ASoC: rt5645: Add struct dmi_system_id "Google Ultima" for chrome platform
[deliverable/linux.git] / arch / x86 / kernel / cpu / common.c
1 #include <linux/bootmem.h>
2 #include <linux/linkage.h>
3 #include <linux/bitops.h>
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/percpu.h>
7 #include <linux/string.h>
8 #include <linux/ctype.h>
9 #include <linux/delay.h>
10 #include <linux/sched.h>
11 #include <linux/init.h>
12 #include <linux/kprobes.h>
13 #include <linux/kgdb.h>
14 #include <linux/smp.h>
15 #include <linux/io.h>
16
17 #include <asm/stackprotector.h>
18 #include <asm/perf_event.h>
19 #include <asm/mmu_context.h>
20 #include <asm/archrandom.h>
21 #include <asm/hypervisor.h>
22 #include <asm/processor.h>
23 #include <asm/tlbflush.h>
24 #include <asm/debugreg.h>
25 #include <asm/sections.h>
26 #include <asm/vsyscall.h>
27 #include <linux/topology.h>
28 #include <linux/cpumask.h>
29 #include <asm/pgtable.h>
30 #include <linux/atomic.h>
31 #include <asm/proto.h>
32 #include <asm/setup.h>
33 #include <asm/apic.h>
34 #include <asm/desc.h>
35 #include <asm/fpu/internal.h>
36 #include <asm/mtrr.h>
37 #include <linux/numa.h>
38 #include <asm/asm.h>
39 #include <asm/cpu.h>
40 #include <asm/mce.h>
41 #include <asm/msr.h>
42 #include <asm/pat.h>
43 #include <asm/microcode.h>
44 #include <asm/microcode_intel.h>
45
46 #ifdef CONFIG_X86_LOCAL_APIC
47 #include <asm/uv/uv.h>
48 #endif
49
50 #include "cpu.h"
51
52 /* all of these masks are initialized in setup_cpu_local_masks() */
53 cpumask_var_t cpu_initialized_mask;
54 cpumask_var_t cpu_callout_mask;
55 cpumask_var_t cpu_callin_mask;
56
57 /* representing cpus for which sibling maps can be computed */
58 cpumask_var_t cpu_sibling_setup_mask;
59
60 /* correctly size the local cpu masks */
61 void __init setup_cpu_local_masks(void)
62 {
63 alloc_bootmem_cpumask_var(&cpu_initialized_mask);
64 alloc_bootmem_cpumask_var(&cpu_callin_mask);
65 alloc_bootmem_cpumask_var(&cpu_callout_mask);
66 alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
67 }
68
69 static void default_init(struct cpuinfo_x86 *c)
70 {
71 #ifdef CONFIG_X86_64
72 cpu_detect_cache_sizes(c);
73 #else
74 /* Not much we can do here... */
75 /* Check if at least it has cpuid */
76 if (c->cpuid_level == -1) {
77 /* No cpuid. It must be an ancient CPU */
78 if (c->x86 == 4)
79 strcpy(c->x86_model_id, "486");
80 else if (c->x86 == 3)
81 strcpy(c->x86_model_id, "386");
82 }
83 #endif
84 }
85
86 static const struct cpu_dev default_cpu = {
87 .c_init = default_init,
88 .c_vendor = "Unknown",
89 .c_x86_vendor = X86_VENDOR_UNKNOWN,
90 };
91
92 static const struct cpu_dev *this_cpu = &default_cpu;
93
94 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
95 #ifdef CONFIG_X86_64
96 /*
97 * We need valid kernel segments for data and code in long mode too
98 * IRET will check the segment types kkeil 2000/10/28
99 * Also sysret mandates a special GDT layout
100 *
101 * TLS descriptors are currently at a different place compared to i386.
102 * Hopefully nobody expects them at a fixed place (Wine?)
103 */
104 [GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
105 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
106 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
107 [GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
108 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
109 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
110 #else
111 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
112 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
113 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
114 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
115 /*
116 * Segments used for calling PnP BIOS have byte granularity.
117 * They code segments and data segments have fixed 64k limits,
118 * the transfer segment sizes are set at run time.
119 */
120 /* 32-bit code */
121 [GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
122 /* 16-bit code */
123 [GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
124 /* 16-bit data */
125 [GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
126 /* 16-bit data */
127 [GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(0x0092, 0, 0),
128 /* 16-bit data */
129 [GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(0x0092, 0, 0),
130 /*
131 * The APM segments have byte granularity and their bases
132 * are set at run time. All have 64k limits.
133 */
134 /* 32-bit code */
135 [GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
136 /* 16-bit code */
137 [GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
138 /* data */
139 [GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
140
141 [GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
142 [GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
143 GDT_STACK_CANARY_INIT
144 #endif
145 } };
146 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
147
148 static int __init x86_mpx_setup(char *s)
149 {
150 /* require an exact match without trailing characters */
151 if (strlen(s))
152 return 0;
153
154 /* do not emit a message if the feature is not present */
155 if (!boot_cpu_has(X86_FEATURE_MPX))
156 return 1;
157
158 setup_clear_cpu_cap(X86_FEATURE_MPX);
159 pr_info("nompx: Intel Memory Protection Extensions (MPX) disabled\n");
160 return 1;
161 }
162 __setup("nompx", x86_mpx_setup);
163
164 #ifdef CONFIG_X86_32
165 static int cachesize_override = -1;
166 static int disable_x86_serial_nr = 1;
167
168 static int __init cachesize_setup(char *str)
169 {
170 get_option(&str, &cachesize_override);
171 return 1;
172 }
173 __setup("cachesize=", cachesize_setup);
174
175 static int __init x86_sep_setup(char *s)
176 {
177 setup_clear_cpu_cap(X86_FEATURE_SEP);
178 return 1;
179 }
180 __setup("nosep", x86_sep_setup);
181
182 /* Standard macro to see if a specific flag is changeable */
183 static inline int flag_is_changeable_p(u32 flag)
184 {
185 u32 f1, f2;
186
187 /*
188 * Cyrix and IDT cpus allow disabling of CPUID
189 * so the code below may return different results
190 * when it is executed before and after enabling
191 * the CPUID. Add "volatile" to not allow gcc to
192 * optimize the subsequent calls to this function.
