Merge branch 'kbuild' of git://git.kernel.org/pub/scm/linux/kernel/git/mmarek/kbuild
[deliverable/linux.git] / arch / x86 / kernel / cpu / mcheck / mce.c
1 /*
2 * Machine check handler.
3 *
4 * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs.
5 * Rest from unknown author(s).
6 * 2004 Andi Kleen. Rewrote most of it.
7 * Copyright 2008 Intel Corporation
8 * Author: Andi Kleen
9 */
10
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13 #include <linux/thread_info.h>
14 #include <linux/capability.h>
15 #include <linux/miscdevice.h>
16 #include <linux/ratelimit.h>
17 #include <linux/kallsyms.h>
18 #include <linux/rcupdate.h>
19 #include <linux/kobject.h>
20 #include <linux/uaccess.h>
21 #include <linux/kdebug.h>
22 #include <linux/kernel.h>
23 #include <linux/percpu.h>
24 #include <linux/string.h>
25 #include <linux/device.h>
26 #include <linux/syscore_ops.h>
27 #include <linux/delay.h>
28 #include <linux/ctype.h>
29 #include <linux/sched.h>
30 #include <linux/sysfs.h>
31 #include <linux/types.h>
32 #include <linux/slab.h>
33 #include <linux/init.h>
34 #include <linux/kmod.h>
35 #include <linux/poll.h>
36 #include <linux/nmi.h>
37 #include <linux/cpu.h>
38 #include <linux/smp.h>
39 #include <linux/fs.h>
40 #include <linux/mm.h>
41 #include <linux/debugfs.h>
42 #include <linux/irq_work.h>
43 #include <linux/export.h>
44
45 #include <asm/processor.h>
46 #include <asm/traps.h>
47 #include <asm/tlbflush.h>
48 #include <asm/mce.h>
49 #include <asm/msr.h>
50
51 #include "mce-internal.h"
52
53 static DEFINE_MUTEX(mce_chrdev_read_mutex);
54
55 #define mce_log_get_idx_check(p) \
56 ({ \
57 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
58 !lockdep_is_held(&mce_chrdev_read_mutex), \
59 "suspicious mce_log_get_idx_check() usage"); \
60 smp_load_acquire(&(p)); \
61 })
62
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/mce.h>
65
66 #define SPINUNIT 100 /* 100ns */
67
68 DEFINE_PER_CPU(unsigned, mce_exception_count);
69
70 struct mce_bank *mce_banks __read_mostly;
71 struct mce_vendor_flags mce_flags __read_mostly;
72
73 struct mca_config mca_cfg __read_mostly = {
74 .bootlog = -1,
75 /*
76 * Tolerant levels:
77 * 0: always panic on uncorrected errors, log corrected errors
78 * 1: panic or SIGBUS on uncorrected errors, log corrected errors
79 * 2: SIGBUS or log uncorrected errors (if possible), log corr. errors
80 * 3: never panic or SIGBUS, log all errors (for testing only)
81 */
82 .tolerant = 1,
83 .monarch_timeout = -1
84 };
85
86 /* User mode helper program triggered by machine check event */
87 static unsigned long mce_need_notify;
88 static char mce_helper[128];
89 static char *mce_helper_argv[2] = { mce_helper, NULL };
90
91 static DECLARE_WAIT_QUEUE_HEAD(mce_chrdev_wait);
92
93 static DEFINE_PER_CPU(struct mce, mces_seen);
94 static int cpu_missing;
95
96 /*
97 * MCA banks polled by the period polling timer for corrected events.
98 * With Intel CMCI, this only has MCA banks which do not support CMCI (if any).
99 */
100 DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = {
101 [0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL
102 };
103
104 /*
105 * MCA banks controlled through firmware first for corrected errors.
106 * This is a global list of banks for which we won't enable CMCI and we
107 * won't poll. Firmware controls these banks and is responsible for
108 * reporting corrected errors through GHES. Uncorrected/recoverable
109 * errors are still notified through a machine check.
110 */
111 mce_banks_t mce_banks_ce_disabled;
112
113 static struct work_struct mce_work;
114 static struct irq_work mce_irq_work;
115
116 static void (*quirk_no_way_out)(int bank, struct mce *m, struct pt_regs *regs);
117
118 /*
119 * CPU/chipset specific EDAC code can register a notifier call here to print
120 * MCE errors in a human-readable form.
121 */
122 ATOMIC_NOTIFIER_HEAD(x86_mce_decoder_chain);
123
124 /* Do initial initialization of a struct mce */
125 void mce_setup(struct mce *m)
126 {
127 memset(m, 0, sizeof(struct mce));
128 m->cpu = m->extcpu = smp_processor_id();
129 m->tsc = rdtsc();
130 /* We hope get_seconds stays lockless */
131 m->time = get_seconds();
132 m->cpuvendor = boot_cpu_data.x86_vendor;
133 m->cpuid = cpuid_eax(1);
134 m->socketid = cpu_data(m->extcpu).phys_proc_id;
135 m->apicid = cpu_data(m->extcpu).initial_apicid;
136 rdmsrl(MSR_IA32_MCG_CAP, m->mcgcap);
137 }
138
139 DEFINE_PER_CPU(struct mce, injectm);
140 EXPORT_PER_CPU_SYMBOL_GPL(injectm);
141
142 /*
143 * Lockless MCE logging infrastructure.
144 * This avoids deadlocks on printk locks without having to break locks. Also
145 * separate MCEs from kernel messages to avoid bogus bug reports.
146 */
147
148 static struct mce_log mcelog = {
149 .signature = MCE_LOG_SIGNATURE,
150 .len = MCE_LOG_LEN,
151 .recordlen = sizeof(struct mce),
152 };
153
154 void mce_log(struct mce *mce)
155 {
156 unsigned next, entry;
157
158 /* Emit the trace record: */
159 trace_mce_record(mce);
160
161 if (!mce_gen_pool_add(mce))
162 irq_work_queue(&mce_irq_work);
163
164 wmb();
165 for (;;) {
166 entry = mce_log_get_idx_check(mcelog.next);
167 for (;;) {
168
169 /*
170 * When the buffer fills up discard new entries.
171 * Assume that the earlier errors are the more
172 * interesting ones:
173 */
174 if (entry >= MCE_LOG_LEN) {
175 set_bit(MCE_OVERFLOW,
176 (unsigned long *)&mcelog.flags);
177 return;
178 }
179 /* Old left over entry. Skip: */
180 if (mcelog.entry[entry].finished) {
181 entry++;
182 continue;
183 }
184 break;
185 }
186 smp_rmb();
187 next = entry + 1;
188 if (cmpxchg(&mcelog.next, entry, next) == entry)
189 break;
190 }
191 memcpy(mcelog.entry + entry, mce, sizeof(struct mce));
192 wmb();
193 mcelog.entry[entry].finished = 1;
194 wmb();
195
196 set_bit(0, &mce_need_notify);
197 }
198
199 void mce_inject_log(struct mce *m)
200 {
201 mutex_lock(&mce_chrdev_read_mutex);
202 mce_log(m);
203 mutex_unlock(&mce_chrdev_read_mutex);
204 }
205 EXPORT_SYMBOL_GPL(mce_inject_log);
206
207 static struct notifier_block mce_srao_nb;
208
209 void mce_register_decode_chain(struct notifier_block *nb)
210 {
211 /* Ensure SRAO notifier has the highest priority in the decode chain. */
212 if (nb != &mce_srao_nb && nb->priority == INT_MAX)
213 nb->priority -= 1;
214
215 atomic_notifier_chain_register(&x86_mce_decoder_chain, nb);
216 }
217 EXPORT_SYMBOL_GPL(mce_register_decode_chain);
218
219 void mce_unregister_decode_chain(struct notifier_block *nb)
220 {
221 atomic_notifier_chain_unregister(&x86_mce_decoder_chain, nb);
222 }
223 EXPORT_SYMBOL_GPL(mce_unregister_decode_chain);
224
225 static inline u32 ctl_reg(int bank)
226 {
227 return MSR_IA32_MCx_CTL(bank);
228 }
229
230 static inline u32 status_reg(int bank)
231 {
232 return MSR_IA32_MCx_STATUS(bank);
233 }
234
235 static inline u32 addr_reg(int bank)
236 {
237 return MSR_IA32_MCx_ADDR(bank);
238 }
239
240 static inline u32 misc_reg(int bank)
241 {
242 return MSR_IA32_MCx_MISC(bank);
243 }
244
245 static inline u32 smca_ctl_reg(int bank)
246 {
247 return MSR_AMD64_SMCA_MCx_CTL(bank);
248 }
249
250 static inline u32 smca_status_reg(int bank)
251 {
252 return MSR_AMD64_SMCA_MCx_STATUS(bank);
253 }
254
255 static inline u32 smca_addr_reg(int bank)
256 {
257 return MSR_AMD64_SMCA_MCx_ADDR(bank);
258 }
259
260 static inline u32 smca_misc_reg(int bank)
261 {
262 return MSR_AMD64_SMCA_MCx_MISC(bank);
263 }
264
265 struct mca_msr_regs msr_ops = {
266 .ctl = ctl_reg,
267 .status = status_reg,
268 .addr = addr_reg,
269 .misc = misc_reg
270 };
271
272 static void print_mce(struct mce *m)
273 {
274 int ret = 0;
275
276 pr_emerg(HW_ERR "CPU %d: Machine Check Exception: %Lx Bank %d: %016Lx\n",
277 m->extcpu, m->mcgstatus, m->bank, m->status);
278
279 if (m->ip) {
280 pr_emerg(HW_ERR "RIP%s %02x:<%016Lx> ",
281 !(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "",
282 m->cs, m->ip);
283
284 if (m->cs == __KERNEL_CS)
285 print_symbol("{%s}", m->ip);
286 pr_cont("\n");
287 }
288
289 pr_emerg(HW_ERR "TSC %llx ", m->tsc);
290 if (m->addr)
291 pr_cont("ADDR %llx ", m->addr);
292 if (m->misc)
293 pr_cont("MISC %llx ", m->misc);
294
295 pr_cont("\n");
296 /*
297 * Note this output is parsed by external tools and old fields
298 * should not be changed.
