cpumask: convert struct cpufreq_policy to cpumask_var_t
[deliverable/linux.git] / arch / x86 / kernel / cpu / cpufreq / powernow-k8.c
1 /*
2 * (c) 2003-2006 Advanced Micro Devices, Inc.
3 * Your use of this code is subject to the terms and conditions of the
4 * GNU general public license version 2. See "COPYING" or
5 * http://www.gnu.org/licenses/gpl.html
6 *
7 * Support : mark.langsdorf@amd.com
8 *
9 * Based on the powernow-k7.c module written by Dave Jones.
10 * (C) 2003 Dave Jones on behalf of SuSE Labs
11 * (C) 2004 Dominik Brodowski <linux@brodo.de>
12 * (C) 2004 Pavel Machek <pavel@suse.cz>
13 * Licensed under the terms of the GNU GPL License version 2.
14 * Based upon datasheets & sample CPUs kindly provided by AMD.
15 *
16 * Valuable input gratefully received from Dave Jones, Pavel Machek,
17 * Dominik Brodowski, Jacob Shin, and others.
18 * Originally developed by Paul Devriendt.
19 * Processor information obtained from Chapter 9 (Power and Thermal Management)
20 * of the "BIOS and Kernel Developer's Guide for the AMD Athlon 64 and AMD
21 * Opteron Processors" available for download from www.amd.com
22 *
23 * Tables for specific CPUs can be inferred from
24 * http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/30430.pdf
25 */
26
27 #include <linux/kernel.h>
28 #include <linux/smp.h>
29 #include <linux/module.h>
30 #include <linux/init.h>
31 #include <linux/cpufreq.h>
32 #include <linux/slab.h>
33 #include <linux/string.h>
34 #include <linux/cpumask.h>
35 #include <linux/sched.h> /* for current / set_cpus_allowed() */
36
37 #include <asm/msr.h>
38 #include <asm/io.h>
39 #include <asm/delay.h>
40
41 #ifdef CONFIG_X86_POWERNOW_K8_ACPI
42 #include <linux/acpi.h>
43 #include <linux/mutex.h>
44 #include <acpi/processor.h>
45 #endif
46
47 #define PFX "powernow-k8: "
48 #define VERSION "version 2.20.00"
49 #include "powernow-k8.h"
50
51 /* serialize freq changes */
52 static DEFINE_MUTEX(fidvid_mutex);
53
54 static DEFINE_PER_CPU(struct powernow_k8_data *, powernow_data);
55
56 static int cpu_family = CPU_OPTERON;
57
58 #ifndef CONFIG_SMP
59 DEFINE_PER_CPU(cpumask_t, cpu_core_map);
60 #endif
61
62 /* Return a frequency in MHz, given an input fid */
63 static u32 find_freq_from_fid(u32 fid)
64 {
65 return 800 + (fid * 100);
66 }
67
68 /* Return a frequency in KHz, given an input fid */
69 static u32 find_khz_freq_from_fid(u32 fid)
70 {
71 return 1000 * find_freq_from_fid(fid);
72 }
73
74 static u32 find_khz_freq_from_pstate(struct cpufreq_frequency_table *data, u32 pstate)
75 {
76 return data[pstate].frequency;
77 }
78
79 /* Return the vco fid for an input fid
80 *
81 * Each "low" fid has corresponding "high" fid, and you can get to "low" fids
82 * only from corresponding high fids. This returns "high" fid corresponding to
83 * "low" one.
84 */
85 static u32 convert_fid_to_vco_fid(u32 fid)
86 {
87 if (fid < HI_FID_TABLE_BOTTOM)
88 return 8 + (2 * fid);
89 else
90 return fid;
91 }
92
93 /*
94 * Return 1 if the pending bit is set. Unless we just instructed the processor
95 * to transition to a new state, seeing this bit set is really bad news.
96 */
97 static int pending_bit_stuck(void)
98 {
99 u32 lo, hi;
100
101 if (cpu_family == CPU_HW_PSTATE)
102 return 0;
103
104 rdmsr(MSR_FIDVID_STATUS, lo, hi);
105 return lo & MSR_S_LO_CHANGE_PENDING ? 1 : 0;
106 }
107
108 /*
109 * Update the global current fid / vid values from the status msr.
110 * Returns 1 on error.
111 */
112 static int query_current_values_with_pending_wait(struct powernow_k8_data *data)
113 {
114 u32 lo, hi;
115 u32 i = 0;
116
117 if (cpu_family == CPU_HW_PSTATE) {
118 if (data->currpstate == HW_PSTATE_INVALID) {
119 /* read (initial) hw pstate if not yet set */
120 rdmsr(MSR_PSTATE_STATUS, lo, hi);
121 i = lo & HW_PSTATE_MASK;
122
123 /*
124 * a workaround for family 11h erratum 311 might cause
125 * an "out-of-range Pstate if the core is in Pstate-0
126 */
127 if (i >= data->numps)
128 data->currpstate = HW_PSTATE_0;
129 else
130 data->currpstate = i;
131 }
132 return 0;
133 }
134 do {
135 if (i++ > 10000) {
136 dprintk("detected change pending stuck\n");
137 return 1;
138 }
139 rdmsr(MSR_FIDVID_STATUS, lo, hi);
140 } while (lo & MSR_S_LO_CHANGE_PENDING);
141
142 data->currvid = hi & MSR_S_HI_CURRENT_VID;
143 data->currfid = lo & MSR_S_LO_CURRENT_FID;
144
145 return 0;
146 }
147
148 /* the isochronous relief time */
149 static void count_off_irt(struct powernow_k8_data *data)
150 {
151 udelay((1 << data->irt) * 10);
152 return;
153 }
154
155 /* the voltage stabilization time */
156 static void count_off_vst(struct powernow_k8_data *data)
157 {
158 udelay(data->vstable * VST_UNITS_20US);
159 return;
160 }
161
162 /* need to init the control msr to a safe value (for each cpu) */
163 static void fidvid_msr_init(void)
164 {
165 u32 lo, hi;
166 u8 fid, vid;
167
168 rdmsr(MSR_FIDVID_STATUS, lo, hi);
169 vid = hi & MSR_S_HI_CURRENT_VID;
170 fid = lo & MSR_S_LO_CURRENT_FID;
171 lo = fid | (vid << MSR_C_LO_VID_SHIFT);
172 hi = MSR_C_HI_STP_GNT_BENIGN;
173 dprintk("cpu%d, init lo 0x%x, hi 0x%x\n", smp_processor_id(), lo, hi);
174 wrmsr(MSR_FIDVID_CTL, lo, hi);
175 }
176
177 /* write the new fid value along with the other control fields to the msr */
178 static int write_new_fid(struct powernow_k8_data *data, u32 fid)
179 {
180 u32 lo;
181 u32 savevid = data->currvid;
182 u32 i = 0;
183
184 if ((fid & INVALID_FID_MASK) || (data->currvid & INVALID_VID_MASK)) {