193 */
194 asm volatile ("pushfl \n\t"
195 "pushfl \n\t"
196 "popl %0 \n\t"
197 "movl %0, %1 \n\t"
198 "xorl %2, %0 \n\t"
199 "pushl %0 \n\t"
200 "popfl \n\t"
201 "pushfl \n\t"
202 "popl %0 \n\t"
203 "popfl \n\t"
204
205 : "=&r" (f1), "=&r" (f2)
206 : "ir" (flag));
207
208 return ((f1^f2) & flag) != 0;
209 }
210
211 /* Probe for the CPUID instruction */
212 int have_cpuid_p(void)
213 {
214 return flag_is_changeable_p(X86_EFLAGS_ID);
215 }
216
217 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
218 {
219 unsigned long lo, hi;
220
221 if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
222 return;
223
224 /* Disable processor serial number: */
225
226 rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
227 lo |= 0x200000;
228 wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
229
230 printk(KERN_NOTICE "CPU serial number disabled.\n");
231 clear_cpu_cap(c, X86_FEATURE_PN);
232
233 /* Disabling the serial number may affect the cpuid level */
234 c->cpuid_level = cpuid_eax(0);
235 }
236
237 static int __init x86_serial_nr_setup(char *s)
238 {
239 disable_x86_serial_nr = 0;
240 return 1;
241 }
242 __setup("serialnumber", x86_serial_nr_setup);
243 #else
244 static inline int flag_is_changeable_p(u32 flag)
245 {
246 return 1;
247 }
248 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
249 {
250 }
251 #endif
252
253 static __init int setup_disable_smep(char *arg)
254 {
255 setup_clear_cpu_cap(X86_FEATURE_SMEP);
256 return 1;
257 }
258 __setup("nosmep", setup_disable_smep);
259
260 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
261 {
262 if (cpu_has(c, X86_FEATURE_SMEP))
263 cr4_set_bits(X86_CR4_SMEP);
264 }
265
266 static __init int setup_disable_smap(char *arg)
267 {
268 setup_clear_cpu_cap(X86_FEATURE_SMAP);
269 return 1;
270 }
271 __setup("nosmap", setup_disable_smap);
272
273 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
274 {
275 unsigned long eflags;
276
277 /* This should have been cleared long ago */
278 raw_local_save_flags(eflags);
279 BUG_ON(eflags & X86_EFLAGS_AC);
280
281 if (cpu_has(c, X86_FEATURE_SMAP)) {
282 #ifdef CONFIG_X86_SMAP
283 cr4_set_bits(X86_CR4_SMAP);
284 #else
285 cr4_clear_bits(X86_CR4_SMAP);
286 #endif
287 }
288 }
289
290 /*
291 * Some CPU features depend on higher CPUID levels, which may not always
292 * be available due to CPUID level capping or broken virtualization
293 * software. Add those features to this table to auto-disable them.
294 */
295 struct cpuid_dependent_feature {
296 u32 feature;
297 u32 level;
298 };
299
300 static const struct cpuid_dependent_feature
301 cpuid_dependent_features[] = {
302 { X86_FEATURE_MWAIT, 0x00000005 },
303 { X86_FEATURE_DCA, 0x00000009 },
304 { X86_FEATURE_XSAVE, 0x0000000d },
305 { 0, 0 }
306 };
307
308 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
309 {
310 const struct cpuid_dependent_feature *df;
311
312 for (df = cpuid_dependent_features; df->feature; df++) {
313
314 if (!cpu_has(c, df->feature))
315 continue;
316 /*
317 * Note: cpuid_level is set to -1 if unavailable, but
318 * extended_extended_level is set to 0 if unavailable
319 * and the legitimate extended levels are all negative
320 * when signed; hence the weird messing around with
321 * signs here...
322 */
323 if (!((s32)df->level < 0 ?
324 (u32)df->level > (u32)c->extended_cpuid_level :
325 (s32)df->level > (s32)c->cpuid_level))
326 continue;
327
328 clear_cpu_cap(c, df->feature);
329 if (!warn)
330 continue;
331
332 printk(KERN_WARNING
333 "CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
334 x86_cap_flag(df->feature), df->level);
335 }
336 }
337
338 /*
339 * Naming convention should be: <Name> [(<Codename>)]
340 * This table only is used unless init_<vendor>() below doesn't set it;
341 * in particular, if CPUID levels 0x80000002..4 are supported, this
342 * isn't used
343 */
344
345 /* Look up CPU names by table lookup. */
346 static const char *table_lookup_model(struct cpuinfo_x86 *c)
347 {
348 #ifdef CONFIG_X86_32
349 const struct legacy_cpu_model_info *info;
350
351 if (c->x86_model >= 16)
352 return NULL; /* Range check */
353
354 if (!this_cpu)
355 return NULL;
356
357 info = this_cpu->legacy_models;
358
359 while (info->family) {
360 if (info->family == c->x86)
361 return info->model_names[c->x86_model];
362 info++;
363 }
364 #endif
365 return NULL; /* Not found */
366 }
367
368 __u32 cpu_caps_cleared[NCAPINTS];
369 __u32 cpu_caps_set[NCAPINTS];
370
371 void load_percpu_segment(int cpu)
372 {
373 #ifdef CONFIG_X86_32
374 loadsegment(fs, __KERNEL_PERCPU);
375 #else
376 loadsegment(gs, 0);
377 wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
378 #endif
379 load_stack_canary_segment();
380 }
381
382 /*
383 * Current gdt points %fs at the "master" per-cpu area: after this,
384 * it's on the real one.