299 */
300 pr_emerg(HW_ERR "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x microcode %x\n",
301 m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid,
302 cpu_data(m->extcpu).microcode);
303
304 /*
305 * Print out human-readable details about the MCE error,
306 * (if the CPU has an implementation for that)
307 */
308 ret = atomic_notifier_call_chain(&x86_mce_decoder_chain, 0, m);
309 if (ret == NOTIFY_STOP)
310 return;
311
312 pr_emerg_ratelimited(HW_ERR "Run the above through 'mcelog --ascii'\n");
313 }
314
315 #define PANIC_TIMEOUT 5 /* 5 seconds */
316
317 static atomic_t mce_panicked;
318
319 static int fake_panic;
320 static atomic_t mce_fake_panicked;
321
322 /* Panic in progress. Enable interrupts and wait for final IPI */
323 static void wait_for_panic(void)
324 {
325 long timeout = PANIC_TIMEOUT*USEC_PER_SEC;
326
327 preempt_disable();
328 local_irq_enable();
329 while (timeout-- > 0)
330 udelay(1);
331 if (panic_timeout == 0)
332 panic_timeout = mca_cfg.panic_timeout;
333 panic("Panicing machine check CPU died");
334 }
335
336 static void mce_panic(const char *msg, struct mce *final, char *exp)
337 {
338 int apei_err = 0;
339 struct llist_node *pending;
340 struct mce_evt_llist *l;
341
342 if (!fake_panic) {
343 /*
344 * Make sure only one CPU runs in machine check panic
345 */
346 if (atomic_inc_return(&mce_panicked) > 1)
347 wait_for_panic();
348 barrier();
349
350 bust_spinlocks(1);
351 console_verbose();
352 } else {
353 /* Don't log too much for fake panic */
354 if (atomic_inc_return(&mce_fake_panicked) > 1)
355 return;
356 }
357 pending = mce_gen_pool_prepare_records();
358 /* First print corrected ones that are still unlogged */
359 llist_for_each_entry(l, pending, llnode) {
360 struct mce *m = &l->mce;
361 if (!(m->status & MCI_STATUS_UC)) {
362 print_mce(m);
363 if (!apei_err)
364 apei_err = apei_write_mce(m);
365 }
366 }
367 /* Now print uncorrected but with the final one last */
368 llist_for_each_entry(l, pending, llnode) {
369 struct mce *m = &l->mce;
370 if (!(m->status & MCI_STATUS_UC))
371 continue;
372 if (!final || mce_cmp(m, final)) {
373 print_mce(m);
374 if (!apei_err)
375 apei_err = apei_write_mce(m);
376 }
377 }
378 if (final) {
379 print_mce(final);
380 if (!apei_err)
381 apei_err = apei_write_mce(final);
382 }
383 if (cpu_missing)
384 pr_emerg(HW_ERR "Some CPUs didn't answer in synchronization\n");
385 if (exp)
386 pr_emerg(HW_ERR "Machine check: %s\n", exp);
387 if (!fake_panic) {
388 if (panic_timeout == 0)
389 panic_timeout = mca_cfg.panic_timeout;
390 panic(msg);
391 } else
392 pr_emerg(HW_ERR "Fake kernel panic: %s\n", msg);
393 }
394
395 /* Support code for software error injection */
396
397 static int msr_to_offset(u32 msr)
398 {
399 unsigned bank = __this_cpu_read(injectm.bank);
400
401 if (msr == mca_cfg.rip_msr)
402 return offsetof(struct mce, ip);
403 if (msr == msr_ops.status(bank))
404 return offsetof(struct mce, status);
405 if (msr == msr_ops.addr(bank))
406 return offsetof(struct mce, addr);
407 if (msr == msr_ops.misc(bank))
408 return offsetof(struct mce, misc);
409 if (msr == MSR_IA32_MCG_STATUS)
410 return offsetof(struct mce, mcgstatus);
411 return -1;
412 }
413
414 /* MSR access wrappers used for error injection */
415 static u64 mce_rdmsrl(u32 msr)
416 {
417 u64 v;
418
419 if (__this_cpu_read(injectm.finished)) {
420 int offset = msr_to_offset(msr);
421
422 if (offset < 0)
423 return 0;
424 return *(u64 *)((char *)this_cpu_ptr(&injectm) + offset);
425 }
426
427 if (rdmsrl_safe(msr, &v)) {
428 WARN_ONCE(1, "mce: Unable to read msr %d!\n", msr);
429 /*
430 * Return zero in case the access faulted. This should
431 * not happen normally but can happen if the CPU does
432 * something weird, or if the code is buggy.
433 */
434 v = 0;
435 }
436
437 return v;
438 }
439
440 static void mce_wrmsrl(u32 msr, u64 v)
441 {
442 if (__this_cpu_read(injectm.finished)) {
443 int offset = msr_to_offset(msr);
444
445 if (offset >= 0)
446 *(u64 *)((char *)this_cpu_ptr(&injectm) + offset) = v;
447 return;
448 }
449 wrmsrl(msr, v);
450 }
451
452 /*
453 * Collect all global (w.r.t. this processor) status about this machine
454 * check into our "mce" struct so that we can use it later to assess
455 * the severity of the problem as we read per-bank specific details.
456 */
457 static inline void mce_gather_info(struct mce *m, struct pt_regs *regs)
458 {
459 mce_setup(m);
460
461 m->mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
462 if (regs) {
463 /*
464 * Get the address of the instruction at the time of
465 * the machine check error.
466 */
467 if (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) {
468 m->ip = regs->ip;
469 m->cs = regs->cs;
470
471 /*
472 * When in VM86 mode make the cs look like ring 3
473 * always. This is a lie, but it's better than passing
474 * the additional vm86 bit around everywhere.
475 */
476 if (v8086_mode(regs))
477 m->cs |= 3;
478 }
479 /* Use accurate RIP reporting if available. */
480 if (mca_cfg.rip_msr)
481 m->ip = mce_rdmsrl(mca_cfg.rip_msr);
482 }
483 }
484
485 int mce_available(struct cpuinfo_x86 *c)
486 {
487 if (mca_cfg.disabled)
488 return 0;
489 return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA);
490 }
491
492 static void mce_schedule_work(void)
493 {
494 if (!mce_gen_pool_empty() && keventd_up())
495 schedule_work(&mce_work);
496 }
497
498 static void mce_irq_work_cb(struct irq_work *entry)
499 {
500 mce_notify_irq();
501 mce_schedule_work();
502 }
503
504 static void mce_report_event(struct pt_regs *regs)
505 {
506 if (regs->flags & (X86_VM_MASK|X86_EFLAGS_IF)) {
507 mce_notify_irq();
508 /*
509 * Triggering the work queue here is just an insurance
510 * policy in case the syscall exit notify handler
511 * doesn't run soon enough or ends up running on the
512 * wrong CPU (can happen when audit sleeps)
513 */
514 mce_schedule_work();
515 return;
516 }
517
518 irq_work_queue(&mce_irq_work);
519 }
520
521 /*
522 * Check if the address reported by the CPU is in a format we can parse.
523 * It would be possible to add code for most other cases, but all would
524 * be somewhat complicated (e.g. segment offset would require an instruction
525 * parser). So only support physical addresses up to page granuality for now.
526 */
527 static int mce_usable_address(struct mce *m)
528 {
529 if (!(m->status & MCI_STATUS_MISCV) || !(m->status & MCI_STATUS_ADDRV))
530 return 0;
531
532 /* Checks after this one are Intel-specific: */
533 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
534 return 1;
535
536 if (MCI_MISC_ADDR_LSB(m->misc) > PAGE_SHIFT)
537 return 0;
538 if (MCI_MISC_ADDR_MODE(m->misc) != MCI_MISC_ADDR_PHYS)
539 return 0;
540 return 1;
541 }
542
543 static int srao_decode_notifier(struct notifier_block *nb, unsigned long val,
544 void *data)
545 {
546 struct mce *mce = (struct mce *)data;
547 unsigned long pfn;
548
549 if (!mce)
550 return NOTIFY_DONE;
551
552 if (mce_usable_address(mce) && (mce->severity == MCE_AO_SEVERITY)) {
553 pfn = mce->addr >> PAGE_SHIFT;
554 memory_failure(pfn, MCE_VECTOR, 0);
555 }
556
557 return NOTIFY_OK;
558 }
559 static struct notifier_block mce_srao_nb = {
560 .notifier_call = srao_decode_notifier,
561 .priority = INT_MAX,
562 };
563
564 /*
565 * Read ADDR and MISC registers.
566 */
567 static void mce_read_aux(struct mce *m, int i)
568 {
569 if (m->status & MCI_STATUS_MISCV)
570 m->misc = mce_rdmsrl(msr_ops.misc(i));
571 if (m->status & MCI_STATUS_ADDRV) {
572 m->addr = mce_rdmsrl(msr_ops.addr(i));
573
574 /*
575 * Mask the reported address by the reported granularity.
576 */
577 if (mca_cfg.ser && (m->status & MCI_STATUS_MISCV)) {
578 u8 shift = MCI_MISC_ADDR_LSB(m->misc);
579 m->addr >>= shift;
580 m->addr <<= shift;
581 }
582 }
583 }
584
585 static bool memory_error(struct mce *m)
586 {
587 struct cpuinfo_x86 *c = &boot_cpu_data;
588
589 if (c->x86_vendor == X86_VENDOR_AMD) {
590 /* ErrCodeExt[20:16] */
591 u8 xec = (m->status >> 16) & 0x1f;
592
593 return (xec == 0x0 || xec == 0x8);
594 } else if (c->x86_vendor == X86_VENDOR_INTEL) {
595 /*
596 * Intel SDM Volume 3B - 15.9.2 Compound Error Codes
597 *
598 * Bit 7 of the MCACOD field of IA32_MCi_STATUS is used for
599 * indicating a memory error. Bit 8 is used for indicating a
600 * cache hierarchy error. The combination of bit 2 and bit 3
601 * is used for indicating a `generic' cache hierarchy error
602 * But we can't just blindly check the above bits, because if
603 * bit 11 is set, then it is a bus/interconnect error - and
604 * either way the above bits just gives more detail on what
605 * bus/interconnect error happened. Note that bit 12 can be
606 * ignored, as it's the "filter" bit.
607 */
608 return (m->status & 0xef80) == BIT(7) ||
609 (m->status & 0xef00) == BIT(8) ||
610 (m->status & 0xeffc) == 0xc;
611 }
612
613 return false;
614 }
615
616 DEFINE_PER_CPU(unsigned, mce_poll_count);
617
618 /*
619 * Poll for corrected events or events that happened before reset.
620 * Those are just logged through /dev/mcelog.
621 *
622 * This is executed in standard interrupt context.
623 *
624 * Note: spec recommends to panic for fatal unsignalled
625 * errors here. However this would be quite problematic --
626 * we would need to reimplement the Monarch handling and
627 * it would mess up the exclusion between exception handler
628 * and poll hander -- * so we skip this for now.
629 * These cases should not happen anyways, or only when the CPU
630 * is already totally * confused. In this case it's likely it will
631 * not fully execute the machine check handler either.
632 */
633 bool machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
634 {
635 bool error_seen = false;
636 struct mce m;
637 int severity;
638 int i;
639
640 this_cpu_inc(mce_poll_count);
641
642 mce_gather_info(&m, NULL);
643
644 for (i = 0; i < mca_cfg.banks; i++) {
645 if (!mce_banks[i].ctl || !test_bit(i, *b))
646 continue;
647
648 m.misc = 0;
649 m.addr = 0;
650 m.bank = i;
651 m.tsc = 0;
652
653 barrier();
654 m.status = mce_rdmsrl(msr_ops.status(i));
655 if (!(m.status & MCI_STATUS_VAL))
656 continue;
657
658
659 /*
660 * Uncorrected or signalled events are handled by the exception
661 * handler when it is enabled, so don't process those here.
662 *
663 * TBD do the same check for MCI_STATUS_EN here?
