x86/mce: Rework cmci_rediscover() to play well with CPU hotplug
[deliverable/linux.git] / arch / x86 / kernel / cpu / common.c
1 #include <linux/bootmem.h>
2 #include <linux/linkage.h>
3 #include <linux/bitops.h>
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/percpu.h>
7 #include <linux/string.h>
8 #include <linux/delay.h>
9 #include <linux/sched.h>
10 #include <linux/init.h>
11 #include <linux/kgdb.h>
12 #include <linux/smp.h>
13 #include <linux/io.h>
14
15 #include <asm/stackprotector.h>
16 #include <asm/perf_event.h>
17 #include <asm/mmu_context.h>
18 #include <asm/archrandom.h>
19 #include <asm/hypervisor.h>
20 #include <asm/processor.h>
21 #include <asm/debugreg.h>
22 #include <asm/sections.h>
23 #include <linux/topology.h>
24 #include <linux/cpumask.h>
25 #include <asm/pgtable.h>
26 #include <linux/atomic.h>
27 #include <asm/proto.h>
28 #include <asm/setup.h>
29 #include <asm/apic.h>
30 #include <asm/desc.h>
31 #include <asm/i387.h>
32 #include <asm/fpu-internal.h>
33 #include <asm/mtrr.h>
34 #include <linux/numa.h>
35 #include <asm/asm.h>
36 #include <asm/cpu.h>
37 #include <asm/mce.h>
38 #include <asm/msr.h>
39 #include <asm/pat.h>
40 #include <asm/microcode.h>
41 #include <asm/microcode_intel.h>
42
43 #ifdef CONFIG_X86_LOCAL_APIC
44 #include <asm/uv/uv.h>
45 #endif
46
47 #include "cpu.h"
48
49 /* all of these masks are initialized in setup_cpu_local_masks() */
50 cpumask_var_t cpu_initialized_mask;
51 cpumask_var_t cpu_callout_mask;
52 cpumask_var_t cpu_callin_mask;
53
54 /* representing cpus for which sibling maps can be computed */
55 cpumask_var_t cpu_sibling_setup_mask;
56
57 /* correctly size the local cpu masks */
58 void __init setup_cpu_local_masks(void)
59 {
60 alloc_bootmem_cpumask_var(&cpu_initialized_mask);
61 alloc_bootmem_cpumask_var(&cpu_callin_mask);
62 alloc_bootmem_cpumask_var(&cpu_callout_mask);
63 alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
64 }
65
66 static void __cpuinit default_init(struct cpuinfo_x86 *c)
67 {
68 #ifdef CONFIG_X86_64
69 cpu_detect_cache_sizes(c);
70 #else
71 /* Not much we can do here... */
72 /* Check if at least it has cpuid */
73 if (c->cpuid_level == -1) {
74 /* No cpuid. It must be an ancient CPU */
75 if (c->x86 == 4)
76 strcpy(c->x86_model_id, "486");
77 else if (c->x86 == 3)
78 strcpy(c->x86_model_id, "386");
79 }
80 #endif
81 }
82
83 static const struct cpu_dev __cpuinitconst default_cpu = {
84 .c_init = default_init,
85 .c_vendor = "Unknown",
86 .c_x86_vendor = X86_VENDOR_UNKNOWN,
87 };
88
89 static const struct cpu_dev *this_cpu __cpuinitdata = &default_cpu;
90
91 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
92 #ifdef CONFIG_X86_64
93 /*
94 * We need valid kernel segments for data and code in long mode too
95 * IRET will check the segment types kkeil 2000/10/28
96 * Also sysret mandates a special GDT layout
97 *
98 * TLS descriptors are currently at a different place compared to i386.
99 * Hopefully nobody expects them at a fixed place (Wine?)
100 */
101 [GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
102 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
103 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
104 [GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
105 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
106 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
107 #else
108 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
109 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
110 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
111 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
112 /*
113 * Segments used for calling PnP BIOS have byte granularity.
114 * They code segments and data segments have fixed 64k limits,
115 * the transfer segment sizes are set at run time.
116 */
117 /* 32-bit code */
118 [GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
119 /* 16-bit code */
120 [GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
121 /* 16-bit data */
122 [GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
123 /* 16-bit data */
124 [GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(0x0092, 0, 0),
125 /* 16-bit data */
126 [GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(0x0092, 0, 0),
127 /*
128 * The APM segments have byte granularity and their bases
129 * are set at run time. All have 64k limits.
130 */
131 /* 32-bit code */
132 [GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
133 /* 16-bit code */
134 [GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
135 /* data */
136 [GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
137
138 [GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
139 [GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
140 GDT_STACK_CANARY_INIT
141 #endif
142 } };
143 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
144
145 static int __init x86_xsave_setup(char *s)
146 {
147 setup_clear_cpu_cap(X86_FEATURE_XSAVE);
148 setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
149 setup_clear_cpu_cap(X86_FEATURE_AVX);
150 setup_clear_cpu_cap(X86_FEATURE_AVX2);
151 return 1;
152 }
153 __setup("noxsave", x86_xsave_setup);
154
155 static int __init x86_xsaveopt_setup(char *s)
156 {
157 setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
158 return 1;
159 }
160 __setup("noxsaveopt", x86_xsaveopt_setup);
161
162 #ifdef CONFIG_X86_32
163 static int cachesize_override __cpuinitdata = -1;
164 static int disable_x86_serial_nr __cpuinitdata = 1;
165
166 static int __init cachesize_setup(char *str)
167 {
168 get_option(&str, &cachesize_override);
169 return 1;
170 }
171 __setup("cachesize=", cachesize_setup);
172
173 static int __init x86_fxsr_setup(char *s)
174 {
175 setup_clear_cpu_cap(X86_FEATURE_FXSR);
176 setup_clear_cpu_cap(X86_FEATURE_XMM);
177 return 1;
178 }
179 __setup("nofxsr", x86_fxsr_setup);
180
181 static int __init x86_sep_setup(char *s)
182 {
183 setup_clear_cpu_cap(X86_FEATURE_SEP);
184 return 1;
185 }
186 __setup("nosep", x86_sep_setup);
187
188 /* Standard macro to see if a specific flag is changeable */
189 static inline int flag_is_changeable_p(u32 flag)
190 {
191 u32 f1, f2;
192
193 /*
194 * Cyrix and IDT cpus allow disabling of CPUID
195 * so the code below may return different results
196 * when it is executed before and after enabling
197 * the CPUID. Add "volatile" to not allow gcc to
198 * optimize the subsequent calls to this function.
