dma_ops_domain *dom,
865 unsigned int pages,
866 unsigned long align_mask,
867 u64 dma_mask,
868 unsigned long start)
869 {
870 unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
871 int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
872 int i = start >> APERTURE_RANGE_SHIFT;
873 unsigned long boundary_size;
874 unsigned long address = -1;
875 unsigned long limit;
876
877 next_bit >>= PAGE_SHIFT;
878
879 boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
880 PAGE_SIZE) >> PAGE_SHIFT;
881
882 for (;i < max_index; ++i) {
883 unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;
884
885 if (dom->aperture[i]->offset >= dma_mask)
886 break;
887
888 limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
889 dma_mask >> PAGE_SHIFT);
890
891 address = iommu_area_alloc(dom->aperture[i]->bitmap,
892 limit, next_bit, pages, 0,
893 boundary_size, align_mask);
894 if (address != -1) {
895 address = dom->aperture[i]->offset +
896 (address << PAGE_SHIFT);
897 dom->next_address = address + (pages << PAGE_SHIFT);
898 break;
899 }
900
901 next_bit = 0;
902 }
903
904 return address;
905 }
906
907 static unsigned long dma_ops_alloc_addresses(struct device *dev,
908 struct dma_ops_domain *dom,
909 unsigned int pages,
910 unsigned long align_mask,
911 u64 dma_mask)
912 {
913 unsigned long address;
914
915 #ifdef CONFIG_IOMMU_STRESS
916 dom->next_address = 0;
917 dom->need_flush = true;
918 #endif
919
920 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
921 dma_mask, dom->next_address);
922
923 if (address == -1) {
924 dom->next_address = 0;
925 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
926 dma_mask, 0);
927 dom->need_flush = true;
928 }
929
930 if (unlikely(address == -1))
931 address = bad_dma_address;
932
933 WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
934
935 return address;
936 }
937
938 /*
939 * The address free function.
940 *
941 * called with domain->lock held
942 */
943 static void dma_ops_free_addresses(struct dma_ops_domain *dom,
944 unsigned long address,
945 unsigned int pages)
946 {
947 unsigned i = address >> APERTURE_RANGE_SHIFT;
948 struct aperture_range *range = dom->aperture[i];
949
950 BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);
951
952 #ifdef CONFIG_IOMMU_STRESS
953 if (i < 4)
954 return;
955 #endif
956
957 if (address >= dom->next_address)
958 dom->need_flush = true;
959
960 address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
961
962 iommu_area_free(range->bitmap, address, pages);
963
964 }
965
966 /****************************************************************************
967 *
968 * The next functions belong to the domain allocation. A domain is
969 * allocated for every IOMMU as the default domain. If device isolation
970 * is enabled, every device get its own domain. The most important thing
971 * about domains is the page table mapping the DMA address space they
972 * contain.
973 *
974 ****************************************************************************/
975
976 static u16 domain_id_alloc(void)
977 {
978 unsigned long flags;
979 int id;
980
981 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
982 id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
983 BUG_ON(id == 0);
984 if (id > 0 && id < MAX_DOMAIN_ID)
985 __set_bit(id, amd_iommu_pd_alloc_bitmap);
986 else
987 id = 0;
988 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
989
990 return id;
991 }
992
993 static void domain_id_free(int id)
994 {
995 unsigned long flags;
996
997 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
998 if (id > 0 && id < MAX_DOMAIN_ID)
999 __clear_bit(id, amd_iommu_pd_alloc_bitmap);
1000 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1001 }
1002
1003 /*
1004 * Used to reserve address ranges in the aperture (e.g. for exclusion
1005 * ranges.
1006 */
1007 static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
1008 unsigned long start_page,
1009 unsigned int pages)
1010 {
1011 unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
1012
1013 if (start_page + pages > last_page)
1014 pages = last_page - start_page;
1015
1016 for (i = start_page; i < start_page + pages; ++i) {
1017 int index = i / APERTURE_RANGE_PAGES;
1018 int page = i % APERTURE_RANGE_PAGES;
1019 __set_bit(page, dom->aperture[index]->bitmap);
1020 }
1021 }
1022
1023 static void free_pagetable(struct protection_domain *domain)
1024 {
1025 int i, j;
1026 u64 *p1, *p2, *p3;
1027
1028 p1 = domain->pt_root;
1029
1030 if (!p1)
1031 return;
1032
1033 for (i = 0; i < 512; ++i) {
1034 if (!IOMMU_PTE_PRESENT(p1[i]))
1035 continue;
1036
1037 p2 = IOMMU_PTE_PAGE(p1[i]);
1038 for (j = 0; j < 512; ++j) {
1039 if (!IOMMU_PTE_PRESENT(p2[j]))
1040 continue;
1041 p3 = IOMMU_PTE_PAGE(p2[j]);
1042 free_page((unsigned long)p3);
1043 }
1044
1045 free_page((unsigned long)p2);
1046 }
1047
1048 free_page((unsigned long)p1);
1049
1050 domain->pt_root = NULL;
1051 }
1052
1053 /*
1054 * Free a domain, only used if something went wrong in the
1055 * allocation path and we need to free an already allocated page table
1056 */
1057 static void dma_ops_domain_free(struct dma_ops_domain *dom)
1058 {
1059 int i;
1060
1061 if (!dom)
1062 return;
1063
1064 free_pagetable(&dom->domain);
1065
1066 for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
1067 if (!dom->aperture[i])
1068 continue;
1069 free_page((unsigned long)dom->aperture[i]->bitmap);
1070 kfree(dom->aperture[i]);
1071 }
1072
1073 kfree(dom);
1074 }
1075
1076 /*
1077 * Allocates a new protection domain usable for the dma_ops functions.
