[CPUFREQ] x86 cpufreq: Make trace_power_frequency cpufreq driver independent
[deliverable/linux.git] / arch / x86 / kernel / cpu / cpufreq / acpi-cpufreq.c
1 /*
2 * acpi-cpufreq.c - ACPI Processor P-States Driver
3 *
4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6 * Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de>
7 * Copyright (C) 2006 Denis Sadykov <denis.m.sadykov@intel.com>
8 *
9 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or (at
14 * your option) any later version.
15 *
16 * This program is distributed in the hope that it will be useful, but
17 * WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License along
22 * with this program; if not, write to the Free Software Foundation, Inc.,
23 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
24 *
25 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
26 */
27
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/init.h>
31 #include <linux/smp.h>
32 #include <linux/sched.h>
33 #include <linux/cpufreq.h>
34 #include <linux/compiler.h>
35 #include <linux/dmi.h>
36 #include <linux/slab.h>
37
38 #include <linux/acpi.h>
39 #include <linux/io.h>
40 #include <linux/delay.h>
41 #include <linux/uaccess.h>
42
43 #include <acpi/processor.h>
44
45 #include <asm/msr.h>
46 #include <asm/processor.h>
47 #include <asm/cpufeature.h>
48 #include "mperf.h"
49
50 #define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_DRIVER, \
51 "acpi-cpufreq", msg)
52
53 MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
54 MODULE_DESCRIPTION("ACPI Processor P-States Driver");
55 MODULE_LICENSE("GPL");
56
57 enum {
58 UNDEFINED_CAPABLE = 0,
59 SYSTEM_INTEL_MSR_CAPABLE,
60 SYSTEM_IO_CAPABLE,
61 };
62
63 #define INTEL_MSR_RANGE (0xffff)
64
65 struct acpi_cpufreq_data {
66 struct acpi_processor_performance *acpi_data;
67 struct cpufreq_frequency_table *freq_table;
68 unsigned int resume;
69 unsigned int cpu_feature;
70 };
71
72 static DEFINE_PER_CPU(struct acpi_cpufreq_data *, acfreq_data);
73
74 /* acpi_perf_data is a pointer to percpu data. */
75 static struct acpi_processor_performance *acpi_perf_data;
76
77 static struct cpufreq_driver acpi_cpufreq_driver;
78
79 static unsigned int acpi_pstate_strict;
80
81 static int check_est_cpu(unsigned int cpuid)
82 {
83 struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
84
85 return cpu_has(cpu, X86_FEATURE_EST);
86 }
87
88 static unsigned extract_io(u32 value, struct acpi_cpufreq_data *data)
89 {
90 struct acpi_processor_performance *perf;
91 int i;
92
93 perf = data->acpi_data;
94
95 for (i = 0; i < perf->state_count; i++) {
96 if (value == perf->states[i].status)
97 return data->freq_table[i].frequency;
98 }
99 return 0;
100 }
101
102 static unsigned extract_msr(u32 msr, struct acpi_cpufreq_data *data)
103 {
104 int i;
105 struct acpi_processor_performance *perf;
106
107 msr &= INTEL_MSR_RANGE;
108 perf = data->acpi_data;
109
110 for (i = 0; data->freq_table[i].frequency != CPUFREQ_TABLE_END; i++) {
111 if (msr == perf->states[data->freq_table[i].index].status)
112 return data->freq_table[i].frequency;
113 }
114 return data->freq_table[0].frequency;
115 }
116
117 static unsigned extract_freq(u32 val, struct acpi_cpufreq_data *data)
118 {
119 switch (data->cpu_feature) {
120 case SYSTEM_INTEL_MSR_CAPABLE:
121 return extract_msr(val, data);
122 case SYSTEM_IO_CAPABLE:
123 return extract_io(val, data);
124 default:
125 return 0;
126 }
127 }
128
129 struct msr_addr {
130 u32 reg;
131 };
132
133 struct io_addr {
134 u16 port;
135 u8 bit_width;
136 };
137
138 struct drv_cmd {
139 unsigned int type;
140 const struct cpumask *mask;
141 union {
142 struct msr_addr msr;
143 struct io_addr io;
144 } addr;
145 u32 val;
146 };
147
148 /* Called via smp_call_function_single(), on the target CPU */
149 static void do_drv_read(void *_cmd)
150 {
151 struct drv_cmd *cmd = _cmd;
152 u32 h;
153
154 switch (cmd->type) {
155 case SYSTEM_INTEL_MSR_CAPABLE:
156 rdmsr(cmd->addr.msr.reg, cmd->val, h);
157 break;
158 case SYSTEM_IO_CAPABLE:
159 acpi_os_read_port((acpi_io_address)cmd->addr.io.port,
160 &cmd->val,
161 (u32)cmd->addr.io.bit_width);
162 break;
163 default:
164 break;
165 }
166 }
167
168 /* Called via smp_call_function_many(), on the target CPUs */
169 static void do_drv_write(void *_cmd)
170 {
171 struct drv_cmd *cmd = _cmd;
172 u32 lo, hi;
173
174 switch (cmd->type) {
175 case SYSTEM_INTEL_MSR_CAPABLE:
176 rdmsr(cmd->addr.msr.reg, lo, hi);
177 lo = (lo & ~INTEL_MSR_RANGE) | (cmd->val & INTEL_MSR_RANGE);
178 wrmsr(cmd->addr.msr.reg, lo, hi);
179 break;
180 case SYSTEM_IO_CAPABLE:
181 acpi_os_write_port((acpi_io_address)cmd->addr.io.port,
182 cmd->val,
183 (u32)cmd->addr.io.bit_width);
184 break;
185 default:
186 break;
187 }
188 }
189
190 static void drv_read(struct drv_cmd *cmd)
191 {
192 int err;
193 cmd->val = 0;
194
195 err = smp_call_function_any(cmd->mask, do_drv_read, cmd, 1);
196 WARN_ON_ONCE(err); /* smp_call_function_any() was buggy? */
197 }
198
199 static void drv_write(struct drv_cmd *cmd)
200 {
201 int this_cpu;
202
203 this_cpu = get_cpu();
204 if (cpumask_test_cpu(this_cpu, cmd->mask))
205 do_drv_write(cmd);
206 smp_call_function_many(cmd->mask, do_drv_write, cmd, 1);
207 put_cpu();
208 }
209
210 static u32 get_cur_val(const struct cpumask *mask)
211 {
212 struct acpi_processor_performance *perf;
213 struct drv_cmd cmd;
214
215 if (unlikely(cpumask_empty(mask)))
216 return 0;
217
218 switch (per_cpu(acfreq_data, cpumask_first(mask))->cpu_feature) {
219 case SYSTEM_INTEL_MSR_CAPABLE:
220 cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
221 cmd.addr.msr.reg = MSR_IA32_PERF_STATUS;
222 break;
223 case SYSTEM_IO_CAPABLE:
224 cmd.type = SYSTEM_IO_CAPABLE;
225 perf = per_cpu(acfreq_data, cpumask_first(mask))->acpi_data;
226 cmd.addr.io.port = perf->control_register.address;
227 cmd.addr.io.bit_width = perf->control_register.bit_width;
228 break;
229 default:
230 return 0;
231 }
232
233 cmd.mask = mask;
234 drv_read(&cmd);
235
236 dprintk("get_cur_val = %u\n", cmd.val);
237
238 return cmd.val;
239 }
240
241 static unsigned int get_cur_freq_on_cpu(unsigned int cpu)
242 {
243 struct acpi_cpufreq_data *data = per_cpu(acfreq_data, cpu);
244 unsigned int freq;
245 unsigned int cached_freq;
246
247 dprintk("get_cur_freq_on_cpu (%d)\n", cpu);
248
249 if (unlikely(data == NULL ||
250 data->acpi_data == NULL || data->freq_table == NULL)) {
251 return 0;
252 }
253
254 cached_freq = data->freq_table[data->acpi_data->state].frequency;
255 freq = extract_freq(get_cur_val(cpumask_of(cpu)), data);
256 if (freq != cached_freq) {
257 /*
258 * The dreaded BIOS frequency change behind our back.
259 * Force set the frequency on next target call.