199 */
200 asm volatile ("pushfl \n\t"
201 "pushfl \n\t"
202 "popl %0 \n\t"
203 "movl %0, %1 \n\t"
204 "xorl %2, %0 \n\t"
205 "pushl %0 \n\t"
206 "popfl \n\t"
207 "pushfl \n\t"
208 "popl %0 \n\t"
209 "popfl \n\t"
210
211 : "=&r" (f1), "=&r" (f2)
212 : "ir" (flag));
213
214 return ((f1^f2) & flag) != 0;
215 }
216
217 /* Probe for the CPUID instruction */
218 int __cpuinit have_cpuid_p(void)
219 {
220 return flag_is_changeable_p(X86_EFLAGS_ID);
221 }
222
223 static void __cpuinit squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
224 {
225 unsigned long lo, hi;
226
227 if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
228 return;
229
230 /* Disable processor serial number: */
231
232 rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
233 lo |= 0x200000;
234 wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
235
236 printk(KERN_NOTICE "CPU serial number disabled.\n");
237 clear_cpu_cap(c, X86_FEATURE_PN);
238
239 /* Disabling the serial number may affect the cpuid level */
240 c->cpuid_level = cpuid_eax(0);
241 }
242
243 static int __init x86_serial_nr_setup(char *s)
244 {
245 disable_x86_serial_nr = 0;
246 return 1;
247 }
248 __setup("serialnumber", x86_serial_nr_setup);
249 #else
250 static inline int flag_is_changeable_p(u32 flag)
251 {
252 return 1;
253 }
254 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
255 {
256 }
257 #endif
258
259 static __init int setup_disable_smep(char *arg)
260 {
261 setup_clear_cpu_cap(X86_FEATURE_SMEP);
262 return 1;
263 }
264 __setup("nosmep", setup_disable_smep);
265
266 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
267 {
268 if (cpu_has(c, X86_FEATURE_SMEP))
269 set_in_cr4(X86_CR4_SMEP);
270 }
271
272 static __init int setup_disable_smap(char *arg)
273 {
274 setup_clear_cpu_cap(X86_FEATURE_SMAP);
275 return 1;
276 }
277 __setup("nosmap", setup_disable_smap);
278
279 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
280 {
281 unsigned long eflags;
282
283 /* This should have been cleared long ago */
284 raw_local_save_flags(eflags);
285 BUG_ON(eflags & X86_EFLAGS_AC);
286
287 if (cpu_has(c, X86_FEATURE_SMAP))
288 set_in_cr4(X86_CR4_SMAP);
289 }
290
291 /*
292 * Some CPU features depend on higher CPUID levels, which may not always
293 * be available due to CPUID level capping or broken virtualization
294 * software. Add those features to this table to auto-disable them.
295 */
296 struct cpuid_dependent_feature {
297 u32 feature;
298 u32 level;
299 };
300
301 static const struct cpuid_dependent_feature __cpuinitconst
302 cpuid_dependent_features[] = {
303 { X86_FEATURE_MWAIT, 0x00000005 },
304 { X86_FEATURE_DCA, 0x00000009 },
305 { X86_FEATURE_XSAVE, 0x0000000d },
306 { 0, 0 }
307 };
308
309 static void __cpuinit filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
310 {
311 const struct cpuid_dependent_feature *df;
312
313 for (df = cpuid_dependent_features; df->feature; df++) {
314
315 if (!cpu_has(c, df->feature))
316 continue;
317 /*
318 * Note: cpuid_level is set to -1 if unavailable, but
319 * extended_extended_level is set to 0 if unavailable
320 * and the legitimate extended levels are all negative
321 * when signed; hence the weird messing around with
322 * signs here...
323 */
324 if (!((s32)df->level < 0 ?