664 */
665 if (!(flags & MCP_UC) &&
666 (m.status & (mca_cfg.ser ? MCI_STATUS_S : MCI_STATUS_UC)))
667 continue;
668
669 error_seen = true;
670
671 mce_read_aux(&m, i);
672
673 if (!(flags & MCP_TIMESTAMP))
674 m.tsc = 0;
675
676 severity = mce_severity(&m, mca_cfg.tolerant, NULL, false);
677
678 if (severity == MCE_DEFERRED_SEVERITY && memory_error(&m))
679 if (m.status & MCI_STATUS_ADDRV)
680 m.severity = severity;
681
682 /*
683 * Don't get the IP here because it's unlikely to
684 * have anything to do with the actual error location.
685 */
686 if (!(flags & MCP_DONTLOG) && !mca_cfg.dont_log_ce)
687 mce_log(&m);
688 else if (mce_usable_address(&m)) {
689 /*
690 * Although we skipped logging this, we still want
691 * to take action. Add to the pool so the registered
692 * notifiers will see it.
693 */
694 if (!mce_gen_pool_add(&m))
695 mce_schedule_work();
696 }
697
698 /*
699 * Clear state for this bank.
700 */
701 mce_wrmsrl(msr_ops.status(i), 0);
702 }
703
704 /*
705 * Don't clear MCG_STATUS here because it's only defined for
706 * exceptions.
707 */
708
709 sync_core();
710
711 return error_seen;
712 }
713 EXPORT_SYMBOL_GPL(machine_check_poll);
714
715 /*
716 * Do a quick check if any of the events requires a panic.
717 * This decides if we keep the events around or clear them.
718 */
719 static int mce_no_way_out(struct mce *m, char **msg, unsigned long *validp,
720 struct pt_regs *regs)
721 {
722 int i, ret = 0;
723 char *tmp;
724
725 for (i = 0; i < mca_cfg.banks; i++) {
726 m->status = mce_rdmsrl(msr_ops.status(i));
727 if (m->status & MCI_STATUS_VAL) {
728 __set_bit(i, validp);
729 if (quirk_no_way_out)
730 quirk_no_way_out(i, m, regs);
731 }
732
733 if (mce_severity(m, mca_cfg.tolerant, &tmp, true) >= MCE_PANIC_SEVERITY) {
734 *msg = tmp;
735 ret = 1;
736 }
737 }
738 return ret;
739 }
740
741 /*
742 * Variable to establish order between CPUs while scanning.
743 * Each CPU spins initially until executing is equal its number.
744 */
745 static atomic_t mce_executing;
746
747 /*
748 * Defines order of CPUs on entry. First CPU becomes Monarch.
749 */
750 static atomic_t mce_callin;
751
752 /*
753 * Check if a timeout waiting for other CPUs happened.
754 */
755 static int mce_timed_out(u64 *t, const char *msg)
756 {
757 /*
758 * The others already did panic for some reason.
759 * Bail out like in a timeout.
760 * rmb() to tell the compiler that system_state
761 * might have been modified by someone else.
762 */
763 rmb();
764 if (atomic_read(&mce_panicked))
765 wait_for_panic();
766 if (!mca_cfg.monarch_timeout)
767 goto out;
768 if ((s64)*t < SPINUNIT) {
769 if (mca_cfg.tolerant <= 1)
770 mce_panic(msg, NULL, NULL);
771 cpu_missing = 1;
772 return 1;
773 }
774 *t -= SPINUNIT;
775 out:
776 touch_nmi_watchdog();
777 return 0;
778 }
779
780 /*
781 * The Monarch's reign. The Monarch is the CPU who entered
782 * the machine check handler first. It waits for the others to
783 * raise the exception too and then grades them. When any
784 * error is fatal panic. Only then let the others continue.
785 *
786 * The other CPUs entering the MCE handler will be controlled by the
787 * Monarch. They are called Subjects.
788 *
789 * This way we prevent any potential data corruption in a unrecoverable case
790 * and also makes sure always all CPU's errors are examined.
791 *
792 * Also this detects the case of a machine check event coming from outer
793 * space (not detected by any CPUs) In this case some external agent wants
794 * us to shut down, so panic too.
795 *
796 * The other CPUs might still decide to panic if the handler happens
797 * in a unrecoverable place, but in this case the system is in a semi-stable
798 * state and won't corrupt anything by itself. It's ok to let the others
799 * continue for a bit first.
800 *
801 * All the spin loops have timeouts; when a timeout happens a CPU
802 * typically elects itself to be Monarch.
803 */
804 static void mce_reign(void)
805 {
806 int cpu;
807 struct mce *m = NULL;
808 int global_worst = 0;
809 char *msg = NULL;
810 char *nmsg = NULL;
811
812 /*
813 * This CPU is the Monarch and the other CPUs have run
814 * through their handlers.
815 * Grade the severity of the errors of all the CPUs.
816 */
817 for_each_possible_cpu(cpu) {
818 int severity = mce_severity(&per_cpu(mces_seen, cpu),
819 mca_cfg.tolerant,
820 &nmsg, true);
821 if (severity > global_worst) {
822 msg = nmsg;
823 global_worst = severity;
824 m = &per_cpu(mces_seen, cpu);
825 }
826 }
827
828 /*
829 * Cannot recover? Panic here then.
830 * This dumps all the mces in the log buffer and stops the
831 * other CPUs.
832 */
833 if (m && global_worst >= MCE_PANIC_SEVERITY && mca_cfg.tolerant < 3)
834 mce_panic("Fatal machine check", m, msg);
835
836 /*
837 * For UC somewhere we let the CPU who detects it handle it.
838 * Also must let continue the others, otherwise the handling
839 * CPU could deadlock on a lock.
840 */
841
842 /*
843 * No machine check event found. Must be some external
844 * source or one CPU is hung. Panic.
845 */
846 if (global_worst <= MCE_KEEP_SEVERITY && mca_cfg.tolerant < 3)
847 mce_panic("Fatal machine check from unknown source", NULL, NULL);
848
849 /*
850 * Now clear all the mces_seen so that they don't reappear on
851 * the next mce.
852 */
853 for_each_possible_cpu(cpu)
854 memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce));
855 }
856
857 static atomic_t global_nwo;
858
859 /*
860 * Start of Monarch synchronization. This waits until all CPUs have
861 * entered the exception handler and then determines if any of them
862 * saw a fatal event that requires panic. Then it executes them
863 * in the entry order.
864 * TBD double check parallel CPU hotunplug
865 */
866 static int mce_start(int *no_way_out)
867 {
868 int order;
869 int cpus = num_online_cpus();
870 u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
871
872 if (!timeout)
873 return -1;
874
875 atomic_add(*no_way_out, &global_nwo);
876 /*
877 * Rely on the implied barrier below, such that global_nwo
878 * is updated before mce_callin.
879 */
880 order = atomic_inc_return(&mce_callin);
881
882 /*
883 * Wait for everyone.
884 */
885 while (atomic_read(&mce_callin) != cpus) {
886 if (mce_timed_out(&timeout,
887 "Timeout: Not all CPUs entered broadcast exception handler")) {
888 atomic_set(&global_nwo, 0);
889 return -1;
890 }
891 ndelay(SPINUNIT);
892 }
893
894 /*
895 * mce_callin should be read before global_nwo
896 */
897 smp_rmb();
898
899 if (order == 1) {
900 /*
901 * Monarch: Starts executing now, the others wait.
902 */
903 atomic_set(&mce_executing, 1);
904 } else {
905 /*
906 * Subject: Now start the scanning loop one by one in
907 * the original callin order.
908 * This way when there are any shared banks it will be
909 * only seen by one CPU before cleared, avoiding duplicates.
910 */
911 while (atomic_read(&mce_executing) < order) {
912 if (mce_timed_out(&timeout,
913 "Timeout: Subject CPUs unable to finish machine check processing")) {
914 atomic_set(&global_nwo, 0);
915 return -1;
916 }
917 ndelay(SPINUNIT);
918 }
919 }
920
921 /*
922 * Cache the global no_way_out state.
923 */
924 *no_way_out = atomic_read(&global_nwo);
925
926 return order;
927 }
928
929 /*
930 * Synchronize between CPUs after main scanning loop.
931 * This invokes the bulk of the Monarch processing.
932 */
933 static int mce_end(int order)
934 {
935 int ret = -1;
936 u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
937
938 if (!timeout)
939 goto reset;
940 if (order < 0)
941 goto reset;
942
943 /*
944 * Allow others to run.
945 */
946 atomic_inc(&mce_executing);
947
948 if (order == 1) {
949 /* CHECKME: Can this race with a parallel hotplug? */
950 int cpus = num_online_cpus();
951
952 /*
953 * Monarch: Wait for everyone to go through their scanning
954 * loops.
955 */
956 while (atomic_read(&mce_executing) <= cpus) {
957 if (mce_timed_out(&timeout,
958 "Timeout: Monarch CPU unable to finish machine check processing"))
959 goto reset;
960 ndelay(SPINUNIT);
961 }
962
963 mce_reign();
964 barrier();
965 ret = 0;
966 } else {
967 /*
968 * Subject: Wait for Monarch to finish.
969 */
970 while (atomic_read(&mce_executing) != 0) {
971 if (mce_timed_out(&timeout,
972 "Timeout: Monarch CPU did not finish machine check processing"))
973 goto reset;
974 ndelay(SPINUNIT);
975 }
976
977 /*
978 * Don't reset anything. That's done by the Monarch.
979 */
980 return 0;
981 }
982
983 /*
984 * Reset all global state.
985 */
986 reset:
987 atomic_set(&global_nwo, 0);
988 atomic_set(&mce_callin, 0);
989 barrier();
990
991 /*
992 * Let others run again.
993 */
994 atomic_set(&mce_executing, 0);
995 return ret;
996 }
997
998 static void mce_clear_state(unsigned long *toclear)
999 {
1000 int i;
1001
1002 for (i = 0; i < mca_cfg.banks; i++) {
1003 if (test_bit(i, toclear))
1004 mce_wrmsrl(msr_ops.status(i), 0);
1005 }
1006 }
1007
1008 static int do_memory_failure(struct mce *m)
1009 {
1010 int flags = MF_ACTION_REQUIRED;
1011 int ret;
1012
1013 pr_err("Uncorrected hardware memory error in user-access at %llx", m->addr);
1014 if (!(m->mcgstatus & MCG_STATUS_RIPV))
1015 flags |= MF_MUST_KILL;
1016 ret = memory_failure(m->addr >> PAGE_SHIFT, MCE_VECTOR, flags);
1017 if (ret)
1018 pr_err("Memory error not recovered");
1019 return ret;
1020 }
1021
1022 /*
1023 * The actual machine check handler. This only handles real
1024 * exceptions when something got corrupted coming in through int 18.
1025 *
1026 * This is executed in NMI context not subject to normal locking rules. This
1027 * implies that most kernel services cannot be safely used. Don't even
1028 * think about putting a printk in there!
1029 *
1030 * On Intel systems this is entered on all CPUs in parallel through
1031 * MCE broadcast. However some CPUs might be broken beyond repair,
1032 * so be always careful when synchronizing with others.
1033 */
1034 void do_machine_check(struct pt_regs *regs, long error_code)
1035 {
1036 struct mca_config *cfg = &mca_cfg;
1037 struct mce m, *final;
1038 int i;
1039 int worst = 0;
1040 int severity;
1041
1042 /*
1043 * Establish sequential order between the CPUs entering the machine
1044 * check handler.