1078 * It also intializes the page table and the address allocator data
1079 * structures required for the dma_ops interface
1080 */
1081 static struct dma_ops_domain *dma_ops_domain_alloc(struct amd_iommu *iommu)
1082 {
1083 struct dma_ops_domain *dma_dom;
1084
1085 dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
1086 if (!dma_dom)
1087 return NULL;
1088
1089 spin_lock_init(&dma_dom->domain.lock);
1090
1091 dma_dom->domain.id = domain_id_alloc();
1092 if (dma_dom->domain.id == 0)
1093 goto free_dma_dom;
1094 dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
1095 dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1096 dma_dom->domain.flags = PD_DMA_OPS_MASK;
1097 dma_dom->domain.priv = dma_dom;
1098 if (!dma_dom->domain.pt_root)
1099 goto free_dma_dom;
1100
1101 dma_dom->need_flush = false;
1102 dma_dom->target_dev = 0xffff;
1103
1104 if (alloc_new_range(iommu, dma_dom, true, GFP_KERNEL))
1105 goto free_dma_dom;
1106
1107 /*
1108 * mark the first page as allocated so we never return 0 as
1109 * a valid dma-address. So we can use 0 as error value
1110 */
1111 dma_dom->aperture[0]->bitmap[0] = 1;
1112 dma_dom->next_address = 0;
1113
1114
1115 return dma_dom;
1116
1117 free_dma_dom:
1118 dma_ops_domain_free(dma_dom);
1119
1120 return NULL;
1121 }
1122
1123 /*
1124 * little helper function to check whether a given protection domain is a
1125 * dma_ops domain
1126 */
1127 static bool dma_ops_domain(struct protection_domain *domain)
1128 {
1129 return domain->flags & PD_DMA_OPS_MASK;
1130 }
1131
1132 /*
1133 * Find out the protection domain structure for a given PCI device. This
1134 * will give us the pointer to the page table root for example.
1135 */
1136 static struct protection_domain *domain_for_device(u16 devid)
1137 {
1138 struct protection_domain *dom;
1139 unsigned long flags;
1140
1141 read_lock_irqsave(&amd_iommu_devtable_lock, flags);
1142 dom = amd_iommu_pd_table[devid];
1143 read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1144
1145 return dom;
1146 }
1147
1148 static void set_dte_entry(u16 devid, struct protection_domain *domain)
1149 {
1150 u64 pte_root = virt_to_phys(domain->pt_root);
1151
1152 pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
1153 << DEV_ENTRY_MODE_SHIFT;
1154 pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
1155
1156 amd_iommu_dev_table[devid].data[2] = domain->id;
1157 amd_iommu_dev_table[devid].data[1] = upper_32_bits(pte_root);
1158 amd_iommu_dev_table[devid].data[0] = lower_32_bits(pte_root);
1159
1160 amd_iommu_pd_table[devid] = domain;
1161 }
1162
1163 /*
1164 * If a device is not yet associated with a domain, this function does
1165 * assigns it visible for the hardware
1166 */
1167 static void __attach_device(struct amd_iommu *iommu,
1168 struct protection_domain *domain,
1169 u16 devid)
1170 {
1171 /* lock domain */
1172 spin_lock(&domain->lock);
1173
1174 /* update DTE entry */
1175 set_dte_entry(devid, domain);
1176
1177 domain->dev_cnt += 1;
1178
1179 /* ready */
1180 spin_unlock(&domain->lock);
1181 }
1182
1183 /*
1184 * If a device is not yet associated with a domain, this function does
1185 * assigns it visible for the hardware
1186 */
1187 static void attach_device(struct amd_iommu *iommu,
1188 struct protection_domain *domain,
1189 u16 devid)
1190 {
1191 unsigned long flags;
1192
1193 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1194 __attach_device(iommu, domain, devid);
1195 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1196
1197 /*
1198 * We might boot into a crash-kernel here. The crashed kernel
1199 * left the caches in the IOMMU dirty. So we have to flush
1200 * here to evict all dirty stuff.
1201 */
1202 iommu_queue_inv_dev_entry(iommu, devid);
1203 iommu_flush_tlb_pde(iommu, domain->id);
1204 }
1205
1206 /*
1207 * Removes a device from a protection domain (unlocked)
1208 */
1209 static void __detach_device(struct protection_domain *domain, u16 devid)
1210 {
1211
1212 /* lock domain */
1213 spin_lock(&domain->lock);
1214
1215 /* remove domain from the lookup table */
1216 amd_iommu_pd_table[devid] = NULL;
1217
1218 /* remove entry from the device table seen by the hardware */
1219 amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
1220 amd_iommu_dev_table[devid].data[1] = 0;
1221 amd_iommu_dev_table[devid].data[2] = 0;
1222
1223 /* decrease reference counter */
1224 domain->dev_cnt -= 1;
1225
1226 /* ready */
1227 spin_unlock(&domain->lock);
1228
1229 /*
1230 * If we run in passthrough mode the device must be assigned to the
1231 * passthrough domain if it is detached from any other domain
1232 */
1233 if (iommu_pass_through) {
1234 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
1235 __attach_device(iommu, pt_domain, devid);
1236 }
1237 }
1238
1239 /*
1240 * Removes a device from a protection domain (with devtable_lock held)
1241 */
1242 static void detach_device(struct protection_domain *domain, u16 devid)
1243 {
1244 unsigned long flags;
1245
1246 /* lock device table */
1247 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1248 __detach_device(domain, devid);
1249 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1250 }
1251
1252 static int device_change_notifier(struct notifier_block *nb,
1253 unsigned long action, void *data)
1254 {
1255 struct device *dev = data;
1256 struct pci_dev *pdev = to_pci_dev(dev);
1257 u16 devid = calc_devid(pdev->bus->number, pdev->devfn);
1258 struct protection_domain *domain;
1259 struct dma_ops_domain *dma_domain;
1260 struct amd_iommu *iommu;
1261 unsigned long flags;
1262
1263 if (devid > amd_iommu_last_bdf)
1264 goto out;
1265
1266 devid = amd_iommu_alias_table[devid];
1267
1268 iommu = amd_iommu_rlookup_table[devid];
1269 if (iommu == NULL)
1270 goto out;
1271
1272 domain = domain_for_device(devid);
1273
1274 if (domain && !dma_ops_domain(domain))
1275 WARN_ONCE(1, "AMD IOMMU WARNING: device %s already bound "
1276 "to a non-dma-ops domain\n", dev_name(dev));
1277
1278 switch (action) {
1279 case BUS_NOTIFY_UNBOUND_DRIVER:
1280 if (!domain)
1281 goto out;
1282 if (iommu_pass_through)
1283 break;
1284 detach_device(domain, devid);
1285 break;
1286 case BUS_NOTIFY_ADD_DEVICE:
1287 /* allocate a protection domain if a device is added */
1288 dma_domain = find_protection_domain(devid);
1289 if (dma_domain)
1290 goto out;
1291 dma_domain = dma_ops_domain_alloc(iommu);
1292 if (!dma_domain)
1293 goto out;
1294 dma_domain->target_dev = devid;
1295
1296 spin_lock_irqsave(&iommu_pd_list_lock, flags);
1297 list_add_tail(&dma_domain->list, &iommu_pd_list);
1298 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
1299
1300 break;
1301 default:
1302 goto out;
1303 }
1304
1305 iommu_queue_inv_dev_entry(iommu, devid);
1306 iommu_completion_wait(iommu);
1307
1308 out:
1309 return 0;
1310 }
1311
1312 static struct notifier_block device_nb = {
1313 .notifier_call = device_change_notifier,
1314 };
1315
1316 /*****************************************************************************
1317 *
1318 * The next functions belong to the dma_ops mapping/unmapping code.