185 printk(KERN_ERR PFX "internal error - overflow on fid write\n");
186 return 1;
187 }
188
189 lo = fid | (data->currvid << MSR_C_LO_VID_SHIFT) | MSR_C_LO_INIT_FID_VID;
190
191 dprintk("writing fid 0x%x, lo 0x%x, hi 0x%x\n",
192 fid, lo, data->plllock * PLL_LOCK_CONVERSION);
193
194 do {
195 wrmsr(MSR_FIDVID_CTL, lo, data->plllock * PLL_LOCK_CONVERSION);
196 if (i++ > 100) {
197 printk(KERN_ERR PFX "Hardware error - pending bit very stuck - no further pstate changes possible\n");
198 return 1;
199 }
200 } while (query_current_values_with_pending_wait(data));
201
202 count_off_irt(data);
203
204 if (savevid != data->currvid) {
205 printk(KERN_ERR PFX "vid change on fid trans, old 0x%x, new 0x%x\n",
206 savevid, data->currvid);
207 return 1;
208 }
209
210 if (fid != data->currfid) {
211 printk(KERN_ERR PFX "fid trans failed, fid 0x%x, curr 0x%x\n", fid,
212 data->currfid);
213 return 1;
214 }
215
216 return 0;
217 }
218
219 /* Write a new vid to the hardware */
220 static int write_new_vid(struct powernow_k8_data *data, u32 vid)
221 {
222 u32 lo;
223 u32 savefid = data->currfid;
224 int i = 0;
225
226 if ((data->currfid & INVALID_FID_MASK) || (vid & INVALID_VID_MASK)) {
227 printk(KERN_ERR PFX "internal error - overflow on vid write\n");
228 return 1;
229 }
230
231 lo = data->currfid | (vid << MSR_C_LO_VID_SHIFT) | MSR_C_LO_INIT_FID_VID;
232
233 dprintk("writing vid 0x%x, lo 0x%x, hi 0x%x\n",
234 vid, lo, STOP_GRANT_5NS);
235
236 do {
237 wrmsr(MSR_FIDVID_CTL, lo, STOP_GRANT_5NS);
238 if (i++ > 100) {
239 printk(KERN_ERR PFX "internal error - pending bit very stuck - no further pstate changes possible\n");
240 return 1;
241 }
242 } while (query_current_values_with_pending_wait(data));
243
244 if (savefid != data->currfid) {
245 printk(KERN_ERR PFX "fid changed on vid trans, old 0x%x new 0x%x\n",
246 savefid, data->currfid);
247 return 1;
248 }
249
250 if (vid != data->currvid) {
251 printk(KERN_ERR PFX "vid trans failed, vid 0x%x, curr 0x%x\n", vid,
252 data->currvid);
253 return 1;
254 }
255
256 return 0;
257 }
258
259 /*
260 * Reduce the vid by the max of step or reqvid.
261 * Decreasing vid codes represent increasing voltages:
262 * vid of 0 is 1.550V, vid of 0x1e is 0.800V, vid of VID_OFF is off.
263 */
264 static int decrease_vid_code_by_step(struct powernow_k8_data *data, u32 reqvid, u32 step)
265 {
266 if ((data->currvid - reqvid) > step)
267 reqvid = data->currvid - step;
268
269 if (write_new_vid(data, reqvid))
270 return 1;
271
272 count_off_vst(data);
273
274 return 0;
275 }
276
277 /* Change hardware pstate by single MSR write */
278 static int transition_pstate(struct powernow_k8_data *data, u32 pstate)
279 {
280 wrmsr(MSR_PSTATE_CTRL, pstate, 0);
281 data->currpstate = pstate;
282 return 0;
283 }
284
285 /* Change Opteron/Athlon64 fid and vid, by the 3 phases. */
286 static int transition_fid_vid(struct powernow_k8_data *data, u32 reqfid, u32 reqvid)
287 {
288 if (core_voltage_pre_transition(data, reqvid))
289 return 1;
290
291 if (core_frequency_transition(data, reqfid))
292 return 1;
293
294 if (core_voltage_post_transition(data, reqvid))
295 return 1;
296
297 if (query_current_values_with_pending_wait(data))
298 return 1;
299
300 if ((reqfid != data->currfid) || (reqvid != data->currvid)) {
301 printk(KERN_ERR PFX "failed (cpu%d): req 0x%x 0x%x, curr 0x%x 0x%x\n",
302 smp_processor_id(),
303 reqfid, reqvid, data->currfid, data->currvid);
304 return 1;
305 }
306
307 dprintk("transitioned (cpu%d): new fid 0x%x, vid 0x%x\n",
308 smp_processor_id(), data->currfid, data->currvid);
309
310 return 0;
311 }
312
313 /* Phase 1 - core voltage transition ... setup voltage */
314 static int core_voltage_pre_transition(struct powernow_k8_data *data, u32 reqvid)
315 {
316 u32 rvosteps = data->rvo;
317 u32 savefid = data->currfid;
318 u32 maxvid, lo;
319
320 dprintk("ph1 (cpu%d): start, currfid 0x%x, currvid 0x%x, reqvid 0x%x, rvo 0x%x\n",
321 smp_processor_id(),
322 data->currfid, data->currvid, reqvid, data->rvo);
323
324 rdmsr(MSR_FIDVID_STATUS, lo, maxvid);
325 maxvid = 0x1f & (maxvid >> 16);
326 dprintk("ph1 maxvid=0x%x\n", maxvid);
327 if (reqvid < maxvid) /* lower numbers are higher voltages */
328 reqvid = maxvid;
329
330 while (data->currvid > reqvid) {
331 dprintk("ph1: curr 0x%x, req vid 0x%x\n",
332 data->currvid, reqvid);
333 if (decrease_vid_code_by_step(data, reqvid, data->vidmvs))
334 return 1;
335 }
336
337 while ((rvosteps > 0) && ((data->rvo + data->currvid) > reqvid)) {
338 if (data->currvid == maxvid) {
339 rvosteps = 0;
340 } else {
341 dprintk("ph1: changing vid for rvo, req 0x%x\n",
342 data->currvid - 1);
343 if (decrease_vid_code_by_step(data, data->currvid - 1, 1))
344 return 1;
345 rvosteps--;
346 }
347 }
348
349 if (query_current_values_with_pending_wait(data))
350 return 1;
351
352 if (savefid != data->currfid) {
353 printk(KERN_ERR PFX "ph1 err, currfid changed 0x%x\n", data->currfid);
354 return 1;
355 }
356
357 dprintk("ph1 complete, currfid 0x%x, currvid 0x%x\n",
358 data->currfid, data->currvid);
359
360 return 0;
361 }
362
363 /* Phase 2 - core frequency transition */
364 static int core_frequency_transition(struct powernow_k8_data *data, u32 reqfid)
365 {
366 u32 vcoreqfid, vcocurrfid, vcofiddiff, fid_interval, savevid = data->currvid;
367
368 if ((reqfid < HI_FID_TABLE_BOTTOM) && (data->currfid < HI_FID_TABLE_BOTTOM)) {
369 printk(KERN_ERR PFX "ph2: illegal lo-lo transition 0x%x 0x%x\n",
370 reqfid, data->currfid);
371 return 1;