1045 */
1046 int order = -1;
1047 /*
1048 * If no_way_out gets set, there is no safe way to recover from this
1049 * MCE. If mca_cfg.tolerant is cranked up, we'll try anyway.
1050 */
1051 int no_way_out = 0;
1052 /*
1053 * If kill_it gets set, there might be a way to recover from this
1054 * error.
1055 */
1056 int kill_it = 0;
1057 DECLARE_BITMAP(toclear, MAX_NR_BANKS);
1058 DECLARE_BITMAP(valid_banks, MAX_NR_BANKS);
1059 char *msg = "Unknown";
1060
1061 /*
1062 * MCEs are always local on AMD. Same is determined by MCG_STATUS_LMCES
1063 * on Intel.
1064 */
1065 int lmce = 1;
1066
1067 /* If this CPU is offline, just bail out. */
1068 if (cpu_is_offline(smp_processor_id())) {
1069 u64 mcgstatus;
1070
1071 mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
1072 if (mcgstatus & MCG_STATUS_RIPV) {
1073 mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1074 return;
1075 }
1076 }
1077
1078 ist_enter(regs);
1079
1080 this_cpu_inc(mce_exception_count);
1081
1082 if (!cfg->banks)
1083 goto out;
1084
1085 mce_gather_info(&m, regs);
1086
1087 final = this_cpu_ptr(&mces_seen);
1088 *final = m;
1089
1090 memset(valid_banks, 0, sizeof(valid_banks));
1091 no_way_out = mce_no_way_out(&m, &msg, valid_banks, regs);
1092
1093 barrier();
1094
1095 /*
1096 * When no restart IP might need to kill or panic.
1097 * Assume the worst for now, but if we find the
1098 * severity is MCE_AR_SEVERITY we have other options.
1099 */
1100 if (!(m.mcgstatus & MCG_STATUS_RIPV))
1101 kill_it = 1;
1102
1103 /*
1104 * Check if this MCE is signaled to only this logical processor,
1105 * on Intel only.
1106 */
1107 if (m.cpuvendor == X86_VENDOR_INTEL)
1108 lmce = m.mcgstatus & MCG_STATUS_LMCES;
1109
1110 /*
1111 * Go through all banks in exclusion of the other CPUs. This way we
1112 * don't report duplicated events on shared banks because the first one
1113 * to see it will clear it. If this is a Local MCE, then no need to
1114 * perform rendezvous.
1115 */
1116 if (!lmce)
1117 order = mce_start(&no_way_out);
1118
1119 for (i = 0; i < cfg->banks; i++) {
1120 __clear_bit(i, toclear);
1121 if (!test_bit(i, valid_banks))
1122 continue;
1123 if (!mce_banks[i].ctl)
1124 continue;
1125
1126 m.misc = 0;
1127 m.addr = 0;
1128 m.bank = i;
1129
1130 m.status = mce_rdmsrl(msr_ops.status(i));
1131 if ((m.status & MCI_STATUS_VAL) == 0)
1132 continue;
1133
1134 /*
1135 * Non uncorrected or non signaled errors are handled by
1136 * machine_check_poll. Leave them alone, unless this panics.
1137 */
1138 if (!(m.status & (cfg->ser ? MCI_STATUS_S : MCI_STATUS_UC)) &&
1139 !no_way_out)
1140 continue;
1141
1142 /*
1143 * Set taint even when machine check was not enabled.
1144 */
1145 add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);
1146
1147 severity = mce_severity(&m, cfg->tolerant, NULL, true);
1148
1149 /*
1150 * When machine check was for corrected/deferred handler don't
1151 * touch, unless we're panicing.
1152 */
1153 if ((severity == MCE_KEEP_SEVERITY ||
1154 severity == MCE_UCNA_SEVERITY) && !no_way_out)
1155 continue;
1156 __set_bit(i, toclear);
1157 if (severity == MCE_NO_SEVERITY) {
1158 /*
1159 * Machine check event was not enabled. Clear, but
1160 * ignore.
1161 */
1162 continue;
1163 }
1164
1165 mce_read_aux(&m, i);
1166
1167 /* assuming valid severity level != 0 */
1168 m.severity = severity;
1169
1170 mce_log(&m);
1171
1172 if (severity > worst) {
1173 *final = m;
1174 worst = severity;
1175 }
1176 }
1177
1178 /* mce_clear_state will clear *final, save locally for use later */
1179 m = *final;
1180
1181 if (!no_way_out)
1182 mce_clear_state(toclear);
1183
1184 /*
1185 * Do most of the synchronization with other CPUs.
1186 * When there's any problem use only local no_way_out state.
1187 */
1188 if (!lmce) {
1189 if (mce_end(order) < 0)
1190 no_way_out = worst >= MCE_PANIC_SEVERITY;
1191 } else {
1192 /*
1193 * Local MCE skipped calling mce_reign()
1194 * If we found a fatal error, we need to panic here.
1195 */
1196 if (worst >= MCE_PANIC_SEVERITY && mca_cfg.tolerant < 3)
1197 mce_panic("Machine check from unknown source",
1198 NULL, NULL);
1199 }
1200
1201 /*
1202 * If tolerant is at an insane level we drop requests to kill
1203 * processes and continue even when there is no way out.
1204 */
1205 if (cfg->tolerant == 3)
1206 kill_it = 0;
1207 else if (no_way_out)
1208 mce_panic("Fatal machine check on current CPU", &m, msg);
1209
1210 if (worst > 0)
1211 mce_report_event(regs);
1212 mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1213 out:
1214 sync_core();
1215
1216 if (worst != MCE_AR_SEVERITY && !kill_it)
1217 goto out_ist;
1218
1219 /* Fault was in user mode and we need to take some action */
1220 if ((m.cs & 3) == 3) {
1221 ist_begin_non_atomic(regs);
1222 local_irq_enable();
1223
1224 if (kill_it || do_memory_failure(&m))
1225 force_sig(SIGBUS, current);
1226 local_irq_disable();
1227 ist_end_non_atomic();
1228 } else {
1229 if (!fixup_exception(regs, X86_TRAP_MC))
1230 mce_panic("Failed kernel mode recovery", &m, NULL);
1231 }
1232
1233 out_ist:
1234 ist_exit(regs);
1235 }
1236 EXPORT_SYMBOL_GPL(do_machine_check);
1237
1238 #ifndef CONFIG_MEMORY_FAILURE
1239 int memory_failure(unsigned long pfn, int vector, int flags)
1240 {
1241 /* mce_severity() should not hand us an ACTION_REQUIRED error */
1242 BUG_ON(flags & MF_ACTION_REQUIRED);
1243 pr_err("Uncorrected memory error in page 0x%lx ignored\n"
1244 "Rebuild kernel with CONFIG_MEMORY_FAILURE=y for smarter handling\n",
1245 pfn);
1246
1247 return 0;
1248 }
1249 #endif
1250
1251 /*
1252 * Action optional processing happens here (picking up
1253 * from the list of faulting pages that do_machine_check()
1254 * placed into the genpool).
1255 */
1256 static void mce_process_work(struct work_struct *dummy)
1257 {
1258 mce_gen_pool_process();
1259 }
1260
1261 #ifdef CONFIG_X86_MCE_INTEL
1262 /***
1263 * mce_log_therm_throt_event - Logs the thermal throttling event to mcelog
1264 * @cpu: The CPU on which the event occurred.
1265 * @status: Event status information
1266 *
1267 * This function should be called by the thermal interrupt after the
1268 * event has been processed and the decision was made to log the event
1269 * further.
1270 *
1271 * The status parameter will be saved to the 'status' field of 'struct mce'
1272 * and historically has been the register value of the
1273 * MSR_IA32_THERMAL_STATUS (Intel) msr.
1274 */
1275 void mce_log_therm_throt_event(__u64 status)
1276 {
1277 struct mce m;
1278
1279 mce_setup(&m);
1280 m.bank = MCE_THERMAL_BANK;
1281 m.status = status;
1282 mce_log(&m);
1283 }
1284 #endif /* CONFIG_X86_MCE_INTEL */
1285
1286 /*
1287 * Periodic polling timer for "silent" machine check errors. If the
1288 * poller finds an MCE, poll 2x faster. When the poller finds no more
1289 * errors, poll 2x slower (up to check_interval seconds).
1290 */
1291 static unsigned long check_interval = INITIAL_CHECK_INTERVAL;
1292
1293 static DEFINE_PER_CPU(unsigned long, mce_next_interval); /* in jiffies */
1294 static DEFINE_PER_CPU(struct timer_list, mce_timer);
1295
1296 static unsigned long mce_adjust_timer_default(unsigned long interval)
1297 {
1298 return interval;
1299 }
1300
1301 static unsigned long (*mce_adjust_timer)(unsigned long interval) = mce_adjust_timer_default;
1302
1303 static void __restart_timer(struct timer_list *t, unsigned long interval)
1304 {
1305 unsigned long when = jiffies + interval;
1306 unsigned long flags;
1307
1308 local_irq_save(flags);
1309
1310 if (timer_pending(t)) {
1311 if (time_before(when, t->expires))
1312 mod_timer_pinned(t, when);
1313 } else {
1314 t->expires = round_jiffies(when);
1315 add_timer_on(t, smp_processor_id());
1316 }
1317
1318 local_irq_restore(flags);
1319 }
1320
1321 static void mce_timer_fn(unsigned long data)
1322 {
1323 struct timer_list *t = this_cpu_ptr(&mce_timer);
1324 int cpu = smp_processor_id();
1325 unsigned long iv;
1326
1327 WARN_ON(cpu != data);
1328
1329 iv = __this_cpu_read(mce_next_interval);
1330
1331 if (mce_available(this_cpu_ptr(&cpu_info))) {
1332 machine_check_poll(MCP_TIMESTAMP, this_cpu_ptr(&mce_poll_banks));
1333
1334 if (mce_intel_cmci_poll()) {
1335 iv = mce_adjust_timer(iv);
1336 goto done;
1337 }
1338 }
1339
1340 /*
1341 * Alert userspace if needed. If we logged an MCE, reduce the polling
1342 * interval, otherwise increase the polling interval.
1343 */
1344 if (mce_notify_irq())
1345 iv = max(iv / 2, (unsigned long) HZ/100);
1346 else
1347 iv = min(iv * 2, round_jiffies_relative(check_interval * HZ));
1348
1349 done:
1350 __this_cpu_write(mce_next_interval, iv);
1351 __restart_timer(t, iv);
1352 }
1353
1354 /*
1355 * Ensure that the timer is firing in @interval from now.
1356 */
1357 void mce_timer_kick(unsigned long interval)
1358 {
1359 struct timer_list *t = this_cpu_ptr(&mce_timer);
1360 unsigned long iv = __this_cpu_read(mce_next_interval);
1361
1362 __restart_timer(t, interval);
1363
1364 if (interval < iv)
1365 __this_cpu_write(mce_next_interval, interval);
1366 }
1367
1368 /* Must not be called in IRQ context where del_timer_sync() can deadlock */
1369 static void mce_timer_delete_all(void)
1370 {
1371 int cpu;
1372
1373 for_each_online_cpu(cpu)
1374 del_timer_sync(&per_cpu(mce_timer, cpu));
1375 }
1376
1377 static void mce_do_trigger(struct work_struct *work)
1378 {
1379 call_usermodehelper(mce_helper, mce_helper_argv, NULL, UMH_NO_WAIT);
1380 }
1381
1382 static DECLARE_WORK(mce_trigger_work, mce_do_trigger);
1383
1384 /*
1385 * Notify the user(s) about new machine check events.