385 */
386 void switch_to_new_gdt(int cpu)
387 {
388 struct desc_ptr gdt_descr;
389
390 gdt_descr.address = (long)get_cpu_gdt_table(cpu);
391 gdt_descr.size = GDT_SIZE - 1;
392 load_gdt(&gdt_descr);
393 /* Reload the per-cpu base */
394
395 load_percpu_segment(cpu);
396 }
397
398 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
399
400 static void get_model_name(struct cpuinfo_x86 *c)
401 {
402 unsigned int *v;
403 char *p, *q, *s;
404
405 if (c->extended_cpuid_level < 0x80000004)
406 return;
407
408 v = (unsigned int *)c->x86_model_id;
409 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
410 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
411 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
412 c->x86_model_id[48] = 0;
413
414 /* Trim whitespace */
415 p = q = s = &c->x86_model_id[0];
416
417 while (*p == ' ')
418 p++;
419
420 while (*p) {
421 /* Note the last non-whitespace index */
422 if (!isspace(*p))
423 s = q;
424
425 *q++ = *p++;
426 }
427
428 *(s + 1) = '\0';
429 }
430
431 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
432 {
433 unsigned int n, dummy, ebx, ecx, edx, l2size;
434
435 n = c->extended_cpuid_level;
436
437 if (n >= 0x80000005) {
438 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
439 c->x86_cache_size = (ecx>>24) + (edx>>24);
440 #ifdef CONFIG_X86_64
441 /* On K8 L1 TLB is inclusive, so don't count it */
442 c->x86_tlbsize = 0;
443 #endif
444 }
445
446 if (n < 0x80000006) /* Some chips just has a large L1. */
447 return;
448
449 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
450 l2size = ecx >> 16;
451
452 #ifdef CONFIG_X86_64
453 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
454 #else
455 /* do processor-specific cache resizing */
456 if (this_cpu->legacy_cache_size)
457 l2size = this_cpu->legacy_cache_size(c, l2size);
458
459 /* Allow user to override all this if necessary. */
460 if (cachesize_override != -1)
461 l2size = cachesize_override;
462
463 if (l2size == 0)
464 return; /* Again, no L2 cache is possible */
465 #endif
466
467 c->x86_cache_size = l2size;
468 }
469
470 u16 __read_mostly tlb_lli_4k[NR_INFO];
471 u16 __read_mostly tlb_lli_2m[NR_INFO];
472 u16 __read_mostly tlb_lli_4m[NR_INFO];
473 u16 __read_mostly tlb_lld_4k[NR_INFO];
474 u16 __read_mostly tlb_lld_2m[NR_INFO];
475 u16 __read_mostly tlb_lld_4m[NR_INFO];
476 u16 __read_mostly tlb_lld_1g[NR_INFO];
477
478 static void cpu_detect_tlb(struct cpuinfo_x86 *c)
479 {
480 if (this_cpu->c_detect_tlb)
481 this_cpu->c_detect_tlb(c);
482
483 pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
484 tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
485 tlb_lli_4m[ENTRIES]);
486
487 pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
488 tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
489 tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
490 }
491
492 void detect_ht(struct cpuinfo_x86 *c)
493 {
494 #ifdef CONFIG_SMP
495 u32 eax, ebx, ecx, edx;
496 int index_msb, core_bits;
497 static bool printed;
498
499 if (!cpu_has(c, X86_FEATURE_HT))
500 return;
501
502 if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
503 goto out;
504
505 if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
506 return;
507
508 cpuid(1, &eax, &ebx, &ecx, &edx);
509
510 smp_num_siblings = (ebx & 0xff0000) >> 16;
511
512 if (smp_num_siblings == 1) {
513 printk_once(KERN_INFO "CPU0: Hyper-Threading is disabled\n");
514 goto out;
515 }
516
517 if (smp_num_siblings <= 1)
518 goto out;
519
520 index_msb = get_count_order(smp_num_siblings);
521 c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
522
523 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
524
525 index_msb = get_count_order(smp_num_siblings);
526
527 core_bits = get_count_order(c->x86_max_cores);
528
529 c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
530 ((1 << core_bits) - 1);
531
532 out:
533 if (!printed && (c->x86_max_cores * smp_num_siblings) > 1) {
534 printk(KERN_INFO "CPU: Physical Processor ID: %d\n",
535 c->phys_proc_id);
536 printk(KERN_INFO "CPU: Processor Core ID: %d\n",
537 c->cpu_core_id);
538 printed = 1;
539 }
540 #endif
541 }
542
543 static void get_cpu_vendor(struct cpuinfo_x86 *c)
544 {
545 char *v = c->x86_vendor_id;
546 int i;
547
548 for (i = 0; i < X86_VENDOR_NUM; i++) {
549 if (!cpu_devs[i])
550 break;
551
552 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
553 (cpu_devs[i]->c_ident[1] &&
554 !strcmp(v, cpu_devs[i]->c_ident[1]))) {
555
556 this_cpu = cpu_devs[i];
557 c->x86_vendor = this_cpu->c_x86_vendor;
558 return;
559 }
560 }
561
562 printk_once(KERN_ERR
563 "CPU: vendor_id '%s' unknown, using generic init.\n" \
564 "CPU: Your system may be unstable.\n", v);
565
566 c->x86_vendor = X86_VENDOR_UNKNOWN;
567 this_cpu = &default_cpu;
568 }
569
570 void cpu_detect(struct cpuinfo_x86 *c)
571 {
572 /* Get vendor name */
573 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
574 (unsigned int *)&c->x86_vendor_id[0],
575 (unsigned int *)&c->x86_vendor_id[8],
576 (unsigned int *)&c->x86_vendor_id[4]);
577
578 c->x86 = 4;
579 /* Intel-defined flags: level 0x00000001 */
580 if (c->cpuid_level >= 0x00000001) {
581 u32 junk, tfms, cap0, misc;
582
583 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
584 c->x86 = (tfms >> 8) & 0xf;
585 c->x86_model = (tfms >> 4) & 0xf;
586 c->x86_mask = tfms & 0xf;
587
588 if (c->x86 == 0xf)
589 c->x86 += (tfms >> 20) & 0xff;
590 if (c->x86 >= 0x6)
591 c->x86_model += ((tfms >> 16) & 0xf) << 4;
