Merge tag 'modules-next-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / arch / x86 / kernel / cpu / common.c
1 #include <linux/bootmem.h>
2 #include <linux/linkage.h>
3 #include <linux/bitops.h>
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/percpu.h>
7 #include <linux/string.h>
8 #include <linux/delay.h>
9 #include <linux/sched.h>
10 #include <linux/init.h>
11 #include <linux/kprobes.h>
12 #include <linux/kgdb.h>
13 #include <linux/smp.h>
14 #include <linux/io.h>
15
16 #include <asm/stackprotector.h>
17 #include <asm/perf_event.h>
18 #include <asm/mmu_context.h>
19 #include <asm/archrandom.h>
20 #include <asm/hypervisor.h>
21 #include <asm/processor.h>
22 #include <asm/tlbflush.h>
23 #include <asm/debugreg.h>
24 #include <asm/sections.h>
25 #include <asm/vsyscall.h>
26 #include <linux/topology.h>
27 #include <linux/cpumask.h>
28 #include <asm/pgtable.h>
29 #include <linux/atomic.h>
30 #include <asm/proto.h>
31 #include <asm/setup.h>
32 #include <asm/apic.h>
33 #include <asm/desc.h>
34 #include <asm/i387.h>
35 #include <asm/fpu-internal.h>
36 #include <asm/mtrr.h>
37 #include <linux/numa.h>
38 #include <asm/asm.h>
39 #include <asm/cpu.h>
40 #include <asm/mce.h>
41 #include <asm/msr.h>
42 #include <asm/pat.h>
43 #include <asm/microcode.h>
44 #include <asm/microcode_intel.h>
45
46 #ifdef CONFIG_X86_LOCAL_APIC
47 #include <asm/uv/uv.h>
48 #endif
49
50 #include "cpu.h"
51
52 /* all of these masks are initialized in setup_cpu_local_masks() */
53 cpumask_var_t cpu_initialized_mask;
54 cpumask_var_t cpu_callout_mask;
55 cpumask_var_t cpu_callin_mask;
56
57 /* representing cpus for which sibling maps can be computed */
58 cpumask_var_t cpu_sibling_setup_mask;
59
60 /* correctly size the local cpu masks */
61 void __init setup_cpu_local_masks(void)
62 {
63 alloc_bootmem_cpumask_var(&cpu_initialized_mask);
64 alloc_bootmem_cpumask_var(&cpu_callin_mask);
65 alloc_bootmem_cpumask_var(&cpu_callout_mask);
66 alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
67 }
68
69 static void default_init(struct cpuinfo_x86 *c)
70 {
71 #ifdef CONFIG_X86_64
72 cpu_detect_cache_sizes(c);
73 #else
74 /* Not much we can do here... */
75 /* Check if at least it has cpuid */
76 if (c->cpuid_level == -1) {
77 /* No cpuid. It must be an ancient CPU */
78 if (c->x86 == 4)
79 strcpy(c->x86_model_id, "486");
80 else if (c->x86 == 3)
81 strcpy(c->x86_model_id, "386");
82 }
83 #endif
84 }
85
86 static const struct cpu_dev default_cpu = {
87 .c_init = default_init,
88 .c_vendor = "Unknown",
89 .c_x86_vendor = X86_VENDOR_UNKNOWN,
90 };
91
92 static const struct cpu_dev *this_cpu = &default_cpu;
93
94 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
95 #ifdef CONFIG_X86_64
96 /*
97 * We need valid kernel segments for data and code in long mode too
98 * IRET will check the segment types kkeil 2000/10/28
99 * Also sysret mandates a special GDT layout
100 *
101 * TLS descriptors are currently at a different place compared to i386.
102 * Hopefully nobody expects them at a fixed place (Wine?)
103 */
104 [GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
105 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
106 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
107 [GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
108 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
109 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
110 #else
111 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
112 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
113 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
114 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
115 /*
116 * Segments used for calling PnP BIOS have byte granularity.
117 * They code segments and data segments have fixed 64k limits,
118 * the transfer segment sizes are set at run time.
119 */
120 /* 32-bit code */
121 [GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
122 /* 16-bit code */
123 [GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
124 /* 16-bit data */
125 [GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
126 /* 16-bit data */
127 [GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(0x0092, 0, 0),
128 /* 16-bit data */
129 [GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(0x0092, 0, 0),
130 /*
131 * The APM segments have byte granularity and their bases
132 * are set at run time. All have 64k limits.
133 */
134 /* 32-bit code */
135 [GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
136 /* 16-bit code */
137 [GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
138 /* data */
139 [GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
140
141 [GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
142 [GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
143 GDT_STACK_CANARY_INIT
144 #endif
145 } };
146 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
147
148 static int __init x86_xsave_setup(char *s)
149 {
150 if (strlen(s))
151 return 0;
152 setup_clear_cpu_cap(X86_FEATURE_XSAVE);
153 setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
154 setup_clear_cpu_cap(X86_FEATURE_XSAVES);
155 setup_clear_cpu_cap(X86_FEATURE_AVX);
156 setup_clear_cpu_cap(X86_FEATURE_AVX2);
157 return 1;
158 }
159 __setup("noxsave", x86_xsave_setup);
160
161 static int __init x86_xsaveopt_setup(char *s)
162 {
163 setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
164 return 1;
165 }
166 __setup("noxsaveopt", x86_xsaveopt_setup);
167
168 static int __init x86_xsaves_setup(char *s)
169 {
170 setup_clear_cpu_cap(X86_FEATURE_XSAVES);
171 return 1;
172 }
173 __setup("noxsaves", x86_xsaves_setup);
174
175 #ifdef CONFIG_X86_32
176 static int cachesize_override = -1;
177 static int disable_x86_serial_nr = 1;
178
179 static int __init cachesize_setup(char *str)
180 {
181 get_option(&str, &cachesize_override);
182 return 1;
183 }
184 __setup("cachesize=", cachesize_setup);
185
186 static int __init x86_fxsr_setup(char *s)
187 {
188 setup_clear_cpu_cap(X86_FEATURE_FXSR);
189 setup_clear_cpu_cap(X86_FEATURE_XMM);
190 return 1;
191 }
192 __setup("nofxsr", x86_fxsr_setup);
193
194 static int __init x86_sep_setup(char *s)
195 {
196 setup_clear_cpu_cap(X86_FEATURE_SEP);
197 return 1;
198 }
199 __setup("nosep", x86_sep_setup);
200
201 /* Standard macro to see if a specific flag is changeable */
202 static inline int flag_is_changeable_p(u32 flag)
203 {
204 u32 f1, f2;
205
206 /*
207 * Cyrix and IDT cpus allow disabling of CPUID
208 * so the code below may return different results
209 * when it is executed before and after enabling
210 * the CPUID. Add "volatile" to not allow gcc to
211 * optimize the subsequent calls to this function.