325 (u32)df->level > (u32)c->extended_cpuid_level :
326 (s32)df->level > (s32)c->cpuid_level))
327 continue;
328
329 clear_cpu_cap(c, df->feature);
330 if (!warn)
331 continue;
332
333 printk(KERN_WARNING
334 "CPU: CPU feature %s disabled, no CPUID level 0x%x\n",
335 x86_cap_flags[df->feature], df->level);
336 }
337 }
338
339 /*
340 * Naming convention should be: <Name> [(<Codename>)]
341 * This table only is used unless init_<vendor>() below doesn't set it;
342 * in particular, if CPUID levels 0x80000002..4 are supported, this
343 * isn't used
344 */
345
346 /* Look up CPU names by table lookup. */
347 static const char *__cpuinit table_lookup_model(struct cpuinfo_x86 *c)
348 {
349 const struct cpu_model_info *info;
350
351 if (c->x86_model >= 16)
352 return NULL; /* Range check */
353
354 if (!this_cpu)
355 return NULL;
356
357 info = this_cpu->c_models;
358
359 while (info && info->family) {
360 if (info->family == c->x86)
361 return info->model_names[c->x86_model];
362 info++;
363 }
364 return NULL; /* Not found */
365 }
366
367 __u32 cpu_caps_cleared[NCAPINTS] __cpuinitdata;
368 __u32 cpu_caps_set[NCAPINTS] __cpuinitdata;
369
370 void load_percpu_segment(int cpu)
371 {
372 #ifdef CONFIG_X86_32
373 loadsegment(fs, __KERNEL_PERCPU);
374 #else
375 loadsegment(gs, 0);
376 wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
377 #endif
378 load_stack_canary_segment();
379 }
380
381 /*
382 * Current gdt points %fs at the "master" per-cpu area: after this,
383 * it's on the real one.
384 */
385 void switch_to_new_gdt(int cpu)
386 {
387 struct desc_ptr gdt_descr;
388
389 gdt_descr.address = (long)get_cpu_gdt_table(cpu);
390 gdt_descr.size = GDT_SIZE - 1;
391 load_gdt(&gdt_descr);
392 /* Reload the per-cpu base */
393
394 load_percpu_segment(cpu);
395 }
396
397 static const struct cpu_dev *__cpuinitdata cpu_devs[X86_VENDOR_NUM] = {};
398
399 static void __cpuinit get_model_name(struct cpuinfo_x86 *c)
400 {
401 unsigned int *v;
402 char *p, *q;
403
404 if (c->extended_cpuid_level < 0x80000004)
405 return;
406
407 v = (unsigned int *)c->x86_model_id;
408 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
409 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
410 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
411 c->x86_model_id[48] = 0;
412
413 /*
414 * Intel chips right-justify this string for some dumb reason;
415 * undo that brain damage:
416 */
417 p = q = &c->x86_model_id[0];
418 while (*p == ' ')
419 p++;
420 if (p != q) {
421 while (*p)
422 *q++ = *p++;
423 while (q <= &c->x86_model_id[48])
424 *q++ = '\0'; /* Zero-pad the rest */
425 }
426 }
427
428 void __cpuinit cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
429 {
430 unsigned int n, dummy, ebx, ecx, edx, l2size;
431
432 n = c->extended_cpuid_level;
433
434 if (n >= 0x80000005) {
435 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
436 c->x86_cache_size = (ecx>>24) + (edx>>24);
437 #ifdef CONFIG_X86_64
438 /* On K8 L1 TLB is inclusive, so don't count it */
439 c->x86_tlbsize = 0;
440 #endif
441 }
442
443 if (n < 0x80000006) /* Some chips just has a large L1. */
444 return;
445
446 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
447 l2size = ecx >> 16;
448
449 #ifdef CONFIG_X86_64
450 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
451 #else
452 /* do processor-specific cache resizing */
453 if (this_cpu->c_size_cache)
454 l2size = this_cpu->c_size_cache(c, l2size);
455
456 /* Allow user to override all this if necessary. */
457 if (cachesize_override != -1)
458 l2size = cachesize_override;
459
460 if (l2size == 0)
461 return; /* Again, no L2 cache is possible */
462 #endif
463
464 c->x86_cache_size = l2size;
465 }
466
467 u16 __read_mostly tlb_lli_4k[NR_INFO];
468 u16 __read_mostly tlb_lli_2m[NR_INFO];
469 u16 __read_mostly tlb_lli_4m[NR_INFO];
470 u16 __read_mostly tlb_lld_4k[NR_INFO];
471 u16 __read_mostly tlb_lld_2m[NR_INFO];
472 u16 __read_mostly tlb_lld_4m[NR_INFO];
473
474 /*
475 * tlb_flushall_shift shows the balance point in replacing cr3 write
476 * with multiple 'invlpg'. It will do this replacement when
477 * flush_tlb_lines <= active_lines/2^tlb_flushall_shift.
478 * If tlb_flushall_shift is -1, means the replacement will be disabled.