260 */
261 data->resume = 1;
262 }
263
264 dprintk("cur freq = %u\n", freq);
265
266 return freq;
267 }
268
269 static unsigned int check_freqs(const struct cpumask *mask, unsigned int freq,
270 struct acpi_cpufreq_data *data)
271 {
272 unsigned int cur_freq;
273 unsigned int i;
274
275 for (i = 0; i < 100; i++) {
276 cur_freq = extract_freq(get_cur_val(mask), data);
277 if (cur_freq == freq)
278 return 1;
279 udelay(10);
280 }
281 return 0;
282 }
283
284 static int acpi_cpufreq_target(struct cpufreq_policy *policy,
285 unsigned int target_freq, unsigned int relation)
286 {
287 struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
288 struct acpi_processor_performance *perf;
289 struct cpufreq_freqs freqs;
290 struct drv_cmd cmd;
291 unsigned int next_state = 0; /* Index into freq_table */
292 unsigned int next_perf_state = 0; /* Index into perf table */
293 unsigned int i;
294 int result = 0;
295
296 dprintk("acpi_cpufreq_target %d (%d)\n", target_freq, policy->cpu);
297
298 if (unlikely(data == NULL ||
299 data->acpi_data == NULL || data->freq_table == NULL)) {
300 return -ENODEV;
301 }
302
303 perf = data->acpi_data;
304 result = cpufreq_frequency_table_target(policy,
305 data->freq_table,
306 target_freq,
307 relation, &next_state);
308 if (unlikely(result)) {
309 result = -ENODEV;
310 goto out;
311 }
312
313 next_perf_state = data->freq_table[next_state].index;
314 if (perf->state == next_perf_state) {
315 if (unlikely(data->resume)) {
316 dprintk("Called after resume, resetting to P%d\n",
317 next_perf_state);
318 data->resume = 0;
319 } else {
320 dprintk("Already at target state (P%d)\n",
321 next_perf_state);
322 goto out;
323 }
324 }
325
326 switch (data->cpu_feature) {
327 case SYSTEM_INTEL_MSR_CAPABLE:
328 cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
329 cmd.addr.msr.reg = MSR_IA32_PERF_CTL;
330 cmd.val = (u32) perf->states[next_perf_state].control;
331 break;
332 case SYSTEM_IO_CAPABLE:
333 cmd.type = SYSTEM_IO_CAPABLE;
334 cmd.addr.io.port = perf->control_register.address;
335 cmd.addr.io.bit_width = perf->control_register.bit_width;
336 cmd.val = (u32) perf->states[next_perf_state].control;
337 break;
338 default:
339 result = -ENODEV;
340 goto out;
341 }
342
343 /* cpufreq holds the hotplug lock, so we are safe from here on */
344 if (policy->shared_type != CPUFREQ_SHARED_TYPE_ANY)
345 cmd.mask = policy->cpus;
346 else
347 cmd.mask = cpumask_of(policy->cpu);
348
349 freqs.old = perf->states[perf->state].core_frequency * 1000;
350 freqs.new = data->freq_table[next_state].frequency;
351 for_each_cpu(i, policy->cpus) {
352 freqs.cpu = i;
353 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
354 }
355
356 drv_write(&cmd);
357
358 if (acpi_pstate_strict) {
359 if (!check_freqs(cmd.mask, freqs.new, data)) {
360 dprintk("acpi_cpufreq_target failed (%d)\n",
361 policy->cpu);
362 result = -EAGAIN;
363 goto out;
364 }
365 }
366
367 for_each_cpu(i, policy->cpus) {
368 freqs.cpu = i;
369 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
370 }
371 perf->state = next_perf_state;
372
373 out:
374 return result;
375 }
376
377 static int acpi_cpufreq_verify(struct cpufreq_policy *policy)
378 {
379 struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
380
381 dprintk("acpi_cpufreq_verify\n");
382
383 return cpufreq_frequency_table_verify(policy, data->freq_table);
384 }
385
386 static unsigned long
387 acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu)
388 {
389 struct acpi_processor_performance *perf = data->acpi_data;
390
391 if (cpu_khz) {
392 /* search the closest match to cpu_khz */
393 unsigned int i;
394 unsigned long freq;
395 unsigned long freqn = perf->states[0].core_frequency * 1000;
396
397 for (i = 0; i < (perf->state_count-1); i++) {
398 freq = freqn;
399 freqn = perf->states[i+1].core_frequency * 1000;
400 if ((2 * cpu_khz) > (freqn + freq)) {
401 perf->state = i;
402 return freq;
403 }
404 }
405 perf->state = perf->state_count-1;
406 return freqn;
407 } else {
408 /* assume CPU is at P0... */
409 perf->state = 0;
410 return perf->states[0].core_frequency * 1000;
411 }
412 }
413
414 static void free_acpi_perf_data(void)
415 {
416 unsigned int i;
417
418 /* Freeing a NULL pointer is OK, and alloc_percpu zeroes. */
419 for_each_possible_cpu(i)
420 free_cpumask_var(per_cpu_ptr(acpi_perf_data, i)
421 ->shared_cpu_map);
422 free_percpu(acpi_perf_data);
423 }
424
425 /*
426 * acpi_cpufreq_early_init - initialize ACPI P-States library
427 *
428 * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c)
429 * in order to determine correct frequency and voltage pairings. We can
430 * do _PDC and _PSD and find out the processor dependency for the
431 * actual init that will happen later...