1319 *
1320 *****************************************************************************/
1321
1322 /*
1323 * This function checks if the driver got a valid device from the caller to
1324 * avoid dereferencing invalid pointers.
1325 */
1326 static bool check_device(struct device *dev)
1327 {
1328 if (!dev || !dev->dma_mask)
1329 return false;
1330
1331 return true;
1332 }
1333
1334 /*
1335 * In this function the list of preallocated protection domains is traversed to
1336 * find the domain for a specific device
1337 */
1338 static struct dma_ops_domain *find_protection_domain(u16 devid)
1339 {
1340 struct dma_ops_domain *entry, *ret = NULL;
1341 unsigned long flags;
1342
1343 if (list_empty(&iommu_pd_list))
1344 return NULL;
1345
1346 spin_lock_irqsave(&iommu_pd_list_lock, flags);
1347
1348 list_for_each_entry(entry, &iommu_pd_list, list) {
1349 if (entry->target_dev == devid) {
1350 ret = entry;
1351 break;
1352 }
1353 }
1354
1355 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
1356
1357 return ret;
1358 }
1359
1360 /*
1361 * In the dma_ops path we only have the struct device. This function
1362 * finds the corresponding IOMMU, the protection domain and the
1363 * requestor id for a given device.
1364 * If the device is not yet associated with a domain this is also done
1365 * in this function.
1366 */
1367 static int get_device_resources(struct device *dev,
1368 struct amd_iommu **iommu,
1369 struct protection_domain **domain,
1370 u16 *bdf)
1371 {
1372 struct dma_ops_domain *dma_dom;
1373 struct pci_dev *pcidev;
1374 u16 _bdf;
1375
1376 *iommu = NULL;
1377 *domain = NULL;
1378 *bdf = 0xffff;
1379
1380 if (dev->bus != &pci_bus_type)
1381 return 0;
1382
1383 pcidev = to_pci_dev(dev);
1384 _bdf = calc_devid(pcidev->bus->number, pcidev->devfn);
1385
1386 /* device not translated by any IOMMU in the system? */
1387 if (_bdf > amd_iommu_last_bdf)
1388 return 0;
1389
1390 *bdf = amd_iommu_alias_table[_bdf];
1391
1392 *iommu = amd_iommu_rlookup_table[*bdf];
1393 if (*iommu == NULL)
1394 return 0;
1395 *domain = domain_for_device(*bdf);
1396 if (*domain == NULL) {
1397 dma_dom = find_protection_domain(*bdf);
1398 if (!dma_dom)
1399 dma_dom = (*iommu)->default_dom;
1400 *domain = &dma_dom->domain;
1401 attach_device(*iommu, *domain, *bdf);
1402 DUMP_printk("Using protection domain %d for device %s\n",
1403 (*domain)->id, dev_name(dev));
1404 }
1405
1406 if (domain_for_device(_bdf) == NULL)
1407 attach_device(*iommu, *domain, _bdf);
1408
1409 return 1;
1410 }
1411
1412 static void update_device_table(struct protection_domain *domain)
1413 {
1414 unsigned long flags;
1415 int i;
1416
1417 for (i = 0; i <= amd_iommu_last_bdf; ++i) {
1418 if (amd_iommu_pd_table[i] != domain)
1419 continue;
1420 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1421 set_dte_entry(i, domain);
1422 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1423 }
1424 }
1425
1426 static void update_domain(struct protection_domain *domain)
1427 {
1428 if (!domain->updated)
1429 return;
1430
1431 update_device_table(domain);
1432 flush_devices_by_domain(domain);
1433 iommu_flush_domain(domain->id);
1434
1435 domain->updated = false;
1436 }
1437
1438 /*
1439 * This function is used to add another level to an IO page table. Adding
1440 * another level increases the size of the address space by 9 bits to a size up
1441 * to 64 bits.