1386 * Can be called from interrupt context, but not from machine check/NMI
1387 * context.
1388 */
1389 int mce_notify_irq(void)
1390 {
1391 /* Not more than two messages every minute */
1392 static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2);
1393
1394 if (test_and_clear_bit(0, &mce_need_notify)) {
1395 /* wake processes polling /dev/mcelog */
1396 wake_up_interruptible(&mce_chrdev_wait);
1397
1398 if (mce_helper[0])
1399 schedule_work(&mce_trigger_work);
1400
1401 if (__ratelimit(&ratelimit))
1402 pr_info(HW_ERR "Machine check events logged\n");
1403
1404 return 1;
1405 }
1406 return 0;
1407 }
1408 EXPORT_SYMBOL_GPL(mce_notify_irq);
1409
1410 static int __mcheck_cpu_mce_banks_init(void)
1411 {
1412 int i;
1413 u8 num_banks = mca_cfg.banks;
1414
1415 mce_banks = kzalloc(num_banks * sizeof(struct mce_bank), GFP_KERNEL);
1416 if (!mce_banks)
1417 return -ENOMEM;
1418
1419 for (i = 0; i < num_banks; i++) {
1420 struct mce_bank *b = &mce_banks[i];
1421
1422 b->ctl = -1ULL;
1423 b->init = 1;
1424 }
1425 return 0;
1426 }
1427
1428 /*
1429 * Initialize Machine Checks for a CPU.
1430 */
1431 static int __mcheck_cpu_cap_init(void)
1432 {
1433 unsigned b;
1434 u64 cap;
1435
1436 rdmsrl(MSR_IA32_MCG_CAP, cap);
1437
1438 b = cap & MCG_BANKCNT_MASK;
1439 if (!mca_cfg.banks)
1440 pr_info("CPU supports %d MCE banks\n", b);
1441
1442 if (b > MAX_NR_BANKS) {
1443 pr_warn("Using only %u machine check banks out of %u\n",
1444 MAX_NR_BANKS, b);
1445 b = MAX_NR_BANKS;
1446 }
1447
1448 /* Don't support asymmetric configurations today */
1449 WARN_ON(mca_cfg.banks != 0 && b != mca_cfg.banks);
1450 mca_cfg.banks = b;
1451
1452 if (!mce_banks) {
1453 int err = __mcheck_cpu_mce_banks_init();
1454
1455 if (err)
1456 return err;
1457 }
1458
1459 /* Use accurate RIP reporting if available. */
1460 if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9)
1461 mca_cfg.rip_msr = MSR_IA32_MCG_EIP;
1462
1463 if (cap & MCG_SER_P)
1464 mca_cfg.ser = true;
1465
1466 return 0;
1467 }
1468
1469 static void __mcheck_cpu_init_generic(void)
1470 {
1471 enum mcp_flags m_fl = 0;
1472 mce_banks_t all_banks;
1473 u64 cap;
1474
1475 if (!mca_cfg.bootlog)
1476 m_fl = MCP_DONTLOG;
1477
1478 /*
1479 * Log the machine checks left over from the previous reset.
1480 */
1481 bitmap_fill(all_banks, MAX_NR_BANKS);
1482 machine_check_poll(MCP_UC | m_fl, &all_banks);
1483
1484 cr4_set_bits(X86_CR4_MCE);
1485
1486 rdmsrl(MSR_IA32_MCG_CAP, cap);
1487 if (cap & MCG_CTL_P)
1488 wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff);
1489 }
1490
1491 static void __mcheck_cpu_init_clear_banks(void)
1492 {
1493 int i;
1494
1495 for (i = 0; i < mca_cfg.banks; i++) {
1496 struct mce_bank *b = &mce_banks[i];
1497
1498 if (!b->init)
1499 continue;
1500 wrmsrl(msr_ops.ctl(i), b->ctl);
1501 wrmsrl(msr_ops.status(i), 0);
1502 }
1503 }
1504
1505 /*
1506 * During IFU recovery Sandy Bridge -EP4S processors set the RIPV and
1507 * EIPV bits in MCG_STATUS to zero on the affected logical processor (SDM
1508 * Vol 3B Table 15-20). But this confuses both the code that determines
1509 * whether the machine check occurred in kernel or user mode, and also
1510 * the severity assessment code. Pretend that EIPV was set, and take the
1511 * ip/cs values from the pt_regs that mce_gather_info() ignored earlier.
1512 */
1513 static void quirk_sandybridge_ifu(int bank, struct mce *m, struct pt_regs *regs)
1514 {
1515 if (bank != 0)
1516 return;
1517 if ((m->mcgstatus & (MCG_STATUS_EIPV|MCG_STATUS_RIPV)) != 0)
1518 return;
1519 if ((m->status & (MCI_STATUS_OVER|MCI_STATUS_UC|
1520 MCI_STATUS_EN|MCI_STATUS_MISCV|MCI_STATUS_ADDRV|
1521 MCI_STATUS_PCC|MCI_STATUS_S|MCI_STATUS_AR|
1522 MCACOD)) !=
1523 (MCI_STATUS_UC|MCI_STATUS_EN|
1524 MCI_STATUS_MISCV|MCI_STATUS_ADDRV|MCI_STATUS_S|
1525 MCI_STATUS_AR|MCACOD_INSTR))
1526 return;
1527
1528 m->mcgstatus |= MCG_STATUS_EIPV;
1529 m->ip = regs->ip;
1530 m->cs = regs->cs;
1531 }
1532
1533 /* Add per CPU specific workarounds here */
1534 static int __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c)
1535 {
1536 struct mca_config *cfg = &mca_cfg;
1537
1538 if (c->x86_vendor == X86_VENDOR_UNKNOWN) {
1539 pr_info("unknown CPU type - not enabling MCE support\n");
1540 return -EOPNOTSUPP;
1541 }
1542
1543 /* This should be disabled by the BIOS, but isn't always */
1544 if (c->x86_vendor == X86_VENDOR_AMD) {
1545 if (c->x86 == 15 && cfg->banks > 4) {
1546 /*
1547 * disable GART TBL walk error reporting, which
1548 * trips off incorrectly with the IOMMU & 3ware
1549 * & Cerberus:
1550 */
1551 clear_bit(10, (unsigned long *)&mce_banks[4].ctl);
1552 }
1553 if (c->x86 < 17 && cfg->bootlog < 0) {
1554 /*
1555 * Lots of broken BIOS around that don't clear them
1556 * by default and leave crap in there. Don't log:
1557 */
1558 cfg->bootlog = 0;
1559 }
1560 /*
1561 * Various K7s with broken bank 0 around. Always disable
1562 * by default.
1563 */
1564 if (c->x86 == 6 && cfg->banks > 0)
1565 mce_banks[0].ctl = 0;
1566
1567 /*
1568 * overflow_recov is supported for F15h Models 00h-0fh
1569 * even though we don't have a CPUID bit for it.
1570 */
1571 if (c->x86 == 0x15 && c->x86_model <= 0xf)
1572 mce_flags.overflow_recov = 1;
1573
1574 /*
1575 * Turn off MC4_MISC thresholding banks on those models since
1576 * they're not supported there.
1577 */
1578 if (c->x86 == 0x15 &&
1579 (c->x86_model >= 0x10 && c->x86_model <= 0x1f)) {
1580 int i;
1581 u64 hwcr;
1582 bool need_toggle;
1583 u32 msrs[] = {
1584 0x00000413, /* MC4_MISC0 */
1585 0xc0000408, /* MC4_MISC1 */
1586 };
1587
1588 rdmsrl(MSR_K7_HWCR, hwcr);
1589
1590 /* McStatusWrEn has to be set */
1591 need_toggle = !(hwcr & BIT(18));
1592
1593 if (need_toggle)
1594 wrmsrl(MSR_K7_HWCR, hwcr | BIT(18));
1595
1596 /* Clear CntP bit safely */
1597 for (i = 0; i < ARRAY_SIZE(msrs); i++)
1598 msr_clear_bit(msrs[i], 62);
1599
1600 /* restore old settings */
1601 if (need_toggle)
1602 wrmsrl(MSR_K7_HWCR, hwcr);
1603 }
1604 }
1605
1606 if (c->x86_vendor == X86_VENDOR_INTEL) {
1607 /*
1608 * SDM documents that on family 6 bank 0 should not be written
1609 * because it aliases to another special BIOS controlled
1610 * register.
1611 * But it's not aliased anymore on model 0x1a+
1612 * Don't ignore bank 0 completely because there could be a
1613 * valid event later, merely don't write CTL0.
1614 */
1615
1616 if (c->x86 == 6 && c->x86_model < 0x1A && cfg->banks > 0)
1617 mce_banks[0].init = 0;
1618
1619 /*
1620 * All newer Intel systems support MCE broadcasting. Enable
1621 * synchronization with a one second timeout.
1622 */
1623 if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) &&
1624 cfg->monarch_timeout < 0)
1625 cfg->monarch_timeout = USEC_PER_SEC;
1626
1627 /*
1628 * There are also broken BIOSes on some Pentium M and
1629 * earlier systems:
1630 */
1631 if (c->x86 == 6 && c->x86_model <= 13 && cfg->bootlog < 0)
1632 cfg->bootlog = 0;
1633
1634 if (c->x86 == 6 && c->x86_model == 45)
1635 quirk_no_way_out = quirk_sandybridge_ifu;
1636 /*
1637 * MCG_CAP.MCG_SER_P is necessary but not sufficient to know
1638 * whether this processor will actually generate recoverable
1639 * machine checks. Check to see if this is an E7 model Xeon.
1640 * We can't do a model number check because E5 and E7 use the
1641 * same model number. E5 doesn't support recovery, E7 does.