212 */
213 asm volatile ("pushfl \n\t"
214 "pushfl \n\t"
215 "popl %0 \n\t"
216 "movl %0, %1 \n\t"
217 "xorl %2, %0 \n\t"
218 "pushl %0 \n\t"
219 "popfl \n\t"
220 "pushfl \n\t"
221 "popl %0 \n\t"
222 "popfl \n\t"
223
224 : "=&r" (f1), "=&r" (f2)
225 : "ir" (flag));
226
227 return ((f1^f2) & flag) != 0;
228 }
229
230 /* Probe for the CPUID instruction */
231 int have_cpuid_p(void)
232 {
233 return flag_is_changeable_p(X86_EFLAGS_ID);
234 }
235
236 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
237 {
238 unsigned long lo, hi;
239
240 if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
241 return;
242
243 /* Disable processor serial number: */
244
245 rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
246 lo |= 0x200000;
247 wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
248
249 printk(KERN_NOTICE "CPU serial number disabled.\n");
250 clear_cpu_cap(c, X86_FEATURE_PN);
251
252 /* Disabling the serial number may affect the cpuid level */
253 c->cpuid_level = cpuid_eax(0);
254 }
255
256 static int __init x86_serial_nr_setup(char *s)
257 {
258 disable_x86_serial_nr = 0;
259 return 1;
260 }
261 __setup("serialnumber", x86_serial_nr_setup);
262 #else
263 static inline int flag_is_changeable_p(u32 flag)
264 {
265 return 1;
266 }
267 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
268 {
269 }
270 #endif
271
272 static __init int setup_disable_smep(char *arg)
273 {
274 setup_clear_cpu_cap(X86_FEATURE_SMEP);
275 return 1;
276 }
277 __setup("nosmep", setup_disable_smep);
278
279 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
280 {
281 if (cpu_has(c, X86_FEATURE_SMEP))
282 cr4_set_bits(X86_CR4_SMEP);
283 }
284
285 static __init int setup_disable_smap(char *arg)
286 {
287 setup_clear_cpu_cap(X86_FEATURE_SMAP);
288 return 1;
289 }
290 __setup("nosmap", setup_disable_smap);
291
292 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
293 {
294 unsigned long eflags;
295
296 /* This should have been cleared long ago */
297 raw_local_save_flags(eflags);
298 BUG_ON(eflags & X86_EFLAGS_AC);
299
300 if (cpu_has(c, X86_FEATURE_SMAP)) {
301 #ifdef CONFIG_X86_SMAP
302 cr4_set_bits(X86_CR4_SMAP);
303 #else
304 cr4_clear_bits(X86_CR4_SMAP);
305 #endif
306 }
307 }
308
309 /*
310 * Some CPU features depend on higher CPUID levels, which may not always
311 * be available due to CPUID level capping or broken virtualization
312 * software. Add those features to this table to auto-disable them.
313 */
314 struct cpuid_dependent_feature {
315 u32 feature;
316 u32 level;
317 };
318
319 static const struct cpuid_dependent_feature
320 cpuid_dependent_features[] = {
321 { X86_FEATURE_MWAIT, 0x00000005 },
322 { X86_FEATURE_DCA, 0x00000009 },
323 { X86_FEATURE_XSAVE, 0x0000000d },
324 { 0, 0 }
325 };
326
327 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
328 {
329 const struct cpuid_dependent_feature *df;
330
331 for (df = cpuid_dependent_features; df->feature; df++) {
332
333 if (!cpu_has(c, df->feature))
334 continue;
335 /*
336 * Note: cpuid_level is set to -1 if unavailable, but
337 * extended_extended_level is set to 0 if unavailable
338 * and the legitimate extended levels are all negative
339 * when signed; hence the weird messing around with
340 * signs here...
341 */
342 if (!((s32)df->level < 0 ?
343 (u32)df->level > (u32)c->extended_cpuid_level :
344 (s32)df->level > (s32)c->cpuid_level))
345 continue;
346
347 clear_cpu_cap(c, df->feature);
348 if (!warn)
349 continue;
350
351 printk(KERN_WARNING
352 "CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
353 x86_cap_flag(df->feature), df->level);
354 }
355 }
356
357 /*
358 * Naming convention should be: <Name> [(<Codename>)]
359 * This table only is used unless init_<vendor>() below doesn't set it;
360 * in particular, if CPUID levels 0x80000002..4 are supported, this
361 * isn't used
362 */
363
364 /* Look up CPU names by table lookup. */
365 static const char *table_lookup_model(struct cpuinfo_x86 *c)
366 {
367 #ifdef CONFIG_X86_32
368 const struct legacy_cpu_model_info *info;
369
370 if (c->x86_model >= 16)
371 return NULL; /* Range check */
372
373 if (!this_cpu)
374 return NULL;
375
376 info = this_cpu->legacy_models;
377
378 while (info->family) {
379 if (info->family == c->x86)
380 return info->model_names[c->x86_model];
381 info++;
382 }
383 #endif
384 return NULL; /* Not found */
385 }
386
387 __u32 cpu_caps_cleared[NCAPINTS];
388 __u32 cpu_caps_set[NCAPINTS];
389
390 void load_percpu_segment(int cpu)
391 {
392 #ifdef CONFIG_X86_32
393 loadsegment(fs, __KERNEL_PERCPU);
394 #else
395 loadsegment(gs, 0);
396 wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
397 #endif
398 load_stack_canary_segment();
399 }
400
401 /*
402 * Current gdt points %fs at the "master" per-cpu area: after this,
403 * it's on the real one.