1442 */
1443 static bool increase_address_space(struct protection_domain *domain,
1444 gfp_t gfp)
1445 {
1446 u64 *pte;
1447
1448 if (domain->mode == PAGE_MODE_6_LEVEL)
1449 /* address space already 64 bit large */
1450 return false;
1451
1452 pte = (void *)get_zeroed_page(gfp);
1453 if (!pte)
1454 return false;
1455
1456 *pte = PM_LEVEL_PDE(domain->mode,
1457 virt_to_phys(domain->pt_root));
1458 domain->pt_root = pte;
1459 domain->mode += 1;
1460 domain->updated = true;
1461
1462 return true;
1463 }
1464
1465 static u64 *alloc_pte(struct protection_domain *domain,
1466 unsigned long address,
1467 int end_lvl,
1468 u64 **pte_page,
1469 gfp_t gfp)
1470 {
1471 u64 *pte, *page;
1472 int level;
1473
1474 while (address > PM_LEVEL_SIZE(domain->mode))
1475 increase_address_space(domain, gfp);
1476
1477 level = domain->mode - 1;
1478 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1479
1480 while (level > end_lvl) {
1481 if (!IOMMU_PTE_PRESENT(*pte)) {
1482 page = (u64 *)get_zeroed_page(gfp);
1483 if (!page)
1484 return NULL;
1485 *pte = PM_LEVEL_PDE(level, virt_to_phys(page));
1486 }
1487
1488 level -= 1;
1489
1490 pte = IOMMU_PTE_PAGE(*pte);
1491
1492 if (pte_page && level == end_lvl)
1493 *pte_page = pte;
1494
1495 pte = &pte[PM_LEVEL_INDEX(level, address)];
1496 }
1497
1498 return pte;
1499 }
1500
1501 /*
1502 * This function fetches the PTE for a given address in the aperture
1503 */
1504 static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
1505 unsigned long address)
1506 {
1507 struct aperture_range *aperture;
1508 u64 *pte, *pte_page;
1509
1510 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
1511 if (!aperture)
1512 return NULL;
1513
1514 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
1515 if (!pte) {
1516 pte = alloc_pte(&dom->domain, address, PM_MAP_4k, &pte_page,
1517 GFP_ATOMIC);
1518 aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
1519 } else
1520 pte += PM_LEVEL_INDEX(0, address);
1521
1522 update_domain(&dom->domain);
1523
1524 return pte;
1525 }
1526
1527 /*
1528 * This is the generic map function. It maps one 4kb page at paddr to
1529 * the given address in the DMA address space for the domain.
1530 */
1531 static dma_addr_t dma_ops_domain_map(struct amd_iommu *iommu,
1532 struct dma_ops_domain *dom,
1533 unsigned long address,
1534 phys_addr_t paddr,
1535 int direction)
1536 {
1537 u64 *pte, __pte;
1538
1539 WARN_ON(address > dom->aperture_size);
1540
1541 paddr &= PAGE_MASK;
1542
1543 pte = dma_ops_get_pte(dom, address);
1544 if (!pte)
1545 return bad_dma_address;
1546
1547 __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
1548
1549 if (direction == DMA_TO_DEVICE)
1550 __pte |= IOMMU_PTE_IR;
1551 else if (direction == DMA_FROM_DEVICE)
1552 __pte |= IOMMU_PTE_IW;
1553 else if (direction == DMA_BIDIRECTIONAL)
1554 __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
1555
1556 WARN_ON(*pte);
1557
1558 *pte = __pte;
1559
1560 return (dma_addr_t)address;
1561 }
1562
1563 /*
1564 * The generic unmapping function for on page in the DMA address space.
1565 */
1566 static void dma_ops_domain_unmap(struct amd_iommu *iommu,
1567 struct dma_ops_domain *dom,
1568 unsigned long address)
1569 {
1570 struct aperture_range *aperture;
1571 u64 *pte;
1572
1573 if (address >= dom->aperture_size)
1574 return;
1575
1576 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
1577 if (!aperture)
1578 return;
1579
1580 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
1581 if (!pte)
1582 return;
1583
1584 pte += PM_LEVEL_INDEX(0, address);
1585
1586 WARN_ON(!*pte);
1587
1588 *pte = 0ULL;
1589 }
1590
1591 /*
1592 * This function contains common code for mapping of a physically
1593 * contiguous memory region into DMA address space. It is used by all
1594 * mapping functions provided with this IOMMU driver.
1595 * Must be called with the domain lock held.
1596 */
1597 static dma_addr_t __map_single(struct device *dev,
1598 struct amd_iommu *iommu,
1599 struct dma_ops_domain *dma_dom,
1600 phys_addr_t paddr,
1601 size_t size,
1602 int dir,
1603 bool align,
1604 u64 dma_mask)
1605 {
1606 dma_addr_t offset = paddr & ~PAGE_MASK;
1607 dma_addr_t address, start, ret;
1608 unsigned int pages;
1609 unsigned long align_mask = 0;
1610 int i;
1611
1612 pages = iommu_num_pages(paddr, size, PAGE_SIZE);
1613 paddr &= PAGE_MASK;
1614
1615 INC_STATS_COUNTER(total_map_requests);
1616
1617 if (pages > 1)
1618 INC_STATS_COUNTER(cross_page);
1619
1620 if (align)
1621 align_mask = (1UL << get_order(size)) - 1;
1622
1623 retry:
1624 address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
1625 dma_mask);
1626 if (unlikely(address == bad_dma_address)) {
1627 /*
1628 * setting next_address here will let the address
1629 * allocator only scan the new allocated range in the
1630 * first run. This is a small optimization.
