Merge commit 'v2.6.28-rc2' into x86/pci-ioapic-boot-irq-quirks
[deliverable/linux.git] / arch / x86 / kernel / cpu / cpufreq / powernow-k8.c
1 /*
2 * (c) 2003-2006 Advanced Micro Devices, Inc.
3 * Your use of this code is subject to the terms and conditions of the
4 * GNU general public license version 2. See "COPYING" or
5 * http://www.gnu.org/licenses/gpl.html
6 *
7 * Support : mark.langsdorf@amd.com
8 *
9 * Based on the powernow-k7.c module written by Dave Jones.
10 * (C) 2003 Dave Jones on behalf of SuSE Labs
11 * (C) 2004 Dominik Brodowski <linux@brodo.de>
12 * (C) 2004 Pavel Machek <pavel@suse.cz>
13 * Licensed under the terms of the GNU GPL License version 2.
14 * Based upon datasheets & sample CPUs kindly provided by AMD.
15 *
16 * Valuable input gratefully received from Dave Jones, Pavel Machek,
17 * Dominik Brodowski, Jacob Shin, and others.
18 * Originally developed by Paul Devriendt.
19 * Processor information obtained from Chapter 9 (Power and Thermal Management)
20 * of the "BIOS and Kernel Developer's Guide for the AMD Athlon 64 and AMD
21 * Opteron Processors" available for download from www.amd.com
22 *
23 * Tables for specific CPUs can be inferred from
24 * http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/30430.pdf
25 */
26
27 #include <linux/kernel.h>
28 #include <linux/smp.h>
29 #include <linux/module.h>
30 #include <linux/init.h>
31 #include <linux/cpufreq.h>
32 #include <linux/slab.h>
33 #include <linux/string.h>
34 #include <linux/cpumask.h>
35 #include <linux/sched.h> /* for current / set_cpus_allowed() */
36
37 #include <asm/msr.h>
38 #include <asm/io.h>
39 #include <asm/delay.h>
40
41 #ifdef CONFIG_X86_POWERNOW_K8_ACPI
42 #include <linux/acpi.h>
43 #include <linux/mutex.h>
44 #include <acpi/processor.h>
45 #endif
46
47 #define PFX "powernow-k8: "
48 #define VERSION "version 2.20.00"
49 #include "powernow-k8.h"
50
51 /* serialize freq changes */
52 static DEFINE_MUTEX(fidvid_mutex);
53
54 static DEFINE_PER_CPU(struct powernow_k8_data *, powernow_data);
55
56 static int cpu_family = CPU_OPTERON;
57
58 #ifndef CONFIG_SMP
59 DEFINE_PER_CPU(cpumask_t, cpu_core_map);
60 #endif
61
62 /* Return a frequency in MHz, given an input fid */
63 static u32 find_freq_from_fid(u32 fid)
64 {
65 return 800 + (fid * 100);
66 }
67
68 /* Return a frequency in KHz, given an input fid */
69 static u32 find_khz_freq_from_fid(u32 fid)
70 {
71 return 1000 * find_freq_from_fid(fid);
72 }
73
74 static u32 find_khz_freq_from_pstate(struct cpufreq_frequency_table *data, u32 pstate)
75 {
76 return data[pstate].frequency;
77 }
78
79 /* Return the vco fid for an input fid
80 *
81 * Each "low" fid has corresponding "high" fid, and you can get to "low" fids
82 * only from corresponding high fids. This returns "high" fid corresponding to
83 * "low" one.
84 */
85 static u32 convert_fid_to_vco_fid(u32 fid)
86 {
87 if (fid < HI_FID_TABLE_BOTTOM)
88 return 8 + (2 * fid);
89 else
90 return fid;
91 }
92
93 /*
94 * Return 1 if the pending bit is set. Unless we just instructed the processor
95 * to transition to a new state, seeing this bit set is really bad news.
96 */
97 static int pending_bit_stuck(void)
98 {
99 u32 lo, hi;
100
101 if (cpu_family == CPU_HW_PSTATE)
102 return 0;
103
104 rdmsr(MSR_FIDVID_STATUS, lo, hi);
105 return lo & MSR_S_LO_CHANGE_PENDING ? 1 : 0;
106 }
107
108 /*
109 * Update the global current fid / vid values from the status msr.
110 * Returns 1 on error.
111 */
112 static int query_current_values_with_pending_wait(struct powernow_k8_data *data)
113 {
114 u32 lo, hi;
115 u32 i = 0;
116
117 if (cpu_family == CPU_HW_PSTATE) {
118 rdmsr(MSR_PSTATE_STATUS, lo, hi);
119 i = lo & HW_PSTATE_MASK;
120 data->currpstate = i;
121 return 0;
122 }
123 do {
124 if (i++ > 10000) {
125 dprintk("detected change pending stuck\n");
126 return 1;
127 }
128 rdmsr(MSR_FIDVID_STATUS, lo, hi);
129 } while (lo & MSR_S_LO_CHANGE_PENDING);
130
131 data->currvid = hi & MSR_S_HI_CURRENT_VID;
132 data->currfid = lo & MSR_S_LO_CURRENT_FID;
133
134 return 0;
135 }
136
137 /* the isochronous relief time */
138 static void count_off_irt(struct powernow_k8_data *data)
139 {
140 udelay((1 << data->irt) * 10);
141 return;
142 }
143
144 /* the voltage stabilization time */
145 static void count_off_vst(struct powernow_k8_data *data)
146 {
147 udelay(data->vstable * VST_UNITS_20US);
148 return;
149 }
150
151 /* need to init the control msr to a safe value (for each cpu) */
152 static void fidvid_msr_init(void)
153 {
154 u32 lo, hi;
155 u8 fid, vid;
156
157 rdmsr(MSR_FIDVID_STATUS, lo, hi);
158 vid = hi & MSR_S_HI_CURRENT_VID;
159 fid = lo & MSR_S_LO_CURRENT_FID;
160 lo = fid | (vid << MSR_C_LO_VID_SHIFT);
161 hi = MSR_C_HI_STP_GNT_BENIGN;
162 dprintk("cpu%d, init lo 0x%x, hi 0x%x\n", smp_processor_id(), lo, hi);
163 wrmsr(MSR_FIDVID_CTL, lo, hi);
164 }
165