404 */
405 void switch_to_new_gdt(int cpu)
406 {
407 struct desc_ptr gdt_descr;
408
409 gdt_descr.address = (long)get_cpu_gdt_table(cpu);
410 gdt_descr.size = GDT_SIZE - 1;
411 load_gdt(&gdt_descr);
412 /* Reload the per-cpu base */
413
414 load_percpu_segment(cpu);
415 }
416
417 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
418
419 static void get_model_name(struct cpuinfo_x86 *c)
420 {
421 unsigned int *v;
422 char *p, *q;
423
424 if (c->extended_cpuid_level < 0x80000004)
425 return;
426
427 v = (unsigned int *)c->x86_model_id;
428 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
429 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
430 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
431 c->x86_model_id[48] = 0;
432
433 /*
434 * Intel chips right-justify this string for some dumb reason;
435 * undo that brain damage:
436 */
437 p = q = &c->x86_model_id[0];
438 while (*p == ' ')
439 p++;
440 if (p != q) {
441 while (*p)
442 *q++ = *p++;
443 while (q <= &c->x86_model_id[48])
444 *q++ = '\0'; /* Zero-pad the rest */
445 }
446 }
447
448 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
449 {
450 unsigned int n, dummy, ebx, ecx, edx, l2size;
451
452 n = c->extended_cpuid_level;
453
454 if (n >= 0x80000005) {
455 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
456 c->x86_cache_size = (ecx>>24) + (edx>>24);
457 #ifdef CONFIG_X86_64
458 /* On K8 L1 TLB is inclusive, so don't count it */
459 c->x86_tlbsize = 0;
460 #endif
461 }
462
463 if (n < 0x80000006) /* Some chips just has a large L1. */
464 return;
465
466 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
467 l2size = ecx >> 16;
468
469 #ifdef CONFIG_X86_64
470 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
471 #else
472 /* do processor-specific cache resizing */
473 if (this_cpu->legacy_cache_size)
474 l2size = this_cpu->legacy_cache_size(c, l2size);
475
476 /* Allow user to override all this if necessary. */
477 if (cachesize_override != -1)
478 l2size = cachesize_override;
479
480 if (l2size == 0)
481 return; /* Again, no L2 cache is possible */
482 #endif
483
484 c->x86_cache_size = l2size;
485 }
486
487 u16 __read_mostly tlb_lli_4k[NR_INFO];
488 u16 __read_mostly tlb_lli_2m[NR_INFO];
489 u16 __read_mostly tlb_lli_4m[NR_INFO];
490 u16 __read_mostly tlb_lld_4k[NR_INFO];
491 u16 __read_mostly tlb_lld_2m[NR_INFO];
492 u16 __read_mostly tlb_lld_4m[NR_INFO];
493 u16 __read_mostly tlb_lld_1g[NR_INFO];
494
495 static void cpu_detect_tlb(struct cpuinfo_x86 *c)
496 {
497 if (this_cpu->c_detect_tlb)
498 this_cpu->c_detect_tlb(c);
499
500 pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
501 tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
502 tlb_lli_4m[ENTRIES]);
503
504 pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
505 tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
506 tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
507 }
508
509 void detect_ht(struct cpuinfo_x86 *c)
510 {
511 #ifdef CONFIG_X86_HT
512 u32 eax, ebx, ecx, edx;
513 int index_msb, core_bits;
514 static bool printed;
515
516 if (!cpu_has(c, X86_FEATURE_HT))
517 return;
518
519 if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
520 goto out;
521
522 if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
523 return;
524
525 cpuid(1, &eax, &ebx, &ecx, &edx);
526
527 smp_num_siblings = (ebx & 0xff0000) >> 16;
528
529 if (smp_num_siblings == 1) {
530 printk_once(KERN_INFO "CPU0: Hyper-Threading is disabled\n");
531 goto out;
532 }
533
534 if (smp_num_siblings <= 1)
535 goto out;
536
537 index_msb = get_count_order(smp_num_siblings);
538 c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
539
540 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
541
542 index_msb = get_count_order(smp_num_siblings);
543
544 core_bits = get_count_order(c->x86_max_cores);
545
546 c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
547 ((1 << core_bits) - 1);
548
549 out:
550 if (!printed && (c->x86_max_cores * smp_num_siblings) > 1) {
551 printk(KERN_INFO "CPU: Physical Processor ID: %d\n",
552 c->phys_proc_id);
553 printk(KERN_INFO "CPU: Processor Core ID: %d\n",
554 c->cpu_core_id);
555 printed = 1;
556 }
557 #endif
558 }
559
560 static void get_cpu_vendor(struct cpuinfo_x86 *c)
561 {
562 char *v = c->x86_vendor_id;
563 int i;
564
565 for (i = 0; i < X86_VENDOR_NUM; i++) {
566 if (!cpu_devs[i])
567 break;
568
569 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