479 */
480 s8 __read_mostly tlb_flushall_shift = -1;
481
482 void __cpuinit cpu_detect_tlb(struct cpuinfo_x86 *c)
483 {
484 if (this_cpu->c_detect_tlb)
485 this_cpu->c_detect_tlb(c);
486
487 printk(KERN_INFO "Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n" \
488 "Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d\n" \
489 "tlb_flushall_shift: %d\n",
490 tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
491 tlb_lli_4m[ENTRIES], tlb_lld_4k[ENTRIES],
492 tlb_lld_2m[ENTRIES], tlb_lld_4m[ENTRIES],
493 tlb_flushall_shift);
494 }
495
496 void __cpuinit detect_ht(struct cpuinfo_x86 *c)
497 {
498 #ifdef CONFIG_X86_HT
499 u32 eax, ebx, ecx, edx;
500 int index_msb, core_bits;
501 static bool printed;
502
503 if (!cpu_has(c, X86_FEATURE_HT))
504 return;
505
506 if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
507 goto out;
508
509 if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
510 return;
511
512 cpuid(1, &eax, &ebx, &ecx, &edx);
513
514 smp_num_siblings = (ebx & 0xff0000) >> 16;
515
516 if (smp_num_siblings == 1) {
517 printk_once(KERN_INFO "CPU0: Hyper-Threading is disabled\n");
518 goto out;
519 }
520
521 if (smp_num_siblings <= 1)
522 goto out;
523
524 index_msb = get_count_order(smp_num_siblings);
525 c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
526
527 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
528
529 index_msb = get_count_order(smp_num_siblings);
530
531 core_bits = get_count_order(c->x86_max_cores);
532
533 c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
534 ((1 << core_bits) - 1);
535
536 out:
537 if (!printed && (c->x86_max_cores * smp_num_siblings) > 1) {
538 printk(KERN_INFO "CPU: Physical Processor ID: %d\n",
539 c->phys_proc_id);
540 printk(KERN_INFO "CPU: Processor Core ID: %d\n",
541 c->cpu_core_id);
542 printed = 1;
543 }
544 #endif
545 }
546
547 static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c)
548 {
549 char *v = c->x86_vendor_id;
550 int i;
551
552 for (i = 0; i < X86_VENDOR_NUM; i++) {
553 if (!cpu_devs[i])
554 break;
555
556 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
557 (cpu_devs[i]->c_ident[1] &&
558 !strcmp(v, cpu_devs[i]->c_ident[1]))) {
559
560 this_cpu = cpu_devs[i];
561 c->x86_vendor = this_cpu->c_x86_vendor;
562 return;
563 }
564 }
565
566 printk_once(KERN_ERR
567 "CPU: vendor_id '%s' unknown, using generic init.\n" \
568 "CPU: Your system may be unstable.\n", v);
569
570 c->x86_vendor = X86_VENDOR_UNKNOWN;
571 this_cpu = &default_cpu;
572 }
573
574 void __cpuinit cpu_detect(struct cpuinfo_x86 *c)
575 {
576 /* Get vendor name */
577 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
578 (unsigned int *)&c->x86_vendor_id[0],
579 (unsigned int *)&c->x86_vendor_id[8],
580 (unsigned int *)&c->x86_vendor_id[4]);
581
582 c->x86 = 4;
583 /* Intel-defined flags: level 0x00000001 */
584 if (c->cpuid_level >= 0x00000001) {
585 u32 junk, tfms, cap0, misc;
586
587 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
588 c->x86 = (tfms >> 8) & 0xf;
589 c->x86_model = (tfms >> 4) & 0xf;
590 c->x86_mask = tfms & 0xf;
591
592 if (c->x86 == 0xf)
593 c->x86 += (tfms >> 20) & 0xff;
594 if (c->x86 >= 0x6)
595 c->x86_model += ((tfms >> 16) & 0xf) << 4;
596
597 if (cap0 & (1<<19)) {
598 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
599 c->x86_cache_alignment = c->x86_clflush_size;
600 }
601 }
602 }
603
604 void __cpuinit get_cpu_cap(struct cpuinfo_x86 *c)
605 {
606 u32 tfms, xlvl;
607 u32 ebx;
608
609 /* Intel-defined flags: level 0x00000001 */
610 if (c->cpuid_level >= 0x00000001) {
611 u32 capability, excap;
612
613 cpuid(0x00000001, &tfms, &ebx, &excap, &capability);
614 c->x86_capability[0] = capability;
615 c->x86_capability[4] = excap;
616 }
617
618 /* Additional Intel-defined flags: level 0x00000007 */
619 if (c->cpuid_level >= 0x00000007) {
620 u32 eax, ebx, ecx, edx;
621
622 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
623
624 c->x86_capability[9] = ebx;
625 }
626
627 /* AMD-defined flags: level 0x80000001 */
628 xlvl = cpuid_eax(0x80000000);
629 c->extended_cpuid_level = xlvl;
630
631 if ((xlvl & 0xffff0000) == 0x80000000) {
632 if (xlvl >= 0x80000001) {
633 c->x86_capability[1] = cpuid_edx(0x80000001);
634 c->x86_capability[6] = cpuid_ecx(0x80000001);
635 }
636 }
637
638 if (c->extended_cpuid_level >= 0x80000008) {
639 u32 eax = cpuid_eax(0x80000008);
640
641 c->x86_virt_bits = (eax >> 8) & 0xff;
642 c->x86_phys_bits = eax & 0xff;
643 }
644 #ifdef CONFIG_X86_32
645 else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
646 c->x86_phys_bits = 36;
647 #endif
648
649 if (c->extended_cpuid_level >= 0x80000007)
650 c->x86_power = cpuid_edx(0x80000007);
651
652 init_scattered_cpuid_features(c);
653 }
654
655 static void __cpuinit identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
656 {
657 #ifdef CONFIG_X86_32
658 int i;
659
660 /*
661 * First of all, decide if this is a 486 or higher
662 * It's a 486 if we can modify the AC flag
663 */
664 if (flag_is_changeable_p(X86_EFLAGS_AC))
665 c->x86 = 4;
666 else
667 c->x86 = 3;
668
669 for (i = 0; i < X86_VENDOR_NUM; i++)
670 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
671 c->x86_vendor_id[0] = 0;
672 cpu_devs[i]->c_identify(c);
673 if (c->x86_vendor_id[0]) {
674 get_cpu_vendor(c);
675 break;
676 }
677 }
678 #endif
679 }
680
681 /*
682 * Do minimum CPU detection early.
683 * Fields really needed: vendor, cpuid_level, family, model, mask,
684 * cache alignment.
685 * The others are not touched to avoid unwanted side effects.
686 *
687 * WARNING: this function is only called on the BP. Don't add code here
688 * that is supposed to run on all CPUs.