1642 */
1643 if (mca_cfg.recovery || (mca_cfg.ser &&
1644 !strncmp(c->x86_model_id,
1645 "Intel(R) Xeon(R) CPU E7-", 24)))
1646 set_cpu_cap(c, X86_FEATURE_MCE_RECOVERY);
1647 }
1648 if (cfg->monarch_timeout < 0)
1649 cfg->monarch_timeout = 0;
1650 if (cfg->bootlog != 0)
1651 cfg->panic_timeout = 30;
1652
1653 return 0;
1654 }
1655
1656 static int __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c)
1657 {
1658 if (c->x86 != 5)
1659 return 0;
1660
1661 switch (c->x86_vendor) {
1662 case X86_VENDOR_INTEL:
1663 intel_p5_mcheck_init(c);
1664 return 1;
1665 break;
1666 case X86_VENDOR_CENTAUR:
1667 winchip_mcheck_init(c);
1668 return 1;
1669 break;
1670 default:
1671 return 0;
1672 }
1673
1674 return 0;
1675 }
1676
1677 static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c)
1678 {
1679 switch (c->x86_vendor) {
1680 case X86_VENDOR_INTEL:
1681 mce_intel_feature_init(c);
1682 mce_adjust_timer = cmci_intel_adjust_timer;
1683 break;
1684
1685 case X86_VENDOR_AMD: {
1686 mce_flags.overflow_recov = !!cpu_has(c, X86_FEATURE_OVERFLOW_RECOV);
1687 mce_flags.succor = !!cpu_has(c, X86_FEATURE_SUCCOR);
1688 mce_flags.smca = !!cpu_has(c, X86_FEATURE_SMCA);
1689
1690 /*
1691 * Install proper ops for Scalable MCA enabled processors
1692 */
1693 if (mce_flags.smca) {
1694 msr_ops.ctl = smca_ctl_reg;
1695 msr_ops.status = smca_status_reg;
1696 msr_ops.addr = smca_addr_reg;
1697 msr_ops.misc = smca_misc_reg;
1698 }
1699 mce_amd_feature_init(c);
1700
1701 break;
1702 }
1703
1704 default:
1705 break;
1706 }
1707 }
1708
1709 static void __mcheck_cpu_clear_vendor(struct cpuinfo_x86 *c)
1710 {
1711 switch (c->x86_vendor) {
1712 case X86_VENDOR_INTEL:
1713 mce_intel_feature_clear(c);
1714 break;
1715 default:
1716 break;
1717 }
1718 }
1719
1720 static void mce_start_timer(unsigned int cpu, struct timer_list *t)
1721 {
1722 unsigned long iv = check_interval * HZ;
1723
1724 if (mca_cfg.ignore_ce || !iv)
1725 return;
1726
1727 per_cpu(mce_next_interval, cpu) = iv;
1728
1729 t->expires = round_jiffies(jiffies + iv);
1730 add_timer_on(t, cpu);
1731 }
1732
1733 static void __mcheck_cpu_init_timer(void)
1734 {
1735 struct timer_list *t = this_cpu_ptr(&mce_timer);
1736 unsigned int cpu = smp_processor_id();
1737
1738 setup_timer(t, mce_timer_fn, cpu);
1739 mce_start_timer(cpu, t);
1740 }
1741
1742 /* Handle unconfigured int18 (should never happen) */
1743 static void unexpected_machine_check(struct pt_regs *regs, long error_code)
1744 {
1745 pr_err("CPU#%d: Unexpected int18 (Machine Check)\n",
1746 smp_processor_id());
1747 }
1748
1749 /* Call the installed machine check handler for this CPU setup. */
1750 void (*machine_check_vector)(struct pt_regs *, long error_code) =
1751 unexpected_machine_check;
1752
1753 /*
1754 * Called for each booted CPU to set up machine checks.
1755 * Must be called with preempt off:
1756 */
1757 void mcheck_cpu_init(struct cpuinfo_x86 *c)
1758 {
1759 if (mca_cfg.disabled)
1760 return;
1761
1762 if (__mcheck_cpu_ancient_init(c))
1763 return;
1764
1765 if (!mce_available(c))
1766 return;
1767
1768 if (__mcheck_cpu_cap_init() < 0 || __mcheck_cpu_apply_quirks(c) < 0) {
1769 mca_cfg.disabled = true;
1770 return;
1771 }
1772
1773 if (mce_gen_pool_init()) {
1774 mca_cfg.disabled = true;
1775 pr_emerg("Couldn't allocate MCE records pool!\n");
1776 return;
1777 }
1778
1779 machine_check_vector = do_machine_check;
1780
1781 __mcheck_cpu_init_generic();
1782 __mcheck_cpu_init_vendor(c);
1783 __mcheck_cpu_init_clear_banks();
1784 __mcheck_cpu_init_timer();
1785 }
1786
1787 /*
1788 * Called for each booted CPU to clear some machine checks opt-ins
1789 */
1790 void mcheck_cpu_clear(struct cpuinfo_x86 *c)
1791 {
1792 if (mca_cfg.disabled)
1793 return;
1794
1795 if (!mce_available(c))
1796 return;
1797
1798 /*
1799 * Possibly to clear general settings generic to x86
1800 * __mcheck_cpu_clear_generic(c);
1801 */
1802 __mcheck_cpu_clear_vendor(c);
1803
1804 }
1805
1806 /*
1807 * mce_chrdev: Character device /dev/mcelog to read and clear the MCE log.
1808 */
1809
1810 static DEFINE_SPINLOCK(mce_chrdev_state_lock);
1811 static int mce_chrdev_open_count; /* #times opened */
1812 static int mce_chrdev_open_exclu; /* already open exclusive? */
1813
1814 static int mce_chrdev_open(struct inode *inode, struct file *file)
1815 {
1816 spin_lock(&mce_chrdev_state_lock);
1817
1818 if (mce_chrdev_open_exclu ||
1819 (mce_chrdev_open_count && (file->f_flags & O_EXCL))) {
1820 spin_unlock(&mce_chrdev_state_lock);
1821
1822 return -EBUSY;
1823 }
1824
1825 if (file->f_flags & O_EXCL)
1826 mce_chrdev_open_exclu = 1;
1827 mce_chrdev_open_count++;
1828
1829 spin_unlock(&mce_chrdev_state_lock);
1830
1831 return nonseekable_open(inode, file);
1832 }
1833
1834 static int mce_chrdev_release(struct inode *inode, struct file *file)
1835 {
1836 spin_lock(&mce_chrdev_state_lock);
1837
1838 mce_chrdev_open_count--;
1839 mce_chrdev_open_exclu = 0;
1840
1841 spin_unlock(&mce_chrdev_state_lock);
1842
1843 return 0;
1844 }
1845
1846 static void collect_tscs(void *data)
1847 {
1848 unsigned long *cpu_tsc = (unsigned long *)data;
1849
1850 cpu_tsc[smp_processor_id()] = rdtsc();
1851 }
1852
1853 static int mce_apei_read_done;
1854
1855 /* Collect MCE record of previous boot in persistent storage via APEI ERST. */
1856 static int __mce_read_apei(char __user **ubuf, size_t usize)
1857 {
1858 int rc;
1859 u64 record_id;
1860 struct mce m;
1861
1862 if (usize < sizeof(struct mce))
1863 return -EINVAL;
1864
1865 rc = apei_read_mce(&m, &record_id);
1866 /* Error or no more MCE record */
1867 if (rc <= 0) {
1868 mce_apei_read_done = 1;
1869 /*
1870 * When ERST is disabled, mce_chrdev_read() should return
1871 * "no record" instead of "no device."
1872 */
1873 if (rc == -ENODEV)
1874 return 0;
1875 return rc;
1876 }
1877 rc = -EFAULT;
1878 if (copy_to_user(*ubuf, &m, sizeof(struct mce)))
1879 return rc;
1880 /*
1881 * In fact, we should have cleared the record after that has
1882 * been flushed to the disk or sent to network in
1883 * /sbin/mcelog, but we have no interface to support that now,
1884 * so just clear it to avoid duplication.
1885 */
1886 rc = apei_clear_mce(record_id);
1887 if (rc) {
1888 mce_apei_read_done = 1;
1889 return rc;
1890 }
1891 *ubuf += sizeof(struct mce);
1892
1893 return 0;
1894 }
1895
1896 static ssize_t mce_chrdev_read(struct file *filp, char __user *ubuf,
1897 size_t usize, loff_t *off)
1898 {
1899 char __user *buf = ubuf;
1900 unsigned long *cpu_tsc;
1901 unsigned prev, next;
1902 int i, err;
1903
1904 cpu_tsc = kmalloc(nr_cpu_ids * sizeof(long), GFP_KERNEL);
1905 if (!cpu_tsc)
1906 return -ENOMEM;
1907
1908 mutex_lock(&mce_chrdev_read_mutex);
1909
1910 if (!mce_apei_read_done) {
1911 err = __mce_read_apei(&buf, usize);
1912 if (err || buf != ubuf)
1913 goto out;
1914 }
1915
1916 next = mce_log_get_idx_check(mcelog.next);
1917
1918 /* Only supports full reads right now */
1919 err = -EINVAL;
1920 if (*off != 0 || usize < MCE_LOG_LEN*sizeof(struct mce))
1921 goto out;
1922
1923 err = 0;
1924 prev = 0;
1925 do {
1926 for (i = prev; i < next; i++) {
1927 unsigned long start = jiffies;
1928 struct mce *m = &mcelog.entry[i];
1929
1930 while (!m->finished) {
1931 if (time_after_eq(jiffies, start + 2)) {
1932 memset(m, 0, sizeof(*m));
1933 goto timeout;
1934 }
1935 cpu_relax();
1936 }
1937 smp_rmb();
1938 err |= copy_to_user(buf, m, sizeof(*m));
1939 buf += sizeof(*m);
1940 timeout:
1941 ;
1942 }
1943
1944 memset(mcelog.entry + prev, 0,
1945 (next - prev) * sizeof(struct mce));
1946 prev = next;
1947 next = cmpxchg(&mcelog.next, prev, 0);
1948 } while (next != prev);
1949
1950 synchronize_sched();
1951
1952 /*
1953 * Collect entries that were still getting written before the
1954 * synchronize.