570 (cpu_devs[i]->c_ident[1] &&
571 !strcmp(v, cpu_devs[i]->c_ident[1]))) {
572
573 this_cpu = cpu_devs[i];
574 c->x86_vendor = this_cpu->c_x86_vendor;
575 return;
576 }
577 }
578
579 printk_once(KERN_ERR
580 "CPU: vendor_id '%s' unknown, using generic init.\n" \
581 "CPU: Your system may be unstable.\n", v);
582
583 c->x86_vendor = X86_VENDOR_UNKNOWN;
584 this_cpu = &default_cpu;
585 }
586
587 void cpu_detect(struct cpuinfo_x86 *c)
588 {
589 /* Get vendor name */
590 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
591 (unsigned int *)&c->x86_vendor_id[0],
592 (unsigned int *)&c->x86_vendor_id[8],
593 (unsigned int *)&c->x86_vendor_id[4]);
594
595 c->x86 = 4;
596 /* Intel-defined flags: level 0x00000001 */
597 if (c->cpuid_level >= 0x00000001) {
598 u32 junk, tfms, cap0, misc;
599
600 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
601 c->x86 = (tfms >> 8) & 0xf;
602 c->x86_model = (tfms >> 4) & 0xf;
603 c->x86_mask = tfms & 0xf;
604
605 if (c->x86 == 0xf)
606 c->x86 += (tfms >> 20) & 0xff;
607 if (c->x86 >= 0x6)
608 c->x86_model += ((tfms >> 16) & 0xf) << 4;
609
610 if (cap0 & (1<<19)) {
611 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
612 c->x86_cache_alignment = c->x86_clflush_size;
613 }
614 }
615 }
616
617 void get_cpu_cap(struct cpuinfo_x86 *c)
618 {
619 u32 tfms, xlvl;
620 u32 ebx;
621
622 /* Intel-defined flags: level 0x00000001 */
623 if (c->cpuid_level >= 0x00000001) {
624 u32 capability, excap;
625
626 cpuid(0x00000001, &tfms, &ebx, &excap, &capability);
627 c->x86_capability[0] = capability;
628 c->x86_capability[4] = excap;
629 }
630
631 /* Additional Intel-defined flags: level 0x00000007 */
632 if (c->cpuid_level >= 0x00000007) {
633 u32 eax, ebx, ecx, edx;
634
635 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
636
637 c->x86_capability[9] = ebx;
638 }
639
640 /* Extended state features: level 0x0000000d */
641 if (c->cpuid_level >= 0x0000000d) {
642 u32 eax, ebx, ecx, edx;
643
644 cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
645
646 c->x86_capability[10] = eax;
647 }
648
649 /* Additional Intel-defined flags: level 0x0000000F */
650 if (c->cpuid_level >= 0x0000000F) {
651 u32 eax, ebx, ecx, edx;
652
653 /* QoS sub-leaf, EAX=0Fh, ECX=0 */
654 cpuid_count(0x0000000F, 0, &eax, &ebx, &ecx, &edx);
655 c->x86_capability[11] = edx;
656 if (cpu_has(c, X86_FEATURE_CQM_LLC)) {
657 /* will be overridden if occupancy monitoring exists */
658 c->x86_cache_max_rmid = ebx;
659
660 /* QoS sub-leaf, EAX=0Fh, ECX=1 */
661 cpuid_count(0x0000000F, 1, &eax, &ebx, &ecx, &edx);
662 c->x86_capability[12] = edx;
663 if (cpu_has(c, X86_FEATURE_CQM_OCCUP_LLC)) {
664 c->x86_cache_max_rmid = ecx;
665 c->x86_cache_occ_scale = ebx;
666 }
667 } else {
668 c->x86_cache_max_rmid = -1;
669 c->x86_cache_occ_scale = -1;
670 }
671 }
672
673 /* AMD-defined flags: level 0x80000001 */
674 xlvl = cpuid_eax(0x80000000);
675 c->extended_cpuid_level = xlvl;
676
677 if ((xlvl & 0xffff0000) == 0x80000000) {
678 if (xlvl >= 0x80000001) {
679 c->x86_capability[1] = cpuid_edx(0x80000001);
680 c->x86_capability[6] = cpuid_ecx(0x80000001);
681 }
682 }
683
684 if (c->extended_cpuid_level >= 0x80000008) {
685 u32 eax = cpuid_eax(0x80000008);
686
687 c->x86_virt_bits = (eax >> 8) & 0xff;
688 c->x86_phys_bits = eax & 0xff;
689 }
690 #ifdef CONFIG_X86_32
691 else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
692 c->x86_phys_bits = 36;
693 #endif
694
695 if (c->extended_cpuid_level >= 0x80000007)
696 c->x86_power = cpuid_edx(0x80000007);
697
698 init_scattered_cpuid_features(c);
699 }
700
701 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
702 {
703 #ifdef CONFIG_X86_32
704 int i;
705
706 /*
707 * First of all, decide if this is a 486 or higher
708 * It's a 486 if we can modify the AC flag
709 */
710 if (flag_is_changeable_p(X86_EFLAGS_AC))
711 c->x86 = 4;
712 else
713 c->x86 = 3;
714
715 for (i = 0; i < X86_VENDOR_NUM; i++)
716 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
717 c->x86_vendor_id[0] = 0;
718 cpu_devs[i]->c_identify(c);
719 if (c->x86_vendor_id[0]) {
720 get_cpu_vendor(c);
721 break;
722 }
723 }
724 #endif
725 }
726
727 /*
728 * Do minimum CPU detection early.
729 * Fields really needed: vendor, cpuid_level, family, model, mask,
730 * cache alignment.
731 * The others are not touched to avoid unwanted side effects.
732 *
733 * WARNING: this function is only called on the BP. Don't add code here
734 * that is supposed to run on all CPUs.