689 */
690 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
691 {
692 #ifdef CONFIG_X86_64
693 c->x86_clflush_size = 64;
694 c->x86_phys_bits = 36;
695 c->x86_virt_bits = 48;
696 #else
697 c->x86_clflush_size = 32;
698 c->x86_phys_bits = 32;
699 c->x86_virt_bits = 32;
700 #endif
701 c->x86_cache_alignment = c->x86_clflush_size;
702
703 memset(&c->x86_capability, 0, sizeof c->x86_capability);
704 c->extended_cpuid_level = 0;
705
706 if (!have_cpuid_p())
707 identify_cpu_without_cpuid(c);
708
709 /* cyrix could have cpuid enabled via c_identify()*/
710 if (!have_cpuid_p())
711 return;
712
713 cpu_detect(c);
714
715 get_cpu_vendor(c);
716
717 get_cpu_cap(c);
718
719 if (this_cpu->c_early_init)
720 this_cpu->c_early_init(c);
721
722 c->cpu_index = 0;
723 filter_cpuid_features(c, false);
724
725 if (this_cpu->c_bsp_init)
726 this_cpu->c_bsp_init(c);
727 }
728
729 void __init early_cpu_init(void)
730 {
731 const struct cpu_dev *const *cdev;
732 int count = 0;
733
734 #ifdef CONFIG_PROCESSOR_SELECT
735 printk(KERN_INFO "KERNEL supported cpus:\n");
736 #endif
737
738 for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
739 const struct cpu_dev *cpudev = *cdev;
740
741 if (count >= X86_VENDOR_NUM)
742 break;
743 cpu_devs[count] = cpudev;
744 count++;
745
746 #ifdef CONFIG_PROCESSOR_SELECT
747 {
748 unsigned int j;
749
750 for (j = 0; j < 2; j++) {
751 if (!cpudev->c_ident[j])
752 continue;
753 printk(KERN_INFO " %s %s\n", cpudev->c_vendor,
754 cpudev->c_ident[j]);
755 }
756 }
757 #endif
758 }
759 early_identify_cpu(&boot_cpu_data);
760 }
761
762 /*
763 * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
764 * unfortunately, that's not true in practice because of early VIA
765 * chips and (more importantly) broken virtualizers that are not easy
766 * to detect. In the latter case it doesn't even *fail* reliably, so
767 * probing for it doesn't even work. Disable it completely on 32-bit
768 * unless we can find a reliable way to detect all the broken cases.
769 * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
770 */
771 static void __cpuinit detect_nopl(struct cpuinfo_x86 *c)
772 {
773 #ifdef CONFIG_X86_32
774 clear_cpu_cap(c, X86_FEATURE_NOPL);
775 #else
776 set_cpu_cap(c, X86_FEATURE_NOPL);
777 #endif
778 }
779
780 static void __cpuinit generic_identify(struct cpuinfo_x86 *c)
781 {
782 c->extended_cpuid_level = 0;
783
784 if (!have_cpuid_p())
785 identify_cpu_without_cpuid(c);
786
787 /* cyrix could have cpuid enabled via c_identify()*/
788 if (!have_cpuid_p())
789 return;
790
791 cpu_detect(c);
792
793 get_cpu_vendor(c);
794
795 get_cpu_cap(c);
796
797 if (c->cpuid_level >= 0x00000001) {
798 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
799 #ifdef CONFIG_X86_32
800 # ifdef CONFIG_X86_HT
801 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
802 # else
803 c->apicid = c->initial_apicid;
804 # endif
805 #endif
806 c->phys_proc_id = c->initial_apicid;
807 }
808
809 get_model_name(c); /* Default name */
810
811 detect_nopl(c);
812 }
813
814 /*
815 * This does the hard work of actually picking apart the CPU stuff...
816 */
817 static void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
818 {
819 int i;
820
821 c->loops_per_jiffy = loops_per_jiffy;
822 c->x86_cache_size = -1;
823 c->x86_vendor = X86_VENDOR_UNKNOWN;
824 c->x86_model = c->x86_mask = 0; /* So far unknown... */
825 c->x86_vendor_id[0] = '\0'; /* Unset */
826 c->x86_model_id[0] = '\0'; /* Unset */
827 c->x86_max_cores = 1;
828 c->x86_coreid_bits = 0;
829 #ifdef CONFIG_X86_64
830 c->x86_clflush_size = 64;
831 c->x86_phys_bits = 36;
832 c->x86_virt_bits = 48;
833 #else
834 c->cpuid_level = -1; /* CPUID not detected */
835 c->x86_clflush_size = 32;
836 c->x86_phys_bits = 32;
837 c->x86_virt_bits = 32;
838 #endif
839 c->x86_cache_alignment = c->x86_clflush_size;
840 memset(&c->x86_capability, 0, sizeof c->x86_capability);
841
842 generic_identify(c);
843
844 if (this_cpu->c_identify)
845 this_cpu->c_identify(c);
846
847 /* Clear/Set all flags overriden by options, after probe */
848 for (i = 0; i < NCAPINTS; i++) {
849 c->x86_capability[i] &= ~cpu_caps_cleared[i];
850 c->x86_capability[i] |= cpu_caps_set[i];
851 }
852
853 #ifdef CONFIG_X86_64
854 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
855 #endif
856
857 /*
858 * Vendor-specific initialization. In this section we
859 * canonicalize the feature flags, meaning if there are
860 * features a certain CPU supports which CPUID doesn't
861 * tell us, CPUID claiming incorrect flags, or other bugs,
862 * we handle them here.
863 *
864 * At the end of this section, c->x86_capability better
865 * indicate the features this CPU genuinely supports!