166 /* write the new fid value along with the other control fields to the msr */
167 static int write_new_fid(struct powernow_k8_data *data, u32 fid)
168 {
169 u32 lo;
170 u32 savevid = data->currvid;
171 u32 i = 0;
172
173 if ((fid & INVALID_FID_MASK) || (data->currvid & INVALID_VID_MASK)) {
174 printk(KERN_ERR PFX "internal error - overflow on fid write\n");
175 return 1;
176 }
177
178 lo = fid | (data->currvid << MSR_C_LO_VID_SHIFT) | MSR_C_LO_INIT_FID_VID;
179
180 dprintk("writing fid 0x%x, lo 0x%x, hi 0x%x\n",
181 fid, lo, data->plllock * PLL_LOCK_CONVERSION);
182
183 do {
184 wrmsr(MSR_FIDVID_CTL, lo, data->plllock * PLL_LOCK_CONVERSION);
185 if (i++ > 100) {
186 printk(KERN_ERR PFX "Hardware error - pending bit very stuck - no further pstate changes possible\n");
187 return 1;
188 }
189 } while (query_current_values_with_pending_wait(data));
190
191 count_off_irt(data);
192
193 if (savevid != data->currvid) {
194 printk(KERN_ERR PFX "vid change on fid trans, old 0x%x, new 0x%x\n",
195 savevid, data->currvid);
196 return 1;
197 }
198
199 if (fid != data->currfid) {
200 printk(KERN_ERR PFX "fid trans failed, fid 0x%x, curr 0x%x\n", fid,
201 data->currfid);
202 return 1;
203 }
204
205 return 0;
206 }
207
208 /* Write a new vid to the hardware */
209 static int write_new_vid(struct powernow_k8_data *data, u32 vid)
210 {
211 u32 lo;
212 u32 savefid = data->currfid;
213 int i = 0;
214
215 if ((data->currfid & INVALID_FID_MASK) || (vid & INVALID_VID_MASK)) {
216 printk(KERN_ERR PFX "internal error - overflow on vid write\n");
217 return 1;
218 }
219
220 lo = data->currfid | (vid << MSR_C_LO_VID_SHIFT) | MSR_C_LO_INIT_FID_VID;
221
222 dprintk("writing vid 0x%x, lo 0x%x, hi 0x%x\n",
223 vid, lo, STOP_GRANT_5NS);
224
225 do {
226 wrmsr(MSR_FIDVID_CTL, lo, STOP_GRANT_5NS);
227 if (i++ > 100) {
228 printk(KERN_ERR PFX "internal error - pending bit very stuck - no further pstate changes possible\n");
229 return 1;
230 }
231 } while (query_current_values_with_pending_wait(data));
232
233 if (savefid != data->currfid) {
234 printk(KERN_ERR PFX "fid changed on vid trans, old 0x%x new 0x%x\n",
235 savefid, data->currfid);
236 return 1;
237 }
238
239 if (vid != data->currvid) {
240 printk(KERN_ERR PFX "vid trans failed, vid 0x%x, curr 0x%x\n", vid,
241 data->currvid);
242 return 1;
243 }
244
245 return 0;
246 }
247
248 /*
249 * Reduce the vid by the max of step or reqvid.
250 * Decreasing vid codes represent increasing voltages:
251 * vid of 0 is 1.550V, vid of 0x1e is 0.800V, vid of VID_OFF is off.
252 */
253 static int decrease_vid_code_by_step(struct powernow_k8_data *data, u32 reqvid, u32 step)
254 {
255 if ((data->currvid - reqvid) > step)
256 reqvid = data->currvid - step;
257
258 if (write_new_vid(data, reqvid))
259 return 1;
260
261 count_off_vst(data);
262
263 return 0;
264 }
265
266 /* Change hardware pstate by single MSR write */
267 static int transition_pstate(struct powernow_k8_data *data, u32 pstate)
268 {
269 wrmsr(MSR_PSTATE_CTRL, pstate, 0);
270 data->currpstate = pstate;
271 return 0;
272 }
273
274 /* Change Opteron/Athlon64 fid and vid, by the 3 phases. */
275 static int transition_fid_vid(struct powernow_k8_data *data, u32 reqfid, u32 reqvid)
276 {
277 if (core_voltage_pre_transition(data, reqvid))
278 return 1;
279
280 if (core_frequency_transition(data, reqfid))
281 return 1;
282
283 if (core_voltage_post_transition(data, reqvid))
284 return 1;
285
286 if (query_current_values_with_pending_wait(data))
287 return 1;
288
289 if ((reqfid != data->currfid) || (reqvid != data->currvid)) {
290 printk(KERN_ERR PFX "failed (cpu%d): req 0x%x 0x%x, curr 0x%x 0x%x\n",
291 smp_processor_id(),
292 reqfid, reqvid, data->currfid, data->currvid);
293 return 1;
294 }
295
296 dprintk("transitioned (cpu%d): new fid 0x%x, vid 0x%x\n",
297 smp_processor_id(), data->currfid, data->currvid);
298
299 return 0;
300 }
301
302 /* Phase 1 - core voltage transition ... setup voltage */
303 static int core_voltage_pre_transition(struct powernow_k8_data *data, u32 reqvid)
304 {
305 u32 rvosteps = data->rvo;
306 u32 savefid = data->currfid;
307 u32 maxvid, lo;
308
309 dprintk("ph1 (cpu%d): start, currfid 0x%x, currvid 0x%x, reqvid 0x%x, rvo 0x%x\n",
310 smp_processor_id(),
311 data->currfid, data->currvid, reqvid, data->rvo);
312
313 rdmsr(MSR_FIDVID_STATUS, lo, maxvid);
314 maxvid = 0x1f & (maxvid >> 16);
315 dprintk("ph1 maxvid=0x%x\n", maxvid);
316 if (reqvid < maxvid) /* lower numbers are higher voltages */
317 reqvid = maxvid;
318
319 while (data->currvid > reqvid) {
320 dprintk("ph1: curr 0x%x, req vid 0x%x\n",
321 data->currvid, reqvid);
322 if (decrease_vid_code_by_step(data, reqvid, data->vidmvs))
323 return 1;
324 }
325
326 while ((rvosteps > 0) && ((data->rvo + data->currvid) > reqvid)) {
327 if (data->currvid == maxvid) {
328 rvosteps = 0;
329 } else {