735 */
736 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
737 {
738 #ifdef CONFIG_X86_64
739 c->x86_clflush_size = 64;
740 c->x86_phys_bits = 36;
741 c->x86_virt_bits = 48;
742 #else
743 c->x86_clflush_size = 32;
744 c->x86_phys_bits = 32;
745 c->x86_virt_bits = 32;
746 #endif
747 c->x86_cache_alignment = c->x86_clflush_size;
748
749 memset(&c->x86_capability, 0, sizeof c->x86_capability);
750 c->extended_cpuid_level = 0;
751
752 if (!have_cpuid_p())
753 identify_cpu_without_cpuid(c);
754
755 /* cyrix could have cpuid enabled via c_identify()*/
756 if (!have_cpuid_p())
757 return;
758
759 cpu_detect(c);
760 get_cpu_vendor(c);
761 get_cpu_cap(c);
762 fpu_detect(c);
763
764 if (this_cpu->c_early_init)
765 this_cpu->c_early_init(c);
766
767 c->cpu_index = 0;
768 filter_cpuid_features(c, false);
769
770 if (this_cpu->c_bsp_init)
771 this_cpu->c_bsp_init(c);
772
773 setup_force_cpu_cap(X86_FEATURE_ALWAYS);
774 }
775
776 void __init early_cpu_init(void)
777 {
778 const struct cpu_dev *const *cdev;
779 int count = 0;
780
781 #ifdef CONFIG_PROCESSOR_SELECT
782 printk(KERN_INFO "KERNEL supported cpus:\n");
783 #endif
784
785 for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
786 const struct cpu_dev *cpudev = *cdev;
787
788 if (count >= X86_VENDOR_NUM)
789 break;
790 cpu_devs[count] = cpudev;
791 count++;
792
793 #ifdef CONFIG_PROCESSOR_SELECT
794 {
795 unsigned int j;
796
797 for (j = 0; j < 2; j++) {
798 if (!cpudev->c_ident[j])
799 continue;
800 printk(KERN_INFO " %s %s\n", cpudev->c_vendor,
801 cpudev->c_ident[j]);
802 }
803 }
804 #endif
805 }
806 early_identify_cpu(&boot_cpu_data);
807 }
808
809 /*
810 * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
811 * unfortunately, that's not true in practice because of early VIA
812 * chips and (more importantly) broken virtualizers that are not easy
813 * to detect. In the latter case it doesn't even *fail* reliably, so
814 * probing for it doesn't even work. Disable it completely on 32-bit
815 * unless we can find a reliable way to detect all the broken cases.
816 * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
817 */
818 static void detect_nopl(struct cpuinfo_x86 *c)
819 {
820 #ifdef CONFIG_X86_32
821 clear_cpu_cap(c, X86_FEATURE_NOPL);
822 #else
823 set_cpu_cap(c, X86_FEATURE_NOPL);
824 #endif
825 }
826
827 static void generic_identify(struct cpuinfo_x86 *c)
828 {
829 c->extended_cpuid_level = 0;
830
831 if (!have_cpuid_p())
832 identify_cpu_without_cpuid(c);
833
834 /* cyrix could have cpuid enabled via c_identify()*/
835 if (!have_cpuid_p())
836 return;
837
838 cpu_detect(c);
839
840 get_cpu_vendor(c);
841
842 get_cpu_cap(c);
843
844 if (c->cpuid_level >= 0x00000001) {
845 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
846 #ifdef CONFIG_X86_32
847 # ifdef CONFIG_X86_HT
848 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
849 # else
850 c->apicid = c->initial_apicid;
851 # endif
852 #endif
853 c->phys_proc_id = c->initial_apicid;
854 }
855
856 get_model_name(c); /* Default name */
857
858 detect_nopl(c);
859 }
860
861 static void x86_init_cache_qos(struct cpuinfo_x86 *c)
862 {
863 /*
864 * The heavy lifting of max_rmid and cache_occ_scale are handled
865 * in get_cpu_cap(). Here we just set the max_rmid for the boot_cpu
866 * in case CQM bits really aren't there in this CPU.
867 */
868 if (c != &boot_cpu_data) {
869 boot_cpu_data.x86_cache_max_rmid =
870 min(boot_cpu_data.x86_cache_max_rmid,
871 c->x86_cache_max_rmid);
872 }
873 }
874
875 /*
876 * This does the hard work of actually picking apart the CPU stuff...
877 */
878 static void identify_cpu(struct cpuinfo_x86 *c)
879 {
880 int i;
881
882 c->loops_per_jiffy = loops_per_jiffy;
883 c->x86_cache_size = -1;
884 c->x86_vendor = X86_VENDOR_UNKNOWN;
885 c->x86_model = c->x86_mask = 0; /* So far unknown... */
886 c->x86_vendor_id[0] = '\0'; /* Unset */
887 c->x86_model_id[0] = '\0'; /* Unset */
888 c->x86_max_cores = 1;
889 c->x86_coreid_bits = 0;
890 #ifdef CONFIG_X86_64
891 c->x86_clflush_size = 64;
892 c->x86_phys_bits = 36;
893 c->x86_virt_bits = 48;
894 #else
895 c->cpuid_level = -1; /* CPUID not detected */
896 c->x86_clflush_size = 32;
897 c->x86_phys_bits = 32;
898 c->x86_virt_bits = 32;
899 #endif
900 c->x86_cache_alignment = c->x86_clflush_size;
901 memset(&c->x86_capability, 0, sizeof c->x86_capability);
902
903 generic_identify(c);
904
905 if (this_cpu->c_identify)
906 this_cpu->c_identify(c);
907
908 /* Clear/Set all flags overriden by options, after probe */
909 for (i = 0; i < NCAPINTS; i++) {
910 c->x86_capability[i] &= ~cpu_caps_cleared[i];
911 c->x86_capability[i] |= cpu_caps_set[i];
912 }
913
914 #ifdef CONFIG_X86_64
915 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
916 #endif
917
918 /*
919 * Vendor-specific initialization. In this section we
920 * canonicalize the feature flags, meaning if there are
921 * features a certain CPU supports which CPUID doesn't
922 * tell us, CPUID claiming incorrect flags, or other bugs,
923 * we handle them here.
924 *
925 * At the end of this section, c->x86_capability better
926 * indicate the features this CPU genuinely supports!
927 */
928 if (this_cpu->c_init)
929 this_cpu->c_init(c);
930
931 /* Disable the PN if appropriate */
932 squash_the_stupid_serial_number(c);
933
934 /* Set up SMEP/SMAP */
935 setup_smep(c);
936 setup_smap(c);
937
938 /*
939 * The vendor-specific functions might have changed features.
940 * Now we do "generic changes."
941 */
942
943 /* Filter out anything that depends on CPUID levels we don't have */
944 filter_cpuid_features(c, true);
945
946 /* If the model name is still unset, do table lookup. */
947 if (!c->x86_model_id[0]) {
948 const char *p;
949 p = table_lookup_model(c);
950 if (p)
951 strcpy(c->x86_model_id, p);
952 else
953 /* Last resort... */
954 sprintf(c->x86_model_id, "%02x/%02x",
955 c->x86, c->x86_model);
956 }
957
958 #ifdef CONFIG_X86_64
959 detect_ht(c);
960 #endif
961
962 init_hypervisor(c);
963 x86_init_rdrand(c);
964 x86_init_cache_qos(c);
965
966 /*
967 * Clear/Set all flags overriden by options, need do it
968 * before following smp all cpus cap AND.