592
593 if (cap0 & (1<<19)) {
594 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
595 c->x86_cache_alignment = c->x86_clflush_size;
596 }
597 }
598 }
599
600 void get_cpu_cap(struct cpuinfo_x86 *c)
601 {
602 u32 tfms, xlvl;
603 u32 ebx;
604
605 /* Intel-defined flags: level 0x00000001 */
606 if (c->cpuid_level >= 0x00000001) {
607 u32 capability, excap;
608
609 cpuid(0x00000001, &tfms, &ebx, &excap, &capability);
610 c->x86_capability[0] = capability;
611 c->x86_capability[4] = excap;
612 }
613
614 /* Additional Intel-defined flags: level 0x00000007 */
615 if (c->cpuid_level >= 0x00000007) {
616 u32 eax, ebx, ecx, edx;
617
618 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
619
620 c->x86_capability[9] = ebx;
621 }
622
623 /* Extended state features: level 0x0000000d */
624 if (c->cpuid_level >= 0x0000000d) {
625 u32 eax, ebx, ecx, edx;
626
627 cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
628
629 c->x86_capability[10] = eax;
630 }
631
632 /* Additional Intel-defined flags: level 0x0000000F */
633 if (c->cpuid_level >= 0x0000000F) {
634 u32 eax, ebx, ecx, edx;
635
636 /* QoS sub-leaf, EAX=0Fh, ECX=0 */
637 cpuid_count(0x0000000F, 0, &eax, &ebx, &ecx, &edx);
638 c->x86_capability[11] = edx;
639 if (cpu_has(c, X86_FEATURE_CQM_LLC)) {
640 /* will be overridden if occupancy monitoring exists */
641 c->x86_cache_max_rmid = ebx;
642
643 /* QoS sub-leaf, EAX=0Fh, ECX=1 */
644 cpuid_count(0x0000000F, 1, &eax, &ebx, &ecx, &edx);
645 c->x86_capability[12] = edx;
646 if (cpu_has(c, X86_FEATURE_CQM_OCCUP_LLC)) {
647 c->x86_cache_max_rmid = ecx;
648 c->x86_cache_occ_scale = ebx;
649 }
650 } else {
651 c->x86_cache_max_rmid = -1;
652 c->x86_cache_occ_scale = -1;
653 }
654 }
655
656 /* AMD-defined flags: level 0x80000001 */
657 xlvl = cpuid_eax(0x80000000);
658 c->extended_cpuid_level = xlvl;
659
660 if ((xlvl & 0xffff0000) == 0x80000000) {
661 if (xlvl >= 0x80000001) {
662 c->x86_capability[1] = cpuid_edx(0x80000001);
663 c->x86_capability[6] = cpuid_ecx(0x80000001);
664 }
665 }
666
667 if (c->extended_cpuid_level >= 0x80000008) {
668 u32 eax = cpuid_eax(0x80000008);
669
670 c->x86_virt_bits = (eax >> 8) & 0xff;
671 c->x86_phys_bits = eax & 0xff;
672 }
673 #ifdef CONFIG_X86_32
674 else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
675 c->x86_phys_bits = 36;
676 #endif
677
678 if (c->extended_cpuid_level >= 0x80000007)
679 c->x86_power = cpuid_edx(0x80000007);
680
681 init_scattered_cpuid_features(c);
682 }
683
684 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
685 {
686 #ifdef CONFIG_X86_32
687 int i;
688
689 /*
690 * First of all, decide if this is a 486 or higher
691 * It's a 486 if we can modify the AC flag
692 */
693 if (flag_is_changeable_p(X86_EFLAGS_AC))
694 c->x86 = 4;
695 else
696 c->x86 = 3;
697
698 for (i = 0; i < X86_VENDOR_NUM; i++)
699 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
700 c->x86_vendor_id[0] = 0;
701 cpu_devs[i]->c_identify(c);
702 if (c->x86_vendor_id[0]) {
703 get_cpu_vendor(c);
704 break;
705 }
706 }
707 #endif
708 }
709
710 /*
711 * Do minimum CPU detection early.
712 * Fields really needed: vendor, cpuid_level, family, model, mask,
713 * cache alignment.
714 * The others are not touched to avoid unwanted side effects.
715 *
716 * WARNING: this function is only called on the BP. Don't add code here
717 * that is supposed to run on all CPUs.
718 */
719 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
720 {
721 #ifdef CONFIG_X86_64
722 c->x86_clflush_size = 64;
723 c->x86_phys_bits = 36;
724 c->x86_virt_bits = 48;
725 #else
726 c->x86_clflush_size = 32;
727 c->x86_phys_bits = 32;
728 c->x86_virt_bits = 32;
729 #endif
730 c->x86_cache_alignment = c->x86_clflush_size;
731
732 memset(&c->x86_capability, 0, sizeof c->x86_capability);
733 c->extended_cpuid_level = 0;
734
735 if (!have_cpuid_p())
736 identify_cpu_without_cpuid(c);
737
738 /* cyrix could have cpuid enabled via c_identify()*/
739 if (!have_cpuid_p())
740 return;
741
742 cpu_detect(c);
743 get_cpu_vendor(c);
744 get_cpu_cap(c);
745
746 if (this_cpu->c_early_init)
747 this_cpu->c_early_init(c);
748
749 c->cpu_index = 0;
750 filter_cpuid_features(c, false);
751
752 if (this_cpu->c_bsp_init)
753 this_cpu->c_bsp_init(c);
754
755 setup_force_cpu_cap(X86_FEATURE_ALWAYS);
756 fpu__init_system(c);
757 }
758
759 void __init early_cpu_init(void)
760 {
761 const struct cpu_dev *const *cdev;
762 int count = 0;
763
764 #ifdef CONFIG_PROCESSOR_SELECT
765 printk(KERN_INFO "KERNEL supported cpus:\n");
766 #endif
767
768 for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
769 const struct cpu_dev *cpudev = *cdev;
770
771 if (count >= X86_VENDOR_NUM)
772 break;
773 cpu_devs[count] = cpudev;
774 count++;
775
776 #ifdef CONFIG_PROCESSOR_SELECT
777 {
778 unsigned int j;
779
780 for (j = 0; j < 2; j++) {
781 if (!cpudev->c_ident[j])
782 continue;
783 printk(KERN_INFO " %s %s\n", cpudev->c_vendor,
784 cpudev->c_ident[j]);
785 }
786 }
787 #endif
788 }
789 early_identify_cpu(&boot_cpu_data);
790 }
791
792 /*
793 * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
794 * unfortunately, that's not true in practice because of early VIA
795 * chips and (more importantly) broken virtualizers that are not easy
796 * to detect. In the latter case it doesn't even *fail* reliably, so
797 * probing for it doesn't even work. Disable it completely on 32-bit
798 * unless we can find a reliable way to detect all the broken cases.