1955 */
1956 on_each_cpu(collect_tscs, cpu_tsc, 1);
1957
1958 for (i = next; i < MCE_LOG_LEN; i++) {
1959 struct mce *m = &mcelog.entry[i];
1960
1961 if (m->finished && m->tsc < cpu_tsc[m->cpu]) {
1962 err |= copy_to_user(buf, m, sizeof(*m));
1963 smp_rmb();
1964 buf += sizeof(*m);
1965 memset(m, 0, sizeof(*m));
1966 }
1967 }
1968
1969 if (err)
1970 err = -EFAULT;
1971
1972 out:
1973 mutex_unlock(&mce_chrdev_read_mutex);
1974 kfree(cpu_tsc);
1975
1976 return err ? err : buf - ubuf;
1977 }
1978
1979 static unsigned int mce_chrdev_poll(struct file *file, poll_table *wait)
1980 {
1981 poll_wait(file, &mce_chrdev_wait, wait);
1982 if (READ_ONCE(mcelog.next))
1983 return POLLIN | POLLRDNORM;
1984 if (!mce_apei_read_done && apei_check_mce())
1985 return POLLIN | POLLRDNORM;
1986 return 0;
1987 }
1988
1989 static long mce_chrdev_ioctl(struct file *f, unsigned int cmd,
1990 unsigned long arg)
1991 {
1992 int __user *p = (int __user *)arg;
1993
1994 if (!capable(CAP_SYS_ADMIN))
1995 return -EPERM;
1996
1997 switch (cmd) {
1998 case MCE_GET_RECORD_LEN:
1999 return put_user(sizeof(struct mce), p);
2000 case MCE_GET_LOG_LEN:
2001 return put_user(MCE_LOG_LEN, p);
2002 case MCE_GETCLEAR_FLAGS: {
2003 unsigned flags;
2004
2005 do {
2006 flags = mcelog.flags;
2007 } while (cmpxchg(&mcelog.flags, flags, 0) != flags);
2008
2009 return put_user(flags, p);
2010 }
2011 default:
2012 return -ENOTTY;
2013 }
2014 }
2015
2016 static ssize_t (*mce_write)(struct file *filp, const char __user *ubuf,
2017 size_t usize, loff_t *off);
2018
2019 void register_mce_write_callback(ssize_t (*fn)(struct file *filp,
2020 const char __user *ubuf,
2021 size_t usize, loff_t *off))
2022 {
2023 mce_write = fn;
2024 }
2025 EXPORT_SYMBOL_GPL(register_mce_write_callback);
2026
2027 static ssize_t mce_chrdev_write(struct file *filp, const char __user *ubuf,
2028 size_t usize, loff_t *off)
2029 {
2030 if (mce_write)
2031 return mce_write(filp, ubuf, usize, off);
2032 else
2033 return -EINVAL;
2034 }
2035
2036 static const struct file_operations mce_chrdev_ops = {
2037 .open = mce_chrdev_open,
2038 .release = mce_chrdev_release,
2039 .read = mce_chrdev_read,
2040 .write = mce_chrdev_write,
2041 .poll = mce_chrdev_poll,
2042 .unlocked_ioctl = mce_chrdev_ioctl,
2043 .llseek = no_llseek,
2044 };
2045
2046 static struct miscdevice mce_chrdev_device = {
2047 MISC_MCELOG_MINOR,
2048 "mcelog",
2049 &mce_chrdev_ops,
2050 };
2051
2052 static void __mce_disable_bank(void *arg)
2053 {
2054 int bank = *((int *)arg);
2055 __clear_bit(bank, this_cpu_ptr(mce_poll_banks));
2056 cmci_disable_bank(bank);
2057 }
2058
2059 void mce_disable_bank(int bank)
2060 {
2061 if (bank >= mca_cfg.banks) {
2062 pr_warn(FW_BUG
2063 "Ignoring request to disable invalid MCA bank %d.\n",
2064 bank);
2065 return;
2066 }
2067 set_bit(bank, mce_banks_ce_disabled);
2068 on_each_cpu(__mce_disable_bank, &bank, 1);
2069 }
2070
2071 /*
2072 * mce=off Disables machine check
2073 * mce=no_cmci Disables CMCI
2074 * mce=no_lmce Disables LMCE
2075 * mce=dont_log_ce Clears corrected events silently, no log created for CEs.
2076 * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared.
2077 * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above)
2078 * monarchtimeout is how long to wait for other CPUs on machine
2079 * check, or 0 to not wait
2080 * mce=bootlog Log MCEs from before booting. Disabled by default on AMD.
2081 * mce=nobootlog Don't log MCEs from before booting.
2082 * mce=bios_cmci_threshold Don't program the CMCI threshold
2083 */
2084 static int __init mcheck_enable(char *str)
2085 {
2086 struct mca_config *cfg = &mca_cfg;
2087
2088 if (*str == 0) {
2089 enable_p5_mce();
2090 return 1;
2091 }
2092 if (*str == '=')
2093 str++;
2094 if (!strcmp(str, "off"))
2095 cfg->disabled = true;
2096 else if (!strcmp(str, "no_cmci"))
2097 cfg->cmci_disabled = true;
2098 else if (!strcmp(str, "no_lmce"))
2099 cfg->lmce_disabled = true;
2100 else if (!strcmp(str, "dont_log_ce"))
2101 cfg->dont_log_ce = true;
2102 else if (!strcmp(str, "ignore_ce"))
2103 cfg->ignore_ce = true;
2104 else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog"))
2105 cfg->bootlog = (str[0] == 'b');
2106 else if (!strcmp(str, "bios_cmci_threshold"))
2107 cfg->bios_cmci_threshold = true;
2108 else if (!strcmp(str, "recovery"))
2109 cfg->recovery = true;
2110 else if (isdigit(str[0])) {
2111 if (get_option(&str, &cfg->tolerant) == 2)
2112 get_option(&str, &(cfg->monarch_timeout));
2113 } else {
2114 pr_info("mce argument %s ignored. Please use /sys\n", str);
2115 return 0;
2116 }
2117 return 1;
2118 }
2119 __setup("mce", mcheck_enable);
2120
2121 int __init mcheck_init(void)
2122 {
2123 mcheck_intel_therm_init();
2124 mce_register_decode_chain(&mce_srao_nb);
2125 mcheck_vendor_init_severity();
2126
2127 INIT_WORK(&mce_work, mce_process_work);
2128 init_irq_work(&mce_irq_work, mce_irq_work_cb);
2129
2130 return 0;
2131 }
2132
2133 /*
2134 * mce_syscore: PM support
2135 */
2136
2137 /*
2138 * Disable machine checks on suspend and shutdown. We can't really handle
2139 * them later.
2140 */
2141 static void mce_disable_error_reporting(void)
2142 {
2143 int i;
2144
2145 for (i = 0; i < mca_cfg.banks; i++) {
2146 struct mce_bank *b = &mce_banks[i];
2147
2148 if (b->init)
2149 wrmsrl(msr_ops.ctl(i), 0);
2150 }
2151 return;
2152 }
2153
2154 static void vendor_disable_error_reporting(void)
2155 {
2156 /*
2157 * Don't clear on Intel CPUs. Some of these MSRs are socket-wide.
2158 * Disabling them for just a single offlined CPU is bad, since it will
2159 * inhibit reporting for all shared resources on the socket like the
2160 * last level cache (LLC), the integrated memory controller (iMC), etc.
2161 */
2162 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
2163 return;
2164
2165 mce_disable_error_reporting();
2166 }
2167
2168 static int mce_syscore_suspend(void)
2169 {
2170 vendor_disable_error_reporting();
2171 return 0;
2172 }
2173
2174 static void mce_syscore_shutdown(void)
2175 {
2176 vendor_disable_error_reporting();
2177 }
2178
2179 /*
2180 * On resume clear all MCE state. Don't want to see leftovers from the BIOS.
2181 * Only one CPU is active at this time, the others get re-added later using
2182 * CPU hotplug:
2183 */
2184 static void mce_syscore_resume(void)
2185 {
2186 __mcheck_cpu_init_generic();
2187 __mcheck_cpu_init_vendor(raw_cpu_ptr(&cpu_info));
2188 __mcheck_cpu_init_clear_banks();
2189 }
2190
2191 static struct syscore_ops mce_syscore_ops = {
2192 .suspend = mce_syscore_suspend,
2193 .shutdown = mce_syscore_shutdown,
2194 .resume = mce_syscore_resume,
2195 };
2196
2197 /*
2198 * mce_device: Sysfs support
2199 */
2200
2201 static void mce_cpu_restart(void *data)
2202 {
2203 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2204 return;
2205 __mcheck_cpu_init_generic();
2206 __mcheck_cpu_init_clear_banks();
2207 __mcheck_cpu_init_timer();
2208 }
2209
2210 /* Reinit MCEs after user configuration changes */
2211 static void mce_restart(void)
2212 {
2213 mce_timer_delete_all();
2214 on_each_cpu(mce_cpu_restart, NULL, 1);
2215 }
2216
2217 /* Toggle features for corrected errors */
2218 static void mce_disable_cmci(void *data)
2219 {
2220 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2221 return;
2222 cmci_clear();
2223 }
2224
2225 static void mce_enable_ce(void *all)
2226 {
2227 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2228 return;
2229 cmci_reenable();
2230 cmci_recheck();
2231 if (all)
2232 __mcheck_cpu_init_timer();
2233 }
2234
2235 static struct bus_type mce_subsys = {
2236 .name = "machinecheck",
2237 .dev_name = "machinecheck",
2238 };
2239
2240 DEFINE_PER_CPU(struct device *, mce_device);
2241
2242 void (*threshold_cpu_callback)(unsigned long action, unsigned int cpu);
2243
2244 static inline struct mce_bank *attr_to_bank(struct device_attribute *attr)
2245 {
2246 return container_of(attr, struct mce_bank, attr);
2247 }
2248
2249 static ssize_t show_bank(struct device *s, struct device_attribute *attr,
2250 char *buf)
2251 {
2252 return sprintf(buf, "%llx\n", attr_to_bank(attr)->ctl);
2253 }
2254
2255 static ssize_t set_bank(struct device *s, struct device_attribute *attr,
2256 const char *buf, size_t size)
2257 {
2258 u64 new;
2259
2260 if (kstrtou64(buf, 0, &new) < 0)
2261 return -EINVAL;
2262
2263 attr_to_bank(attr)->ctl = new;
2264 mce_restart();
2265
2266 return size;
2267 }
2268
2269 static ssize_t
2270 show_trigger(struct device *s, struct device_attribute *attr, char *buf)
2271 {
2272 strcpy(buf, mce_helper);
2273 strcat(buf, "\n");
2274 return strlen(mce_helper) + 1;
2275 }
2276
2277 static ssize_t set_trigger(struct device *s, struct device_attribute *attr,
2278 const char *buf, size_t siz)
2279 {
2280 char *p;
2281
2282 strncpy(mce_helper, buf, sizeof(mce_helper));
2283 mce_helper[sizeof(mce_helper)-1] = 0;
2284 p = strchr(mce_helper, '\n');
2285
2286 if (p)
2287 *p = 0;
2288
2289 return strlen(mce_helper) + !!p;
2290 }
2291
2292 static ssize_t set_ignore_ce(struct device *s,
2293 struct device_attribute *attr,
2294 const char *buf, size_t size)
2295 {
2296 u64 new;
2297
2298 if (kstrtou64(buf, 0, &new) < 0)
2299 return -EINVAL;
2300
2301 if (mca_cfg.ignore_ce ^ !!new) {
2302 if (new) {
2303 /* disable ce features */
2304 mce_timer_delete_all();
2305 on_each_cpu(mce_disable_cmci, NULL, 1);
2306 mca_cfg.ignore_ce = true;
2307 } else {
2308 /* enable ce features */
2309 mca_cfg.ignore_ce = false;
2310 on_each_cpu(mce_enable_ce, (void *)1, 1);
2311 }
2312 }
2313 return size;
2314 }
2315
2316 static ssize_t set_cmci_disabled(struct device *s,
2317 struct device_attribute *attr,