372 }
373
374 if (data->currfid == reqfid) {
375 printk(KERN_ERR PFX "ph2 null fid transition 0x%x\n", data->currfid);
376 return 0;
377 }
378
379 dprintk("ph2 (cpu%d): starting, currfid 0x%x, currvid 0x%x, reqfid 0x%x\n",
380 smp_processor_id(),
381 data->currfid, data->currvid, reqfid);
382
383 vcoreqfid = convert_fid_to_vco_fid(reqfid);
384 vcocurrfid = convert_fid_to_vco_fid(data->currfid);
385 vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
386 : vcoreqfid - vcocurrfid;
387
388 while (vcofiddiff > 2) {
389 (data->currfid & 1) ? (fid_interval = 1) : (fid_interval = 2);
390
391 if (reqfid > data->currfid) {
392 if (data->currfid > LO_FID_TABLE_TOP) {
393 if (write_new_fid(data, data->currfid + fid_interval)) {
394 return 1;
395 }
396 } else {
397 if (write_new_fid
398 (data, 2 + convert_fid_to_vco_fid(data->currfid))) {
399 return 1;
400 }
401 }
402 } else {
403 if (write_new_fid(data, data->currfid - fid_interval))
404 return 1;
405 }
406
407 vcocurrfid = convert_fid_to_vco_fid(data->currfid);
408 vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
409 : vcoreqfid - vcocurrfid;
410 }
411
412 if (write_new_fid(data, reqfid))
413 return 1;
414
415 if (query_current_values_with_pending_wait(data))
416 return 1;
417
418 if (data->currfid != reqfid) {
419 printk(KERN_ERR PFX
420 "ph2: mismatch, failed fid transition, curr 0x%x, req 0x%x\n",
421 data->currfid, reqfid);
422 return 1;
423 }
424
425 if (savevid != data->currvid) {
426 printk(KERN_ERR PFX "ph2: vid changed, save 0x%x, curr 0x%x\n",
427 savevid, data->currvid);
428 return 1;
429 }
430
431 dprintk("ph2 complete, currfid 0x%x, currvid 0x%x\n",
432 data->currfid, data->currvid);
433
434 return 0;
435 }
436
437 /* Phase 3 - core voltage transition flow ... jump to the final vid. */
438 static int core_voltage_post_transition(struct powernow_k8_data *data, u32 reqvid)
439 {
440 u32 savefid = data->currfid;
441 u32 savereqvid = reqvid;
442
443 dprintk("ph3 (cpu%d): starting, currfid 0x%x, currvid 0x%x\n",
444 smp_processor_id(),
445 data->currfid, data->currvid);
446
447 if (reqvid != data->currvid) {
448 if (write_new_vid(data, reqvid))
449 return 1;
450
451 if (savefid != data->currfid) {
452 printk(KERN_ERR PFX
453 "ph3: bad fid change, save 0x%x, curr 0x%x\n",
454 savefid, data->currfid);
455 return 1;
456 }
457
458 if (data->currvid != reqvid) {
459 printk(KERN_ERR PFX
460 "ph3: failed vid transition\n, req 0x%x, curr 0x%x",
461 reqvid, data->currvid);
462 return 1;
463 }
464 }
465
466 if (query_current_values_with_pending_wait(data))
467 return 1;
468
469 if (savereqvid != data->currvid) {
470 dprintk("ph3 failed, currvid 0x%x\n", data->currvid);
471 return 1;
472 }
473
474 if (savefid != data->currfid) {
475 dprintk("ph3 failed, currfid changed 0x%x\n",
476 data->currfid);
477 return 1;
478 }
479
480 dprintk("ph3 complete, currfid 0x%x, currvid 0x%x\n",
481 data->currfid, data->currvid);
482
483 return 0;
484 }
485
486 static int check_supported_cpu(unsigned int cpu)
487 {
488 cpumask_t oldmask;
489 u32 eax, ebx, ecx, edx;
490 unsigned int rc = 0;
491
492 oldmask = current->cpus_allowed;
493 set_cpus_allowed_ptr(current, &cpumask_of_cpu(cpu));
494
495 if (smp_processor_id() != cpu) {
496 printk(KERN_ERR PFX "limiting to cpu %u failed\n", cpu);
497 goto out;
498 }
499
500 if (current_cpu_data.x86_vendor != X86_VENDOR_AMD)
501 goto out;
502
503 eax = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
504 if (((eax & CPUID_XFAM) != CPUID_XFAM_K8) &&
505 ((eax & CPUID_XFAM) < CPUID_XFAM_10H))
506 goto out;
507
508 if ((eax & CPUID_XFAM) == CPUID_XFAM_K8) {
509 if (((eax & CPUID_USE_XFAM_XMOD) != CPUID_USE_XFAM_XMOD) ||
510 ((eax & CPUID_XMOD) > CPUID_XMOD_REV_MASK)) {
511 printk(KERN_INFO PFX "Processor cpuid %x not supported\n", eax);
512 goto out;
513 }
514
515 eax = cpuid_eax(CPUID_GET_MAX_CAPABILITIES);
516 if (eax < CPUID_FREQ_VOLT_CAPABILITIES) {
517 printk(KERN_INFO PFX
518 "No frequency change capabilities detected\n");
519 goto out;
520 }
521
522 cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx);
523 if ((edx & P_STATE_TRANSITION_CAPABLE) != P_STATE_TRANSITION_CAPABLE) {
524 printk(KERN_INFO PFX "Power state transitions not supported\n");
525 goto out;
526 }
527 } else { /* must be a HW Pstate capable processor */
528 cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx);
529 if ((edx & USE_HW_PSTATE) == USE_HW_PSTATE)
530 cpu_family = CPU_HW_PSTATE;
531 else
532 goto out;
533 }
534
535 rc = 1;
536
537 out:
538 set_cpus_allowed_ptr(current, &oldmask);
539 return rc;
540 }
541
542 static int check_pst_table(struct powernow_k8_data *data, struct pst_s *pst, u8 maxvid)
543 {
544 unsigned int j;
545 u8 lastfid = 0xff;
546
547 for (j = 0; j < data->numps; j++) {
548 if (pst[j].vid > LEAST_VID) {
549 printk(KERN_ERR FW_BUG PFX "vid %d invalid : 0x%x\n",
550 j, pst[j].vid);
551 return -EINVAL;
552 }
553 if (pst[j].vid < data->rvo) { /* vid + rvo >= 0 */
554 printk(KERN_ERR FW_BUG PFX "0 vid exceeded with pstate"
555 " %d\n", j);
556 return -ENODEV;
557 }
558 if (pst[j].vid < maxvid + data->rvo) { /* vid + rvo >= maxvid */
559 printk(KERN_ERR FW_BUG PFX "maxvid exceeded with pstate"
560 " %d\n", j);
561 return -ENODEV;
562 }
563 if (pst[j].fid > MAX_FID) {
564 printk(KERN_ERR FW_BUG PFX "maxfid exceeded with pstate"
565 " %d\n", j);
566 return -ENODEV;
567 }
568 if (j && (pst[j].fid < HI_FID_TABLE_BOTTOM)) {
569 /* Only first fid is allowed to be in "low" range */