866 */
867 if (this_cpu->c_init)
868 this_cpu->c_init(c);
869
870 /* Disable the PN if appropriate */
871 squash_the_stupid_serial_number(c);
872
873 /* Set up SMEP/SMAP */
874 setup_smep(c);
875 setup_smap(c);
876
877 /*
878 * The vendor-specific functions might have changed features.
879 * Now we do "generic changes."
880 */
881
882 /* Filter out anything that depends on CPUID levels we don't have */
883 filter_cpuid_features(c, true);
884
885 /* If the model name is still unset, do table lookup. */
886 if (!c->x86_model_id[0]) {
887 const char *p;
888 p = table_lookup_model(c);
889 if (p)
890 strcpy(c->x86_model_id, p);
891 else
892 /* Last resort... */
893 sprintf(c->x86_model_id, "%02x/%02x",
894 c->x86, c->x86_model);
895 }
896
897 #ifdef CONFIG_X86_64
898 detect_ht(c);
899 #endif
900
901 init_hypervisor(c);
902 x86_init_rdrand(c);
903
904 /*
905 * Clear/Set all flags overriden by options, need do it
906 * before following smp all cpus cap AND.
907 */
908 for (i = 0; i < NCAPINTS; i++) {
909 c->x86_capability[i] &= ~cpu_caps_cleared[i];
910 c->x86_capability[i] |= cpu_caps_set[i];
911 }
912
913 /*
914 * On SMP, boot_cpu_data holds the common feature set between
915 * all CPUs; so make sure that we indicate which features are
916 * common between the CPUs. The first time this routine gets
917 * executed, c == &boot_cpu_data.
918 */
919 if (c != &boot_cpu_data) {
920 /* AND the already accumulated flags with these */
921 for (i = 0; i < NCAPINTS; i++)
922 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
923 }
924
925 /* Init Machine Check Exception if available. */
926 mcheck_cpu_init(c);
927
928 select_idle_routine(c);
929
930 #ifdef CONFIG_NUMA
931 numa_add_cpu(smp_processor_id());
932 #endif
933 }
934
935 #ifdef CONFIG_X86_64
936 static void vgetcpu_set_mode(void)
937 {
938 if (cpu_has(&boot_cpu_data, X86_FEATURE_RDTSCP))
939 vgetcpu_mode = VGETCPU_RDTSCP;
940 else
941 vgetcpu_mode = VGETCPU_LSL;
942 }
943 #endif
944
945 void __init identify_boot_cpu(void)
946 {
947 identify_cpu(&boot_cpu_data);
948 init_amd_e400_c1e_mask();
949 #ifdef CONFIG_X86_32
950 sysenter_setup();
951 enable_sep_cpu();
952 #else
953 vgetcpu_set_mode();
954 #endif
955 cpu_detect_tlb(&boot_cpu_data);
956 }
957
958 void __cpuinit identify_secondary_cpu(struct cpuinfo_x86 *c)
959 {
960 BUG_ON(c == &boot_cpu_data);
961 identify_cpu(c);
962 #ifdef CONFIG_X86_32
963 enable_sep_cpu();
964 #endif
965 mtrr_ap_init();
966 }
967
968 struct msr_range {
969 unsigned min;
970 unsigned max;
971 };
972
973 static const struct msr_range msr_range_array[] __cpuinitconst = {
974 { 0x00000000, 0x00000418},
975 { 0xc0000000, 0xc000040b},
976 { 0xc0010000, 0xc0010142},
977 { 0xc0011000, 0xc001103b},
978 };
979
980 static void __cpuinit __print_cpu_msr(void)
981 {
982 unsigned index_min, index_max;
983 unsigned index;
984 u64 val;
985 int i;
986
987 for (i = 0; i < ARRAY_SIZE(msr_range_array); i++) {
988 index_min = msr_range_array[i].min;
989 index_max = msr_range_array[i].max;
990
991 for (index = index_min; index < index_max; index++) {
992 if (rdmsrl_safe(index, &val))
993 continue;
994 printk(KERN_INFO " MSR%08x: %016llx\n", index, val);
995 }
996 }
997 }
998
999 static int show_msr __cpuinitdata;
1000
1001 static __init int setup_show_msr(char *arg)
1002 {
1003 int num;
1004
1005 get_option(&arg, &num);
1006
1007 if (num > 0)
1008 show_msr = num;
1009 return 1;
1010 }
1011 __setup("show_msr=", setup_show_msr);
1012
1013 static __init int setup_noclflush(char *arg)
1014 {
1015 setup_clear_cpu_cap(X86_FEATURE_CLFLSH);
1016 return 1;
1017 }
1018 __setup("noclflush", setup_noclflush);
1019
1020 void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
1021 {
1022 const char *vendor = NULL;
1023
1024 if (c->x86_vendor < X86_VENDOR_NUM) {
1025 vendor = this_cpu->c_vendor;
1026 } else {
1027 if (c->cpuid_level >= 0)
1028 vendor = c->x86_vendor_id;
1029 }
1030
1031 if (vendor && !strstr(c->x86_model_id, vendor))
1032 printk(KERN_CONT "%s ", vendor);
1033
1034 if (c->x86_model_id[0])
1035 printk(KERN_CONT "%s", strim(c->x86_model_id));
1036 else
1037 printk(KERN_CONT "%d86", c->x86);
1038
1039 printk(KERN_CONT " (fam: %02x, model: %02x", c->x86, c->x86_model);
1040
1041 if (c->x86_mask || c->cpuid_level >= 0)
1042 printk(KERN_CONT ", stepping: %02x)\n", c->x86_mask);
1043 else
1044 printk(KERN_CONT ")\n");
1045
1046 print_cpu_msr(c);
1047 }
1048
1049 void __cpuinit print_cpu_msr(struct cpuinfo_x86 *c)
1050 {
1051 if (c->cpu_index < show_msr)
1052 __print_cpu_msr();
1053 }
1054
1055 static __init int setup_disablecpuid(char *arg)
1056 {
1057 int bit;
1058
1059 if (get_option(&arg, &bit) && bit < NCAPINTS*32)
1060 setup_clear_cpu_cap(bit);
1061 else
1062 return 0;
1063
1064 return 1;
1065 }
1066 __setup("clearcpuid=", setup_disablecpuid);
1067
1068 #ifdef CONFIG_X86_64
1069 struct desc_ptr idt_descr = { NR_VECTORS * 16 - 1, (unsigned long) idt_table };
1070 struct desc_ptr nmi_idt_descr = { NR_VECTORS * 16 - 1,
1071 (unsigned long) nmi_idt_table };
1072
1073 DEFINE_PER_CPU_FIRST(union irq_stack_union,
1074 irq_stack_union) __aligned(PAGE_SIZE);
1075
1076 /*
1077 * The following four percpu variables are hot. Align current_task to
1078 * cacheline size such that all four fall in the same cacheline.