330 dprintk("ph1: changing vid for rvo, req 0x%x\n",
331 data->currvid - 1);
332 if (decrease_vid_code_by_step(data, data->currvid - 1, 1))
333 return 1;
334 rvosteps--;
335 }
336 }
337
338 if (query_current_values_with_pending_wait(data))
339 return 1;
340
341 if (savefid != data->currfid) {
342 printk(KERN_ERR PFX "ph1 err, currfid changed 0x%x\n", data->currfid);
343 return 1;
344 }
345
346 dprintk("ph1 complete, currfid 0x%x, currvid 0x%x\n",
347 data->currfid, data->currvid);
348
349 return 0;
350 }
351
352 /* Phase 2 - core frequency transition */
353 static int core_frequency_transition(struct powernow_k8_data *data, u32 reqfid)
354 {
355 u32 vcoreqfid, vcocurrfid, vcofiddiff, fid_interval, savevid = data->currvid;
356
357 if ((reqfid < HI_FID_TABLE_BOTTOM) && (data->currfid < HI_FID_TABLE_BOTTOM)) {
358 printk(KERN_ERR PFX "ph2: illegal lo-lo transition 0x%x 0x%x\n",
359 reqfid, data->currfid);
360 return 1;
361 }
362
363 if (data->currfid == reqfid) {
364 printk(KERN_ERR PFX "ph2 null fid transition 0x%x\n", data->currfid);
365 return 0;
366 }
367
368 dprintk("ph2 (cpu%d): starting, currfid 0x%x, currvid 0x%x, reqfid 0x%x\n",
369 smp_processor_id(),
370 data->currfid, data->currvid, reqfid);
371
372 vcoreqfid = convert_fid_to_vco_fid(reqfid);
373 vcocurrfid = convert_fid_to_vco_fid(data->currfid);
374 vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
375 : vcoreqfid - vcocurrfid;
376
377 while (vcofiddiff > 2) {
378 (data->currfid & 1) ? (fid_interval = 1) : (fid_interval = 2);
379
380 if (reqfid > data->currfid) {
381 if (data->currfid > LO_FID_TABLE_TOP) {
382 if (write_new_fid(data, data->currfid + fid_interval)) {
383 return 1;
384 }
385 } else {
386 if (write_new_fid
387 (data, 2 + convert_fid_to_vco_fid(data->currfid))) {
388 return 1;
389 }
390 }
391 } else {
392 if (write_new_fid(data, data->currfid - fid_interval))
393 return 1;
394 }
395
396 vcocurrfid = convert_fid_to_vco_fid(data->currfid);
397 vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
398 : vcoreqfid - vcocurrfid;
399 }
400
401 if (write_new_fid(data, reqfid))
402 return 1;
403
404 if (query_current_values_with_pending_wait(data))
405 return 1;
406
407 if (data->currfid != reqfid) {
408 printk(KERN_ERR PFX
409 "ph2: mismatch, failed fid transition, curr 0x%x, req 0x%x\n",
410 data->currfid, reqfid);
411 return 1;
412 }
413
414 if (savevid != data->currvid) {
415 printk(KERN_ERR PFX "ph2: vid changed, save 0x%x, curr 0x%x\n",
416 savevid, data->currvid);
417 return 1;
418 }
419
420 dprintk("ph2 complete, currfid 0x%x, currvid 0x%x\n",
421 data->currfid, data->currvid);
422
423 return 0;
424 }
425
426 /* Phase 3 - core voltage transition flow ... jump to the final vid. */
427 static int core_voltage_post_transition(struct powernow_k8_data *data, u32 reqvid)
428 {
429 u32 savefid = data->currfid;
430 u32 savereqvid = reqvid;
431
432 dprintk("ph3 (cpu%d): starting, currfid 0x%x, currvid 0x%x\n",
433 smp_processor_id(),
434 data->currfid, data->currvid);
435
436 if (reqvid != data->currvid) {
437 if (write_new_vid(data, reqvid))
438 return 1;
439
440 if (savefid != data->currfid) {
441 printk(KERN_ERR PFX
442 "ph3: bad fid change, save 0x%x, curr 0x%x\n",
443 savefid, data->currfid);
444 return 1;
445 }
446
447 if (data->currvid != reqvid) {
448 printk(KERN_ERR PFX
449 "ph3: failed vid transition\n, req 0x%x, curr 0x%x",
450 reqvid, data->currvid);
451 return 1;
452 }
453 }
454
455 if (query_current_values_with_pending_wait(data))
456 return 1;
457
458 if (savereqvid != data->currvid) {
459 dprintk("ph3 failed, currvid 0x%x\n", data->currvid);
460 return 1;
461 }
462
463 if (savefid != data->currfid) {
464 dprintk("ph3 failed, currfid changed 0x%x\n",
465 data->currfid);
466 return 1;
467 }
468
469 dprintk("ph3 complete, currfid 0x%x, currvid 0x%x\n",
470 data->currfid, data->currvid);
471
472 return 0;
473 }
474
475 static int check_supported_cpu(unsigned int cpu)
476 {
477 cpumask_t oldmask;
478 u32 eax, ebx, ecx, edx;
479 unsigned int rc = 0;
480
481 oldmask = current->cpus_allowed;
482 set_cpus_allowed_ptr(current, &cpumask_of_cpu(cpu));
483
484 if (smp_processor_id() != cpu) {
485 printk(KERN_ERR PFX "limiting to cpu %u failed\n", cpu);
486 goto out;
487 }
488
489 if (current_cpu_data.x86_vendor != X86_VENDOR_AMD)
490 goto out;
491
492 eax = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
493 if (((eax & CPUID_XFAM) != CPUID_XFAM_K8) &&
494 ((eax & CPUID_XFAM) < CPUID_XFAM_10H))
495 goto out;
496
497 if ((eax & CPUID_XFAM) == CPUID_XFAM_K8) {
498 if (((eax & CPUID_USE_XFAM_XMOD) != CPUID_USE_XFAM_XMOD) ||
499 ((eax & CPUID_XMOD) > CPUID_XMOD_REV_MASK)) {
500 printk(KERN_INFO PFX "Processor cpuid %x not supported\n", eax);
501 goto out;
502 }
503
504 eax = cpuid_eax(CPUID_GET_MAX_CAPABILITIES);
505 if (eax < CPUID_FREQ_VOLT_CAPABILITIES) {
506 printk(KERN_INFO PFX