570 printk(KERN_ERR FW_BUG PFX "two low fids - %d : "
571 "0x%x\n", j, pst[j].fid);
572 return -EINVAL;
573 }
574 if (pst[j].fid < lastfid)
575 lastfid = pst[j].fid;
576 }
577 if (lastfid & 1) {
578 printk(KERN_ERR FW_BUG PFX "lastfid invalid\n");
579 return -EINVAL;
580 }
581 if (lastfid > LO_FID_TABLE_TOP)
582 printk(KERN_INFO FW_BUG PFX "first fid not from lo freq table\n");
583
584 return 0;
585 }
586
587 static void print_basics(struct powernow_k8_data *data)
588 {
589 int j;
590 for (j = 0; j < data->numps; j++) {
591 if (data->powernow_table[j].frequency != CPUFREQ_ENTRY_INVALID) {
592 if (cpu_family == CPU_HW_PSTATE) {
593 printk(KERN_INFO PFX " %d : pstate %d (%d MHz)\n",
594 j,
595 data->powernow_table[j].index,
596 data->powernow_table[j].frequency/1000);
597 } else {
598 printk(KERN_INFO PFX " %d : fid 0x%x (%d MHz), vid 0x%x\n",
599 j,
600 data->powernow_table[j].index & 0xff,
601 data->powernow_table[j].frequency/1000,
602 data->powernow_table[j].index >> 8);
603 }
604 }
605 }
606 if (data->batps)
607 printk(KERN_INFO PFX "Only %d pstates on battery\n", data->batps);
608 }
609
610 static int fill_powernow_table(struct powernow_k8_data *data, struct pst_s *pst, u8 maxvid)
611 {
612 struct cpufreq_frequency_table *powernow_table;
613 unsigned int j;
614
615 if (data->batps) { /* use ACPI support to get full speed on mains power */
616 printk(KERN_WARNING PFX "Only %d pstates usable (use ACPI driver for full range\n", data->batps);
617 data->numps = data->batps;
618 }
619
620 for ( j=1; j<data->numps; j++ ) {
621 if (pst[j-1].fid >= pst[j].fid) {
622 printk(KERN_ERR PFX "PST out of sequence\n");
623 return -EINVAL;
624 }
625 }
626
627 if (data->numps < 2) {
628 printk(KERN_ERR PFX "no p states to transition\n");
629 return -ENODEV;
630 }
631
632 if (check_pst_table(data, pst, maxvid))
633 return -EINVAL;
634
635 powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table)
636 * (data->numps + 1)), GFP_KERNEL);
637 if (!powernow_table) {
638 printk(KERN_ERR PFX "powernow_table memory alloc failure\n");
639 return -ENOMEM;
640 }
641
642 for (j = 0; j < data->numps; j++) {
643 powernow_table[j].index = pst[j].fid; /* lower 8 bits */
644 powernow_table[j].index |= (pst[j].vid << 8); /* upper 8 bits */
645 powernow_table[j].frequency = find_khz_freq_from_fid(pst[j].fid);
646 }
647 powernow_table[data->numps].frequency = CPUFREQ_TABLE_END;
648 powernow_table[data->numps].index = 0;
649
650 if (query_current_values_with_pending_wait(data)) {
651 kfree(powernow_table);
652 return -EIO;
653 }
654
655 dprintk("cfid 0x%x, cvid 0x%x\n", data->currfid, data->currvid);
656 data->powernow_table = powernow_table;
657 if (first_cpu(per_cpu(cpu_core_map, data->cpu)) == data->cpu)
658 print_basics(data);
659
660 for (j = 0; j < data->numps; j++)
661 if ((pst[j].fid==data->currfid) && (pst[j].vid==data->currvid))
662 return 0;
663
664 dprintk("currfid/vid do not match PST, ignoring\n");
665 return 0;
666 }
667
668 /* Find and validate the PSB/PST table in BIOS. */
669 static int find_psb_table(struct powernow_k8_data *data)
670 {
671 struct psb_s *psb;
672 unsigned int i;
673 u32 mvs;
674 u8 maxvid;
675 u32 cpst = 0;
676 u32 thiscpuid;
677
678 for (i = 0xc0000; i < 0xffff0; i += 0x10) {
679 /* Scan BIOS looking for the signature. */
680 /* It can not be at ffff0 - it is too big. */
681
682 psb = phys_to_virt(i);
683 if (memcmp(psb, PSB_ID_STRING, PSB_ID_STRING_LEN) != 0)
684 continue;
685
686 dprintk("found PSB header at 0x%p\n", psb);
687
688 dprintk("table vers: 0x%x\n", psb->tableversion);
689 if (psb->tableversion != PSB_VERSION_1_4) {
690 printk(KERN_ERR FW_BUG PFX "PSB table is not v1.4\n");
691 return -ENODEV;
692 }
693
694 dprintk("flags: 0x%x\n", psb->flags1);
695 if (psb->flags1) {
696 printk(KERN_ERR FW_BUG PFX "unknown flags\n");
697 return -ENODEV;
698 }
699
700 data->vstable = psb->vstable;
701 dprintk("voltage stabilization time: %d(*20us)\n", data->vstable);
702
703 dprintk("flags2: 0x%x\n", psb->flags2);
704 data->rvo = psb->flags2 & 3;
705 data->irt = ((psb->flags2) >> 2) & 3;
706 mvs = ((psb->flags2) >> 4) & 3;
707 data->vidmvs = 1 << mvs;
708 data->batps = ((psb->flags2) >> 6) & 3;
709
710 dprintk("ramp voltage offset: %d\n", data->rvo);
711 dprintk("isochronous relief time: %d\n", data->irt);
712 dprintk("maximum voltage step: %d - 0x%x\n", mvs, data->vidmvs);
713
714 dprintk("numpst: 0x%x\n", psb->num_tables);
715 cpst = psb->num_tables;
716 if ((psb->cpuid == 0x00000fc0) || (psb->cpuid == 0x00000fe0) ){
717 thiscpuid = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
718 if ((thiscpuid == 0x00000fc0) || (thiscpuid == 0x00000fe0) ) {
719 cpst = 1;
720 }
721 }
722 if (cpst != 1) {
723 printk(KERN_ERR FW_BUG PFX "numpst must be 1\n");
724 return -ENODEV;
725 }
726
727 data->plllock = psb->plllocktime;
728 dprintk("plllocktime: 0x%x (units 1us)\n", psb->plllocktime);
729 dprintk("maxfid: 0x%x\n", psb->maxfid);
730 dprintk("maxvid: 0x%x\n", psb->maxvid);
731 maxvid = psb->maxvid;
732
733 data->numps = psb->numps;
734 dprintk("numpstates: 0x%x\n", data->numps);
735 return fill_powernow_table(data, (struct pst_s *)(psb+1), maxvid);
736 }
737 /*
738 * If you see this message, complain to BIOS manufacturer. If
739 * he tells you "we do not support Linux" or some similar
740 * nonsense, remember that Windows 2000 uses the same legacy
741 * mechanism that the old Linux PSB driver uses. Tell them it
742 * is broken with Windows 2000.