1079 */
1080 DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1081 &init_task;
1082 EXPORT_PER_CPU_SYMBOL(current_task);
1083
1084 DEFINE_PER_CPU(unsigned long, kernel_stack) =
1085 (unsigned long)&init_thread_union - KERNEL_STACK_OFFSET + THREAD_SIZE;
1086 EXPORT_PER_CPU_SYMBOL(kernel_stack);
1087
1088 DEFINE_PER_CPU(char *, irq_stack_ptr) =
1089 init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE - 64;
1090
1091 DEFINE_PER_CPU(unsigned int, irq_count) = -1;
1092
1093 DEFINE_PER_CPU(struct task_struct *, fpu_owner_task);
1094
1095 /*
1096 * Special IST stacks which the CPU switches to when it calls
1097 * an IST-marked descriptor entry. Up to 7 stacks (hardware
1098 * limit), all of them are 4K, except the debug stack which
1099 * is 8K.
1100 */
1101 static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
1102 [0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STKSZ,
1103 [DEBUG_STACK - 1] = DEBUG_STKSZ
1104 };
1105
1106 static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks
1107 [(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ + DEBUG_STKSZ]);
1108
1109 /* May not be marked __init: used by software suspend */
1110 void syscall_init(void)
1111 {
1112 /*
1113 * LSTAR and STAR live in a bit strange symbiosis.
1114 * They both write to the same internal register. STAR allows to
1115 * set CS/DS but only a 32bit target. LSTAR sets the 64bit rip.
1116 */
1117 wrmsrl(MSR_STAR, ((u64)__USER32_CS)<<48 | ((u64)__KERNEL_CS)<<32);
1118 wrmsrl(MSR_LSTAR, system_call);
1119 wrmsrl(MSR_CSTAR, ignore_sysret);
1120
1121 #ifdef CONFIG_IA32_EMULATION
1122 syscall32_cpu_init();
1123 #endif
1124
1125 /* Flags to clear on syscall */
1126 wrmsrl(MSR_SYSCALL_MASK,
1127 X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
1128 X86_EFLAGS_IOPL|X86_EFLAGS_AC);
1129 }
1130
1131 /*
1132 * Copies of the original ist values from the tss are only accessed during
1133 * debugging, no special alignment required.
1134 */
1135 DEFINE_PER_CPU(struct orig_ist, orig_ist);
1136
1137 static DEFINE_PER_CPU(unsigned long, debug_stack_addr);
1138 DEFINE_PER_CPU(int, debug_stack_usage);
1139
1140 int is_debug_stack(unsigned long addr)
1141 {
1142 return __get_cpu_var(debug_stack_usage) ||
1143 (addr <= __get_cpu_var(debug_stack_addr) &&
1144 addr > (__get_cpu_var(debug_stack_addr) - DEBUG_STKSZ));
1145 }
1146
1147 static DEFINE_PER_CPU(u32, debug_stack_use_ctr);
1148
1149 void debug_stack_set_zero(void)
1150 {
1151 this_cpu_inc(debug_stack_use_ctr);
1152 load_idt((const struct desc_ptr *)&nmi_idt_descr);
1153 }
1154
1155 void debug_stack_reset(void)
1156 {
1157 if (WARN_ON(!this_cpu_read(debug_stack_use_ctr)))
1158 return;
1159 if (this_cpu_dec_return(debug_stack_use_ctr) == 0)
1160 load_idt((const struct desc_ptr *)&idt_descr);
1161 }
1162
1163 #else /* CONFIG_X86_64 */
1164
1165 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1166 EXPORT_PER_CPU_SYMBOL(current_task);
1167 DEFINE_PER_CPU(struct task_struct *, fpu_owner_task);
1168
1169 #ifdef CONFIG_CC_STACKPROTECTOR
1170 DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
1171 #endif
1172
1173 #endif /* CONFIG_X86_64 */
1174
1175 /*
1176 * Clear all 6 debug registers:
1177 */
1178 static void clear_all_debug_regs(void)
1179 {
1180 int i;
1181
1182 for (i = 0; i < 8; i++) {
1183 /* Ignore db4, db5 */
1184 if ((i == 4) || (i == 5))
1185 continue;
1186
1187 set_debugreg(0, i);
1188 }
1189 }
1190
1191 #ifdef CONFIG_KGDB
1192 /*
1193 * Restore debug regs if using kgdbwait and you have a kernel debugger
1194 * connection established.