507 "No frequency change capabilities detected\n");
508 goto out;
509 }
510
511 cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx);
512 if ((edx & P_STATE_TRANSITION_CAPABLE) != P_STATE_TRANSITION_CAPABLE) {
513 printk(KERN_INFO PFX "Power state transitions not supported\n");
514 goto out;
515 }
516 } else { /* must be a HW Pstate capable processor */
517 cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx);
518 if ((edx & USE_HW_PSTATE) == USE_HW_PSTATE)
519 cpu_family = CPU_HW_PSTATE;
520 else
521 goto out;
522 }
523
524 rc = 1;
525
526 out:
527 set_cpus_allowed_ptr(current, &oldmask);
528 return rc;
529 }
530
531 static int check_pst_table(struct powernow_k8_data *data, struct pst_s *pst, u8 maxvid)
532 {
533 unsigned int j;
534 u8 lastfid = 0xff;
535
536 for (j = 0; j < data->numps; j++) {
537 if (pst[j].vid > LEAST_VID) {
538 printk(KERN_ERR FW_BUG PFX "vid %d invalid : 0x%x\n",
539 j, pst[j].vid);
540 return -EINVAL;
541 }
542 if (pst[j].vid < data->rvo) { /* vid + rvo >= 0 */
543 printk(KERN_ERR FW_BUG PFX "0 vid exceeded with pstate"
544 " %d\n", j);
545 return -ENODEV;
546 }
547 if (pst[j].vid < maxvid + data->rvo) { /* vid + rvo >= maxvid */
548 printk(KERN_ERR FW_BUG PFX "maxvid exceeded with pstate"
549 " %d\n", j);
550 return -ENODEV;
551 }
552 if (pst[j].fid > MAX_FID) {
553 printk(KERN_ERR FW_BUG PFX "maxfid exceeded with pstate"
554 " %d\n", j);
555 return -ENODEV;
556 }
557 if (j && (pst[j].fid < HI_FID_TABLE_BOTTOM)) {
558 /* Only first fid is allowed to be in "low" range */
559 printk(KERN_ERR FW_BUG PFX "two low fids - %d : "
560 "0x%x\n", j, pst[j].fid);
561 return -EINVAL;
562 }
563 if (pst[j].fid < lastfid)
564 lastfid = pst[j].fid;
565 }
566 if (lastfid & 1) {
567 printk(KERN_ERR FW_BUG PFX "lastfid invalid\n");
568 return -EINVAL;
569 }
570 if (lastfid > LO_FID_TABLE_TOP)
571 printk(KERN_INFO FW_BUG PFX "first fid not from lo freq table\n");
572
573 return 0;
574 }
575
576 static void print_basics(struct powernow_k8_data *data)
577 {
578 int j;
579 for (j = 0; j < data->numps; j++) {
580 if (data->powernow_table[j].frequency != CPUFREQ_ENTRY_INVALID) {
581 if (cpu_family == CPU_HW_PSTATE) {
582 printk(KERN_INFO PFX " %d : pstate %d (%d MHz)\n",
583 j,
584 data->powernow_table[j].index,
585 data->powernow_table[j].frequency/1000);
586 } else {
587 printk(KERN_INFO PFX " %d : fid 0x%x (%d MHz), vid 0x%x\n",
588 j,
589 data->powernow_table[j].index & 0xff,
590 data->powernow_table[j].frequency/1000,
591 data->powernow_table[j].index >> 8);
592 }
593 }
594 }
595 if (data->batps)
596 printk(KERN_INFO PFX "Only %d pstates on battery\n", data->batps);
597 }
598
599 static int fill_powernow_table(struct powernow_k8_data *data, struct pst_s *pst, u8 maxvid)
600 {
601 struct cpufreq_frequency_table *powernow_table;
602 unsigned int j;
603
604 if (data->batps) { /* use ACPI support to get full speed on mains power */
605 printk(KERN_WARNING PFX "Only %d pstates usable (use ACPI driver for full range\n", data->batps);
606 data->numps = data->batps;
607 }
608
609 for ( j=1; j<data->numps; j++ ) {
610 if (pst[j-1].fid >= pst[j].fid) {
611 printk(KERN_ERR PFX "PST out of sequence\n");
612 return -EINVAL;
613 }
614 }
615
616 if (data->numps < 2) {
617 printk(KERN_ERR PFX "no p states to transition\n");
618 return -ENODEV;
619 }
620
621 if (check_pst_table(data, pst, maxvid))
622 return -EINVAL;
623
624 powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table)
625 * (data->numps + 1)), GFP_KERNEL);
626 if (!powernow_table) {
627 printk(KERN_ERR PFX "powernow_table memory alloc failure\n");
628 return -ENOMEM;
629 }
630
631 for (j = 0; j < data->numps; j++) {
632 powernow_table[j].index = pst[j].fid; /* lower 8 bits */
633 powernow_table[j].index |= (pst[j].vid << 8); /* upper 8 bits */
634 powernow_table[j].frequency = find_khz_freq_from_fid(pst[j].fid);
635 }
636 powernow_table[data->numps].frequency = CPUFREQ_TABLE_END;
637 powernow_table[data->numps].index = 0;
638
639 if (query_current_values_with_pending_wait(data)) {
640 kfree(powernow_table);
641 return -EIO;
642 }
643
644 dprintk("cfid 0x%x, cvid 0x%x\n", data->currfid, data->currvid);
645 data->powernow_table = powernow_table;
646 if (first_cpu(per_cpu(cpu_core_map, data->cpu)) == data->cpu)
647 print_basics(data);
648
649 for (j = 0; j < data->numps; j++)
650 if ((pst[j].fid==data->currfid) && (pst[j].vid==data->currvid))
651 return 0;
652
653 dprintk("currfid/vid do not match PST, ignoring\n");
654 return 0;
655 }
656
657 /* Find and validate the PSB/PST table in BIOS. */
658 static int find_psb_table(struct powernow_k8_data *data)
659 {
660 struct psb_s *psb;
661 unsigned int i;
662 u32 mvs;
663 u8 maxvid;
664 u32 cpst = 0;
665 u32 thiscpuid;
666
667 for (i = 0xc0000; i < 0xffff0; i += 0x10) {
668 /* Scan BIOS looking for the signature. */
669 /* It can not be at ffff0 - it is too big. */