799 * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
800 */
801 static void detect_nopl(struct cpuinfo_x86 *c)
802 {
803 #ifdef CONFIG_X86_32
804 clear_cpu_cap(c, X86_FEATURE_NOPL);
805 #else
806 set_cpu_cap(c, X86_FEATURE_NOPL);
807 #endif
808 }
809
810 static void generic_identify(struct cpuinfo_x86 *c)
811 {
812 c->extended_cpuid_level = 0;
813
814 if (!have_cpuid_p())
815 identify_cpu_without_cpuid(c);
816
817 /* cyrix could have cpuid enabled via c_identify()*/
818 if (!have_cpuid_p())
819 return;
820
821 cpu_detect(c);
822
823 get_cpu_vendor(c);
824
825 get_cpu_cap(c);
826
827 if (c->cpuid_level >= 0x00000001) {
828 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
829 #ifdef CONFIG_X86_32
830 # ifdef CONFIG_SMP
831 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
832 # else
833 c->apicid = c->initial_apicid;
834 # endif
835 #endif
836 c->phys_proc_id = c->initial_apicid;
837 }
838
839 get_model_name(c); /* Default name */
840
841 detect_nopl(c);
842 }
843
844 static void x86_init_cache_qos(struct cpuinfo_x86 *c)
845 {
846 /*
847 * The heavy lifting of max_rmid and cache_occ_scale are handled
848 * in get_cpu_cap(). Here we just set the max_rmid for the boot_cpu
849 * in case CQM bits really aren't there in this CPU.
850 */
851 if (c != &boot_cpu_data) {
852 boot_cpu_data.x86_cache_max_rmid =
853 min(boot_cpu_data.x86_cache_max_rmid,
854 c->x86_cache_max_rmid);
855 }
856 }
857
858 /*
859 * This does the hard work of actually picking apart the CPU stuff...
860 */
861 static void identify_cpu(struct cpuinfo_x86 *c)
862 {
863 int i;
864
865 c->loops_per_jiffy = loops_per_jiffy;
866 c->x86_cache_size = -1;
867 c->x86_vendor = X86_VENDOR_UNKNOWN;
868 c->x86_model = c->x86_mask = 0; /* So far unknown... */
869 c->x86_vendor_id[0] = '\0'; /* Unset */
870 c->x86_model_id[0] = '\0'; /* Unset */
871 c->x86_max_cores = 1;
872 c->x86_coreid_bits = 0;
873 #ifdef CONFIG_X86_64
874 c->x86_clflush_size = 64;
875 c->x86_phys_bits = 36;
876 c->x86_virt_bits = 48;
877 #else
878 c->cpuid_level = -1; /* CPUID not detected */
879 c->x86_clflush_size = 32;
880 c->x86_phys_bits = 32;
881 c->x86_virt_bits = 32;
882 #endif
883 c->x86_cache_alignment = c->x86_clflush_size;
884 memset(&c->x86_capability, 0, sizeof c->x86_capability);
885
886 generic_identify(c);
887
888 if (this_cpu->c_identify)
889 this_cpu->c_identify(c);
890
891 /* Clear/Set all flags overriden by options, after probe */
892 for (i = 0; i < NCAPINTS; i++) {
893 c->x86_capability[i] &= ~cpu_caps_cleared[i];
894 c->x86_capability[i] |= cpu_caps_set[i];
895 }
896
897 #ifdef CONFIG_X86_64
898 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
899 #endif
900
901 /*
902 * Vendor-specific initialization. In this section we
903 * canonicalize the feature flags, meaning if there are
904 * features a certain CPU supports which CPUID doesn't
905 * tell us, CPUID claiming incorrect flags, or other bugs,
906 * we handle them here.
907 *
908 * At the end of this section, c->x86_capability better
909 * indicate the features this CPU genuinely supports!
910 */
911 if (this_cpu->c_init)
912 this_cpu->c_init(c);
913
914 /* Disable the PN if appropriate */
915 squash_the_stupid_serial_number(c);
916
917 /* Set up SMEP/SMAP */
918 setup_smep(c);
919 setup_smap(c);
920
921 /*
922 * The vendor-specific functions might have changed features.
923 * Now we do "generic changes."
924 */
925
926 /* Filter out anything that depends on CPUID levels we don't have */
927 filter_cpuid_features(c, true);
928
929 /* If the model name is still unset, do table lookup. */
930 if (!c->x86_model_id[0]) {
931 const char *p;
932 p = table_lookup_model(c);
933 if (p)
934 strcpy(c->x86_model_id, p);
935 else
936 /* Last resort... */
937 sprintf(c->x86_model_id, "%02x/%02x",
938 c->x86, c->x86_model);
939 }
940
941 #ifdef CONFIG_X86_64
942 detect_ht(c);
943 #endif
944
945 init_hypervisor(c);
946 x86_init_rdrand(c);
947 x86_init_cache_qos(c);
948
949 /*
950 * Clear/Set all flags overriden by options, need do it
951 * before following smp all cpus cap AND.