1631 */
1632 dma_dom->next_address = dma_dom->aperture_size;
1633
1634 if (alloc_new_range(iommu, dma_dom, false, GFP_ATOMIC))
1635 goto out;
1636
1637 /*
1638 * aperture was sucessfully enlarged by 128 MB, try
1639 * allocation again
1640 */
1641 goto retry;
1642 }
1643
1644 start = address;
1645 for (i = 0; i < pages; ++i) {
1646 ret = dma_ops_domain_map(iommu, dma_dom, start, paddr, dir);
1647 if (ret == bad_dma_address)
1648 goto out_unmap;
1649
1650 paddr += PAGE_SIZE;
1651 start += PAGE_SIZE;
1652 }
1653 address += offset;
1654
1655 ADD_STATS_COUNTER(alloced_io_mem, size);
1656
1657 if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
1658 iommu_flush_tlb(iommu, dma_dom->domain.id);
1659 dma_dom->need_flush = false;
1660 } else if (unlikely(iommu_has_npcache(iommu)))
1661 iommu_flush_pages(iommu, dma_dom->domain.id, address, size);
1662
1663 out:
1664 return address;
1665
1666 out_unmap:
1667
1668 for (--i; i >= 0; --i) {
1669 start -= PAGE_SIZE;
1670 dma_ops_domain_unmap(iommu, dma_dom, start);
1671 }
1672
1673 dma_ops_free_addresses(dma_dom, address, pages);
1674
1675 return bad_dma_address;
1676 }
1677
1678 /*
1679 * Does the reverse of the __map_single function. Must be called with
1680 * the domain lock held too
1681 */
1682 static void __unmap_single(struct amd_iommu *iommu,
1683 struct dma_ops_domain *dma_dom,
1684 dma_addr_t dma_addr,
1685 size_t size,
1686 int dir)
1687 {
1688 dma_addr_t i, start;
1689 unsigned int pages;
1690
1691 if ((dma_addr == bad_dma_address) ||
1692 (dma_addr + size > dma_dom->aperture_size))
1693 return;
1694
1695 pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
1696 dma_addr &= PAGE_MASK;
1697 start = dma_addr;
1698
1699 for (i = 0; i < pages; ++i) {
1700 dma_ops_domain_unmap(iommu, dma_dom, start);
1701 start += PAGE_SIZE;
1702 }
1703
1704 SUB_STATS_COUNTER(alloced_io_mem, size);
1705
1706 dma_ops_free_addresses(dma_dom, dma_addr, pages);
1707
1708 if (amd_iommu_unmap_flush || dma_dom->need_flush) {
1709 iommu_flush_pages(iommu, dma_dom->domain.id, dma_addr, size);
1710 dma_dom->need_flush = false;
1711 }
1712 }
1713
1714 /*
1715 * The exported map_single function for dma_ops.
1716 */
1717 static dma_addr_t map_page(struct device *dev, struct page *page,
1718 unsigned long offset, size_t size,
1719 enum dma_data_direction dir,
1720 struct dma_attrs *attrs)
1721 {
1722 unsigned long flags;
1723 struct amd_iommu *iommu;
1724 struct protection_domain *domain;
1725 u16 devid;
1726 dma_addr_t addr;
1727 u64 dma_mask;
1728 phys_addr_t paddr = page_to_phys(page) + offset;
1729
1730 INC_STATS_COUNTER(cnt_map_single);
1731
1732 if (!check_device(dev))
1733 return bad_dma_address;
1734
1735 dma_mask = *dev->dma_mask;
1736
1737 get_device_resources(dev, &iommu, &domain, &devid);
1738
1739 if (iommu == NULL || domain == NULL)
1740 /* device not handled by any AMD IOMMU */
1741 return (dma_addr_t)paddr;
1742
1743 if (!dma_ops_domain(domain))
1744 return bad_dma_address;
1745
1746 spin_lock_irqsave(&domain->lock, flags);
1747 addr = __map_single(dev, iommu, domain->priv, paddr, size, dir, false,
1748 dma_mask);
1749 if (addr == bad_dma_address)
1750 goto out;
1751
1752 iommu_completion_wait(iommu);
1753
1754 out:
1755 spin_unlock_irqrestore(&domain->lock, flags);
1756
1757 return addr;
1758 }
1759
1760 /*
1761 * The exported unmap_single function for dma_ops.
1762 */
1763 static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
1764 enum dma_data_direction dir, struct dma_attrs *attrs)
1765 {
1766 unsigned long flags;
1767 struct amd_iommu *iommu;
1768 struct protection_domain *domain;
1769 u16 devid;
1770
1771 INC_STATS_COUNTER(cnt_unmap_single);
1772
1773 if (!check_device(dev) ||
1774 !get_device_resources(dev, &iommu, &domain, &devid))
1775 /* device not handled by any AMD IOMMU */
1776 return;
1777
1778 if (!dma_ops_domain(domain))
1779 return;
1780
1781 spin_lock_irqsave(&domain->lock, flags);
1782
1783 __unmap_single(iommu, domain->priv, dma_addr, size, dir);
1784
1785 iommu_completion_wait(iommu);
1786
1787 spin_unlock_irqrestore(&domain->lock, flags);
1788 }
1789
1790 /*
1791 * This is a special map_sg function which is used if we should map a
1792 * device which is not handled by an AMD IOMMU in the system.
1793 */
1794 static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
1795 int nelems, int dir)
1796 {
1797 struct scatterlist *s;
1798 int i;
1799
1800 for_each_sg(sglist, s, nelems, i) {
1801 s->dma_address = (dma_addr_t)sg_phys(s);
1802 s->dma_length = s->length;
1803 }
1804
1805 return nelems;
1806 }
1807
1808 /*
1809 * The exported map_sg function for dma_ops (handles scatter-gather
1810 * lists).
1811 */
1812 static int map_sg(struct device *dev, struct scatterlist *sglist,
1813 int nelems, enum dma_data_direction dir,
1814 struct dma_attrs *attrs)
1815 {
1816 unsigned long flags;
1817 struct amd_iommu *iommu;
1818 struct protection_domain *domain;
1819 u16 devid;
1820 int i;
1821 struct scatterlist *s;
1822 phys_addr_t paddr;
1823 int mapped_elems = 0;
1824 u64 dma_mask;
1825
1826 INC_STATS_COUNTER(cnt_map_sg);
1827
1828 if (!check_device(dev))
1829 return 0;
1830
1831 dma_mask = *dev->dma_mask;
1832
1833 get_device_resources(dev, &iommu, &domain, &devid);
1834
1835 if (!iommu || !domain)
1836 return map_sg_no_iommu(dev, sglist, nelems, dir);
1837
1838 if (!dma_ops_domain(domain))
1839 return 0;
1840
1841 spin_lock_irqsave(&domain->lock, flags);
1842
1843 for_each_sg(sglist, s, nelems, i) {
1844 paddr = sg_phys(s);
1845
1846 s->dma_address = __map_single(dev, iommu, domain->priv,
1847 paddr, s->length, dir, false,
1848 dma_mask);
1849
1850 if (s->dma_address) {
1851 s->dma_length = s->length;
1852 mapped_elems++;
1853 } else
1854 goto unmap;
1855 }
1856
1857 iommu_completion_wait(iommu);
1858
1859 out:
1860 spin_unlock_irqrestore(&domain->lock, flags);
1861
1862 return mapped_elems;
1863 unmap:
1864 for_each_sg(sglist, s, mapped_elems, i) {
1865 if (s->dma_address)
1866 __unmap_single(iommu, domain->priv, s->dma_address,
1867 s->dma_length, dir);
1868 s->dma_address = s->dma_length = 0;
1869 }
1870
1871 mapped_elems = 0;
1872
1873 goto out;
1874 }
1875
1876 /*
1877 * The exported map_sg function for dma_ops (handles scatter-gather
1878 * lists).