670
671 psb = phys_to_virt(i);
672 if (memcmp(psb, PSB_ID_STRING, PSB_ID_STRING_LEN) != 0)
673 continue;
674
675 dprintk("found PSB header at 0x%p\n", psb);
676
677 dprintk("table vers: 0x%x\n", psb->tableversion);
678 if (psb->tableversion != PSB_VERSION_1_4) {
679 printk(KERN_ERR FW_BUG PFX "PSB table is not v1.4\n");
680 return -ENODEV;
681 }
682
683 dprintk("flags: 0x%x\n", psb->flags1);
684 if (psb->flags1) {
685 printk(KERN_ERR FW_BUG PFX "unknown flags\n");
686 return -ENODEV;
687 }
688
689 data->vstable = psb->vstable;
690 dprintk("voltage stabilization time: %d(*20us)\n", data->vstable);
691
692 dprintk("flags2: 0x%x\n", psb->flags2);
693 data->rvo = psb->flags2 & 3;
694 data->irt = ((psb->flags2) >> 2) & 3;
695 mvs = ((psb->flags2) >> 4) & 3;
696 data->vidmvs = 1 << mvs;
697 data->batps = ((psb->flags2) >> 6) & 3;
698
699 dprintk("ramp voltage offset: %d\n", data->rvo);
700 dprintk("isochronous relief time: %d\n", data->irt);
701 dprintk("maximum voltage step: %d - 0x%x\n", mvs, data->vidmvs);
702
703 dprintk("numpst: 0x%x\n", psb->num_tables);
704 cpst = psb->num_tables;
705 if ((psb->cpuid == 0x00000fc0) || (psb->cpuid == 0x00000fe0) ){
706 thiscpuid = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
707 if ((thiscpuid == 0x00000fc0) || (thiscpuid == 0x00000fe0) ) {
708 cpst = 1;
709 }
710 }
711 if (cpst != 1) {
712 printk(KERN_ERR FW_BUG PFX "numpst must be 1\n");
713 return -ENODEV;
714 }
715
716 data->plllock = psb->plllocktime;
717 dprintk("plllocktime: 0x%x (units 1us)\n", psb->plllocktime);
718 dprintk("maxfid: 0x%x\n", psb->maxfid);
719 dprintk("maxvid: 0x%x\n", psb->maxvid);
720 maxvid = psb->maxvid;
721
722 data->numps = psb->numps;
723 dprintk("numpstates: 0x%x\n", data->numps);
724 return fill_powernow_table(data, (struct pst_s *)(psb+1), maxvid);
725 }
726 /*
727 * If you see this message, complain to BIOS manufacturer. If
728 * he tells you "we do not support Linux" or some similar
729 * nonsense, remember that Windows 2000 uses the same legacy
730 * mechanism that the old Linux PSB driver uses. Tell them it
731 * is broken with Windows 2000.
732 *
733 * The reference to the AMD documentation is chapter 9 in the
734 * BIOS and Kernel Developer's Guide, which is available on
735 * www.amd.com
736 */
737 printk(KERN_ERR PFX "BIOS error - no PSB or ACPI _PSS objects\n");
738 return -ENODEV;
739 }
740
741 #ifdef CONFIG_X86_POWERNOW_K8_ACPI
742 static void powernow_k8_acpi_pst_values(struct powernow_k8_data *data, unsigned int index)
743 {
744 if (!data->acpi_data.state_count || (cpu_family == CPU_HW_PSTATE))
745 return;
746
747 data->irt = (data->acpi_data.states[index].control >> IRT_SHIFT) & IRT_MASK;
748 data->rvo = (data->acpi_data.states[index].control >> RVO_SHIFT) & RVO_MASK;
749 data->exttype = (data->acpi_data.states[index].control >> EXT_TYPE_SHIFT) & EXT_TYPE_MASK;
750 data->plllock = (data->acpi_data.states[index].control >> PLL_L_SHIFT) & PLL_L_MASK;
751 data->vidmvs = 1 << ((data->acpi_data.states[index].control >> MVS_SHIFT) & MVS_MASK);
752 data->vstable = (data->acpi_data.states[index].control >> VST_SHIFT) & VST_MASK;
753 }
754
755 static int powernow_k8_cpu_init_acpi(struct powernow_k8_data *data)
756 {
757 struct cpufreq_frequency_table *powernow_table;
758 int ret_val;
759
760 if (acpi_processor_register_performance(&data->acpi_data, data->cpu)) {
761 dprintk("register performance failed: bad ACPI data\n");
762 return -EIO;
763 }
764
765 /* verify the data contained in the ACPI structures */
766 if (data->acpi_data.state_count <= 1) {
767 dprintk("No ACPI P-States\n");
768 goto err_out;
769 }
770
771 if ((data->acpi_data.control_register.space_id != ACPI_ADR_SPACE_FIXED_HARDWARE) ||
772 (data->acpi_data.status_register.space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)) {
773 dprintk("Invalid control/status registers (%x - %x)\n",
774 data->acpi_data.control_register.space_id,
775 data->acpi_data.status_register.space_id);
776 goto err_out;
777 }
778
779 /* fill in data->powernow_table */
780 powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table)
781 * (data->acpi_data.state_count + 1)), GFP_KERNEL);
782 if (!powernow_table) {
783 dprintk("powernow_table memory alloc failure\n");
784 goto err_out;
785 }
786
787 if (cpu_family == CPU_HW_PSTATE)
788 ret_val = fill_powernow_table_pstate(data, powernow_table);
789 else
790 ret_val = fill_powernow_table_fidvid(data, powernow_table);
791 if (ret_val)
792 goto err_out_mem;
793
794 powernow_table[data->acpi_data.state_count].frequency = CPUFREQ_TABLE_END;
795 powernow_table[data->acpi_data.state_count].index = 0;
796 data->powernow_table = powernow_table;
797
798 /* fill in data */
799 data->numps = data->acpi_data.state_count;
800 if (first_cpu(per_cpu(cpu_core_map, data->cpu)) == data->cpu)
801 print_basics(data);