952 */
953 for (i = 0; i < NCAPINTS; i++) {
954 c->x86_capability[i] &= ~cpu_caps_cleared[i];
955 c->x86_capability[i] |= cpu_caps_set[i];
956 }
957
958 /*
959 * On SMP, boot_cpu_data holds the common feature set between
960 * all CPUs; so make sure that we indicate which features are
961 * common between the CPUs. The first time this routine gets
962 * executed, c == &boot_cpu_data.
963 */
964 if (c != &boot_cpu_data) {
965 /* AND the already accumulated flags with these */
966 for (i = 0; i < NCAPINTS; i++)
967 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
968
969 /* OR, i.e. replicate the bug flags */
970 for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
971 c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
972 }
973
974 /* Init Machine Check Exception if available. */
975 mcheck_cpu_init(c);
976
977 select_idle_routine(c);
978
979 #ifdef CONFIG_NUMA
980 numa_add_cpu(smp_processor_id());
981 #endif
982 }
983
984 /*
985 * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
986 * on 32-bit kernels:
987 */
988 #ifdef CONFIG_X86_32
989 void enable_sep_cpu(void)
990 {
991 struct tss_struct *tss;
992 int cpu;
993
994 cpu = get_cpu();
995 tss = &per_cpu(cpu_tss, cpu);
996
997 if (!boot_cpu_has(X86_FEATURE_SEP))
998 goto out;
999
1000 /*
1001 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1002 * see the big comment in struct x86_hw_tss's definition.
1003 */
1004
1005 tss->x86_tss.ss1 = __KERNEL_CS;
1006 wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1007
1008 wrmsr(MSR_IA32_SYSENTER_ESP,
1009 (unsigned long)tss + offsetofend(struct tss_struct, SYSENTER_stack),
1010 0);
1011
1012 wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1013
1014 out:
1015 put_cpu();
1016 }
1017 #endif
1018
1019 void __init identify_boot_cpu(void)
1020 {
1021 identify_cpu(&boot_cpu_data);
1022 init_amd_e400_c1e_mask();
1023 #ifdef CONFIG_X86_32
1024 sysenter_setup();
1025 enable_sep_cpu();
1026 #endif
1027 cpu_detect_tlb(&boot_cpu_data);
1028 }
1029
1030 void identify_secondary_cpu(struct cpuinfo_x86 *c)
1031 {
1032 BUG_ON(c == &boot_cpu_data);
1033 identify_cpu(c);
1034 #ifdef CONFIG_X86_32
1035 enable_sep_cpu();
1036 #endif
1037 mtrr_ap_init();
1038 }
1039
1040 struct msr_range {
1041 unsigned min;
1042 unsigned max;
1043 };
1044
1045 static const struct msr_range msr_range_array[] = {
1046 { 0x00000000, 0x00000418},
1047 { 0xc0000000, 0xc000040b},
1048 { 0xc0010000, 0xc0010142},
1049 { 0xc0011000, 0xc001103b},
1050 };
1051
1052 static void __print_cpu_msr(void)
1053 {
1054 unsigned index_min, index_max;
1055 unsigned index;
1056 u64 val;
1057 int i;
1058
1059 for (i = 0; i < ARRAY_SIZE(msr_range_array); i++) {
1060 index_min = msr_range_array[i].min;
1061 index_max = msr_range_array[i].max;
1062
1063 for (index = index_min; index < index_max; index++) {
1064 if (rdmsrl_safe(index, &val))
1065 continue;
1066 printk(KERN_INFO " MSR%08x: %016llx\n", index, val);
1067 }
1068 }
1069 }
1070
1071 static int show_msr;
1072
1073 static __init int setup_show_msr(char *arg)
1074 {
1075 int num;
1076
1077 get_option(&arg, &num);
1078
1079 if (num > 0)
1080 show_msr = num;
1081 return 1;
1082 }
1083 __setup("show_msr=", setup_show_msr);
1084
1085 static __init int setup_noclflush(char *arg)
1086 {
1087 setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
1088 setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
1089 return 1;
1090 }
1091 __setup("noclflush", setup_noclflush);
1092
1093 void print_cpu_info(struct cpuinfo_x86 *c)
1094 {
1095 const char *vendor = NULL;
1096
1097 if (c->x86_vendor < X86_VENDOR_NUM) {
1098 vendor = this_cpu->c_vendor;
1099 } else {
1100 if (c->cpuid_level >= 0)
1101 vendor = c->x86_vendor_id;
1102 }
1103
1104 if (vendor && !strstr(c->x86_model_id, vendor))
1105 printk(KERN_CONT "%s ", vendor);
1106
1107 if (c->x86_model_id[0])
1108 printk(KERN_CONT "%s", c->x86_model_id);
1109 else
1110 printk(KERN_CONT "%d86", c->x86);
1111
1112 printk(KERN_CONT " (fam: %02x, model: %02x", c->x86, c->x86_model);
1113
1114 if (c->x86_mask || c->cpuid_level >= 0)
1115 printk(KERN_CONT ", stepping: %02x)\n", c->x86_mask);
1116 else
1117 printk(KERN_CONT ")\n");
1118
1119 print_cpu_msr(c);
1120 }
1121
1122 void print_cpu_msr(struct cpuinfo_x86 *c)
1123 {
1124 if (c->cpu_index < show_msr)
1125 __print_cpu_msr();
1126 }
1127
1128 static __init int setup_disablecpuid(char *arg)
1129 {
1130 int bit;
1131
1132 if (get_option(&arg, &bit) && bit < NCAPINTS*32)
1133 setup_clear_cpu_cap(bit);
1134 else
1135 return 0;
1136
1137 return 1;
1138 }
1139 __setup("clearcpuid=", setup_disablecpuid);
1140
1141 #ifdef CONFIG_X86_64
1142 struct desc_ptr idt_descr = { NR_VECTORS * 16 - 1, (unsigned long) idt_table };
1143 struct desc_ptr debug_idt_descr = { NR_VECTORS * 16 - 1,
1144 (unsigned long) debug_idt_table };
1145
1146 DEFINE_PER_CPU_FIRST(union irq_stack_union,
1147 irq_stack_union) __aligned(PAGE_SIZE) __visible;
1148
1149 /*
1150 * The following percpu variables are hot. Align current_task to
1151 * cacheline size such that they fall in the same cacheline.