432 */
433 static int __init acpi_cpufreq_early_init(void)
434 {
435 unsigned int i;
436 dprintk("acpi_cpufreq_early_init\n");
437
438 acpi_perf_data = alloc_percpu(struct acpi_processor_performance);
439 if (!acpi_perf_data) {
440 dprintk("Memory allocation error for acpi_perf_data.\n");
441 return -ENOMEM;
442 }
443 for_each_possible_cpu(i) {
444 if (!zalloc_cpumask_var_node(
445 &per_cpu_ptr(acpi_perf_data, i)->shared_cpu_map,
446 GFP_KERNEL, cpu_to_node(i))) {
447
448 /* Freeing a NULL pointer is OK: alloc_percpu zeroes. */
449 free_acpi_perf_data();
450 return -ENOMEM;
451 }
452 }
453
454 /* Do initialization in ACPI core */
455 acpi_processor_preregister_performance(acpi_perf_data);
456 return 0;
457 }
458
459 #ifdef CONFIG_SMP
460 /*
461 * Some BIOSes do SW_ANY coordination internally, either set it up in hw
462 * or do it in BIOS firmware and won't inform about it to OS. If not
463 * detected, this has a side effect of making CPU run at a different speed
464 * than OS intended it to run at. Detect it and handle it cleanly.
465 */
466 static int bios_with_sw_any_bug;
467
468 static int sw_any_bug_found(const struct dmi_system_id *d)
469 {
470 bios_with_sw_any_bug = 1;
471 return 0;
472 }
473
474 static const struct dmi_system_id sw_any_bug_dmi_table[] = {
475 {
476 .callback = sw_any_bug_found,
477 .ident = "Supermicro Server X6DLP",
478 .matches = {
479 DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"),
480 DMI_MATCH(DMI_BIOS_VERSION, "080010"),
481 DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"),
482 },
483 },
484 { }
485 };
486
487 static int acpi_cpufreq_blacklist(struct cpuinfo_x86 *c)
488 {
489 /* Intel Xeon Processor 7100 Series Specification Update
490 * http://www.intel.com/Assets/PDF/specupdate/314554.pdf
491 * AL30: A Machine Check Exception (MCE) Occurring during an
492 * Enhanced Intel SpeedStep Technology Ratio Change May Cause
493 * Both Processor Cores to Lock Up. */
494 if (c->x86_vendor == X86_VENDOR_INTEL) {
495 if ((c->x86 == 15) &&
496 (c->x86_model == 6) &&
497 (c->x86_mask == 8)) {
498 printk(KERN_INFO "acpi-cpufreq: Intel(R) "
499 "Xeon(R) 7100 Errata AL30, processors may "
500 "lock up on frequency changes: disabling "
501 "acpi-cpufreq.\n");
502 return -ENODEV;
503 }
504 }
505 return 0;
506 }
507 #endif
508
509 static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
510 {
511 unsigned int i;
512 unsigned int valid_states = 0;
513 unsigned int cpu = policy->cpu;
514 struct acpi_cpufreq_data *data;
515 unsigned int result = 0;
516 struct cpuinfo_x86 *c = &cpu_data(policy->cpu);
517 struct acpi_processor_performance *perf;
518 #ifdef CONFIG_SMP
519 static int blacklisted;
520 #endif
521
522 dprintk("acpi_cpufreq_cpu_init\n");
523
524 #ifdef CONFIG_SMP
525 if (blacklisted)
526 return blacklisted;
527 blacklisted = acpi_cpufreq_blacklist(c);
528 if (blacklisted)
529 return blacklisted;
530 #endif
531
532 data = kzalloc(sizeof(struct acpi_cpufreq_data), GFP_KERNEL);
533 if (!data)
534 return -ENOMEM;
535
536 data->acpi_data = per_cpu_ptr(acpi_perf_data, cpu);
537 per_cpu(acfreq_data, cpu) = data;
538
539 if (cpu_has(c, X86_FEATURE_CONSTANT_TSC))
540 acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
541
542 result = acpi_processor_register_performance(data->acpi_data, cpu);
543 if (result)
544 goto err_free;
545
546 perf = data->acpi_data;
547 policy->shared_type = perf->shared_type;
548
549 /*
550 * Will let policy->cpus know about dependency only when software
551 * coordination is required.