802 powernow_k8_acpi_pst_values(data, 0);
803
804 /* notify BIOS that we exist */
805 acpi_processor_notify_smm(THIS_MODULE);
806
807 return 0;
808
809 err_out_mem:
810 kfree(powernow_table);
811
812 err_out:
813 acpi_processor_unregister_performance(&data->acpi_data, data->cpu);
814
815 /* data->acpi_data.state_count informs us at ->exit() whether ACPI was used */
816 data->acpi_data.state_count = 0;
817
818 return -ENODEV;
819 }
820
821 static int fill_powernow_table_pstate(struct powernow_k8_data *data, struct cpufreq_frequency_table *powernow_table)
822 {
823 int i;
824 u32 hi = 0, lo = 0;
825 rdmsr(MSR_PSTATE_CUR_LIMIT, hi, lo);
826 data->max_hw_pstate = (hi & HW_PSTATE_MAX_MASK) >> HW_PSTATE_MAX_SHIFT;
827
828 for (i = 0; i < data->acpi_data.state_count; i++) {
829 u32 index;
830
831 index = data->acpi_data.states[i].control & HW_PSTATE_MASK;
832 if (index > data->max_hw_pstate) {
833 printk(KERN_ERR PFX "invalid pstate %d - bad value %d.\n", i, index);
834 printk(KERN_ERR PFX "Please report to BIOS manufacturer\n");
835 powernow_table[i].frequency = CPUFREQ_ENTRY_INVALID;
836 continue;
837 }
838 rdmsr(MSR_PSTATE_DEF_BASE + index, lo, hi);
839 if (!(hi & HW_PSTATE_VALID_MASK)) {
840 dprintk("invalid pstate %d, ignoring\n", index);
841 powernow_table[i].frequency = CPUFREQ_ENTRY_INVALID;
842 continue;
843 }
844
845 powernow_table[i].index = index;
846
847 powernow_table[i].frequency = data->acpi_data.states[i].core_frequency * 1000;
848 }
849 return 0;
850 }
851
852 static int fill_powernow_table_fidvid(struct powernow_k8_data *data, struct cpufreq_frequency_table *powernow_table)
853 {
854 int i;
855 int cntlofreq = 0;
856 for (i = 0; i < data->acpi_data.state_count; i++) {
857 u32 fid;
858 u32 vid;
859
860 if (data->exttype) {
861 fid = data->acpi_data.states[i].status & EXT_FID_MASK;
862 vid = (data->acpi_data.states[i].status >> VID_SHIFT) & EXT_VID_MASK;
863 } else {
864 fid = data->acpi_data.states[i].control & FID_MASK;
865 vid = (data->acpi_data.states[i].control >> VID_SHIFT) & VID_MASK;
866 }
867
868 dprintk(" %d : fid 0x%x, vid 0x%x\n", i, fid, vid);
869
870 powernow_table[i].index = fid; /* lower 8 bits */
871 powernow_table[i].index |= (vid << 8); /* upper 8 bits */
872 powernow_table[i].frequency = find_khz_freq_from_fid(fid);
873
874 /* verify frequency is OK */
875 if ((powernow_table[i].frequency > (MAX_FREQ * 1000)) ||
876 (powernow_table[i].frequency < (MIN_FREQ * 1000))) {
877 dprintk("invalid freq %u kHz, ignoring\n", powernow_table[i].frequency);
878 powernow_table[i].frequency = CPUFREQ_ENTRY_INVALID;
879 continue;
880 }
881
882 /* verify voltage is OK - BIOSs are using "off" to indicate invalid */
883 if (vid == VID_OFF) {
884 dprintk("invalid vid %u, ignoring\n", vid);
885 powernow_table[i].frequency = CPUFREQ_ENTRY_INVALID;
886 continue;
887 }
888
889 /* verify only 1 entry from the lo frequency table */
890 if (fid < HI_FID_TABLE_BOTTOM) {
891 if (cntlofreq) {
892 /* if both entries are the same, ignore this one ... */
893 if ((powernow_table[i].frequency != powernow_table[cntlofreq].frequency) ||
894 (powernow_table[i].index != powernow_table[cntlofreq].index)) {
895 printk(KERN_ERR PFX "Too many lo freq table entries\n");
896 return 1;
897 }
898
899 dprintk("double low frequency table entry, ignoring it.\n");
900 powernow_table[i].frequency = CPUFREQ_ENTRY_INVALID;
901 continue;
902 } else
903 cntlofreq = i;
904 }
905
906 if (powernow_table[i].frequency != (data->acpi_data.states[i].core_frequency * 1000)) {
907 printk(KERN_INFO PFX "invalid freq entries %u kHz vs. %u kHz\n",
908 powernow_table[i].frequency,
909 (unsigned int) (data->acpi_data.states[i].core_frequency * 1000));
910 powernow_table[i].frequency = CPUFREQ_ENTRY_INVALID;
911 continue;
912 }
913 }
914 return 0;
915 }
916
917 static void powernow_k8_cpu_exit_acpi(struct powernow_k8_data *data)
918 {
919 if (data->acpi_data.state_count)
920 acpi_processor_unregister_performance(&data->acpi_data, data->cpu);
921 }
922
923 #else
924 static int powernow_k8_cpu_init_acpi(struct powernow_k8_data *data) { return -ENODEV; }
925 static void powernow_k8_cpu_exit_acpi(struct powernow_k8_data *data) { return; }
926 static void powernow_k8_acpi_pst_values(struct powernow_k8_data *data, unsigned int index) { return; }
927 #endif /* CONFIG_X86_POWERNOW_K8_ACPI */
928
929 /* Take a frequency, and issue the fid/vid transition command */
930 static int transition_frequency_fidvid(struct powernow_k8_data *data, unsigned int index)
931 {
932 u32 fid = 0;
933 u32 vid = 0;
934 int res, i;
935 struct cpufreq_freqs freqs;
936
937 dprintk("cpu %d transition to index %u\n", smp_processor_id(), index);
938
939 /* fid/vid correctness check for k8 */
940 /* fid are the lower 8 bits of the index we stored into
941 * the cpufreq frequency table in find_psb_table, vid
942 * are the upper 8 bits.