2318 const char *buf, size_t size)
2319 {
2320 u64 new;
2321
2322 if (kstrtou64(buf, 0, &new) < 0)
2323 return -EINVAL;
2324
2325 if (mca_cfg.cmci_disabled ^ !!new) {
2326 if (new) {
2327 /* disable cmci */
2328 on_each_cpu(mce_disable_cmci, NULL, 1);
2329 mca_cfg.cmci_disabled = true;
2330 } else {
2331 /* enable cmci */
2332 mca_cfg.cmci_disabled = false;
2333 on_each_cpu(mce_enable_ce, NULL, 1);
2334 }
2335 }
2336 return size;
2337 }
2338
2339 static ssize_t store_int_with_restart(struct device *s,
2340 struct device_attribute *attr,
2341 const char *buf, size_t size)
2342 {
2343 ssize_t ret = device_store_int(s, attr, buf, size);
2344 mce_restart();
2345 return ret;
2346 }
2347
2348 static DEVICE_ATTR(trigger, 0644, show_trigger, set_trigger);
2349 static DEVICE_INT_ATTR(tolerant, 0644, mca_cfg.tolerant);
2350 static DEVICE_INT_ATTR(monarch_timeout, 0644, mca_cfg.monarch_timeout);
2351 static DEVICE_BOOL_ATTR(dont_log_ce, 0644, mca_cfg.dont_log_ce);
2352
2353 static struct dev_ext_attribute dev_attr_check_interval = {
2354 __ATTR(check_interval, 0644, device_show_int, store_int_with_restart),
2355 &check_interval
2356 };
2357
2358 static struct dev_ext_attribute dev_attr_ignore_ce = {
2359 __ATTR(ignore_ce, 0644, device_show_bool, set_ignore_ce),
2360 &mca_cfg.ignore_ce
2361 };
2362
2363 static struct dev_ext_attribute dev_attr_cmci_disabled = {
2364 __ATTR(cmci_disabled, 0644, device_show_bool, set_cmci_disabled),
2365 &mca_cfg.cmci_disabled
2366 };
2367
2368 static struct device_attribute *mce_device_attrs[] = {
2369 &dev_attr_tolerant.attr,
2370 &dev_attr_check_interval.attr,
2371 &dev_attr_trigger,
2372 &dev_attr_monarch_timeout.attr,
2373 &dev_attr_dont_log_ce.attr,
2374 &dev_attr_ignore_ce.attr,
2375 &dev_attr_cmci_disabled.attr,
2376 NULL
2377 };
2378
2379 static cpumask_var_t mce_device_initialized;
2380
2381 static void mce_device_release(struct device *dev)
2382 {
2383 kfree(dev);
2384 }
2385
2386 /* Per cpu device init. All of the cpus still share the same ctrl bank: */
2387 static int mce_device_create(unsigned int cpu)
2388 {
2389 struct device *dev;
2390 int err;
2391 int i, j;
2392
2393 if (!mce_available(&boot_cpu_data))
2394 return -EIO;
2395
2396 dev = kzalloc(sizeof *dev, GFP_KERNEL);
2397 if (!dev)
2398 return -ENOMEM;
2399 dev->id = cpu;
2400 dev->bus = &mce_subsys;
2401 dev->release = &mce_device_release;
2402
2403 err = device_register(dev);
2404 if (err) {
2405 put_device(dev);
2406 return err;
2407 }
2408
2409 for (i = 0; mce_device_attrs[i]; i++) {
2410 err = device_create_file(dev, mce_device_attrs[i]);
2411 if (err)
2412 goto error;
2413 }
2414 for (j = 0; j < mca_cfg.banks; j++) {
2415 err = device_create_file(dev, &mce_banks[j].attr);
2416 if (err)
2417 goto error2;
2418 }
2419 cpumask_set_cpu(cpu, mce_device_initialized);
2420 per_cpu(mce_device, cpu) = dev;
2421
2422 return 0;
2423 error2:
2424 while (--j >= 0)
2425 device_remove_file(dev, &mce_banks[j].attr);
2426 error:
2427 while (--i >= 0)
2428 device_remove_file(dev, mce_device_attrs[i]);
2429
2430 device_unregister(dev);
2431
2432 return err;
2433 }
2434
2435 static void mce_device_remove(unsigned int cpu)
2436 {
2437 struct device *dev = per_cpu(mce_device, cpu);
2438 int i;
2439
2440 if (!cpumask_test_cpu(cpu, mce_device_initialized))
2441 return;
2442
2443 for (i = 0; mce_device_attrs[i]; i++)
2444 device_remove_file(dev, mce_device_attrs[i]);
2445
2446 for (i = 0; i < mca_cfg.banks; i++)
2447 device_remove_file(dev, &mce_banks[i].attr);
2448
2449 device_unregister(dev);
2450 cpumask_clear_cpu(cpu, mce_device_initialized);
2451 per_cpu(mce_device, cpu) = NULL;
2452 }
2453
2454 /* Make sure there are no machine checks on offlined CPUs. */
2455 static void mce_disable_cpu(void *h)
2456 {
2457 unsigned long action = *(unsigned long *)h;
2458
2459 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2460 return;
2461
2462 if (!(action & CPU_TASKS_FROZEN))
2463 cmci_clear();
2464
2465 vendor_disable_error_reporting();
2466 }
2467
2468 static void mce_reenable_cpu(void *h)
2469 {
2470 unsigned long action = *(unsigned long *)h;
2471 int i;
2472
2473 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2474 return;
2475
2476 if (!(action & CPU_TASKS_FROZEN))
2477 cmci_reenable();
2478 for (i = 0; i < mca_cfg.banks; i++) {
2479 struct mce_bank *b = &mce_banks[i];
2480
2481 if (b->init)
2482 wrmsrl(msr_ops.ctl(i), b->ctl);
2483 }
2484 }
2485
2486 /* Get notified when a cpu comes on/off. Be hotplug friendly. */
2487 static int
2488 mce_cpu_callback(struct notifier_block *nfb, unsigned long action, void *hcpu)
2489 {
2490 unsigned int cpu = (unsigned long)hcpu;
2491 struct timer_list *t = &per_cpu(mce_timer, cpu);
2492
2493 switch (action & ~CPU_TASKS_FROZEN) {
2494 case CPU_ONLINE:
2495 mce_device_create(cpu);
2496 if (threshold_cpu_callback)
2497 threshold_cpu_callback(action, cpu);
2498 break;
2499 case CPU_DEAD:
2500 if (threshold_cpu_callback)
2501 threshold_cpu_callback(action, cpu);
2502 mce_device_remove(cpu);
2503 mce_intel_hcpu_update(cpu);
2504
2505 /* intentionally ignoring frozen here */
2506 if (!(action & CPU_TASKS_FROZEN))
2507 cmci_rediscover();
2508 break;
2509 case CPU_DOWN_PREPARE:
2510 smp_call_function_single(cpu, mce_disable_cpu, &action, 1);
2511 del_timer_sync(t);
2512 break;
2513 case CPU_DOWN_FAILED:
2514 smp_call_function_single(cpu, mce_reenable_cpu, &action, 1);
2515 mce_start_timer(cpu, t);
2516 break;
2517 }
2518
2519 return NOTIFY_OK;
2520 }
2521
2522 static struct notifier_block mce_cpu_notifier = {
2523 .notifier_call = mce_cpu_callback,
2524 };
2525
2526 static __init void mce_init_banks(void)
2527 {
2528 int i;
2529
2530 for (i = 0; i < mca_cfg.banks; i++) {
2531 struct mce_bank *b = &mce_banks[i];
2532 struct device_attribute *a = &b->attr;
2533
2534 sysfs_attr_init(&a->attr);
2535 a->attr.name = b->attrname;
2536 snprintf(b->attrname, ATTR_LEN, "bank%d", i);
2537
2538 a->attr.mode = 0644;
2539 a->show = show_bank;
2540 a->store = set_bank;
2541 }
2542 }
2543
2544 static __init int mcheck_init_device(void)
2545 {
2546 int err;
2547 int i = 0;
2548
2549 if (!mce_available(&boot_cpu_data)) {
2550 err = -EIO;
2551 goto err_out;
2552 }
2553
2554 if (!zalloc_cpumask_var(&mce_device_initialized, GFP_KERNEL)) {
2555 err = -ENOMEM;
2556 goto err_out;
2557 }
2558
2559 mce_init_banks();
2560
2561 err = subsys_system_register(&mce_subsys, NULL);
2562 if (err)
2563 goto err_out_mem;
2564
2565 cpu_notifier_register_begin();
2566 for_each_online_cpu(i) {
2567 err = mce_device_create(i);
2568 if (err) {
2569 /*
2570 * Register notifier anyway (and do not unreg it) so
2571 * that we don't leave undeleted timers, see notifier
2572 * callback above.
2573 */
2574 __register_hotcpu_notifier(&mce_cpu_notifier);
2575 cpu_notifier_register_done();
2576 goto err_device_create;
2577 }
2578 }
2579
2580 __register_hotcpu_notifier(&mce_cpu_notifier);
2581 cpu_notifier_register_done();
2582
2583 register_syscore_ops(&mce_syscore_ops);
2584
2585 /* register character device /dev/mcelog */
2586 err = misc_register(&mce_chrdev_device);
2587 if (err)
2588 goto err_register;
2589
2590 return 0;
2591
2592 err_register:
2593 unregister_syscore_ops(&mce_syscore_ops);
2594
2595 err_device_create:
2596 /*
2597 * We didn't keep track of which devices were created above, but
2598 * even if we had, the set of online cpus might have changed.
2599 * Play safe and remove for every possible cpu, since
2600 * mce_device_remove() will do the right thing.
2601 */
2602 for_each_possible_cpu(i)
2603 mce_device_remove(i);
2604
2605 err_out_mem:
2606 free_cpumask_var(mce_device_initialized);
2607
2608 err_out:
2609 pr_err("Unable to init device /dev/mcelog (rc: %d)\n", err);
2610
2611 return err;
2612 }
2613 device_initcall_sync(mcheck_init_device);
2614
2615 /*
2616 * Old style boot options parsing. Only for compatibility.
2617 */
2618 static int __init mcheck_disable(char *str)
2619 {
2620 mca_cfg.disabled = true;
2621 return 1;
2622 }
2623 __setup("nomce", mcheck_disable);
2624
2625 #ifdef CONFIG_DEBUG_FS
2626 struct dentry *mce_get_debugfs_dir(void)
2627 {
2628 static struct dentry *dmce;
2629
2630 if (!dmce)
2631 dmce = debugfs_create_dir("mce", NULL);
2632
2633 return dmce;
2634 }
2635
2636 static void mce_reset(void)
2637 {
2638 cpu_missing = 0;
2639 atomic_set(&mce_fake_panicked, 0);
2640 atomic_set(&mce_executing, 0);
2641 atomic_set(&mce_callin, 0);
2642 atomic_set(&global_nwo, 0);
2643 }
2644
2645 static int fake_panic_get(void *data, u64 *val)
2646 {
2647 *val = fake_panic;
2648 return 0;
2649 }
2650
2651 static int fake_panic_set(void *data, u64 val)
2652 {
2653 mce_reset();
2654 fake_panic = val;
2655 return 0;
2656 }
2657
2658 DEFINE_SIMPLE_ATTRIBUTE(fake_panic_fops, fake_panic_get,
2659 fake_panic_set, "%llu\n");
2660
2661 static int __init mcheck_debugfs_init(void)
2662 {
2663 struct dentry *dmce, *ffake_panic;
2664
2665 dmce = mce_get_debugfs_dir();
2666 if (!dmce)
2667 return -ENOMEM;
2668 ffake_panic = debugfs_create_file("fake_panic", 0444, dmce, NULL,
2669 &fake_panic_fops);
2670 if (!ffake_panic)
2671 return -ENOMEM;
2672
2673 return 0;
2674 }
2675 #else
2676 static int __init mcheck_debugfs_init(void) { return -EINVAL; }
2677 #endif
2678
2679 static int __init mcheck_late_init(void)
2680 {
2681 mcheck_debugfs_init();
2682
2683 /*
2684 * Flush out everything that has been logged during early boot, now that
2685 * everything has been initialized (workqueues, decoders, ...).
2686 */
2687 mce_schedule_work();
2688
2689 return 0;
2690 }
2691 late_initcall(mcheck_late_init);
This page took 0.125484 seconds and 6 git commands to generate.