743 *
744 * The reference to the AMD documentation is chapter 9 in the
745 * BIOS and Kernel Developer's Guide, which is available on
746 * www.amd.com
747 */
748 printk(KERN_ERR PFX "BIOS error - no PSB or ACPI _PSS objects\n");
749 return -ENODEV;
750 }
751
752 #ifdef CONFIG_X86_POWERNOW_K8_ACPI
753 static void powernow_k8_acpi_pst_values(struct powernow_k8_data *data, unsigned int index)
754 {
755 if (!data->acpi_data.state_count || (cpu_family == CPU_HW_PSTATE))
756 return;
757
758 data->irt = (data->acpi_data.states[index].control >> IRT_SHIFT) & IRT_MASK;
759 data->rvo = (data->acpi_data.states[index].control >> RVO_SHIFT) & RVO_MASK;
760 data->exttype = (data->acpi_data.states[index].control >> EXT_TYPE_SHIFT) & EXT_TYPE_MASK;
761 data->plllock = (data->acpi_data.states[index].control >> PLL_L_SHIFT) & PLL_L_MASK;
762 data->vidmvs = 1 << ((data->acpi_data.states[index].control >> MVS_SHIFT) & MVS_MASK);
763 data->vstable = (data->acpi_data.states[index].control >> VST_SHIFT) & VST_MASK;
764 }
765
766 static int powernow_k8_cpu_init_acpi(struct powernow_k8_data *data)
767 {
768 struct cpufreq_frequency_table *powernow_table;
769 int ret_val = -ENODEV;
770
771 if (acpi_processor_register_performance(&data->acpi_data, data->cpu)) {
772 dprintk("register performance failed: bad ACPI data\n");
773 return -EIO;
774 }
775
776 /* verify the data contained in the ACPI structures */
777 if (data->acpi_data.state_count <= 1) {
778 dprintk("No ACPI P-States\n");
779 goto err_out;
780 }
781
782 if ((data->acpi_data.control_register.space_id != ACPI_ADR_SPACE_FIXED_HARDWARE) ||
783 (data->acpi_data.status_register.space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)) {
784 dprintk("Invalid control/status registers (%x - %x)\n",
785 data->acpi_data.control_register.space_id,
786 data->acpi_data.status_register.space_id);
787 goto err_out;
788 }
789
790 /* fill in data->powernow_table */
791 powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table)
792 * (data->acpi_data.state_count + 1)), GFP_KERNEL);
793 if (!powernow_table) {
794 dprintk("powernow_table memory alloc failure\n");
795 goto err_out;
796 }
797
798 if (cpu_family == CPU_HW_PSTATE)
799 ret_val = fill_powernow_table_pstate(data, powernow_table);
800 else
801 ret_val = fill_powernow_table_fidvid(data, powernow_table);
802 if (ret_val)
803 goto err_out_mem;
804
805 powernow_table[data->acpi_data.state_count].frequency = CPUFREQ_TABLE_END;
806 powernow_table[data->acpi_data.state_count].index = 0;
807 data->powernow_table = powernow_table;
808
809 /* fill in data */
810 data->numps = data->acpi_data.state_count;
811 if (first_cpu(per_cpu(cpu_core_map, data->cpu)) == data->cpu)
812 print_basics(data);
813 powernow_k8_acpi_pst_values(data, 0);
814
815 /* notify BIOS that we exist */
816 acpi_processor_notify_smm(THIS_MODULE);
817
818 if (!alloc_cpumask_var(&data->acpi_data.shared_cpu_map, GFP_KERNEL)) {
819 printk(KERN_ERR PFX
820 "unable to alloc powernow_k8_data cpumask\n");
821 ret_val = -ENOMEM;
822 goto err_out_mem;
823 }
824
825 return 0;
826
827 err_out_mem:
828 kfree(powernow_table);
829
830 err_out:
831 acpi_processor_unregister_performance(&data->acpi_data, data->cpu);
832
833 /* data->acpi_data.state_count informs us at ->exit() whether ACPI was used */
834 data->acpi_data.state_count = 0;
835
836 return ret_val;
837 }
838
839 static int fill_powernow_table_pstate(struct powernow_k8_data *data, struct cpufreq_frequency_table *powernow_table)
840 {
841 int i;
842 u32 hi = 0, lo = 0;
843 rdmsr(MSR_PSTATE_CUR_LIMIT, hi, lo);
844 data->max_hw_pstate = (hi & HW_PSTATE_MAX_MASK) >> HW_PSTATE_MAX_SHIFT;
845
846 for (i = 0; i < data->acpi_data.state_count; i++) {
847 u32 index;
848
849 index = data->acpi_data.states[i].control & HW_PSTATE_MASK;
850 if (index > data->max_hw_pstate) {
851 printk(KERN_ERR PFX "invalid pstate %d - bad value %d.\n", i, index);