1152 */
1153 DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1154 &init_task;
1155 EXPORT_PER_CPU_SYMBOL(current_task);
1156
1157 DEFINE_PER_CPU(char *, irq_stack_ptr) =
1158 init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE - 64;
1159
1160 DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1;
1161
1162 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1163 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1164
1165 /*
1166 * Special IST stacks which the CPU switches to when it calls
1167 * an IST-marked descriptor entry. Up to 7 stacks (hardware
1168 * limit), all of them are 4K, except the debug stack which
1169 * is 8K.
1170 */
1171 static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
1172 [0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STKSZ,
1173 [DEBUG_STACK - 1] = DEBUG_STKSZ
1174 };
1175
1176 static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks
1177 [(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ + DEBUG_STKSZ]);
1178
1179 /* May not be marked __init: used by software suspend */
1180 void syscall_init(void)
1181 {
1182 /*
1183 * LSTAR and STAR live in a bit strange symbiosis.
1184 * They both write to the same internal register. STAR allows to
1185 * set CS/DS but only a 32bit target. LSTAR sets the 64bit rip.
1186 */
1187 wrmsrl(MSR_STAR, ((u64)__USER32_CS)<<48 | ((u64)__KERNEL_CS)<<32);
1188 wrmsrl(MSR_LSTAR, entry_SYSCALL_64);
1189
1190 #ifdef CONFIG_IA32_EMULATION
1191 wrmsrl(MSR_CSTAR, entry_SYSCALL_compat);
1192 /*
1193 * This only works on Intel CPUs.
1194 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
1195 * This does not cause SYSENTER to jump to the wrong location, because
1196 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
1197 */
1198 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
1199 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1200 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
1201 #else
1202 wrmsrl(MSR_CSTAR, ignore_sysret);
1203 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
1204 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1205 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
1206 #endif
1207
1208 /* Flags to clear on syscall */
1209 wrmsrl(MSR_SYSCALL_MASK,
1210 X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
1211 X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT);
1212 }
1213
1214 /*
1215 * Copies of the original ist values from the tss are only accessed during
1216 * debugging, no special alignment required.
1217 */
1218 DEFINE_PER_CPU(struct orig_ist, orig_ist);
1219
1220 static DEFINE_PER_CPU(unsigned long, debug_stack_addr);
1221 DEFINE_PER_CPU(int, debug_stack_usage);
1222
1223 int is_debug_stack(unsigned long addr)
1224 {
1225 return __this_cpu_read(debug_stack_usage) ||
1226 (addr <= __this_cpu_read(debug_stack_addr) &&
1227 addr > (__this_cpu_read(debug_stack_addr) - DEBUG_STKSZ));
1228 }
1229 NOKPROBE_SYMBOL(is_debug_stack);
1230
1231 DEFINE_PER_CPU(u32, debug_idt_ctr);
1232
1233 void debug_stack_set_zero(void)
1234 {
1235 this_cpu_inc(debug_idt_ctr);
1236 load_current_idt();
1237 }
1238 NOKPROBE_SYMBOL(debug_stack_set_zero);
1239
1240 void debug_stack_reset(void)
1241 {
1242 if (WARN_ON(!this_cpu_read(debug_idt_ctr)))
1243 return;
1244 if (this_cpu_dec_return(debug_idt_ctr) == 0)
1245 load_current_idt();
1246 }
1247 NOKPROBE_SYMBOL(debug_stack_reset);
1248
1249 #else /* CONFIG_X86_64 */
1250
1251 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1252 EXPORT_PER_CPU_SYMBOL(current_task);
1253 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1254 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1255
1256 /*
1257 * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
1258 * the top of the kernel stack. Use an extra percpu variable to track the
1259 * top of the kernel stack directly.
1260 */
1261 DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
1262 (unsigned long)&init_thread_union + THREAD_SIZE;
1263 EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
1264
1265 #ifdef CONFIG_CC_STACKPROTECTOR
1266 DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
1267 #endif
1268
1269 #endif /* CONFIG_X86_64 */
1270
1271 /*
1272 * Clear all 6 debug registers:
1273 */
1274 static void clear_all_debug_regs(void)
1275 {
1276 int i;
1277
1278 for (i = 0; i < 8; i++) {
1279 /* Ignore db4, db5 */
1280 if ((i == 4) || (i == 5))
1281 continue;
1282
1283 set_debugreg(0, i);
1284 }
1285 }
1286
1287 #ifdef CONFIG_KGDB
1288 /*
1289 * Restore debug regs if using kgdbwait and you have a kernel debugger
1290 * connection established.
1291 */
1292 static void dbg_restore_debug_regs(void)
1293 {
1294 if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1295 arch_kgdb_ops.correct_hw_break();
1296 }
1297 #else /* ! CONFIG_KGDB */
1298 #define dbg_restore_debug_regs()
1299 #endif /* ! CONFIG_KGDB */
1300
1301 static void wait_for_master_cpu(int cpu)
1302 {
1303 #ifdef CONFIG_SMP
1304 /*
1305 * wait for ACK from master CPU before continuing
1306 * with AP initialization
1307 */
1308 WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
1309 while (!cpumask_test_cpu(cpu, cpu_callout_mask))
1310 cpu_relax();
1311 #endif
1312 }
1313
1314 /*
1315 * cpu_init() initializes state that is per-CPU. Some data is already
1316 * initialized (naturally) in the bootstrap process, such as the GDT
1317 * and IDT. We reload them nevertheless, this function acts as a
1318 * 'CPU state barrier', nothing should get across.