1879 */
1880 static void unmap_sg(struct device *dev, struct scatterlist *sglist,
1881 int nelems, enum dma_data_direction dir,
1882 struct dma_attrs *attrs)
1883 {
1884 unsigned long flags;
1885 struct amd_iommu *iommu;
1886 struct protection_domain *domain;
1887 struct scatterlist *s;
1888 u16 devid;
1889 int i;
1890
1891 INC_STATS_COUNTER(cnt_unmap_sg);
1892
1893 if (!check_device(dev) ||
1894 !get_device_resources(dev, &iommu, &domain, &devid))
1895 return;
1896
1897 if (!dma_ops_domain(domain))
1898 return;
1899
1900 spin_lock_irqsave(&domain->lock, flags);
1901
1902 for_each_sg(sglist, s, nelems, i) {
1903 __unmap_single(iommu, domain->priv, s->dma_address,
1904 s->dma_length, dir);
1905 s->dma_address = s->dma_length = 0;
1906 }
1907
1908 iommu_completion_wait(iommu);
1909
1910 spin_unlock_irqrestore(&domain->lock, flags);
1911 }
1912
1913 /*
1914 * The exported alloc_coherent function for dma_ops.
1915 */
1916 static void *alloc_coherent(struct device *dev, size_t size,
1917 dma_addr_t *dma_addr, gfp_t flag)
1918 {
1919 unsigned long flags;
1920 void *virt_addr;
1921 struct amd_iommu *iommu;
1922 struct protection_domain *domain;
1923 u16 devid;
1924 phys_addr_t paddr;
1925 u64 dma_mask = dev->coherent_dma_mask;
1926
1927 INC_STATS_COUNTER(cnt_alloc_coherent);
1928
1929 if (!check_device(dev))
1930 return NULL;
1931
1932 if (!get_device_resources(dev, &iommu, &domain, &devid))
1933 flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
1934
1935 flag |= __GFP_ZERO;
1936 virt_addr = (void *)__get_free_pages(flag, get_order(size));
1937 if (!virt_addr)
1938 return NULL;
1939
1940 paddr = virt_to_phys(virt_addr);
1941
1942 if (!iommu || !domain) {
1943 *dma_addr = (dma_addr_t)paddr;
1944 return virt_addr;
1945 }
1946
1947 if (!dma_ops_domain(domain))
1948 goto out_free;
1949
1950 if (!dma_mask)
1951 dma_mask = *dev->dma_mask;
1952
1953 spin_lock_irqsave(&domain->lock, flags);
1954
1955 *dma_addr = __map_single(dev, iommu, domain->priv, paddr,
1956 size, DMA_BIDIRECTIONAL, true, dma_mask);
1957
1958 if (*dma_addr == bad_dma_address) {
1959 spin_unlock_irqrestore(&domain->lock, flags);
1960 goto out_free;
1961 }
1962
1963 iommu_completion_wait(iommu);
1964
1965 spin_unlock_irqrestore(&domain->lock, flags);
1966
1967 return virt_addr;
1968
1969 out_free:
1970
1971 free_pages((unsigned long)virt_addr, get_order(size));
1972
1973 return NULL;
1974 }
1975
1976 /*
1977 * The exported free_coherent function for dma_ops.
1978 */
1979 static void free_coherent(struct device *dev, size_t size,
1980 void *virt_addr, dma_addr_t dma_addr)
1981 {
1982 unsigned long flags;
1983 struct amd_iommu *iommu;
1984 struct protection_domain *domain;
1985 u16 devid;
1986
1987 INC_STATS_COUNTER(cnt_free_coherent);
1988
1989 if (!check_device(dev))
1990 return;
1991
1992 get_device_resources(dev, &iommu, &domain, &devid);
1993
1994 if (!iommu || !domain)
1995 goto free_mem;
1996
1997 if (!dma_ops_domain(domain))
1998 goto free_mem;
1999
2000 spin_lock_irqsave(&domain->lock, flags);
2001
2002 __unmap_single(iommu, domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
2003
2004 iommu_completion_wait(iommu);
2005
2006 spin_unlock_irqrestore(&domain->lock, flags);
2007
2008 free_mem:
2009 free_pages((unsigned long)virt_addr, get_order(size));
2010 }
2011
2012 /*
2013 * This function is called by the DMA layer to find out if we can handle a
2014 * particular device. It is part of the dma_ops.
2015 */
2016 static int amd_iommu_dma_supported(struct device *dev, u64 mask)
2017 {
2018 u16 bdf;
2019 struct pci_dev *pcidev;
2020
2021 /* No device or no PCI device */
2022 if (!dev || dev->bus != &pci_bus_type)
2023 return 0;
2024
2025 pcidev = to_pci_dev(dev);
2026
2027 bdf = calc_devid(pcidev->bus->number, pcidev->devfn);
2028
2029 /* Out of our scope? */
2030 if (bdf > amd_iommu_last_bdf)
2031 return 0;
2032
2033 return 1;
2034 }
2035
2036 /*
2037 * The function for pre-allocating protection domains.
2038 *
2039 * If the driver core informs the DMA layer if a driver grabs a device
2040 * we don't need to preallocate the protection domains anymore.