969 */
970 for (i = 0; i < NCAPINTS; i++) {
971 c->x86_capability[i] &= ~cpu_caps_cleared[i];
972 c->x86_capability[i] |= cpu_caps_set[i];
973 }
974
975 /*
976 * On SMP, boot_cpu_data holds the common feature set between
977 * all CPUs; so make sure that we indicate which features are
978 * common between the CPUs. The first time this routine gets
979 * executed, c == &boot_cpu_data.
980 */
981 if (c != &boot_cpu_data) {
982 /* AND the already accumulated flags with these */
983 for (i = 0; i < NCAPINTS; i++)
984 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
985
986 /* OR, i.e. replicate the bug flags */
987 for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
988 c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
989 }
990
991 /* Init Machine Check Exception if available. */
992 mcheck_cpu_init(c);
993
994 select_idle_routine(c);
995
996 #ifdef CONFIG_NUMA
997 numa_add_cpu(smp_processor_id());
998 #endif
999 }
1000
1001 /*
1002 * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1003 * on 32-bit kernels:
1004 */
1005 #ifdef CONFIG_X86_32
1006 void enable_sep_cpu(void)
1007 {
1008 struct tss_struct *tss;
1009 int cpu;
1010
1011 cpu = get_cpu();
1012 tss = &per_cpu(cpu_tss, cpu);
1013
1014 if (!boot_cpu_has(X86_FEATURE_SEP))
1015 goto out;
1016
1017 /*
1018 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1019 * see the big comment in struct x86_hw_tss's definition.
1020 */
1021
1022 tss->x86_tss.ss1 = __KERNEL_CS;
1023 wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1024
1025 wrmsr(MSR_IA32_SYSENTER_ESP,
1026 (unsigned long)tss + offsetofend(struct tss_struct, SYSENTER_stack),
1027 0);
1028
1029 wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)ia32_sysenter_target, 0);
1030
1031 out:
1032 put_cpu();
1033 }
1034 #endif
1035
1036 void __init identify_boot_cpu(void)
1037 {
1038 identify_cpu(&boot_cpu_data);
1039 init_amd_e400_c1e_mask();
1040 #ifdef CONFIG_X86_32
1041 sysenter_setup();
1042 enable_sep_cpu();
1043 #endif
1044 cpu_detect_tlb(&boot_cpu_data);
1045 }
1046
1047 void identify_secondary_cpu(struct cpuinfo_x86 *c)
1048 {
1049 BUG_ON(c == &boot_cpu_data);
1050 identify_cpu(c);
1051 #ifdef CONFIG_X86_32
1052 enable_sep_cpu();
1053 #endif
1054 mtrr_ap_init();
1055 }
1056
1057 struct msr_range {
1058 unsigned min;
1059 unsigned max;
1060 };
1061
1062 static const struct msr_range msr_range_array[] = {
1063 { 0x00000000, 0x00000418},
1064 { 0xc0000000, 0xc000040b},
1065 { 0xc0010000, 0xc0010142},
1066 { 0xc0011000, 0xc001103b},
1067 };
1068
1069 static void __print_cpu_msr(void)
1070 {
1071 unsigned index_min, index_max;
1072 unsigned index;
1073 u64 val;
1074 int i;
1075
1076 for (i = 0; i < ARRAY_SIZE(msr_range_array); i++) {
1077 index_min = msr_range_array[i].min;
1078 index_max = msr_range_array[i].max;
1079
1080 for (index = index_min; index < index_max; index++) {
1081 if (rdmsrl_safe(index, &val))
1082 continue;
1083 printk(KERN_INFO " MSR%08x: %016llx\n", index, val);
1084 }
1085 }
1086 }
1087
1088 static int show_msr;
1089
1090 static __init int setup_show_msr(char *arg)
1091 {
1092 int num;
1093
1094 get_option(&arg, &num);
1095
1096 if (num > 0)
1097 show_msr = num;
1098 return 1;
1099 }
1100 __setup("show_msr=", setup_show_msr);
1101
1102 static __init int setup_noclflush(char *arg)
1103 {
1104 setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
1105 setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
1106 return 1;
1107 }
1108 __setup("noclflush", setup_noclflush);
1109
1110 void print_cpu_info(struct cpuinfo_x86 *c)
1111 {
1112 const char *vendor = NULL;
1113
1114 if (c->x86_vendor < X86_VENDOR_NUM) {
1115 vendor = this_cpu->c_vendor;
1116 } else {
1117 if (c->cpuid_level >= 0)
1118 vendor = c->x86_vendor_id;
1119 }
1120
1121 if (vendor && !strstr(c->x86_model_id, vendor))
1122 printk(KERN_CONT "%s ", vendor);
1123
1124 if (c->x86_model_id[0])
1125 printk(KERN_CONT "%s", strim(c->x86_model_id));
1126 else
1127 printk(KERN_CONT "%d86", c->x86);
1128
1129 printk(KERN_CONT " (fam: %02x, model: %02x", c->x86, c->x86_model);
1130
1131 if (c->x86_mask || c->cpuid_level >= 0)
1132 printk(KERN_CONT ", stepping: %02x)\n", c->x86_mask);
1133 else
1134 printk(KERN_CONT ")\n");
1135
1136 print_cpu_msr(c);
1137 }
1138
1139 void print_cpu_msr(struct cpuinfo_x86 *c)
1140 {
1141 if (c->cpu_index < show_msr)
1142 __print_cpu_msr();
1143 }
1144
1145 static __init int setup_disablecpuid(char *arg)
1146 {
1147 int bit;
1148
1149 if (get_option(&arg, &bit) && bit < NCAPINTS*32)
1150 setup_clear_cpu_cap(bit);
1151 else
1152 return 0;
1153
1154 return 1;
1155 }
1156 __setup("clearcpuid=", setup_disablecpuid);
1157
1158 DEFINE_PER_CPU(unsigned long, kernel_stack) =
1159 (unsigned long)&init_thread_union + THREAD_SIZE;
1160 EXPORT_PER_CPU_SYMBOL(kernel_stack);
1161
1162 #ifdef CONFIG_X86_64
1163 struct desc_ptr idt_descr = { NR_VECTORS * 16 - 1, (unsigned long) idt_table };
1164 struct desc_ptr debug_idt_descr = { NR_VECTORS * 16 - 1,
1165 (unsigned long) debug_idt_table };
1166
1167 DEFINE_PER_CPU_FIRST(union irq_stack_union,
1168 irq_stack_union) __aligned(PAGE_SIZE) __visible;
1169
1170 /*
1171 * The following percpu variables are hot. Align current_task to
1172 * cacheline size such that they fall in the same cacheline.