1319 * A lot of state is already set up in PDA init for 64 bit
1320 */
1321 #ifdef CONFIG_X86_64
1322
1323 void cpu_init(void)
1324 {
1325 struct orig_ist *oist;
1326 struct task_struct *me;
1327 struct tss_struct *t;
1328 unsigned long v;
1329 int cpu = stack_smp_processor_id();
1330 int i;
1331
1332 wait_for_master_cpu(cpu);
1333
1334 /*
1335 * Initialize the CR4 shadow before doing anything that could
1336 * try to read it.
1337 */
1338 cr4_init_shadow();
1339
1340 /*
1341 * Load microcode on this cpu if a valid microcode is available.
1342 * This is early microcode loading procedure.
1343 */
1344 load_ucode_ap();
1345
1346 t = &per_cpu(cpu_tss, cpu);
1347 oist = &per_cpu(orig_ist, cpu);
1348
1349 #ifdef CONFIG_NUMA
1350 if (this_cpu_read(numa_node) == 0 &&
1351 early_cpu_to_node(cpu) != NUMA_NO_NODE)
1352 set_numa_node(early_cpu_to_node(cpu));
1353 #endif
1354
1355 me = current;
1356
1357 pr_debug("Initializing CPU#%d\n", cpu);
1358
1359 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1360
1361 /*
1362 * Initialize the per-CPU GDT with the boot GDT,
1363 * and set up the GDT descriptor:
1364 */
1365
1366 switch_to_new_gdt(cpu);
1367 loadsegment(fs, 0);
1368
1369 load_current_idt();
1370
1371 memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1372 syscall_init();
1373
1374 wrmsrl(MSR_FS_BASE, 0);
1375 wrmsrl(MSR_KERNEL_GS_BASE, 0);
1376 barrier();
1377
1378 x86_configure_nx();
1379 x2apic_setup();
1380
1381 /*
1382 * set up and load the per-CPU TSS
1383 */
1384 if (!oist->ist[0]) {
1385 char *estacks = per_cpu(exception_stacks, cpu);
1386
1387 for (v = 0; v < N_EXCEPTION_STACKS; v++) {
1388 estacks += exception_stack_sizes[v];
1389 oist->ist[v] = t->x86_tss.ist[v] =
1390 (unsigned long)estacks;
1391 if (v == DEBUG_STACK-1)
1392 per_cpu(debug_stack_addr, cpu) = (unsigned long)estacks;
1393 }
1394 }
1395
1396 t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1397
1398 /*
1399 * <= is required because the CPU will access up to
1400 * 8 bits beyond the end of the IO permission bitmap.
1401 */
1402 for (i = 0; i <= IO_BITMAP_LONGS; i++)
1403 t->io_bitmap[i] = ~0UL;
1404
1405 atomic_inc(&init_mm.mm_count);
1406 me->active_mm = &init_mm;
1407 BUG_ON(me->mm);
1408 enter_lazy_tlb(&init_mm, me);
1409
1410 load_sp0(t, &current->thread);
1411 set_tss_desc(cpu, t);
1412 load_TR_desc();
1413 load_LDT(&init_mm.context);
1414
1415 clear_all_debug_regs();
1416 dbg_restore_debug_regs();
1417
1418 fpu__init_cpu();
1419
1420 if (is_uv_system())
1421 uv_cpu_init();
1422 }
1423
1424 #else
1425
1426 void cpu_init(void)
1427 {
1428 int cpu = smp_processor_id();
1429 struct task_struct *curr = current;
1430 struct tss_struct *t = &per_cpu(cpu_tss, cpu);
1431 struct thread_struct *thread = &curr->thread;
1432
1433 wait_for_master_cpu(cpu);
1434
1435 /*
1436 * Initialize the CR4 shadow before doing anything that could
1437 * try to read it.
1438 */
1439 cr4_init_shadow();
1440
1441 show_ucode_info_early();
1442
1443 printk(KERN_INFO "Initializing CPU#%d\n", cpu);
1444
1445 if (cpu_feature_enabled(X86_FEATURE_VME) || cpu_has_tsc || cpu_has_de)
1446 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1447
1448 load_current_idt();
1449 switch_to_new_gdt(cpu);
1450
1451 /*
1452 * Set up and load the per-CPU TSS and LDT
1453 */
1454 atomic_inc(&init_mm.mm_count);
1455 curr->active_mm = &init_mm;
1456 BUG_ON(curr->mm);
1457 enter_lazy_tlb(&init_mm, curr);
1458
1459 load_sp0(t, thread);
1460 set_tss_desc(cpu, t);
1461 load_TR_desc();
1462 load_LDT(&init_mm.context);
1463
1464 t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1465
1466 #ifdef CONFIG_DOUBLEFAULT
1467 /* Set up doublefault TSS pointer in the GDT */
1468 __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
1469 #endif
1470
1471 clear_all_debug_regs();
1472 dbg_restore_debug_regs();
1473
1474 fpu__init_cpu();
1475 }
1476 #endif
1477
1478 #ifdef CONFIG_X86_DEBUG_STATIC_CPU_HAS
1479 void warn_pre_alternatives(void)
1480 {
1481 WARN(1, "You're using static_cpu_has before alternatives have run!\n");
1482 }
1483 EXPORT_SYMBOL_GPL(warn_pre_alternatives);
1484 #endif
1485
1486 inline bool __static_cpu_has_safe(u16 bit)
1487 {
1488 return boot_cpu_has(bit);
1489 }
1490 EXPORT_SYMBOL_GPL(__static_cpu_has_safe);
This page took 0.061744 seconds and 5 git commands to generate.