1195 */
1196 static void dbg_restore_debug_regs(void)
1197 {
1198 if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1199 arch_kgdb_ops.correct_hw_break();
1200 }
1201 #else /* ! CONFIG_KGDB */
1202 #define dbg_restore_debug_regs()
1203 #endif /* ! CONFIG_KGDB */
1204
1205 /*
1206 * cpu_init() initializes state that is per-CPU. Some data is already
1207 * initialized (naturally) in the bootstrap process, such as the GDT
1208 * and IDT. We reload them nevertheless, this function acts as a
1209 * 'CPU state barrier', nothing should get across.
1210 * A lot of state is already set up in PDA init for 64 bit
1211 */
1212 #ifdef CONFIG_X86_64
1213
1214 void __cpuinit cpu_init(void)
1215 {
1216 struct orig_ist *oist;
1217 struct task_struct *me;
1218 struct tss_struct *t;
1219 unsigned long v;
1220 int cpu;
1221 int i;
1222
1223 /*
1224 * Load microcode on this cpu if a valid microcode is available.
1225 * This is early microcode loading procedure.
1226 */
1227 load_ucode_ap();
1228
1229 cpu = stack_smp_processor_id();
1230 t = &per_cpu(init_tss, cpu);
1231 oist = &per_cpu(orig_ist, cpu);
1232
1233 #ifdef CONFIG_NUMA
1234 if (this_cpu_read(numa_node) == 0 &&
1235 early_cpu_to_node(cpu) != NUMA_NO_NODE)
1236 set_numa_node(early_cpu_to_node(cpu));
1237 #endif
1238
1239 me = current;
1240
1241 if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask))
1242 panic("CPU#%d already initialized!\n", cpu);
1243
1244 pr_debug("Initializing CPU#%d\n", cpu);
1245
1246 clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1247
1248 /*
1249 * Initialize the per-CPU GDT with the boot GDT,
1250 * and set up the GDT descriptor:
1251 */
1252
1253 switch_to_new_gdt(cpu);
1254 loadsegment(fs, 0);
1255
1256 load_idt((const struct desc_ptr *)&idt_descr);
1257
1258 memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1259 syscall_init();
1260
1261 wrmsrl(MSR_FS_BASE, 0);
1262 wrmsrl(MSR_KERNEL_GS_BASE, 0);
1263 barrier();
1264
1265 x86_configure_nx();
1266 enable_x2apic();
1267
1268 /*
1269 * set up and load the per-CPU TSS
1270 */
1271 if (!oist->ist[0]) {
1272 char *estacks = per_cpu(exception_stacks, cpu);
1273
1274 for (v = 0; v < N_EXCEPTION_STACKS; v++) {
1275 estacks += exception_stack_sizes[v];
1276 oist->ist[v] = t->x86_tss.ist[v] =
1277 (unsigned long)estacks;
1278 if (v == DEBUG_STACK-1)
1279 per_cpu(debug_stack_addr, cpu) = (unsigned long)estacks;
1280 }
1281 }
1282
1283 t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1284
1285 /*
1286 * <= is required because the CPU will access up to
1287 * 8 bits beyond the end of the IO permission bitmap.
1288 */
1289 for (i = 0; i <= IO_BITMAP_LONGS; i++)
1290 t->io_bitmap[i] = ~0UL;
1291
1292 atomic_inc(&init_mm.mm_count);
1293 me->active_mm = &init_mm;
1294 BUG_ON(me->mm);
1295 enter_lazy_tlb(&init_mm, me);
1296
1297 load_sp0(t, &current->thread);
1298 set_tss_desc(cpu, t);
1299 load_TR_desc();
1300 load_LDT(&init_mm.context);
1301
1302 clear_all_debug_regs();
1303 dbg_restore_debug_regs();
1304
1305 fpu_init();
1306
1307 if (is_uv_system())
1308 uv_cpu_init();
1309 }
1310
1311 #else
1312
1313 void __cpuinit cpu_init(void)
1314 {
1315 int cpu = smp_processor_id();
1316 struct task_struct *curr = current;
1317 struct tss_struct *t = &per_cpu(init_tss, cpu);
1318 struct thread_struct *thread = &curr->thread;
1319
1320 show_ucode_info_early();
1321
1322 if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask)) {
1323 printk(KERN_WARNING "CPU#%d already initialized!\n", cpu);
1324 for (;;)
1325 local_irq_enable();
1326 }
1327
1328 printk(KERN_INFO "Initializing CPU#%d\n", cpu);
1329
1330 if (cpu_has_vme || cpu_has_tsc || cpu_has_de)
1331 clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1332
1333 load_idt(&idt_descr);
1334 switch_to_new_gdt(cpu);
1335
1336 /*
1337 * Set up and load the per-CPU TSS and LDT
1338 */
1339 atomic_inc(&init_mm.mm_count);
1340 curr->active_mm = &init_mm;
1341 BUG_ON(curr->mm);
1342 enter_lazy_tlb(&init_mm, curr);
1343
1344 load_sp0(t, thread);
1345 set_tss_desc(cpu, t);
1346 load_TR_desc();
1347 load_LDT(&init_mm.context);
1348
1349 t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1350
1351 #ifdef CONFIG_DOUBLEFAULT
1352 /* Set up doublefault TSS pointer in the GDT */
1353 __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
1354 #endif
1355
1356 clear_all_debug_regs();
1357 dbg_restore_debug_regs();
1358
1359 fpu_init();
1360 }
1361 #endif
This page took 0.059371 seconds and 5 git commands to generate.