2041 * For now we have to.
2042 */
2043 static void prealloc_protection_domains(void)
2044 {
2045 struct pci_dev *dev = NULL;
2046 struct dma_ops_domain *dma_dom;
2047 struct amd_iommu *iommu;
2048 u16 devid;
2049
2050 while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
2051 devid = calc_devid(dev->bus->number, dev->devfn);
2052 if (devid > amd_iommu_last_bdf)
2053 continue;
2054 devid = amd_iommu_alias_table[devid];
2055 if (domain_for_device(devid))
2056 continue;
2057 iommu = amd_iommu_rlookup_table[devid];
2058 if (!iommu)
2059 continue;
2060 dma_dom = dma_ops_domain_alloc(iommu);
2061 if (!dma_dom)
2062 continue;
2063 init_unity_mappings_for_device(dma_dom, devid);
2064 dma_dom->target_dev = devid;
2065
2066 list_add_tail(&dma_dom->list, &iommu_pd_list);
2067 }
2068 }
2069
2070 static struct dma_map_ops amd_iommu_dma_ops = {
2071 .alloc_coherent = alloc_coherent,
2072 .free_coherent = free_coherent,
2073 .map_page = map_page,
2074 .unmap_page = unmap_page,
2075 .map_sg = map_sg,
2076 .unmap_sg = unmap_sg,
2077 .dma_supported = amd_iommu_dma_supported,
2078 };
2079
2080 /*
2081 * The function which clues the AMD IOMMU driver into dma_ops.
2082 */
2083 int __init amd_iommu_init_dma_ops(void)
2084 {
2085 struct amd_iommu *iommu;
2086 int ret;
2087
2088 /*
2089 * first allocate a default protection domain for every IOMMU we
2090 * found in the system. Devices not assigned to any other
2091 * protection domain will be assigned to the default one.
2092 */
2093 for_each_iommu(iommu) {
2094 iommu->default_dom = dma_ops_domain_alloc(iommu);
2095 if (iommu->default_dom == NULL)
2096 return -ENOMEM;
2097 iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
2098 ret = iommu_init_unity_mappings(iommu);
2099 if (ret)
2100 goto free_domains;
2101 }
2102
2103 /*
2104 * If device isolation is enabled, pre-allocate the protection
2105 * domains for each device.
2106 */
2107 if (amd_iommu_isolate)
2108 prealloc_protection_domains();
2109
2110 iommu_detected = 1;
2111 force_iommu = 1;
2112 bad_dma_address = 0;
2113 #ifdef CONFIG_GART_IOMMU
2114 gart_iommu_aperture_disabled = 1;
2115 gart_iommu_aperture = 0;
2116 #endif
2117
2118 /* Make the driver finally visible to the drivers */
2119 dma_ops = &amd_iommu_dma_ops;
2120
2121 register_iommu(&amd_iommu_ops);
2122
2123 bus_register_notifier(&pci_bus_type, &device_nb);
2124
2125 amd_iommu_stats_init();
2126
2127 return 0;
2128
2129 free_domains:
2130
2131 for_each_iommu(iommu) {
2132 if (iommu->default_dom)
2133 dma_ops_domain_free(iommu->default_dom);
2134 }
2135
2136 return ret;
2137 }
2138
2139 /*****************************************************************************
2140 *
2141 * The following functions belong to the exported interface of AMD IOMMU
2142 *
2143 * This interface allows access to lower level functions of the IOMMU
2144 * like protection domain handling and assignement of devices to domains
2145 * which is not possible with the dma_ops interface.
2146 *
2147 *****************************************************************************/
2148
2149 static void cleanup_domain(struct protection_domain *domain)
2150 {
2151 unsigned long flags;
2152 u16 devid;
2153
2154 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2155
2156 for (devid = 0; devid <= amd_iommu_last_bdf; ++devid)
2157 if (amd_iommu_pd_table[devid] == domain)
2158 __detach_device(domain, devid);
2159
2160 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2161 }
2162
2163 static void protection_domain_free(struct protection_domain *domain)
2164 {
2165 if (!domain)
2166 return;
2167
2168 if (domain->id)
2169 domain_id_free(domain->id);
2170
2171 kfree(domain);
2172 }
2173
2174 static struct protection_domain *protection_domain_alloc(void)
2175 {
2176 struct protection_domain *domain;
2177
2178 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
2179 if (!domain)
2180 return NULL;
2181
2182 spin_lock_init(&domain->lock);
2183 domain->id = domain_id_alloc();
2184 if (!domain->id)
2185 goto out_err;
2186
2187 return domain;
2188
2189 out_err:
2190 kfree(domain);
2191
2192 return NULL;
2193 }
2194
2195 static int amd_iommu_domain_init(struct iommu_domain *dom)
2196 {
2197 struct protection_domain *domain;
2198
2199 domain = protection_domain_alloc();
2200 if (!domain)
2201 goto out_free;
2202
2203 domain->mode = PAGE_MODE_3_LEVEL;
2204 domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
2205 if (!domain->pt_root)
2206 goto out_free;
2207
2208 dom->priv = domain;
2209
2210 return 0;
2211
2212 out_free:
2213 protection_domain_free(domain);
2214
2215 return -ENOMEM;
2216 }
2217
2218 static void amd_iommu_domain_destroy(struct iommu_domain *dom)
2219 {
2220 struct protection_domain *domain = dom->priv;
2221
2222 if (!domain)
2223 return;
2224
2225 if (domain->dev_cnt > 0)
2226 cleanup_domain(domain);
2227
2228 BUG_ON(domain->dev_cnt != 0);
2229
2230 free_pagetable(domain);
2231
2232 domain_id_free(domain->id);
2233