552 */
553 if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL ||
554 policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
555 cpumask_copy(policy->cpus, perf->shared_cpu_map);
556 }
557 cpumask_copy(policy->related_cpus, perf->shared_cpu_map);
558
559 #ifdef CONFIG_SMP
560 dmi_check_system(sw_any_bug_dmi_table);
561 if (bios_with_sw_any_bug && cpumask_weight(policy->cpus) == 1) {
562 policy->shared_type = CPUFREQ_SHARED_TYPE_ALL;
563 cpumask_copy(policy->cpus, cpu_core_mask(cpu));
564 }
565 #endif
566
567 /* capability check */
568 if (perf->state_count <= 1) {
569 dprintk("No P-States\n");
570 result = -ENODEV;
571 goto err_unreg;
572 }
573
574 if (perf->control_register.space_id != perf->status_register.space_id) {
575 result = -ENODEV;
576 goto err_unreg;
577 }
578
579 switch (perf->control_register.space_id) {
580 case ACPI_ADR_SPACE_SYSTEM_IO:
581 dprintk("SYSTEM IO addr space\n");
582 data->cpu_feature = SYSTEM_IO_CAPABLE;
583 break;
584 case ACPI_ADR_SPACE_FIXED_HARDWARE:
585 dprintk("HARDWARE addr space\n");
586 if (!check_est_cpu(cpu)) {
587 result = -ENODEV;
588 goto err_unreg;
589 }
590 data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE;
591 break;
592 default:
593 dprintk("Unknown addr space %d\n",
594 (u32) (perf->control_register.space_id));
595 result = -ENODEV;
596 goto err_unreg;
597 }
598
599 data->freq_table = kmalloc(sizeof(struct cpufreq_frequency_table) *
600 (perf->state_count+1), GFP_KERNEL);
601 if (!data->freq_table) {
602 result = -ENOMEM;
603 goto err_unreg;
604 }
605
606 /* detect transition latency */
607 policy->cpuinfo.transition_latency = 0;
608 for (i = 0; i < perf->state_count; i++) {
609 if ((perf->states[i].transition_latency * 1000) >
610 policy->cpuinfo.transition_latency)
611 policy->cpuinfo.transition_latency =
612 perf->states[i].transition_latency * 1000;
613 }
614
615 /* Check for high latency (>20uS) from buggy BIOSes, like on T42 */
616 if (perf->control_register.space_id == ACPI_ADR_SPACE_FIXED_HARDWARE &&
617 policy->cpuinfo.transition_latency > 20 * 1000) {
618 policy->cpuinfo.transition_latency = 20 * 1000;
619 printk_once(KERN_INFO
620 "P-state transition latency capped at 20 uS\n");
621 }
622
623 /* table init */
624 for (i = 0; i < perf->state_count; i++) {
625 if (i > 0 && perf->states[i].core_frequency >=
626 data->freq_table[valid_states-1].frequency / 1000)
627 continue;
628
629 data->freq_table[valid_states].index = i;
630 data->freq_table[valid_states].frequency =
631 perf->states[i].core_frequency * 1000;
632 valid_states++;
633 }
634 data->freq_table[valid_states].frequency = CPUFREQ_TABLE_END;
635 perf->state = 0;
636
637 result = cpufreq_frequency_table_cpuinfo(policy, data->freq_table);
638 if (result)
639 goto err_freqfree;
640
641 if (perf->states[0].core_frequency * 1000 != policy->cpuinfo.max_freq)
642 printk(KERN_WARNING FW_WARN "P-state 0 is not max freq\n");
643
644 switch (perf->control_register.space_id) {
645 case ACPI_ADR_SPACE_SYSTEM_IO:
646 /* Current speed is unknown and not detectable by IO port */
647 policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
648 break;
649 case ACPI_ADR_SPACE_FIXED_HARDWARE:
650 acpi_cpufreq_driver.get = get_cur_freq_on_cpu;