1173 */
1174 DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1175 &init_task;
1176 EXPORT_PER_CPU_SYMBOL(current_task);
1177
1178 DEFINE_PER_CPU(char *, irq_stack_ptr) =
1179 init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE - 64;
1180
1181 DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1;
1182
1183 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1184 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1185
1186 DEFINE_PER_CPU(struct task_struct *, fpu_owner_task);
1187
1188 /*
1189 * Special IST stacks which the CPU switches to when it calls
1190 * an IST-marked descriptor entry. Up to 7 stacks (hardware
1191 * limit), all of them are 4K, except the debug stack which
1192 * is 8K.
1193 */
1194 static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
1195 [0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STKSZ,
1196 [DEBUG_STACK - 1] = DEBUG_STKSZ
1197 };
1198
1199 static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks
1200 [(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ + DEBUG_STKSZ]);
1201
1202 /* May not be marked __init: used by software suspend */
1203 void syscall_init(void)
1204 {
1205 /*
1206 * LSTAR and STAR live in a bit strange symbiosis.
1207 * They both write to the same internal register. STAR allows to
1208 * set CS/DS but only a 32bit target. LSTAR sets the 64bit rip.
1209 */
1210 wrmsrl(MSR_STAR, ((u64)__USER32_CS)<<48 | ((u64)__KERNEL_CS)<<32);
1211 wrmsrl(MSR_LSTAR, system_call);
1212
1213 #ifdef CONFIG_IA32_EMULATION
1214 wrmsrl(MSR_CSTAR, ia32_cstar_target);
1215 /*
1216 * This only works on Intel CPUs.
1217 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
1218 * This does not cause SYSENTER to jump to the wrong location, because
1219 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
1220 */
1221 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
1222 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1223 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)ia32_sysenter_target);
1224 #else
1225 wrmsrl(MSR_CSTAR, ignore_sysret);
1226 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
1227 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1228 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
1229 #endif
1230
1231 /* Flags to clear on syscall */
1232 wrmsrl(MSR_SYSCALL_MASK,
1233 X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
1234 X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT);
1235 }
1236
1237 /*
1238 * Copies of the original ist values from the tss are only accessed during
1239 * debugging, no special alignment required.
1240 */
1241 DEFINE_PER_CPU(struct orig_ist, orig_ist);
1242
1243 static DEFINE_PER_CPU(unsigned long, debug_stack_addr);
1244 DEFINE_PER_CPU(int, debug_stack_usage);
1245
1246 int is_debug_stack(unsigned long addr)
1247 {
1248 return __this_cpu_read(debug_stack_usage) ||
1249 (addr <= __this_cpu_read(debug_stack_addr) &&
1250 addr > (__this_cpu_read(debug_stack_addr) - DEBUG_STKSZ));
1251 }
1252 NOKPROBE_SYMBOL(is_debug_stack);
1253
1254 DEFINE_PER_CPU(u32, debug_idt_ctr);
1255
1256 void debug_stack_set_zero(void)
1257 {
1258 this_cpu_inc(debug_idt_ctr);
1259 load_current_idt();
1260 }
1261 NOKPROBE_SYMBOL(debug_stack_set_zero);
1262
1263 void debug_stack_reset(void)
1264 {
1265 if (WARN_ON(!this_cpu_read(debug_idt_ctr)))
1266 return;
1267 if (this_cpu_dec_return(debug_idt_ctr) == 0)
1268 load_current_idt();
1269 }
1270 NOKPROBE_SYMBOL(debug_stack_reset);
1271
1272 #else /* CONFIG_X86_64 */
1273
1274 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1275 EXPORT_PER_CPU_SYMBOL(current_task);
1276 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1277 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1278 DEFINE_PER_CPU(struct task_struct *, fpu_owner_task);
1279
1280 /*
1281 * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
1282 * the top of the kernel stack. Use an extra percpu variable to track the
1283 * top of the kernel stack directly.
1284 */
1285 DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
1286 (unsigned long)&init_thread_union + THREAD_SIZE;
1287 EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
1288
1289 #ifdef CONFIG_CC_STACKPROTECTOR
1290 DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
1291 #endif
1292
1293 #endif /* CONFIG_X86_64 */
1294
1295 /*
1296 * Clear all 6 debug registers:
1297 */
1298 static void clear_all_debug_regs(void)
1299 {
1300 int i;
1301
1302 for (i = 0; i < 8; i++) {
1303 /* Ignore db4, db5 */
1304 if ((i == 4) || (i == 5))
1305 continue;
1306
1307 set_debugreg(0, i);
1308 }
1309 }
1310
1311 #ifdef CONFIG_KGDB
1312 /*
1313 * Restore debug regs if using kgdbwait and you have a kernel debugger
1314 * connection established.