943 */
944 fid = data->powernow_table[index].index & 0xFF;
945 vid = (data->powernow_table[index].index & 0xFF00) >> 8;
946
947 dprintk("table matched fid 0x%x, giving vid 0x%x\n", fid, vid);
948
949 if (query_current_values_with_pending_wait(data))
950 return 1;
951
952 if ((data->currvid == vid) && (data->currfid == fid)) {
953 dprintk("target matches current values (fid 0x%x, vid 0x%x)\n",
954 fid, vid);
955 return 0;
956 }
957
958 if ((fid < HI_FID_TABLE_BOTTOM) && (data->currfid < HI_FID_TABLE_BOTTOM)) {
959 printk(KERN_ERR PFX
960 "ignoring illegal change in lo freq table-%x to 0x%x\n",
961 data->currfid, fid);
962 return 1;
963 }
964
965 dprintk("cpu %d, changing to fid 0x%x, vid 0x%x\n",
966 smp_processor_id(), fid, vid);
967 freqs.old = find_khz_freq_from_fid(data->currfid);
968 freqs.new = find_khz_freq_from_fid(fid);
969
970 for_each_cpu_mask_nr(i, *(data->available_cores)) {
971 freqs.cpu = i;
972 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
973 }
974
975 res = transition_fid_vid(data, fid, vid);
976 freqs.new = find_khz_freq_from_fid(data->currfid);
977
978 for_each_cpu_mask_nr(i, *(data->available_cores)) {
979 freqs.cpu = i;
980 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
981 }
982 return res;
983 }
984
985 /* Take a frequency, and issue the hardware pstate transition command */
986 static int transition_frequency_pstate(struct powernow_k8_data *data, unsigned int index)
987 {
988 u32 pstate = 0;
989 int res, i;
990 struct cpufreq_freqs freqs;
991
992 dprintk("cpu %d transition to index %u\n", smp_processor_id(), index);
993
994 /* get MSR index for hardware pstate transition */
995 pstate = index & HW_PSTATE_MASK;
996 if (pstate > data->max_hw_pstate)
997 return 0;
998 freqs.old = find_khz_freq_from_pstate(data->powernow_table, data->currpstate);
999 freqs.new = find_khz_freq_from_pstate(data->powernow_table, pstate);
1000
1001 for_each_cpu_mask_nr(i, *(data->available_cores)) {
1002 freqs.cpu = i;
1003 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
1004 }
1005
1006 res = transition_pstate(data, pstate);
1007 freqs.new = find_khz_freq_from_pstate(data->powernow_table, pstate);
1008
1009 for_each_cpu_mask_nr(i, *(data->available_cores)) {
1010 freqs.cpu = i;
1011 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
1012 }
1013 return res;
1014 }
1015
1016 /* Driver entry point to switch to the target frequency */
1017 static int powernowk8_target(struct cpufreq_policy *pol, unsigned targfreq, unsigned relation)
1018 {
1019 cpumask_t oldmask;
1020 struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
1021 u32 checkfid;
1022 u32 checkvid;
1023 unsigned int newstate;
1024 int ret = -EIO;
1025
1026 if (!data)
1027 return -EINVAL;
1028
1029 checkfid = data->currfid;
1030 checkvid = data->currvid;
1031
1032 /* only run on specific CPU from here on */
1033 oldmask = current->cpus_allowed;
1034 set_cpus_allowed_ptr(current, &cpumask_of_cpu(pol->cpu));
1035
1036 if (smp_processor_id() != pol->cpu) {
1037 printk(KERN_ERR PFX "limiting to cpu %u failed\n", pol->cpu);
1038 goto err_out;
1039 }
1040
1041 if (pending_bit_stuck()) {
1042 printk(KERN_ERR PFX "failing targ, change pending bit set\n");
1043 goto err_out;
1044 }
1045
1046 dprintk("targ: cpu %d, %d kHz, min %d, max %d, relation %d\n",
1047 pol->cpu, targfreq, pol->min, pol->max, relation);
1048
1049 if (query_current_values_with_pending_wait(data))
1050 goto err_out;
1051
1052 if (cpu_family != CPU_HW_PSTATE) {
1053 dprintk("targ: curr fid 0x%x, vid 0x%x\n",
1054 data->currfid, data->currvid);
1055
1056 if ((checkvid != data->currvid) || (checkfid != data->currfid)) {
1057 printk(KERN_INFO PFX
1058 "error - out of sync, fix 0x%x 0x%x, vid 0x%x 0x%x\n",
1059 checkfid, data->currfid, checkvid, data->currvid);
1060 }
1061 }
1062
1063 if (cpufreq_frequency_table_target(pol, data->powernow_table, targfreq, relation, &newstate))
1064 goto err_out;
1065
1066 mutex_lock(&fidvid_mutex);
1067
1068 powernow_k8_acpi_pst_values(data, newstate);
1069
1070 if (cpu_family == CPU_HW_PSTATE)
1071 ret = transition_frequency_pstate(data, newstate);
1072 else
1073 ret = transition_frequency_fidvid(data, newstate);
1074 if (ret) {
1075 printk(KERN_ERR PFX "transition frequency failed\n");
1076 ret = 1;
1077 mutex_unlock(&fidvid_mutex);
1078 goto err_out;
1079 }
1080 mutex_unlock(&fidvid_mutex);
1081
1082 if (cpu_family == CPU_HW_PSTATE)
1083 pol->cur = find_khz_freq_from_pstate(data->powernow_table, newstate);
1084 else
1085 pol->cur = find_khz_freq_from_fid(data->currfid);
1086 ret = 0;
1087
1088 err_out:
1089 set_cpus_allowed_ptr(current, &oldmask);
1090 return ret;
1091 }
1092
1093 /* Driver entry point to verify the policy and range of frequencies */
1094 static int powernowk8_verify(struct cpufreq_policy *pol)
1095 {
1096 struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
1097
1098 if (!data)
1099 return -EINVAL;
1100
1101 return cpufreq_frequency_table_verify(pol, data->powernow_table);
1102 }
1103
1104 /* per CPU init entry point to the driver */
1105 static int __cpuinit powernowk8_cpu_init(struct cpufreq_policy *pol)
1106 {
1107 struct powernow_k8_data *data;
1108 cpumask_t oldmask;
1109 int rc;
1110
1111 if (!cpu_online(pol->cpu))
1112 return -ENODEV;
1113
1114 if (!check_supported_cpu(pol->cpu))
1115 return -ENODEV;
1116
1117 data = kzalloc(sizeof(struct powernow_k8_data), GFP_KERNEL);
1118 if (!data) {
1119 printk(KERN_ERR PFX "unable to alloc powernow_k8_data");
1120 return -ENOMEM;
1121 }
1122
1123 data->cpu = pol->cpu;
1124
1125 if (powernow_k8_cpu_init_acpi(data)) {
1126 /*
1127 * Use the PSB BIOS structure. This is only availabe on
1128 * an UP version, and is deprecated by AMD.
1129 */
1130 if (num_online_cpus() != 1) {
1131 #ifndef CONFIG_ACPI_PROCESSOR
1132 printk(KERN_ERR PFX "ACPI Processor support is required "
1133 "for SMP systems but is absent. Please load the "
1134 "ACPI Processor module before starting this "
1135 "driver.\n");
1136 #else
1137 printk(KERN_ERR FW_BUG PFX "Your BIOS does not provide"
1138 " ACPI _PSS objects in a way that Linux "
1139 "understands. Please report this to the Linux "
1140 "ACPI maintainers and complain to your BIOS "
1141 "vendor.\n");
1142 #endif
1143 kfree(data);
1144 return -ENODEV;
1145 }
1146 if (pol->cpu != 0) {
1147 printk(KERN_ERR FW_BUG PFX "No ACPI _PSS objects for "
1148 "CPU other than CPU0. Complain to your BIOS "
1149 "vendor.\n");
1150 kfree(data);
1151 return -ENODEV;
1152 }
1153 rc = find_psb_table(data);
1154 if (rc) {
1155 kfree(data);
1156 return -ENODEV;
1157 }
1158 }
1159
1160 /* only run on specific CPU from here on */
1161 oldmask = current->cpus_allowed;
1162 set_cpus_allowed_ptr(current, &cpumask_of_cpu(pol->cpu));
1163
1164 if (smp_processor_id() != pol->cpu) {
1165 printk(KERN_ERR PFX "limiting to cpu %u failed\n", pol->cpu);
1166 goto err_out;
1167 }
1168
1169 if (pending_bit_stuck()) {
1170 printk(KERN_ERR PFX "failing init, change pending bit set\n");
1171 goto err_out;
1172 }
1173
1174 if (query_current_values_with_pending_wait(data))
1175 goto err_out;
1176
1177 if (cpu_family == CPU_OPTERON)
1178 fidvid_msr_init();
1179
1180 /* run on any CPU again */
1181 set_cpus_allowed_ptr(current, &oldmask);
1182
1183 if (cpu_family == CPU_HW_PSTATE)
1184 pol->cpus = cpumask_of_cpu(pol->cpu);
1185 else
1186 pol->cpus = per_cpu(cpu_core_map, pol->cpu);
1187 data->available_cores = &(pol->cpus);
1188
1189 /* Take a crude guess here.