852 printk(KERN_ERR PFX "Please report to BIOS manufacturer\n");
853 powernow_table[i].frequency = CPUFREQ_ENTRY_INVALID;
854 continue;
855 }
856 rdmsr(MSR_PSTATE_DEF_BASE + index, lo, hi);
857 if (!(hi & HW_PSTATE_VALID_MASK)) {
858 dprintk("invalid pstate %d, ignoring\n", index);
859 powernow_table[i].frequency = CPUFREQ_ENTRY_INVALID;
860 continue;
861 }
862
863 powernow_table[i].index = index;
864
865 powernow_table[i].frequency = data->acpi_data.states[i].core_frequency * 1000;
866 }
867 return 0;
868 }
869
870 static int fill_powernow_table_fidvid(struct powernow_k8_data *data, struct cpufreq_frequency_table *powernow_table)
871 {
872 int i;
873 int cntlofreq = 0;
874 for (i = 0; i < data->acpi_data.state_count; i++) {
875 u32 fid;
876 u32 vid;
877
878 if (data->exttype) {
879 fid = data->acpi_data.states[i].status & EXT_FID_MASK;
880 vid = (data->acpi_data.states[i].status >> VID_SHIFT) & EXT_VID_MASK;
881 } else {
882 fid = data->acpi_data.states[i].control & FID_MASK;
883 vid = (data->acpi_data.states[i].control >> VID_SHIFT) & VID_MASK;
884 }
885
886 dprintk(" %d : fid 0x%x, vid 0x%x\n", i, fid, vid);
887
888 powernow_table[i].index = fid; /* lower 8 bits */
889 powernow_table[i].index |= (vid << 8); /* upper 8 bits */
890 powernow_table[i].frequency = find_khz_freq_from_fid(fid);
891
892 /* verify frequency is OK */
893 if ((powernow_table[i].frequency > (MAX_FREQ * 1000)) ||
894 (powernow_table[i].frequency < (MIN_FREQ * 1000))) {
895 dprintk("invalid freq %u kHz, ignoring\n", powernow_table[i].frequency);
896 powernow_table[i].frequency = CPUFREQ_ENTRY_INVALID;
897 continue;
898 }
899
900 /* verify voltage is OK - BIOSs are using "off" to indicate invalid */
901 if (vid == VID_OFF) {
902 dprintk("invalid vid %u, ignoring\n", vid);
903 powernow_table[i].frequency = CPUFREQ_ENTRY_INVALID;
904 continue;
905 }
906
907 /* verify only 1 entry from the lo frequency table */
908 if (fid < HI_FID_TABLE_BOTTOM) {
909 if (cntlofreq) {
910 /* if both entries are the same, ignore this one ... */
911 if ((powernow_table[i].frequency != powernow_table[cntlofreq].frequency) ||
912 (powernow_table[i].index != powernow_table[cntlofreq].index)) {
913 printk(KERN_ERR PFX "Too many lo freq table entries\n");
914 return 1;
915 }
916
917 dprintk("double low frequency table entry, ignoring it.\n");
918 powernow_table[i].frequency = CPUFREQ_ENTRY_INVALID;
919 continue;
920 } else
921 cntlofreq = i;
922 }
923
924 if (powernow_table[i].frequency != (data->acpi_data.states[i].core_frequency * 1000)) {
925 printk(KERN_INFO PFX "invalid freq entries %u kHz vs. %u kHz\n",
926 powernow_table[i].frequency,
927 (unsigned int) (data->acpi_data.states[i].core_frequency * 1000));
928 powernow_table[i].frequency = CPUFREQ_ENTRY_INVALID;
929 continue;
930 }
931 }
932 return 0;
933 }
934
935 static void powernow_k8_cpu_exit_acpi(struct powernow_k8_data *data)
936 {
937 if (data->acpi_data.state_count)
938 acpi_processor_unregister_performance(&data->acpi_data, data->cpu);
939 free_cpumask_var(data->acpi_data.shared_cpu_map);
940 }
941
942 #else
943 static int powernow_k8_cpu_init_acpi(struct powernow_k8_data *data) { return -ENODEV; }
944 static void powernow_k8_cpu_exit_acpi(struct powernow_k8_data *data) { return; }
945 static void powernow_k8_acpi_pst_values(struct powernow_k8_data *data, unsigned int index) { return; }
946 #endif /* CONFIG_X86_POWERNOW_K8_ACPI */
947
948 /* Take a frequency, and issue the fid/vid transition command */
949 static int transition_frequency_fidvid(struct powernow_k8_data *data, unsigned int index)
950 {
951 u32 fid = 0;
952 u32 vid = 0;
953 int res, i;
954 struct cpufreq_freqs freqs;
955
956 dprintk("cpu %d transition to index %u\n", smp_processor_id(), index);
957
958 /* fid/vid correctness check for k8 */
959 /* fid are the lower 8 bits of the index we stored into
960 * the cpufreq frequency table in find_psb_table, vid
961 * are the upper 8 bits.