2234 kfree(domain);
2235
2236 dom->priv = NULL;
2237 }
2238
2239 static void amd_iommu_detach_device(struct iommu_domain *dom,
2240 struct device *dev)
2241 {
2242 struct protection_domain *domain = dom->priv;
2243 struct amd_iommu *iommu;
2244 struct pci_dev *pdev;
2245 u16 devid;
2246
2247 if (dev->bus != &pci_bus_type)
2248 return;
2249
2250 pdev = to_pci_dev(dev);
2251
2252 devid = calc_devid(pdev->bus->number, pdev->devfn);
2253
2254 if (devid > 0)
2255 detach_device(domain, devid);
2256
2257 iommu = amd_iommu_rlookup_table[devid];
2258 if (!iommu)
2259 return;
2260
2261 iommu_queue_inv_dev_entry(iommu, devid);
2262 iommu_completion_wait(iommu);
2263 }
2264
2265 static int amd_iommu_attach_device(struct iommu_domain *dom,
2266 struct device *dev)
2267 {
2268 struct protection_domain *domain = dom->priv;
2269 struct protection_domain *old_domain;
2270 struct amd_iommu *iommu;
2271 struct pci_dev *pdev;
2272 u16 devid;
2273
2274 if (dev->bus != &pci_bus_type)
2275 return -EINVAL;
2276
2277 pdev = to_pci_dev(dev);
2278
2279 devid = calc_devid(pdev->bus->number, pdev->devfn);
2280
2281 if (devid >= amd_iommu_last_bdf ||
2282 devid != amd_iommu_alias_table[devid])
2283 return -EINVAL;
2284
2285 iommu = amd_iommu_rlookup_table[devid];
2286 if (!iommu)
2287 return -EINVAL;
2288
2289 old_domain = domain_for_device(devid);
2290 if (old_domain)
2291 detach_device(old_domain, devid);
2292
2293 attach_device(iommu, domain, devid);
2294
2295 iommu_completion_wait(iommu);
2296
2297 return 0;
2298 }
2299
2300 static int amd_iommu_map_range(struct iommu_domain *dom,
2301 unsigned long iova, phys_addr_t paddr,
2302 size_t size, int iommu_prot)
2303 {
2304 struct protection_domain *domain = dom->priv;
2305 unsigned long i, npages = iommu_num_pages(paddr, size, PAGE_SIZE);
2306 int prot = 0;
2307 int ret;
2308
2309 if (iommu_prot & IOMMU_READ)
2310 prot |= IOMMU_PROT_IR;
2311 if (iommu_prot & IOMMU_WRITE)
2312 prot |= IOMMU_PROT_IW;
2313
2314 iova &= PAGE_MASK;
2315 paddr &= PAGE_MASK;
2316
2317 for (i = 0; i < npages; ++i) {
2318 ret = iommu_map_page(domain, iova, paddr, prot, PM_MAP_4k);
2319 if (ret)
2320 return ret;
2321
2322 iova += PAGE_SIZE;
2323 paddr += PAGE_SIZE;
2324 }
2325
2326 return 0;
2327 }
2328
2329 static void amd_iommu_unmap_range(struct iommu_domain *dom,
2330 unsigned long iova, size_t size)
2331 {
2332
2333 struct protection_domain *domain = dom->priv;
2334 unsigned long i, npages = iommu_num_pages(iova, size, PAGE_SIZE);
2335
2336 iova &= PAGE_MASK;
2337
2338 for (i = 0; i < npages; ++i) {
2339 iommu_unmap_page(domain, iova, PM_MAP_4k);
2340 iova += PAGE_SIZE;
2341 }
2342
2343 iommu_flush_domain(domain->id);
2344 }
2345
2346 static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
2347 unsigned long iova)
2348 {
2349 struct protection_domain *domain = dom->priv;
2350 unsigned long offset = iova & ~PAGE_MASK;
2351 phys_addr_t paddr;
2352 u64 *pte;
2353
2354 pte = fetch_pte(domain, iova, PM_MAP_4k);
2355
2356 if (!pte || !IOMMU_PTE_PRESENT(*pte))
2357 return 0;
2358
2359 paddr = *pte & IOMMU_PAGE_MASK;
2360 paddr |= offset;
2361
2362 return paddr;
2363 }
2364
2365 static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
2366 unsigned long cap)
2367 {
2368 return 0;
2369 }
2370
2371 static struct iommu_ops amd_iommu_ops = {
2372 .domain_init = amd_iommu_domain_init,
2373 .domain_destroy = amd_iommu_domain_destroy,
2374 .attach_dev = amd_iommu_attach_device,
2375 .detach_dev = amd_iommu_detach_device,
2376 .map = amd_iommu_map_range,
2377 .unmap = amd_iommu_unmap_range,
2378 .iova_to_phys = amd_iommu_iova_to_phys,
2379 .domain_has_cap = amd_iommu_domain_has_cap,
2380 };
2381
2382 /*****************************************************************************
2383 *
2384 * The next functions do a basic initialization of IOMMU for pass through
2385 * mode
2386 *
2387 * In passthrough mode the IOMMU is initialized and enabled but not used for
2388 * DMA-API translation.
2389 *
2390 *****************************************************************************/
2391
2392 int __init amd_iommu_init_passthrough(void)
2393 {
2394 struct pci_dev *dev = NULL;
2395 u16 devid, devid2;
2396
2397 /* allocate passthroug domain */
2398 pt_domain = protection_domain_alloc();
2399 if (!pt_domain)
2400 return -ENOMEM;
2401
2402 pt_domain->mode |= PAGE_MODE_NONE;
2403
2404 while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
2405 struct amd_iommu *iommu;
2406
2407 devid = calc_devid(dev->bus->number, dev->devfn);
2408 if (devid > amd_iommu_last_bdf)
2409 continue;
2410
2411 devid2 = amd_iommu_alias_table[devid];
2412
2413 iommu = amd_iommu_rlookup_table[devid2];
2414 if (!iommu)
2415 continue;
2416
2417 __attach_device(iommu, pt_domain, devid);
2418 __attach_device(iommu, pt_domain, devid2);
2419 }
2420
2421 pr_info("AMD-Vi: Initialized for Passthrough Mode\n");
2422
2423 return 0;
2424 }
This page took 0.082464 seconds and 6 git commands to generate.