651 policy->cur = get_cur_freq_on_cpu(cpu);
652 break;
653 default:
654 break;
655 }
656
657 /* notify BIOS that we exist */
658 acpi_processor_notify_smm(THIS_MODULE);
659
660 /* Check for APERF/MPERF support in hardware */
661 if (cpu_has(c, X86_FEATURE_APERFMPERF))
662 acpi_cpufreq_driver.getavg = cpufreq_get_measured_perf;
663
664 dprintk("CPU%u - ACPI performance management activated.\n", cpu);
665 for (i = 0; i < perf->state_count; i++)
666 dprintk(" %cP%d: %d MHz, %d mW, %d uS\n",
667 (i == perf->state ? '*' : ' '), i,
668 (u32) perf->states[i].core_frequency,
669 (u32) perf->states[i].power,
670 (u32) perf->states[i].transition_latency);
671
672 cpufreq_frequency_table_get_attr(data->freq_table, policy->cpu);
673
674 /*
675 * the first call to ->target() should result in us actually
676 * writing something to the appropriate registers.
677 */
678 data->resume = 1;
679
680 return result;
681
682 err_freqfree:
683 kfree(data->freq_table);
684 err_unreg:
685 acpi_processor_unregister_performance(perf, cpu);
686 err_free:
687 kfree(data);
688 per_cpu(acfreq_data, cpu) = NULL;
689
690 return result;
691 }
692
693 static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy)
694 {
695 struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
696
697 dprintk("acpi_cpufreq_cpu_exit\n");
698
699 if (data) {
700 cpufreq_frequency_table_put_attr(policy->cpu);
701 per_cpu(acfreq_data, policy->cpu) = NULL;
702 acpi_processor_unregister_performance(data->acpi_data,
703 policy->cpu);
704 kfree(data);
705 }
706
707 return 0;
708 }
709
710 static int acpi_cpufreq_resume(struct cpufreq_policy *policy)
711 {
712 struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
713
714 dprintk("acpi_cpufreq_resume\n");
715
716 data->resume = 1;
717
718 return 0;
719 }
720
721 static struct freq_attr *acpi_cpufreq_attr[] = {
722 &cpufreq_freq_attr_scaling_available_freqs,
723 NULL,
724 };
725
726 static struct cpufreq_driver acpi_cpufreq_driver = {
727 .verify = acpi_cpufreq_verify,
728 .target = acpi_cpufreq_target,
729 .bios_limit = acpi_processor_get_bios_limit,
730 .init = acpi_cpufreq_cpu_init,
731 .exit = acpi_cpufreq_cpu_exit,
732 .resume = acpi_cpufreq_resume,
733 .name = "acpi-cpufreq",
734 .owner = THIS_MODULE,
735 .attr = acpi_cpufreq_attr,
736 };
737
738 static int __init acpi_cpufreq_init(void)
739 {
740 int ret;
741
742 if (acpi_disabled)
743 return 0;
744
745 dprintk("acpi_cpufreq_init\n");
746
747 ret = acpi_cpufreq_early_init();
748 if (ret)
749 return ret;
750
751 ret = cpufreq_register_driver(&acpi_cpufreq_driver);
752 if (ret)
753 free_acpi_perf_data();
754
755 return ret;
756 }
757
758 static void __exit acpi_cpufreq_exit(void)
759 {
760 dprintk("acpi_cpufreq_exit\n");
761
762 cpufreq_unregister_driver(&acpi_cpufreq_driver);
763
764 free_percpu(acpi_perf_data);
765 }
766
767 module_param(acpi_pstate_strict, uint, 0644);
768 MODULE_PARM_DESC(acpi_pstate_strict,
769 "value 0 or non-zero. non-zero -> strict ACPI checks are "
770 "performed during frequency changes.");
771
772 late_initcall(acpi_cpufreq_init);
773 module_exit(acpi_cpufreq_exit);
774
775 MODULE_ALIAS("acpi");
This page took 0.05689 seconds and 5 git commands to generate.