962 */
963 fid = data->powernow_table[index].index & 0xFF;
964 vid = (data->powernow_table[index].index & 0xFF00) >> 8;
965
966 dprintk("table matched fid 0x%x, giving vid 0x%x\n", fid, vid);
967
968 if (query_current_values_with_pending_wait(data))
969 return 1;
970
971 if ((data->currvid == vid) && (data->currfid == fid)) {
972 dprintk("target matches current values (fid 0x%x, vid 0x%x)\n",
973 fid, vid);
974 return 0;
975 }
976
977 if ((fid < HI_FID_TABLE_BOTTOM) && (data->currfid < HI_FID_TABLE_BOTTOM)) {
978 printk(KERN_ERR PFX
979 "ignoring illegal change in lo freq table-%x to 0x%x\n",
980 data->currfid, fid);
981 return 1;
982 }
983
984 dprintk("cpu %d, changing to fid 0x%x, vid 0x%x\n",
985 smp_processor_id(), fid, vid);
986 freqs.old = find_khz_freq_from_fid(data->currfid);
987 freqs.new = find_khz_freq_from_fid(fid);
988
989 for_each_cpu_mask_nr(i, *(data->available_cores)) {
990 freqs.cpu = i;
991 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
992 }
993
994 res = transition_fid_vid(data, fid, vid);
995 freqs.new = find_khz_freq_from_fid(data->currfid);
996
997 for_each_cpu_mask_nr(i, *(data->available_cores)) {
998 freqs.cpu = i;
999 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
1000 }
1001 return res;
1002 }
1003
1004 /* Take a frequency, and issue the hardware pstate transition command */
1005 static int transition_frequency_pstate(struct powernow_k8_data *data, unsigned int index)
1006 {
1007 u32 pstate = 0;
1008 int res, i;
1009 struct cpufreq_freqs freqs;
1010
1011 dprintk("cpu %d transition to index %u\n", smp_processor_id(), index);
1012
1013 /* get MSR index for hardware pstate transition */
1014 pstate = index & HW_PSTATE_MASK;
1015 if (pstate > data->max_hw_pstate)
1016 return 0;
1017 freqs.old = find_khz_freq_from_pstate(data->powernow_table, data->currpstate);
1018 freqs.new = find_khz_freq_from_pstate(data->powernow_table, pstate);
1019
1020 for_each_cpu_mask_nr(i, *(data->available_cores)) {
1021 freqs.cpu = i;
1022 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
1023 }
1024
1025 res = transition_pstate(data, pstate);
1026 freqs.new = find_khz_freq_from_pstate(data->powernow_table, pstate);
1027
1028 for_each_cpu_mask_nr(i, *(data->available_cores)) {
1029 freqs.cpu = i;
1030 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
1031 }
1032 return res;
1033 }
1034
1035 /* Driver entry point to switch to the target frequency */
1036 static int powernowk8_target(struct cpufreq_policy *pol, unsigned targfreq, unsigned relation)
1037 {
1038 cpumask_t oldmask;
1039 struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
1040 u32 checkfid;
1041 u32 checkvid;
1042 unsigned int newstate;
1043 int ret = -EIO;
1044
1045 if (!data)
1046 return -EINVAL;
1047
1048 checkfid = data->currfid;
1049 checkvid = data->currvid;
1050
1051 /* only run on specific CPU from here on */
1052 oldmask = current->cpus_allowed;
1053 set_cpus_allowed_ptr(current, &cpumask_of_cpu(pol->cpu));
1054
1055 if (smp_processor_id() != pol->cpu) {
1056 printk(KERN_ERR PFX "limiting to cpu %u failed\n", pol->cpu);
1057 goto err_out;
1058 }
1059
1060 if (pending_bit_stuck()) {
1061 printk(KERN_ERR PFX "failing targ, change pending bit set\n");
1062 goto err_out;
1063 }
1064
1065 dprintk("targ: cpu %d, %d kHz, min %d, max %d, relation %d\n",
1066 pol->cpu, targfreq, pol->min, pol->max, relation);
1067
1068 if (query_current_values_with_pending_wait(data))
1069 goto err_out;
1070
1071 if (cpu_family != CPU_HW_PSTATE) {
1072 dprintk("targ: curr fid 0x%x, vid 0x%x\n",
1073 data->currfid, data->currvid);
1074
1075 if ((checkvid != data->currvid) || (checkfid != data->currfid)) {
1076 printk(KERN_INFO PFX
1077 "error - out of sync, fix 0x%x 0x%x, vid 0x%x 0x%x\n",
1078 checkfid, data->currfid, checkvid, data->currvid);
1079 }
1080 }
1081
1082 if (cpufreq_frequency_table_target(pol, data->powernow_table, targfreq, relation, &newstate))
1083 goto err_out;
1084
1085 mutex_lock(&fidvid_mutex);
1086
1087 powernow_k8_acpi_pst_values(data, newstate);
1088
1089 if (cpu_family == CPU_HW_PSTATE)
1090 ret = transition_frequency_pstate(data, newstate);
1091 else
1092 ret = transition_frequency_fidvid(data, newstate);
1093 if (ret) {
1094 printk(KERN_ERR PFX "transition frequency failed\n");
1095 ret = 1;
1096 mutex_unlock(&fidvid_mutex);
1097 goto err_out;
1098 }
1099 mutex_unlock(&fidvid_mutex);
1100
1101 if (cpu_family == CPU_HW_PSTATE)
1102 pol->cur = find_khz_freq_from_pstate(data->powernow_table, newstate);
1103 else
1104 pol->cur = find_khz_freq_from_fid(data->currfid);
1105 ret = 0;
1106
1107 err_out:
1108 set_cpus_allowed_ptr(current, &oldmask);
1109 return ret;
1110 }
1111
1112 /* Driver entry point to verify the policy and range of frequencies */
1113 static int powernowk8_verify(struct cpufreq_policy *pol)
1114 {
1115 struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
1116
1117 if (!data)
1118 return -EINVAL;
1119
1120 return cpufreq_frequency_table_verify(pol, data->powernow_table);
1121 }
1122
1123 /* per CPU init entry point to the driver */
1124 static int __cpuinit powernowk8_cpu_init(struct cpufreq_policy *pol)
1125 {
1126 struct powernow_k8_data *data;
1127 cpumask_t oldmask;
1128 int rc;
1129
1130 if (!cpu_online(pol->cpu))
1131 return -ENODEV;
1132
1133 if (!check_supported_cpu(pol->cpu))
1134 return -ENODEV;
1135
1136 data = kzalloc(sizeof(struct powernow_k8_data), GFP_KERNEL);
1137 if (!data) {
1138 printk(KERN_ERR PFX "unable to alloc powernow_k8_data");
1139 return -ENOMEM;
1140 }
1141
1142 data->cpu = pol->cpu;
1143 data->currpstate = HW_PSTATE_INVALID;
1144
1145 rc = powernow_k8_cpu_init_acpi(data);
1146 if (rc) {
1147 /*
1148 * Use the PSB BIOS structure. This is only availabe on
1149 * an UP version, and is deprecated by AMD.