1315 */
1316 static void dbg_restore_debug_regs(void)
1317 {
1318 if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1319 arch_kgdb_ops.correct_hw_break();
1320 }
1321 #else /* ! CONFIG_KGDB */
1322 #define dbg_restore_debug_regs()
1323 #endif /* ! CONFIG_KGDB */
1324
1325 static void wait_for_master_cpu(int cpu)
1326 {
1327 #ifdef CONFIG_SMP
1328 /*
1329 * wait for ACK from master CPU before continuing
1330 * with AP initialization
1331 */
1332 WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
1333 while (!cpumask_test_cpu(cpu, cpu_callout_mask))
1334 cpu_relax();
1335 #endif
1336 }
1337
1338 /*
1339 * cpu_init() initializes state that is per-CPU. Some data is already
1340 * initialized (naturally) in the bootstrap process, such as the GDT
1341 * and IDT. We reload them nevertheless, this function acts as a
1342 * 'CPU state barrier', nothing should get across.
1343 * A lot of state is already set up in PDA init for 64 bit
1344 */
1345 #ifdef CONFIG_X86_64
1346
1347 void cpu_init(void)
1348 {
1349 struct orig_ist *oist;
1350 struct task_struct *me;
1351 struct tss_struct *t;
1352 unsigned long v;
1353 int cpu = stack_smp_processor_id();
1354 int i;
1355
1356 wait_for_master_cpu(cpu);
1357
1358 /*
1359 * Initialize the CR4 shadow before doing anything that could
1360 * try to read it.
1361 */
1362 cr4_init_shadow();
1363
1364 /*
1365 * Load microcode on this cpu if a valid microcode is available.
1366 * This is early microcode loading procedure.
1367 */
1368 load_ucode_ap();
1369
1370 t = &per_cpu(cpu_tss, cpu);
1371 oist = &per_cpu(orig_ist, cpu);
1372
1373 #ifdef CONFIG_NUMA
1374 if (this_cpu_read(numa_node) == 0 &&
1375 early_cpu_to_node(cpu) != NUMA_NO_NODE)
1376 set_numa_node(early_cpu_to_node(cpu));
1377 #endif
1378
1379 me = current;
1380
1381 pr_debug("Initializing CPU#%d\n", cpu);
1382
1383 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1384
1385 /*
1386 * Initialize the per-CPU GDT with the boot GDT,
1387 * and set up the GDT descriptor:
1388 */
1389
1390 switch_to_new_gdt(cpu);
1391 loadsegment(fs, 0);
1392
1393 load_current_idt();
1394
1395 memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1396 syscall_init();
1397
1398 wrmsrl(MSR_FS_BASE, 0);
1399 wrmsrl(MSR_KERNEL_GS_BASE, 0);
1400 barrier();
1401
1402 x86_configure_nx();
1403 x2apic_setup();
1404
1405 /*
1406 * set up and load the per-CPU TSS
1407 */
1408 if (!oist->ist[0]) {
1409 char *estacks = per_cpu(exception_stacks, cpu);
1410
1411 for (v = 0; v < N_EXCEPTION_STACKS; v++) {
1412 estacks += exception_stack_sizes[v];
1413 oist->ist[v] = t->x86_tss.ist[v] =
1414 (unsigned long)estacks;
1415 if (v == DEBUG_STACK-1)
1416 per_cpu(debug_stack_addr, cpu) = (unsigned long)estacks;
1417 }
1418 }
1419
1420 t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1421
1422 /*
1423 * <= is required because the CPU will access up to
1424 * 8 bits beyond the end of the IO permission bitmap.
1425 */
1426 for (i = 0; i <= IO_BITMAP_LONGS; i++)
1427 t->io_bitmap[i] = ~0UL;
1428
1429 atomic_inc(&init_mm.mm_count);
1430 me->active_mm = &init_mm;
1431 BUG_ON(me->mm);
1432 enter_lazy_tlb(&init_mm, me);
1433
1434 load_sp0(t, &current->thread);
1435 set_tss_desc(cpu, t);
1436 load_TR_desc();
1437 load_LDT(&init_mm.context);
1438
1439 clear_all_debug_regs();
1440 dbg_restore_debug_regs();
1441
1442 fpu_init();
1443
1444 if (is_uv_system())
1445 uv_cpu_init();
1446 }
1447
1448 #else
1449
1450 void cpu_init(void)
1451 {
1452 int cpu = smp_processor_id();
1453 struct task_struct *curr = current;
1454 struct tss_struct *t = &per_cpu(cpu_tss, cpu);
1455 struct thread_struct *thread = &curr->thread;
1456
1457 wait_for_master_cpu(cpu);
1458
1459 /*
1460 * Initialize the CR4 shadow before doing anything that could
1461 * try to read it.
1462 */
1463 cr4_init_shadow();
1464
1465 show_ucode_info_early();
1466
1467 printk(KERN_INFO "Initializing CPU#%d\n", cpu);
1468
1469 if (cpu_feature_enabled(X86_FEATURE_VME) || cpu_has_tsc || cpu_has_de)
1470 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1471
1472 load_current_idt();
1473 switch_to_new_gdt(cpu);
1474
1475 /*
1476 * Set up and load the per-CPU TSS and LDT
1477 */
1478 atomic_inc(&init_mm.mm_count);
1479 curr->active_mm = &init_mm;
1480 BUG_ON(curr->mm);
1481 enter_lazy_tlb(&init_mm, curr);
1482
1483 load_sp0(t, thread);
1484 set_tss_desc(cpu, t);
1485 load_TR_desc();
1486 load_LDT(&init_mm.context);
1487
1488 t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1489
1490 #ifdef CONFIG_DOUBLEFAULT
1491 /* Set up doublefault TSS pointer in the GDT */
1492 __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
1493 #endif
1494
1495 clear_all_debug_regs();
1496 dbg_restore_debug_regs();
1497
1498 fpu_init();
1499 }
1500 #endif
1501
1502 #ifdef CONFIG_X86_DEBUG_STATIC_CPU_HAS
1503 void warn_pre_alternatives(void)
1504 {
1505 WARN(1, "You're using static_cpu_has before alternatives have run!\n");
1506 }
1507 EXPORT_SYMBOL_GPL(warn_pre_alternatives);
1508 #endif
1509
1510 inline bool __static_cpu_has_safe(u16 bit)
1511 {
1512 return boot_cpu_has(bit);
1513 }
1514 EXPORT_SYMBOL_GPL(__static_cpu_has_safe);
This page took 0.110015 seconds and 6 git commands to generate.