1190 * That guess was in microseconds, so multiply with 1000 */
1191 pol->cpuinfo.transition_latency = (((data->rvo + 8) * data->vstable * VST_UNITS_20US)
1192 + (3 * (1 << data->irt) * 10)) * 1000;
1193
1194 if (cpu_family == CPU_HW_PSTATE)
1195 pol->cur = find_khz_freq_from_pstate(data->powernow_table, data->currpstate);
1196 else
1197 pol->cur = find_khz_freq_from_fid(data->currfid);
1198 dprintk("policy current frequency %d kHz\n", pol->cur);
1199
1200 /* min/max the cpu is capable of */
1201 if (cpufreq_frequency_table_cpuinfo(pol, data->powernow_table)) {
1202 printk(KERN_ERR FW_BUG PFX "invalid powernow_table\n");
1203 powernow_k8_cpu_exit_acpi(data);
1204 kfree(data->powernow_table);
1205 kfree(data);
1206 return -EINVAL;
1207 }
1208
1209 cpufreq_frequency_table_get_attr(data->powernow_table, pol->cpu);
1210
1211 if (cpu_family == CPU_HW_PSTATE)
1212 dprintk("cpu_init done, current pstate 0x%x\n", data->currpstate);
1213 else
1214 dprintk("cpu_init done, current fid 0x%x, vid 0x%x\n",
1215 data->currfid, data->currvid);
1216
1217 per_cpu(powernow_data, pol->cpu) = data;
1218
1219 return 0;
1220
1221 err_out:
1222 set_cpus_allowed_ptr(current, &oldmask);
1223 powernow_k8_cpu_exit_acpi(data);
1224
1225 kfree(data);
1226 return -ENODEV;
1227 }
1228
1229 static int __devexit powernowk8_cpu_exit (struct cpufreq_policy *pol)
1230 {
1231 struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
1232
1233 if (!data)
1234 return -EINVAL;
1235
1236 powernow_k8_cpu_exit_acpi(data);
1237
1238 cpufreq_frequency_table_put_attr(pol->cpu);
1239
1240 kfree(data->powernow_table);
1241 kfree(data);
1242
1243 return 0;
1244 }
1245
1246 static unsigned int powernowk8_get (unsigned int cpu)
1247 {
1248 struct powernow_k8_data *data;
1249 cpumask_t oldmask = current->cpus_allowed;
1250 unsigned int khz = 0;
1251 unsigned int first;
1252
1253 first = first_cpu(per_cpu(cpu_core_map, cpu));
1254 data = per_cpu(powernow_data, first);
1255
1256 if (!data)
1257 return -EINVAL;
1258
1259 set_cpus_allowed_ptr(current, &cpumask_of_cpu(cpu));
1260 if (smp_processor_id() != cpu) {
1261 printk(KERN_ERR PFX
1262 "limiting to CPU %d failed in powernowk8_get\n", cpu);
1263 set_cpus_allowed_ptr(current, &oldmask);
1264 return 0;
1265 }
1266
1267 if (query_current_values_with_pending_wait(data))
1268 goto out;
1269
1270 if (cpu_family == CPU_HW_PSTATE)
1271 khz = find_khz_freq_from_pstate(data->powernow_table,
1272 data->currpstate);
1273 else
1274 khz = find_khz_freq_from_fid(data->currfid);
1275
1276
1277 out:
1278 set_cpus_allowed_ptr(current, &oldmask);
1279 return khz;
1280 }
1281
1282 static struct freq_attr* powernow_k8_attr[] = {
1283 &cpufreq_freq_attr_scaling_available_freqs,
1284 NULL,
1285 };
1286
1287 static struct cpufreq_driver cpufreq_amd64_driver = {
1288 .verify = powernowk8_verify,
1289 .target = powernowk8_target,
1290 .init = powernowk8_cpu_init,
1291 .exit = __devexit_p(powernowk8_cpu_exit),
1292 .get = powernowk8_get,
1293 .name = "powernow-k8",
1294 .owner = THIS_MODULE,
1295 .attr = powernow_k8_attr,
1296 };
1297
1298 /* driver entry point for init */
1299 static int __cpuinit powernowk8_init(void)
1300 {
1301 unsigned int i, supported_cpus = 0;
1302
1303 for_each_online_cpu(i) {
1304 if (check_supported_cpu(i))
1305 supported_cpus++;
1306 }
1307
1308 if (supported_cpus == num_online_cpus()) {
1309 printk(KERN_INFO PFX "Found %d %s "
1310 "processors (%d cpu cores) (" VERSION ")\n",
1311 num_online_nodes(),
1312 boot_cpu_data.x86_model_id, supported_cpus);
1313 return cpufreq_register_driver(&cpufreq_amd64_driver);
1314 }
1315
1316 return -ENODEV;
1317 }
1318
1319 /* driver entry point for term */
1320 static void __exit powernowk8_exit(void)
1321 {
1322 dprintk("exit\n");
1323
1324 cpufreq_unregister_driver(&cpufreq_amd64_driver);
1325 }
1326
1327 MODULE_AUTHOR("Paul Devriendt <paul.devriendt@amd.com> and Mark Langsdorf <mark.langsdorf@amd.com>");
1328 MODULE_DESCRIPTION("AMD Athlon 64 and Opteron processor frequency driver.");
1329 MODULE_LICENSE("GPL");
1330
1331 late_initcall(powernowk8_init);
1332 module_exit(powernowk8_exit);
This page took 0.09216 seconds and 5 git commands to generate.