1150 */
1151 if (num_online_cpus() != 1) {
1152 #ifndef CONFIG_ACPI_PROCESSOR
1153 printk(KERN_ERR PFX "ACPI Processor support is required "
1154 "for SMP systems but is absent. Please load the "
1155 "ACPI Processor module before starting this "
1156 "driver.\n");
1157 #else
1158 printk(KERN_ERR FW_BUG PFX "Your BIOS does not provide"
1159 " ACPI _PSS objects in a way that Linux "
1160 "understands. Please report this to the Linux "
1161 "ACPI maintainers and complain to your BIOS "
1162 "vendor.\n");
1163 #endif
1164 goto err_out;
1165 }
1166 if (pol->cpu != 0) {
1167 printk(KERN_ERR FW_BUG PFX "No ACPI _PSS objects for "
1168 "CPU other than CPU0. Complain to your BIOS "
1169 "vendor.\n");
1170 goto err_out;
1171 }
1172 rc = find_psb_table(data);
1173 if (rc) {
1174 goto err_out;
1175 }
1176 }
1177
1178 /* only run on specific CPU from here on */
1179 oldmask = current->cpus_allowed;
1180 set_cpus_allowed_ptr(current, &cpumask_of_cpu(pol->cpu));
1181
1182 if (smp_processor_id() != pol->cpu) {
1183 printk(KERN_ERR PFX "limiting to cpu %u failed\n", pol->cpu);
1184 goto err_out;
1185 }
1186
1187 if (pending_bit_stuck()) {
1188 printk(KERN_ERR PFX "failing init, change pending bit set\n");
1189 goto err_out;
1190 }
1191
1192 if (query_current_values_with_pending_wait(data))
1193 goto err_out;
1194
1195 if (cpu_family == CPU_OPTERON)
1196 fidvid_msr_init();
1197
1198 /* run on any CPU again */
1199 set_cpus_allowed_ptr(current, &oldmask);
1200
1201 if (cpu_family == CPU_HW_PSTATE)
1202 cpumask_copy(pol->cpus, cpumask_of(pol->cpu));
1203 else
1204 cpumask_copy(pol->cpus, &per_cpu(cpu_core_map, pol->cpu));
1205 data->available_cores = pol->cpus;
1206
1207 /* Take a crude guess here.
1208 * That guess was in microseconds, so multiply with 1000 */
1209 pol->cpuinfo.transition_latency = (((data->rvo + 8) * data->vstable * VST_UNITS_20US)
1210 + (3 * (1 << data->irt) * 10)) * 1000;
1211
1212 if (cpu_family == CPU_HW_PSTATE)
1213 pol->cur = find_khz_freq_from_pstate(data->powernow_table, data->currpstate);
1214 else
1215 pol->cur = find_khz_freq_from_fid(data->currfid);
1216 dprintk("policy current frequency %d kHz\n", pol->cur);
1217
1218 /* min/max the cpu is capable of */
1219 if (cpufreq_frequency_table_cpuinfo(pol, data->powernow_table)) {
1220 printk(KERN_ERR FW_BUG PFX "invalid powernow_table\n");
1221 powernow_k8_cpu_exit_acpi(data);
1222 kfree(data->powernow_table);
1223 kfree(data);
1224 return -EINVAL;
1225 }
1226
1227 cpufreq_frequency_table_get_attr(data->powernow_table, pol->cpu);
1228
1229 if (cpu_family == CPU_HW_PSTATE)
1230 dprintk("cpu_init done, current pstate 0x%x\n", data->currpstate);
1231 else
1232 dprintk("cpu_init done, current fid 0x%x, vid 0x%x\n",
1233 data->currfid, data->currvid);
1234
1235 per_cpu(powernow_data, pol->cpu) = data;
1236
1237 return 0;
1238
1239 err_out:
1240 set_cpus_allowed_ptr(current, &oldmask);
1241 powernow_k8_cpu_exit_acpi(data);
1242
1243 kfree(data);
1244 return -ENODEV;
1245 }
1246
1247 static int __devexit powernowk8_cpu_exit (struct cpufreq_policy *pol)
1248 {
1249 struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
1250
1251 if (!data)
1252 return -EINVAL;
1253
1254 powernow_k8_cpu_exit_acpi(data);
1255
1256 cpufreq_frequency_table_put_attr(pol->cpu);
1257
1258 kfree(data->powernow_table);
1259 kfree(data);
1260
1261 return 0;
1262 }
1263
1264 static unsigned int powernowk8_get (unsigned int cpu)
1265 {
1266 struct powernow_k8_data *data;
1267 cpumask_t oldmask = current->cpus_allowed;
1268 unsigned int khz = 0;
1269 unsigned int first;
1270
1271 first = first_cpu(per_cpu(cpu_core_map, cpu));
1272 data = per_cpu(powernow_data, first);
1273
1274 if (!data)
1275 return -EINVAL;
1276
1277 set_cpus_allowed_ptr(current, &cpumask_of_cpu(cpu));
1278 if (smp_processor_id() != cpu) {
1279 printk(KERN_ERR PFX
1280 "limiting to CPU %d failed in powernowk8_get\n", cpu);
1281 set_cpus_allowed_ptr(current, &oldmask);
1282 return 0;
1283 }
1284
1285 if (query_current_values_with_pending_wait(data))
1286 goto out;
1287
1288 if (cpu_family == CPU_HW_PSTATE)
1289 khz = find_khz_freq_from_pstate(data->powernow_table,
1290 data->currpstate);
1291 else
1292 khz = find_khz_freq_from_fid(data->currfid);
1293
1294
1295 out:
1296 set_cpus_allowed_ptr(current, &oldmask);
1297 return khz;
1298 }
1299
1300 static struct freq_attr* powernow_k8_attr[] = {
1301 &cpufreq_freq_attr_scaling_available_freqs,
1302 NULL,
1303 };
1304
1305 static struct cpufreq_driver cpufreq_amd64_driver = {
1306 .verify = powernowk8_verify,
1307 .target = powernowk8_target,
1308 .init = powernowk8_cpu_init,
1309 .exit = __devexit_p(powernowk8_cpu_exit),
1310 .get = powernowk8_get,
1311 .name = "powernow-k8",
1312 .owner = THIS_MODULE,
1313 .attr = powernow_k8_attr,
1314 };
1315
1316 /* driver entry point for init */
1317 static int __cpuinit powernowk8_init(void)
1318 {
1319 unsigned int i, supported_cpus = 0;
1320
1321 for_each_online_cpu(i) {
1322 if (check_supported_cpu(i))
1323 supported_cpus++;
1324 }
1325
1326 if (supported_cpus == num_online_cpus()) {
1327 printk(KERN_INFO PFX "Found %d %s "
1328 "processors (%d cpu cores) (" VERSION ")\n",
1329 num_online_nodes(),
1330 boot_cpu_data.x86_model_id, supported_cpus);
1331 return cpufreq_register_driver(&cpufreq_amd64_driver);
1332 }
1333
1334 return -ENODEV;
1335 }
1336
1337 /* driver entry point for term */
1338 static void __exit powernowk8_exit(void)
1339 {
1340 dprintk("exit\n");
1341
1342 cpufreq_unregister_driver(&cpufreq_amd64_driver);
1343 }
1344
1345 MODULE_AUTHOR("Paul Devriendt <paul.devriendt@amd.com> and Mark Langsdorf <mark.langsdorf@amd.com>");
1346 MODULE_DESCRIPTION("AMD Athlon 64 and Opteron processor frequency driver.");
1347 MODULE_LICENSE("GPL");
1348
1349 late_initcall(powernowk8_init);
1350 module_exit(powernowk8_exit);
This page took 0.059698 seconds and 5 git commands to generate.